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Abstract In this study, we provide an overview of the state-of-the-art technologies

in programming, computing, and storage of the massive data analytics landscape.

We shed light on different types of analytics that can be performed on massive data.

For that, we first provide a detailed taxonomy on different analytic types along with

examples of each type. Next, we highlight technology trends of massive data ana-

lytics that are available for corporations, government agencies, and researchers. In

addition, we enumerate several instances of opportunities that exist for turning mas-

sive data into knowledge. We describe and position two distinct case studies of mas-

sive data analytics that are being investigated in our research group: recommendation

systems in e-commerce applications; and link discovery to predict unknown associ-

ation of medical concepts. Finally, we discuss the lessons we have learnt and open

challenges faced by researchers and businesses in the field of massive data analytics.

M.K. Pusala ⋅ J.R. Katukuri ⋅ V. Raghavan (✉)

Center of Advanced Computer Studies (CACS), University of Louisiana Lafayette,

Lafayette, LA 70503, USA

e-mail: vijay@cacs.louisiana.edu

M.K. Pusala

e-mail: mxp6168@cacs.louisiana.edu

J.R. Katukuri

e-mail: jaykatukuri@gmail.com

M. Amini Salehi

School of Computing and Informatics, University of Louisiana Lafayette,

Lafayette, LA 70503, USA

e-mail: amini@louisiana.edu

Y. Xie

Department of Computer Science, Kennesaw State University,

Kennesaw, GA 30144, USA

e-mail: yxie2@kennesaw.edu

© Springer India 2016

S. Pyne et al. (eds.), Big Data Analytics, DOI 10.1007/978-81-322-3628-3_2

11



12 M.K. Pusala et al.

1 Introduction

1.1 Motivation

Growth of Internet usage in the last decade has been at an unprecedented rate from 16

million, which is about 0.4 % of total population in 1995, to more than 3 billion users,

which is about half of the world’s population in mid-2014. This revolutionized the

way people communicate and share their information. According to [46], just during

2013, 4.4 zettabytes (4.4 × 270 bytes) of information have created and replicated, and

it estimated to grow up to 44 zettabytes by 2020. Below, we explain few sources from

such massive data generation.

Facebook
1

has an average of 1.39 billion monthly active users exchanging billions

of messages and postings every day [16]. There is also a huge surge in multimedia

content like photos and videos. For example, in popular photo sharing social net-

work Instagram,
2

on average, 70 million photos uploaded and shared every day [27].

According to other statistics published by Google on its video streaming service,

YouTube,
3

has approximately 300 h of video uploaded every minute and billions of

views generated every day [62].

Along with Individuals, organizations are also generating a huge amount of data,

mainly due to increased use of networked sensors in various sectors of organizations.

For example, by simply replacing traditional bar code systems with radio frequency

identification (RFID) systems organizations have generated 100 to 1000 times more

data [57].

Organization’s interest on customer behavior is another driver for producing mas-

sive data. For instance, Wal-Mart
4

handles more than a million customer transactions

each hour and maintains a database that holds more than 2.5 petabytes of data [57].

Many businesses are creating a 360◦ view of a customer by combining transaction

data with social networks and other sources.

Data explosion is not limited to individuals or organizations. With the increase of

scientific equipment sensitivity and advancements in technology, the scientific and

research, community is also generating a massive amount of data. Australian Square

Kilometer Array Pathfinder radio telescope [8] has 36 antennas streams approxi-

mately 250 GB of data per second per antenna that collectively produces nine ter-

abytes of data per second. In another example, particle accelerator, particle detector,

and simulations at Large Hadron Collider (LHC) at CERN [55] generate approxi-

mately 15 petabytes of data per year.

1
https://facebook.com.

2
https://instagram.com.

3
http://www.youtube.com.

4
http://www.walmart.com.

https://facebook.com
https://instagram.com
http://www.youtube.com
http://www.walmart.com


Massive Data Analysis: Tasks, Tools, . . . 13

1.2 Big Data Overview

The rapid explosion of data is usually referred as “Big Data”, which is a trending

topic in both industry and academia. Big data (aka Massive Data) is defined as, data

that cannot be handled or analyzed by conventional processing and storage tools.

Big data is also characterized by features,known as 5V’s. These features are: volume,

variety, velocity, variability, and veracity [7, 21].

Traditionally, most of the available data is structured data and stored in conven-

tional databases and data warehouses for supporting all kinds of data analytics. With

the Big data, data is no longer necessarily structured. Instead, it contains a variety of

data sources, including structured, semi-structured, and unstructured data [7]. It is

estimated that 85 % of total organizational data are unstructured data [57] and almost

all the data generated by individuals (e.g., emails, messages, blogs, and multime-

dia) are unstructured data too. Traditional relational databases are no longer a viable

option to store text, video, audio, images, and other forms of unstructured data. This

creates a need for special types of NoSQL databases and advanced analytic methods.

Velocity of data is described as problem of handling and processing data at the

speeds at which they are generated to extract a meaningful value. Online retailers

store every attribute (e.g., clicks, page visits, duration of visits to a page) of their

customers’ visits to their online websites. There is a need to analyze customers’ visits

within a reasonable timespan (e.g., real time) to recommend similar items and related

items with respect to the item a customer is looking at. This helps companies to

attract new customers and keep an edge over their competitors. Some organizations

analyze data as a stream in order to reduce data storage. For instance, LHC at CERN

[55] analyzes data before storing to meet the storage requirements. Smart phones are

equipped with modern location detection sensors that enable us to understand the

customer behavior while, at the same time, creating the need for real-time analysis

to deliver location-based suggestions.

Data variability is the variation in data flow with time of day, season, events, etc.

For example, retailers sell significantly more in November and December compared

to rest of year. According to [1], traffic to retail websites surges during this period.

The challenge, in this scenario, is to provide resources to handle sudden increases in

users’ demands. Traditionally, organizations were building in-house infrastructure to

support their peak-estimated demand periods. However, it turns out to be costly, as

the resources will remain idle during the rest of the time. However, the emergence of

advanced distributed computing platforms, known as ‘the cloud,’ can be leveraged

to enable on-demand resource provisioning through third party companies. Cloud

provides efficient computational, storage, and other services to organizations and

relieves them from the burden of over-provisioning resources [49].

Big data provides advantage in decision-making and analytics. However, among

all data generated in 2013 only 22 % of data are tagged, or somehow characterized

as useful data for analysis, and only 5 % of data are considered valuable or “Tar-

get Rich” data. The quality of collected data, to extract a value from, is referred as

veracity. The ultimate goal of an organization in processing and analyzing data is
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to obtain hidden information in data. Higher quality data increases the likelihood

of effective decision-making and analytics. A McKinsey study found that retailers

using full potential from Big data could increase the operating margin up to 60 %

[38]. To reach this goal, the quality of collected data needs to be improved.

1.3 Big Data Adoption

Organizations have already started tapping into the potential of Big data. Conven-

tional data analytics are based on structured data, such as the transactional data, that

are collected in a data warehouse. Advanced massive data analysis helps to com-

bine traditional data with data from different sources for decision-making. Big data

provides opportunities for analyzing customer behavior patterns based on customer

actions inside (e.g., organization website) and outside (e.g., social networks).

