Chapter 2
Classical and Noncommutative Geometry

Abstract We discuss classical Riemannian geometry and its noncommutative geo-
metric counterparts. At first the definition and properties of the Hodge Laplacian
and the Dirac operator are given. We also derive the characterizations of isome-
tries (resp. orientation preserving isometries) in terms of the Laplacian (resp. Dirac
operator). This is followed by discussion on noncommutative manifolds given by
spectral triples, including the definitions of noncommutative space of forms and the
Laplacian in this set up. The last section of this chapter deals with the quantum group
equivariance in noncommutative geometry where we discuss some natural examples
of equivariant spectral triples on the Podles’ spheres.

2.1 Classical Riemannian Geometry

In this section, we recall some classical facts regarding classical differential geometry
manifolds that will be useful for us.

2.1.1 Forms and Connections

Let M be an n-dimensional compact Riemannian manifold. Let x (M) denote the
C*(M)-module of smooth vector fields on the manifold M. A linear or affine con-
nection V on M is given by an assignment x(M) > X +— Vy, where Vy is an R-
linear map from x (M) to x (M) such that y(M) > X > Vyx is C*°(M)-linear and
Vx(fY)= fVx(Y)+ X(f)Y,forallY € x(M), f € C>®(M). Given a local chart
in M and coordinates x;, the Christoffel symbols of the connection V are the func-
tions Fl{f]. defined by: V 2 % =>4 Fl"w—ik A linear connection is called symmetric
or torsionless if Vy (Y) — Vy(X) = [X, Y]forall X, Y € x(M). Itis said to be com-
patible with the Riemannian metric if (Vx (Y), Z) + (Y, Vx(Z2)) = X (Y, Z) for all
X,Y,Z € x(M), where (-, -) denotes the Riemannian inner product on the tangent
bundle. There is a unique linear connection on M [1], which is torsionless and com-
patible with the metric, called the Levi-Civita connection on M.

© Springer (India) Pvt. Ltd 2016 37
D. Goswami and J. Bhowmick, Quantum Isometry Groups,
Infosys Science Foundation Series, DOI 10.1007/978-81-322-3667-2_2
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Let QX(M) (k = 0, 1,2, ...n) be the space of smooth k-forms. Set Q¥(M) = {0}
for k > n. The de-Rham differential d maps QK (M) to QM (M). Let Q = Q(M) =
@ 2K (M). We will denote the Riemannian volume element by dvol. We recall that
the Hilbert space L?(M) is obtained by completing the space of compactly supported
smooth functions on M with respect to the pre-inner product given by (fi, f2) =
f M fl fgd vol.

In an analogous way, one can construct a canonical Hilbert space of forms. The
Riemannian metric (., .),, (for m in M) on T,, M induces an inner product on the
vector space T M and hence also A¥T* M, which will be again denoted by (. , .),, .
This gives a natural pre-inner product on the space of compactly supported k-forms
by integrating the compactly supported smooth function m +— (w(m), n(m)),, over
M. We will denote the completion of this space by HY(M). Let H = @y H*(M).

Then, one can view d : 2 — 2 as an unbounded, densely defined operator (again
denoted by d) on the Hilbert space H with the domain 2. It can be verified that it is
closable.

2.1.2 The Hodge Laplacian of a Riemannian Manifold

We recall that the Laplacian £ on M is an unbounded densely defined self-adjoint
operator —d*d on the space of zero forms H°(D) = L*(M, dvol) which has the local
expression

, 0
L(f)= —(g"’\/det(g)gf)

1 Z )
Jdet(g) by’ Ox;
for f in C>(M) and where g = ((g;;)) is the Riemannian metric and g~' = ((g")).

We begin with a well-known characterization of the isometry group of a (classical)
compact Riemannian manifold. Let (M, g) be a compact Riemannian manifold and
let Q' = Q' (M) be the space of smooth one forms, which has aright Hilbert-C (M)-
module structure given by the C* (M)-valued inner product << -, - >> defined by