In a manufacturing industry, data from sensors that monitor machines’ operation

are analyzed to predict failures of parts and replace them in advance to avoid sig-

nificant down time [25]. Large financial institutions are using Big data analytics to

identify anomaly in purchases and stop frauds or scams [3].

In spite of the wide range of emerging applications for Big data, organizations are

still facing challenges to adopt Big data analytics. A report from AIIM [9], identified

three top challenges in the adoption of Big data, which are lack of skilled workers,

difficulty to combine structured and unstructured data, and security and privacy con-

cerns. There is a sharp rise in the number of organizations showing interest to invest

in Big data related projects. According to [18], in 2014, 47 % of organizations are

reportedly investing in Big data products, as compared to 38 % in 2013. IDC pre-

dicted that the Big data service market has reached 11 billion dollars in 2009 [59]

and it could grow up to 32.4 billion dollars by end of 2017 [43]. Venture capital fund-

ing for Big data projects also increased from 155 million dollars in 2009 to more than

893 million dollars in 2013 [59].

1.4 The Chapter Structure

From the late 1990s, when Big data phenomenon was first identified, until today,

there has been many improvements in computational capabilities, storage devices

have become more inexpensive, thus, the adoption of data-centric analytics has

increased. In this study, we provide an overview of Big data analytic types, offer

insight into Big data technologies available, and identify open challenges.

The rest of this paper is organized as following. In Sect. 2, we explain different

categories of Big data analytics, along with application scenarios. Section 3 of the

chapter describes Big data computing platforms available today. In Sect. 4, we pro-

vide some insight into the storage of huge volume and variety data. In that section, we

also discuss some commercially available cloud-based storage services. In Sect. 5,
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we present two real-world Big data analytic projects. Section 6 discusses open chal-

lenges in Big data analytics. Finally, we summarize and conclude the main contri-

butions of the chapter in Sect. 7.

2 Big Data Analytics

Big data analytics is the process of exploring Big data, to extract hidden and valu-

able information and patterns [48]. Big data analytics helps organizations in more

informed decision-making. Big data analytics applications can be broadly classi-

fied as descriptive, predictive, and prescriptive. Figure 1 illustrates the data analytic

classes, techniques, and example applications. In the rest of this section, with refer-

ence to Fig. 1, we elaborate on these Big data analytic types.

2.1 Descriptive Analytics

Descriptive analytics mines massive data repositories to extract potential patterns

existing in the data. Descriptive analytics drills down into historical data to detect

patterns like variations in operating costs, sales of different products, customer buy-

ing preferences, etc.

Typically it is the first step of analytics in decision-making, answering the ques-

tion of “what has happened? ”. It summarizes raw data into a human understandable

format. Most of the statistical analysis used in day-to-day Business Intelligence (BI)

regarding a company’s production, financial operations, sales, inventory, and cus-

tomers come under descriptive analytics [61]. Analytics involve simple techniques,

such as regression to find correlation among various variables and drawing charts,

Fig. 1 Types of Big data analytics: The second level in the hierarchy is the categorization of ana-

lytics. The third level, explains the typical techniques, and provides example in the corresponding

analytic category
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to identify trends in the data, and visualize data in a meaningful and understandable

way, respectively.

For example, Dow Chemicals used descriptive analytics to identify under-utilized

space in its offices and labs. As a result, they were able to increase space utilization

by 20 % and save approximately $4 million annually [14].

2.2 Predictive Analytics

With descriptive analytics, organizations can understand what happened in the past.

However, at a higher level of decision-making is to address the question of “what

could happen?”. Predictive analytics helps to combine massive data from different

sources with the goal of predicting future trends or events. Predictive analytics eval-

uates the future, by forecasting trends, by generating prediction models, and by scor-

ing.

For example, industries use predictive analytics to predict machine failures using

streaming sensor data [25]. Organizations are able to forecast their sales trends or

overall performance [35]. Financial institutions devote a lot of resources to predict

credit risk scores for companies or individuals. Eventhough predictive analytics can-

not predict with 100 % certainty, but it helps the companies in estimating future

trends for more informed decision-making.

Southwest airlines has partnered with National Aeronautics and Space Adminis-

tration (NASA) to work on a Big data-mining project [42]. They apply text-based

analysis on data from sensors in their planes in order to find patterns that indicate

potential malfunction or safety issues.

Purdue University uses Big data analytics to predict academic and behavioral

issues [45]. For each student, the system predicts and generates a risk profile indi-

cating how far a student succeeds in a course and labels the risk levels as green (high

probability of success), yellow (potential problems), and red (risk of failure) by using

data from various sources, such as student information and course management sys-

tems for this analytics.

E-commerce applications apply predictive analytics on customer purchase his-

tory, customer behavior online, like page views, clicks, and time spend on pages,

and from other sources [10, 58]. Retail organizations are able to predict customer

behavior to target appropriate promotions and recommendations [31]. They use pre-

dictive analysis to determine the demand of inventory and maintain the supply chain

accordingly. Predictive analysis also helps to change price dynamically to attract

consumers and maximize profits [2].
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2.3 Prescriptive Analytics

Descriptive and predictive analytics helps to understand the past and predict the

future. The next stage in decision-making is “how can we make it happen?”—the

answer is prescriptive analytics. The goal of prescriptive analytics is to assist profes-

sionals in assessing the impact of different possible decisions. It is a relatively new

analytic method. According to Gartner [19], only 3 % of companies use prescriptive

analytics in their decision-making. Prescriptive analytics involves techniques such

as optimization, numerical modeling, and simulation.

Oil and Gas exploration industries use prescriptive analytics to optimize the

exploration process. Explorers are using massive datasets from different sources in

the exploration process and use prescriptive analytics to optimize drilling location

[56]. They use earth’s sedimentation characteristics, temperature, pressure, soil type,

depth, chemical composition, molecular structures, seismic activity, machine data,

and others to determine the best possible location to drill [15, 17]. This helps to

optimize selection of drilling location, and avoid the cost and effort of unsuccessful

drills.

Health care is one of the sectors benefiting from applying Big data prescriptive

analytics. Prescriptive analytics can recommend diagnoses and treatments to a doc-

tor by analyzing patient’s medical history, similar conditioned patient’s history, aller-

gies, medicines, environmental conditions, stage of cure, etc. According to [54], the

Aurora Health Care Center saves six million USD annually by using Big data ana-

lytics and recommending best possible treatment to doctors.

3 Big Data Analytics Platforms

There are several Big data analytics platforms available. In this section, we present

advances within the Big data analytics platforms.

3.1 MapReduce

MapReduce framework represents a pioneering schema for performing Big data ana-

lytics. It has been developed for a dedicated platform (such as a cluster). MapReduce

framework has been implemented in three different ways. The first implementation

was achieved by Google [13] under a proprietary license. The other two implemen-

tations are: Hadoop [33] and Spark [66],which are available as open source. There

are other platforms that, in fact, stem from these basic platforms.

The core idea of MapReduce is based on developing two input functions namely,

Map and Reduce. Programmers need to implement these functions. Each of these

functions utilizes the available resources to process Big data in parallel. The MapRe-
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duce works closely with a distributed storage system to carry out operations such as

storing input, intermediate, and output data. Distributed file systems, such as Hadoop

Distributed File System (HDFS) [52] and Google File System (GFS), have been

developed to the MapReduce framework [20].

Every MapReduce workflow typically contains three steps (phases) namely, Map-

ping step, Shuffling step, and Reduce step. In the Map step, user (programmer) imple-

ments the functionality required in the Map function. The defined Map function will

be executed against the input dataset across the available computational resources.

The original (i.e., input) data are partitioned and placed in a distributed file system

(DFS). Then, each Map task processes a partition of data from the DFS and gen-

erates intermediate data that are stored locally on the worker machines where the

processing was taking place.

Distributing the intermediate data on the available computational resources is

required to enable parallel Reduce. This step is known as Shuffling. The distribution

of the intermediate data is performed in an all-to-all fashion that generally creates a

communication bottleneck. Once the distribution of intermediate data is performed,

the Reduce function is executed to produce the output, which is the final result of the

MapReduce processing. Commonly, developers create a chain of MapReduce jobs

(also referred to as a multistage MapReduce job), such as the Yahoo! WebMap [5].

In this case, the output of one MapReduce job is consumed as the intermediate data

for the next MapReduce job in the chain.

3.2 Apache Hadoop

Hadoop [33] framework was developed as an open source product by Yahoo! and

widely adopted for Big data analytics by the academic and industrial communities.

The main design advantage of Hadoop is its fault-tolerance. In fact, Hadoop has been

designed with the assumption of failure as a common issue in distributed systems.

Therefore, it is robust against failures commonly occur during different phases of

execution.

Hadoop Distributed File System (HDFS) and MapReduce are two main building

blocks of Hadoop. The former is the storage core of Hadoop (see Sect. 4.1 for details).

The latter, MapReduce engine, is above the file system and takes care of executing

the application by moving binaries to the machines that have the related data.

For the sake of fault-tolerance, HDFS replicates data blocks in different racks;

thus, in case of failure in one rack, the whole process would not fail. A Hadoop cluster

includes one master node and one or more worker nodes. The master node includes

four components namely, JobTracker, TaskTracker, NameNode, and DataNode. The

worker node just includes DataNode and TaskTracker. The JobTracker receives user

applications and allocates them to available TaskTracker nodes, while considering

data locality. JobTracker assures about the health of TaskTrackers based on regu-

lar heartbeats it receives from them. Although Hadoop is robust against failures in
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a distributed system, its performance is not the best amongst other available tools

because of frequent disk accesses [51].

3.3 Spark

Spark is a more recent framework developed at UC Berkeley [66]. It is being used

for research and production applications. Spark offers a general-purpose program-

ming interface in the Scala programming language for interactive, in-memory data

analytics of large datasets on a cluster.

Spark provides three data abstractions for programming clusters namely, resilient
distributed datasets (RDDs), broadcast variables, and accumulators. RDD is a read-

only collection of objects partitioned across a set of machines. It can reconstruct lost

partitions or recover in the event of a node failure. RDD uses a restricted shared

memory to achieve fault-tolerance. Broadcast variables and accumulators are two

restricted types of shared variables. Broadcast variable is a shared object wrapped

around a read-only value, which ensures it is only copied to each worker once. Accu-

mulators are shared variables with an add operation. Only workers can perform an

operation on an accumulator and only users’ driver programs can read from it. Even-

though, these abstractions are simple and limited, they can be used to develop several

cluster-based applications.

Spark uses master/slave architecture. It has one master instance, which runs a

user-defined driver program. At run-time, the driver program launches multiple

workers in the cluster, which read data from the shared filesystem (e.g., Hadoop

Distributed File System). Workers create RDDs and write partitions on RAM as

defined by the driver program. Spark supports RDD transformations (e.g., map, fil-

ter) and actions (e.g., count, reduce). Transformations generate new datasets and

actions return a value, from the existing dataset.

Spark has proved to be 20X faster than Hadoop for iterative applications, was

shown to speed up a real-world data analytics report by 40X, and has been used

interactively to scan a 1 TB dataset with 57 s latency [65].

3.4 High Performance Computing Cluster

LexisNexis Risk Solutions originally developed High Performance Computing Clus-

ter (HPCC),
5

as a proprietary platform, for processing and analyzing large volumes

of data on clusters of commodity servers more than a decade ago. It was turned into

an open source system in 2011. Major components of an HPCC system include a

Thor cluster and a Roxie cluster, although the latter is optional. Thor is called the

data refinery cluster, which is responsible for extracting, transforming, and loading

5
http://hpccsystems.com.

http://hpccsystems.com
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(ETL), as well as linking and indexing massive data from different sources. Roxie is

called the query cluster, which is responsible for delivering data for online queries

and online analytical processing (OLAP).

Similar to Hadoop, HPCC also uses a distributed file system to support parallel

processing on Big data. However, compared with HDFS, the distributed file system

used by HPCC has some significant distinctions. First of all, HPCC uses two types of

distributed file systems; one is called Thor DFS that is intended to support Big data

ETL in the Thor cluster; the other is called Roxie DFS that is intended to support

Big data online queries in the Roxie cluster. Unlike HDFS that is key-value pair

based, the Thor DFS is record-oriented, which is flexible enough to support data

sets of different formats, such as CSV, XML, fixed or variable length of records, and

records with nested structures. Thor DFS distributes a file across all nodes in the

Thor cluster with an even number of records for each node. The Roxie DFS uses

distributed B+ tree for data indexing to support efficient delivery of data for user

queries.

HPCC uses a data-centric, declarative programming language called Enterprise

Control Language (ECL) for both data refinery and query delivery. By using ECL,

the user specifies what needs to be done on data instead of how to do it. The data

transformation in ECL can be specified either locally or globally. Local transforma-

tion is carried out on each file part stored in a node of the Thor cluster in a parallel

manner, whereas global transformation processes the global data file across all nodes

of the Thor cluster. Therefore, HPCC not only pioneers the current Big data com-

puting paradigm that moves computing to where the data is, but also maintains the

capability of processing data in a global scope. ECL programs can be extended with

C++ libraries and compiled into optimized C++ code. A performance compari-

son of HPCC with Hadoop shows that, on a test cluster with 400 processing nodes,

HPCC is 3.95 faster than Hadoop on the Terabyte Sort benchmark test [41]. One

of the authors of this chapter is currently conducting a more extensive performance

comparison of HPCC and Hadoop on a variety of Big data analysis algorithms. More

technical details on HPCC can be found in [24, 40, 41, 47].

4 Distributed Data Management Systems for Big Data
Analytics

As we discussed earlier in this chapter, huge volumes and a variety of data create a

need for special types of data storage. In this section, we discuss recent advances in

storage systems for Big data analytics and some commercially available cloud-based

storage services.
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4.1 Hadoop Distributed File System

The Hadoop Distributed File System (HDFS)
6

is a distributed file system designed

to run reliably and to scale on commodity hardware. HDFS achieves high fault-

tolerance by dividing data into smaller chunks and replicating them across several

nodes in a cluster. It can scale up to 200 PB in data, and 4500 machines in single

cluster. HDFS is a side project of Hadoop and works closely with it.

HDFS is designed to work efficiently in batch mode, rather than in interactive

mode. Characteristics of typical applications developed for HDFS, such as write

once and read multiple times, and simple and coherent data access, increases the

throughput. HDFS is designed to handle large file sizes from Gigabytes to a few

Terabytes.

HDFS follows the master/slave architecture with one NameNode and multiple

DataNodes. NameNode is responsible for managing the file system’s meta data and

handling requests from applications. DataNodes physically hold the data. Typically,

every node in the cluster has one DataNode. Every file stored in HDFS is divided into

blocks with default block size of 64 MB. For the sake of fault tolerance, every block

is replicated into user-defined number of times (recommended to be a minimum of 3

times) and distributed across different data nodes. All meta data about replication and

distribution of the file are stored in the NameNode. Each DataNode sends a heartbeat

signal to NameNode. If it fails to do so, the NameNode marks the DataNode as failed.

HDFS maintains a Secondary NameNode, which is periodically updated with

information from NameNode. In case of NameNode failure, HDFS restores a

NameNode with information from the Secondary NameNode, which ensures fault-

tolerance of the NameNode. HDFS has a built-in balancer feature, which ensures

uniform data distribution across the cluster, and re-replication of missing blocks to

maintain the correct number of replications.

4.2 NoSQL Databases

Conventionally, Relational Database Management Systems (RDBMS) are used to

manage large datasets and handle tons of requests securely and reliably. Built-in

features, such as data integrity, security, fault-tolerance, and ACID (atomicity, con-

sistency, isolation, and durability) have made RDBMS a go-to data management

technology for organizations and enterprises. In spite of RDBMS’ advantages, it is

either not viable or is too expensive for applications that deal with Big data. This

has made organizations to adopt a special type of database called “NoSQL” (Not

an SQL), which means database systems that do not employ traditional “SQL” or

adopt the constraints of the relational database model. NoSQL databases cannot pro-

vide all strong built-in features of RDBMS. Instead, they are more focused on faster

read/write access to support ever-growing data.

6
http://hadoop.apache.org.

http://hadoop.apache.org
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According to December 2014 statistics from Facebook [16], it has 890 Million

average daily active users sharing billions of messages and posts every day. In order

to handle huge volumes and a variety of data, Facebook uses a Key-Value data-

base system with memory cache technology that can handle billions of read/write

requests. At any given point in time, it can efficiently store and access trillions of

items. Such operations are very expensive in relational database management sys-

tems.

Scalability is another feature in NoSQL databases, attracting large number of

organizations. NoSQL databases are able to distribute data among different nodes

within a cluster or across different clusters. This helps to avoid capital expenditure

on specialized systems, since clusters can be built with commodity computers.

Unlike relational databases, NoSQL systems have not been standardized and fea-

tures vary from one system to another. Many NoSQL databases trade-off ACID prop-

erties in favor of high performance, scalability, and faster store and retrieve opera-

tions. Enumerations of such NoSQL databases tend to vary, but they are typically

categorized as Key-Value databases, Document databases, Wide Column databases,

and Graph databases. Figure 2 shows a hierarchical view of NoSQL types, with two

examples of each type.

4.2.1 Key-Value Database

As the name suggests, Key-Value databases store data as Key-Value pairs, which

makes them schema-free systems. In most of Key-Value databases, the key is func-

tionally generated by the system, while the value can be of any data type from a

character to a large binary object. Keys are typically stored in hash tables by hashing

each key to a unique index.

All the keys are logically grouped, eventhough data values are not physically

grouped. The logical group is referred to as a ‘bucket’. Data can only be accessed

with both a bucket and a key value because the unique index is hashed using the

Fig. 2 Categorization of NoSQL databases: The first level in the hierarchy is the categorization of

NoSQL. Second level, provides examples for each NoSQL database type
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bucket and key value. The indexing mechanism increases the performance of stor-

ing, retrieving, and querying large datasets.

There are more than 40 Key-Value systems available with either commercial or

open source licenses. Amazon’s DynamoDB,
7

which is a commercial data storage

system, and open source systems like Memcached,
8

Riak,
9

and Redis
10

are most pop-

ular examples of Key-Value database systems available.These systems differ widely

in functionality and performance.

Key-Value databases are appropriate for applications that require one to store or

cache unstructured data for frequent and long-term usages, such as chat applica-

tions, and social networks. Key-Value databases can also be used in applications that

require real-time responses that need to store and retrieve data using primary keys,

and do not need complex queries. In consumer-faced web applications with high traf-

fic, Key-Value systems can efficiently manage sessions, configurations, and personal

preferences.

4.2.2 Wide Column Database

A column-based NoSQL database management system is an advancement over a

Key-Value system and is referred to as a Wide Column or column-family database.

Unlike the conventional row-centric relational systems [22], Wide Column databases

are column centric. In row-centric RDBMS, different rows are physically stored in

different places. In contrast, column-centric NoSQL databases store all correspond-

ing data in continuous disk blocks, which speeds up column-centric operations, such

as aggregation operations. Eventhough Wide Column is an advancement over Key-

Value systems, it still uses Key-Value storage in a hierarchical pattern.

In a Wide-Column NoSQL database, data are stored as name and value pairs,

rather than as rows, which are known as columns. Logical grouping of columns is

named as column-family. Usually the name of a column is a string, but the value

can be of any data type and size (character or large binary file). Each column con-

tains timestamp information along with a unique name and value. This timestamp

is helpful to keep track of versions of that column. In a Wide-Column database,

the schema can be changed at any time by simply adding new columns to column-

families. All these flexibilities in the column-based NoSQL Systems are appropriate

to store sparse, distributed, multidimensional, or heterogeneous data. A Wide Col-

umn database is appropriate for highly scalable applications, which require built-in

versioning and high-speed read/write operations. Apache Cassandra
11

(Originated

by Facebook) and Apache HBase
12

are the most widely used Wide Column data-

bases.

7
http://aws.amazon.com/dynamodb/.

8
http://memcached.org/.

9
http://basho.com/riak/.

10
http://redis.io/.

11
http://cassandra.apache.org/.

12
http://hbase.apache.org/.
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4.2.3 Document Database

A Document database works in a similar way as Wide Column databases, except that

it has more complex and deeper nesting format. It also follows the Key-Value stor-

age paradigm. However, every value is stored as a document in JSON,
13

XML
14

or

other commonly used formats. Unlike Wide Column databases, the structure of each

record in a Document database can vary from other records. In Document databases,

a new field can be added at anytime without worrying about the schema. Because

data/value is stored as a document, it is easier to distribute and maintain data locality.

One of the disadvantages of a Document database is that it needs to load a lot of data,

even to update a single value in a record. Document databases have built-in approach

of updating a document, while retaining all old versions of the document. Most Doc-

ument database systems use secondary indexing [26] to index values and documents

in order to obtain faster data access and to support query mechanisms. Some of the

database systems offer full-text search libraries and services for real-time responses.

One of the major functional advantages of document databases is the way it inter-

faces with applications. Most of the document database systems use JavaScript (JS)

as a native scripting language because it stores data in JS friendly JSON format. Fea-

tures such as JS support, ability to access documents by unique URLs, and ability to

organize and store unstructured data efficiently, make Document databases popular

in web-based applications. Documents databases serve a wide range of web applica-

tions, including blog engines, mobile web applications, chat applications, and social

media clients.

Couchbase
15

and MongoDB
16

are among popular document-style databases.

There are over 30 document databases. Most of these systems differ in the way data

are distributed (both partition and replications), and in the way a client accesses the

system. Some systems can even support transactions [23].

4.2.4 Graph Databases

All NoSQL databases partition or distribute data in such a way that all the data are

available in one place for any given operation. However, they fail to consider the rela-

tionship between different items of information. Additionally, most of these systems

are capable of performing only one-dimensional aggregation at a time.

13
http://json.org.

14
http://www.w3.org/TR/2006/REC-xml11-20060816/.

15
http://couchbase.com/.

16
http://mangodb.org/.
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A Graph database is a special type of database that is ideal for storing and han-

dling relationship between data. As the name implies Graph databases use a graph

data model. The vertices of a graph represent entities in the data and the edges rep-

resent relationships between entities. Graph data model, perfectly fits for scaling out

and distributing across different nodes. Common analytical queries in Graph data-

bases include finding the shortest path between two vertices, identifying clusters,

and community detection.

Social graphs, World Wide Web, and the Semantic Web are few well-known use

cases for graph data models and Graph databases. In a social graph, entities like

friends, followers, endorsements, messages, and responses are accommodated in

a graph database, along with relationships between them. In addition to maintain-

ing relationships, Graph databases make it easy to add new edges or remove exist-

ing edges. Graph databases also support the exploration of time-evolving graphs by

keeping track of changes in properties of edges and vertices using time stamping.

There are over 30 graph database systems. Neo4j
17

and Orient DB
18

are popu-

lar examples of graph-based systems. Graph databases found their way into differ-

ent domains, such as social media analysis (e.g., finding most influential people),

e-commerce (e.g., developing recommendations system), and biomedicine (e.g., to

analyze and predict interactions between proteins). Graph databases also serve in

several industries, including airlines, freight companies, healthcare, retail, gaming,

and oil and gas exploration.

4.2.5 Cloud-Based NoSQL Database Services

Amazon DynamoDB: DynamoDB
19

is a reliable and fully managed NoSQL data

service, which is a part of Amazon Web Services (AWS). It is a Key-Value database

that provides a schema-free architecture to support ever-growing Big data in organi-

zations and real-time web applications. DynamoDB is well optimized to handle huge

volume of data with high efficiency and throughput. This system can scale and dis-

tribute data, virtually, without any limit. DynamoDB partitions data using a hashing

method and replicates data three times and distributes them among data centers in

different regions in order to enable high availability and fault tolerance. DynamoDB

automatically partitions and re-partitions data depending on data throughput and

volume demands. DynamoDB is able to handle unpredictable workloads and high

volume demands efficiently and automatically.

DynamoDB offers eventual and strong consistency for read operations. Eventual

consistency does not always guarantee that a data read is the latest written version

of the data, but significantly increases the read throughput. Strong consistency guar-

antees that values read are the latest values after all write operations. DynamoDB

allows the user to specify a consistency level for every read operation. DynamoDB

17
http://neo4j.org/.

18
http://www.orientechnologies.com/orientdb/.

19
http://aws.amazon.com/dynamodb/.
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also offers secondary indexing (i.e., local secondary and global secondary), along

with the indexing of the primary key for faster retrieval.

DynamoDB is a cost efficient and highly scalable NoSQL database service from

Amazon. It offers benefits such as reduced administrative supervision, virtually

unlimited data throughput, and the handling of all the workloads seamlessly.

Google BigQuery: Google uses massively parallel query system called as

‘Dremel’ to query very large datasets in seconds. According to [50], Dremel can

scan 35 billion rows in ten seconds even without indexing. This is significantly more

efficient than querying a Relational DBMS. For example, on Wikipedia dataset with

314 million rows, Dremel took 10 seconds to execute regular expression query to

find the number of articles in Wikipedia that include a numerical character in the title

[50]. Google is using Dremel in web crawling, Android Market, Maps, and Books

services.

Google brought core features of this massive querying system to consumers as

a cloud-based service called ‘BigQuery’.
20

Third party consumers can access Big-

Query through either a web-based user interface, command-line or through their own

applications using the REST API. In order to use BigQuery features, data has to be

transferred into the Google Cloud storage in JSON encoding. The BigQuery also

returns results in JSON format.

Along with an interactive and fast query system, Google cloud platform also pro-

vides automatic data replication, on-demand scalability, and handles software and

hardware failure without administrative burdens. In 2014, using BigQuery, scanning

one terabyte of data only cost $5, with additional cost for storage.
21

Windows Azure Tables: Windows Azure Tables
22

is a NoSQL database tech-

nology with a Key-Value store on the Windows Azure platform. Azure Tables also

provides, virtually, unlimited storage of data. Azure Tables is highly scalable and

supports automatic partitioning. This database system distributes data across multi-

ple machines efficiently to provide high data throughput and to support higher work-

loads. Azure Tables storage provides the user with options to select a Partition-Key

and a Row-Key upfront, which may later be used for automatic data partitioning.

Azure Tables follows only the strong consistency data model for reading data. Azure

Tables replicates data three times among data centers in the same region and addi-

tional three times in other regions to provide a high degree of fault-tolerance.

Azure Tables is a storage service for applications with huge volume of data, and

needs schema-free NoSQL databases. Azure Tables uses primary key alone and it

does not support secondary indexes. Azure Tables provides the REST-based API to

interact with its services.

20
http://cloud.google.com/bigquery/.

21
https://cloud.google.com/bigquery/pricing.

22
http://azure.microsoft.com/.
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5 Examples of Massive Data Applications

In this section, a detailed discussion of solutions proposed by our research team for

two real-world Big data problems are presented.

5.1 Recommendations in e-Commerce

Recommender systems are gaining wide popularity in e-commerce, as they are

becoming major drivers of incremental business value and user satisfaction [29, 31].

In this section, we will describe the architecture behind a recommendation engine

for eBay, a large open marketplace [28]. In an e-commerce system, there are two

major kinds of recommendation scenarios: pre-purchase and post-purchase.

In the pre-purchase scenario, the system recommends items that are good alter-

natives for the item the user is viewing. In the post-purchase scenario, the recom-

mendation system recommends items complementary or related to an item, which

the user has bought recently.

5.1.1 Architecture

The architecture of the recommendation system, as illustrated in Fig. 3, consists of

the Data Store, the Real-time Performance System, and the Offline Model Generation

System. The Data Store holds the changes to website data as well as models learned.

Fig. 3 The recommendation system architecture with three major groups: The Offline Modeling

System; The Data Store; The Real-time Performance System
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The Real-time Performance System is responsible for recommending items using a

session state of the user and contents from Data Store. The Offline Model Generation

System is responsible for building models using computationally intensive offline

analyze. Next, we present a detailed discussion about these components.

Data Store: The Data Store provides data services to both the Offline Model Gen-

eration and the Real-time Performance components. It provides customized versions

of similar services to each of these components. For example, we consider a service

that provides access to item inventory data. The Offline Modeling component has

access to longitudinal information of items in the inventory, but not an efficient way

of keyword search. On the other hand, the Real-time Performance System does not

have access to longitudinal information, but it can efficiently search for item proper-

ties in the current inventory. Two types of data sources are used by our system: Input

Information sources and Output Cluster models.

∙ Input Information Sources:

The Data Store is designed to handle continuous data sources such as users’ actions

and corresponding state changes of a website. At the same time, it also stores

models, which are generated by the Offline Model Generation System. The data

in the Data Store can be broadly categorized into inventory data, clickstream data,

transaction data, and conceptual knowledge base. The inventory data contains the

items and their properties. Clickstream data includes the raw data about the users’

actions with dynamic state of the website. Even though the purchasing history can

be recreated from clickstream data, it is stored separately as transaction data for

efficient access. Conceptual knowledge base includes ontology-based hierarchical

organization of items, referred to as the category tree, lexical knowledge source,

and term dictionary of category-wise important terms/phrases.

∙ Output Cluster Model: The Data Store contains two types of knowledge struc-

tures: Cluster Model and Related Cluster Model. The Cluster Model contains the

definitions of clusters used to group the items that are conceptually similar. The

clusters are represented as bag-of-phrases. Such a representation helps to cluster

representatives as search queries and facilitates to calculate term similarity and

item-coverage overlap between the clusters.

The Related Cluster Model is used to recommend complementary items to users

based on their recent purchases. This model is represented as sparse graph with

clusters as nodes and edge between the clusters represents the likelihood of pur-

chasing items from one cluster after purchasing an item in another cluster. Next,

we discuss how these cluster models are used in the Realtime Performance System

and, then, how they are generated using Offline Model Generation System.

Real-time Performance System: The primary goal of the Real-time Performance

System is to recommend related items and similar items to the user. It consists of two

components, Similar Items Recommendation (SIR), which recommends users sim-

ilar items based on current viewing item. Related Items Recommender (RIR) rec-

ommends users the related items based on their recent purchases. Real-time Perfor-

mance System is essential to generate the recommendations in real-time to honor the
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dynamic user actions. To achieve this performance, any computationally intensive

decision process is compiled to offline model. It is required to indexed data source

such that it can be queried efficiently and to limit the computation after retrieving.

The cluster assignment service generates normalized versions of a cluster as a

Lucene
23

index. This service performs similar normalization on clusters and input

item’s title and its static properties, to generate the best matching clusters. The SIR

and RIR systems use the matching clusters differently. SIR selects the few best items

from the matching clusters as its recommendations. However, RIR picks one item

per query it has constructed to ensure the returned recommendations relates to the

seeded item in a different way.

Offline Model Generation:

∙ Clusters Generation: The inventory size of an online marketplace ranges in the

hundreds of millions of items and these items are transient, i.e., covering a broad

spectrum of categories. In order to cluster such a large scale and diverse inventory,

the system uses distributed clustering approach on a Hadoop Map-Reduce cluster,

instead of a global clustering approach.

∙ Cluster-Cluster Relations Generation: An item-to-item co-purchase matrix is gen-

erated using the purchase history of users from the transactional data set. Hadoop

Map-Reduce clusters are employed to compute Cluster-related cluster pairs from

the item-to-item co-purchase matrix.

5.1.2 Experimental Results

We conducted A/B tests to compare the performance of our Similar and Related

Items Recommender systems described in this section over the legacy recommenda-

tion system developed by Chen & Canny [11]. The legacy system clusters the items

using generative clustering and later it uses a probabilistic model to learn relation-

ship patterns from the transaction data. One of the main differences is the way these

two recommendation system generate the clusters. The legacy system uses item data

(auction title, description, price), whereas our system uses user queries to generate

clusters.

A test was conducted on Closed View Item Page (CVIP) in eBay to compare our

Similar Items Recommender algorithm with the legacy algorithm. CVIP is a page

that is used to engage a user by recommending similar items after an unsuccess-

ful bid. We also conducted a test to compare our Related Items Recommender with

legacy algorithm [11]. Both the test results show significant improvement in user

engagement and site-wide business metrics with 90 % confidence. As we are not per-

mitted to publish actual figures representing system performances, we are reporting

relative statistics. Relative improvements in user engagement (Click Through Rate)

with our SIR and RIR, over legacy algorithms, are 38.18 % and 10.5 %, respectively.

23
http://lucene.apache.org/.
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Fig. 4 Implementation flow diagram for supervised link prediction in biomedical literature

5.2 Link Prediction in Biomedical Literature

Predicting the likelihood of two nodes associating in the future, which do not have

direct association between them in the current timestep, is known as the link predic-

tion problem. Link prediction is widely used in social network analysis. Link predic-

tion has wide range of applications such as identifying missing information, identify-

ing spurious interactions, and studying the evolution of the network. In e-commerce,

link prediction is used for building recommendation systems, and in bioinformatics,

it is used to predict protein–protein interactions.

Katukuri et al. [30], proposed a supervised link prediction method, to predict

unknown association of medical concepts using biomedical publication information

from Medline.
24

Medline is a National Institute of Health (NIH)’s citation database

with more than 21 million publication citations. Figure 4 illustrates different stages

in the proposed supervised link prediction approach. A temporal concept network is

generated using relevant medical concepts extracted from publications. In the con-

cept network, each node represents a medical concept and an edge between two nodes

represents relationship that two medical concepts co-occurred at least in one publica-

tion. Document frequency of a given concept is a weight of node and co-occurrence

frequency of two concepts is edge weight. Now, link prediction problem is formu-

lated as a process of identifying whether a pair of concepts, which are not directly

connected in the current duration concept network, will be connected directly in the

future.

This link prediction problem is formulated as a supervised classification task.

Training data is automatically labeled by comparing concept network snapshots of

two consecutive time periods. This automatic labeling approach helps to avoid need

for domain experts.

In automatic labeling method, concept pairs, which are not directly connected in

the first snapshot, are labeled based on its possible connection strength in the second

snapshot. Connections strength is categorized as follows (S is edge weight in second

snapshot, and minimum_support and margin (ranges between 0 to 1) are user-defined

values):

∙ Connection as strong: S ≥ minimum_support

∙ Connection as emerging: margin × minimum_support ≤ S < minimum_support.

24
http://www.ncbi.nlm.nih.gov/pubmed/.
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∙ Connection as weak: S < margin × minimum_support.
∙ No connection: S=0.

Given a pair of nodes that has no direct connection in first snapshot is assigned

with positive class label if this pair is strongly connected in the second snapshot and

is assigned negative class label if it has weak connection or no connection the second

snapshot, and the pairs with intermediate values of strength are labeled as emerging.

For each of labeled concept pairs, a set of topological features (random walk based

and neighborhood-based) is extracted from the first snapshot of the concept net-

work. The topological feature set also includes Common neighbors, Adamic/Adar,

Jaccard Co-efficient, and Preferential Attachment [4]. Along with topological fea-

tures, semantically enriched features, like Semantic CFEC [30] are extracted. Com-

bining labeled concept pairs with the corresponding feature set generates the train-

ing instances. Supervised classification algorithms, such as SVM, and C4.5 decision

tree are used to generate prediction models. The classification accuracy of prediction

models is calculated using cross-validation, which is on average 72 % [30].

Implementing such a computationally intensive phase to extract features needed

for generating the predictive model on massive data needs large computational

resources. For example, a snapshot of the concept network for years 1991–2010 has

nearly 0.2 million nodes and nearly 44 million edges. Processing millions of publi-

cations to extract medical concepts, generating class labels, and extracting features

from large well-connected network is computationally heavy. To handle such com-

putations on large graphs, the prediction system is developed by using the MapRe-

duce framework and a Hadoop cluster environment. We implemented the MapRe-

duce functions to extract the medical concepts from millions of publications in Med-

line dataset, to generate the labeled data, and to extract structural features from the

large concept graph.

Implementing such a graph computation method on MapReduce framework has

its own limitations. One of the drawbacks of MapReduce framework is its inability

to retain the state of a graph across multiple iterations [44]. One approach to retain

the state in a MapReduce pipeline is by explicitly writing the graph to disk after one

iteration and reading it back from disk in the next iteration. This approach proves to

be inefficient due to the huge increase in I/O operation and bandwidth [44].

Google proposed a Bulk Synchronous Parallel processing model called Pregel

[37], which is a message passing model. Unlike MapReduce framework, this model

helps by retaining the graph state across the iterations. Apache Giraph is open source

alternative to Pregel, which is built on top of MapReduce framework. In such dis-

tributed graph systems, a graph is partitioned and distributed among different cluster

nodes. Each vertex has information about itself along with its neighbors. In our link

prediction, features like the Jaccard Coefficient, can be extracted in parallel since

such calculations depend only on information local to each vertex. However, other

features, like the Semantic CFEC, need to be calculated by exploring all the paths

between given pair of nodes, which can be formulated as an all-pairs-path problem.

There are several frameworks [36, 37] that can calculate the all-pairs-path problem

by passing information through edges, but between just a pair of nodes at a time.
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However, these frameworks cannot support the operation of finding all paths between

all pairs in parallel. In our case, there is a need to extract such features for millions

of concept pairs. To the best of our knowledge, there is no algorithm or framework

that can support such a problem to run in a distributed environment. This is one of

the open computational challenges in graph analytics that needs to be investigated

by the research community.

6 Current Issues of Big Data Analytics

In this section, we discuss several open challenges relating to computation, storage,

and security in Big data analytics.

6.1 Data Locality

One prominent aspect in efficient Big data processing is the ability to access data

without a significant latency. Given the transfer-prohibitive volume of Big data,

accessing data with low latency can be accomplished only through data locality. In

fact, data movement is possible in computations with moderate to medium volume

of data where the data transfer to processing time ratio is low. However, this is not

the case for Big data analytics applications. The alternative approach to alleviate the

data transfer problem is moving the computation to where the data resides. Thus,

efficient data management policies are required in the Big data analytics platforms

to consider issues such as maximizing data locality and minimizing data migration

(i.e., data transfer) between cloud data centers [63].

One of the key features of the Hadoop framework is its ability to take the effects

of data locality into account. In Hadoop, the JobTracker component tries to allocate

jobs to nodes where the data exists. Nonetheless, there are cases in which all the

nodes that host a particular data node are overloaded. In this situation, JobTracker

has to schedule the jobs on machines that do not have the data.

To expedite data processing, Spark keeps the data in main memory, instead of

on disk. Spark’s data locality policy is similar to Hadoop. However, in Spark, the

Reduce tasks are allocated to machines where the largest Map outputs are generated.

This reduces data movement across the cluster and improves the data locality further.

6.2 Fault-Tolerance of Big Data Applications

In long-running, Big data analytics applications, machine failure is inevitable. Both

transient (i.e., fail-recovery) and permanent (i.e., fail-stop) failures can occur during

the execution of such applications [32]. Google reports experiencing on average, five
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machine crashes during a MapReduce job in March 2006 [12] and at a minimum

one disk failure in each execution of a MapReduce job with 4000 tasks. Because of

the criticality of failure, any resource allocation method for Big data jobs should be

fault-tolerant.

MapReduce was originally designed to be robust against faults that commonly

happen at large-scale resource providers with many computers and devices such as

network switches and routers. For instance, reports show that during the first year

of a cluster operation at Google there were 1000 individual machine failures and

thousands of hard-drive failures.

MapReduce uses logs to tolerate faults. For this purpose, the output of Map and

Reduce phases create logs on the disk [39]. In the event that a Map task fails, it is re-

executed with the same partition of data. In case of failure in Reducer, the key/value

pairs for that failed Reducer are regenerated.

6.3 Replication in Big Data

Big data applications either do not replicate the data or do it automatically through a

distributed file system (DFS). Without replication, the failure of a server storing the

data causes the re-execution of the affected tasks. Although the replication approach

provides more fault-tolerance, it is not efficient due to network overhead and increas-

ing the execution time of the job.

Hadoop platform provides user a static replication option to determine the num-

ber of times a data block should replicate within the cluster. Such a static replication

approach adds significant storage overhead and slows down the job execution. A

solution to handle this problem is the dynamic replication that regulates the replica-

tion rate based on the usage rate of the data. Dynamic replication approaches help to

utilize the storage and processing resources efficiently [64].

Cost-effective incremental replication [34] is a method, for cloud-based jobs, that

is capable of predicting when a job needs replication. There are several other data

replication schemes for Big data applications on clouds. In this section, we discuss

four major replication schemes namely, Synchronous and Asynchronous replication,

Rack-level replication, and Selective replication. These replication schemes can be

applied at different stages of the data cycle.

Synchronous data replication scheme (e.g., HDFS) ensures data consistency

through blocking producer tasks in a job until replication finishes. Even though Syn-

chronous data replication yields high consistency, it introduces latency, which affects

the performance of producer tasks. In Asynchronous data replication scheme [32], a

producer proceeds regardless of the completion of a producer task on a replica of the

same block. Such a nonblocking nature of this scheme improves the performance

of the producer. But consistency of Asynchronous replication is not as precise as

the Synchronous replication. When Asynchronous replication is used in the Hadoop

framework, Map and Reduce tasks can continue concurrently.
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Rack-level data replication scheme ensures that all the data replicas occur on the

same rack in a data center. In fact, in data centers, servers are structured in racks with

a hierarchical topology. In a two-level architecture, the central switch can become

the bottleneck as many rack switches share it. One instance of bandwidth bottleneck

is in the Shuffling step of MapReduce. In this case, the central switch becomes over

utilized, whereas rack-level switches are under-utilized. Using the Rack-level repli-

cation helps reduce the traffic that goes through the central switch. However, this

schema cannot tolerate rack-level failures. But recent studies suggest, the rack-level

failures are uncommon, which justifies the adoption of Rack-level replication.

In Selective data replication, intermediate data generated by the Big data appli-

cation are replicated on the same server where they were generated. For example, in

the case of Map phase failures in a chained MapReduce job, the affected Map task

can be restarted directly, if the intermediate data from previous Reduce tasks were

available on the same machine. The Selective replication scheme reduces the need

for replication in the Map phase. However, it is not effective in Reduce phase, since

the Reduce data are mostly consumed locally.

Data replication on distributed file systems is costly due to disk I/O operations,

network bandwidth, and serialization overhead. These overheads can potentially

dominate the job execution time [65]. Pregel [37], a framework for iterative graph

computation, stores the intermediate data in memory to reduce these overheads.

Spark [66] framework uses a parallel data structures known as Resilient Distributed

Datasets (RDDs) [65] to store intermediate data in memory and manipulate them

using various operators. They also control the partitioning of the data to optimize

the data placement.

6.4 Big Data Security

In spite of the advantages offered by Big data analytics on clouds and the idea of

Analytics as a Service, there is an increasing concern over the confidentiality of

the Big data in these environments [6]. This concern is more serious as increasing

amount of confidential user data are migrated to the cloud for processing. Genome

sequences, health information, and feeds from social networks are few instances of

such data.

A proven solution to the confidentiality concerns of sensitive data on cloud is to

employ user-side cryptographic techniques for securing the data [6]. However, such

techniques limit the cloud-based Big data analytics in several aspects. One limita-

tion is that the cryptographic techniques usually are not transparent to end users.

More importantly, these techniques restrict functionalities, such as searching and

processing, that can be performed on the users’ data. Numerous research works are

being undertaken to address these limitations and enable seamless Big encrypted

data analytics on the cloud. However, all of these efforts are still in their infancy and

not applicable to Big data scale processing.
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Another approach to increase data confidentiality is to utilize multiple cloud stor-

age units simultaneously [60]. In this approach, user data are sharded based on a user-

side hashing function, and then the data for each cloud is encrypted and uploaded

across multiple clouds. It is noteworthy that sharding and distributing of the data are

achieved based on some lightweight user-side processing. Therefore, the control and

distribution of the data is determined merely at the user-side. Although such shard-

ing approach seems interesting for Big data analytics, challenges, such as processing

sharded data across multiple clouds, still remains unsolved.

Hybrid clouds have proven to be helpful in increasing the security of Big data

analytics. In particular, they can be useful for cloud-based Big data analytics where

a portion of the data is sensitive and needs specific trusted resources for execution.

One approach is to label the data and treat them differently based on their labels [67].

As such, nonsensitive data are pushed to a public cloud for processing and sensitive

data are processed in a private cloud. The coordination is accomplished through

a scheduler placed within local resources that determines where a data should be

processed depending on its label.

6.5 Data Heterogeneity

One of the major challenges researchers are facing is “How to integrate all the data

from different sources to maximize the value of data.” In the World Wide Web

(WWW), there is a huge amount of data created by social network sites, blogs, and

websites. However, every source is different in data structure, semantics, and format.

Structure of data from these sources varies from well-structured data (e.g., databases)

to unstructured data (e.g., heterogeneous documents).

Singh et al. [53], developed a framework to detect situations (such as epidemics,

traffic jams) by combining information from different streams like Twitter, Google

Insights, and satellite imagery. In this framework, heterogeneous real-time data

streams are combined by converting selected attributes and unified across all streams.

There are several other proposed frameworks that can combine different data sources

for various chosen domain-specific applications. Most of these solutions use a

semantics-based approach. Ontology matching is a popular semantics-based method,

which finds the similarity between the ontologies of different sources.

Ontology is a vocabulary and description of a concept and its relationship with

others in the respective domain. In the Web example, ontology is used to trans-

form unstructured or partially structured data from different sources. Most of them

are human readable format (e.g., HTML) and are hard for the machine to under-

stand. One of the most successful ontology integration projects is Wikipedia, which

is essentially integrated with human intervention. Semantic Web tools are used to

convert the unstructured Web to a machine understandable structure. Semantic Web

adds ontology constructs into web pages and enables machines to understand the

contents of a webpage. It helps to automate integration of heterogeneous data from

different sources on the Web using ontology matching.
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7 Summary and Discussion

Size of data in the digital universe is almost doubling every year and has reached to

a stage that they cannot be processed by the conventional programming, computing,

storage, visualization, and analytical tools. In this study, we reviewed different types

of analytic needs arising in research and industry. We broadly categorized the cur-

rent analytical applications as descriptive, predictive, and prescriptive and identified

several real-world applications of each type.Then, we provided an overview of the

state-of-the-art on platforms, tools, and use cases for massive data analytics.

In particular, we discussed that cloud services are helpful platforms in alleviat-

ing many of the massive data processing challenges. MapReduce compute resources,

NoSQL databases, virtually unlimited storages, and customized filesystems, amongst

many others, are useful cloud services for massive data analytics.

We provided two use cases that were investigated within our research team. The

first one, recommendation in e-commerce applications, consists of a number of com-

ponents that can be partitioned into three major groups: The Data Store that contains

data about the active and temporarily changing state of an e-commerce web site; The
Real-time Performance System that generates recommendations in real-time based

on the information in the Data Store; and the offline model generation that conducts

computationally intensive offline analyses. The Real-time Performance System con-

sists of two components, similar items recommender (SIR) and related items recom-

mender (RIR). Both of these components take a seed item as input, and return a set

of items that are similar or related to that seed item.

The second use case addresses the problem of link prediction that proposes associ-

ations between medical concepts that did not exist in earlier published works. In this

project, we model biomedical literature as a concept network, where each node rep-

resents a biomedical concept that belongs to a certain semantic type, and each edge

represents a relationship between two concepts. Each edge is attached with a weight

that reflects the significance of the edge. Based on the constructed massive graph, a

machine-learning engine is deployed to predict the possible connection between two

indirectly connected concepts.

In the course of our research on massive data analytics tools and projects, we

have learnt key lessons and identified open challenges that have to be addressed by

researchers to further advance efficient massive data analytics. Below, we highlight

some of the lessons and challenges:

∙ In many analytical applications (e.g., recommendation system in e-commerce),

even with availability of state-of-the-art Big data technologies, treating customer

data as a data stream is not yet viable. Therefore, some steps (e.g., model building

in recommendation systems), have to be performed offline.

∙ It is difficult, if not impossible, to come up with a generic framework for various

types of analytics. For instance, in the recommendation system, which is an exam-

ple of predictive data analytics in e-commerce, there are many subtle nuances.

Thus, a specific architecture is required based on the merits of each application.

Accordingly, in the eBay application, we noticed that Related Items Recommen-
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dation (RIR) needs a different architecture compared to Similar Items Recommen-

dation (SIR).

∙ Many Big data analytics (e.g., biomedical link prediction) process massive graphs

as their underlying structure. Distributed graph techniques need to be in place

for efficient and timely processing of such structures. However, to the best our

knowledge, there is not yet a comprehensive distributed graph analytic framework

that can support all conventional graph operations (e.g., path-based processing in

distributed graphs).

∙ Data locality and replication management policies ought to be cleverly integrated

to provide robust and fault-tolerant massive data analytics.

∙ As massive data are generally produced from a great variety of sources, novel,

semantics-based solutions should be developed to efficiently support data hetero-

geneity.
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