(w, n) (m) = (w(m), n(m)) |m,

where < -, - > |, is the Riemannian metric on the cotangent space 7, M at the point
m € M. The Riemannian volume form allows us to make Q2! a pre-Hilbert space, and
we denote its completion by H;. Let Hy = L?(M, dvol) and consider the de-Rham
differential d as an unbounded linear map from Hj to H;, with the natural domain
C>®(M) C Hy, and also denote its closure by d. Let £ := —d*d. The following
identity can be verified by direct and easy computation using the local coordinates:

(OL) (B, ) = L(Y) — LI — L) =2 << dp,dyp >> for ¢, € C(M).
(2.1.1)

Let us recall a few well-known facts about the Laplacian £, viewed as a negative
self-adjoint operator on the Hilbert space L>(M, dvol). It is known (see [2] and
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references therein) that £ has compact resolvents and all its eigenvectors belong to
C*°(M). Moreover, it follows from the Sobolev Embedding Theorem that

() Dom(L") = C*(M).

n>1

Let {e;j, j=1,...,d;;i =0,1,2, ...} be the set of (normalized) eigenvectors of L,
where e;; € C°°(M) is an eigenvector corresponding to the eigenvalue A;, 0 = [A\o| <
A1l < |A2] < .... We have the following:

Lemma 2.1.1 The complex linear span of {e;;} is norm-dense in C(M).

Proof This is a consequence of the asymptotic estimates of eigenvalues J;, as
well as the uniform bound of the eigenfunctions e;;. For example, it is known
([3], Theorem 1.2) that there exist constants C, C" such that ||e;j]lcc < C|/\,-|"4;I,
d; < C’|)\,~|%, where n is the dimension of the manifold M. Now, for f € C*(M) C
Nis1 Dom(£*), we write f as an a priori L?-convergent series zij fijeij (fij € C),
and observe that > | fi;|*|\;|* < oo for every k > 1. Choose and fix sufficiently
large k such that >"._, [\i|""172 < 0o, which is possible due to the well-known
Weyl asymptotics of eigenvalues of £. Now, by the Cauchy—Schwarz inequality and
the estimate for d;, we have

1=

1
> fiillleifleo < €7D 11PN (Zm"‘l‘”‘) < o0.
ij

ij i=0

Thus, the series ZU fijeijconvergesto finsup-norm,soSpi{e;;, j = 1,2, ...,d;;i =
0, 1,2, ...} is dense in sup-norm in C*°(M), hence in C (M) as well. O

2.1.3 Spin Groups and Spin Manifolds

We begin with the Clifford algebras. Let Q be a quadratic form on an n-dimensional
vector space V. Then CI(V, Q) will denote the universal associative algebra C
equipped with a linear mapi : V — C, such thati (V) generates C as a unital algebra
satisfying i (V)? = Q(V).1

Let 8:V — CI(V, Q) be defined by ((x) =—i(x). Then, CI(V, Q) =
Ccl%v,Q) @ CI'(V,Q) where CI%V,Q)={xeCI(V,Q):B(x)=x},
CI'(V,0)={x e Cl(V, Q) : B(x) = —x}.

We will denote by C, and CC the Clifford algebras CI(R", —x} — ... — x2) and
CI(C", 22 + ... + 22), respectively.

We will denote the vector space c2ta! by the symbol A,. It follows that
Cf = End(A,) if n is even and equals End(A,) & End(A,) is n is odd. There is
a representation Cff — End(A,) that is the isomorphism with End(A,) when n is
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even and in the odd case, it is the isomorphism with End(A,) & End(A,,) followed
by the projection onto the first component. This representation restricts to C,, to be
denoted by «x, and called the spin representation. This representation is irreducible
when n is odd and for even n, it decomposes into two irreducible representations,
which decomposes A, into a direct sum of two vector spaces A and A} .

Pin(n) is defined to be the subgroup of C, generated by elements of the form
{x :|lx|l = 1,x € R"}. Spin (n) is the group given by Pin(n) N C,?. There exists
a continuous group homomorphism from Pin(n) to O (n), which restricts to a 2-
covering map A : Spin(n) — SO (n).

Let M be an n-dimensional orientable Riemannian manifold. Then we have the
oriented orthonormal bundle of frames over M (which is a principal SO (n) bundle)
which we will denote by F.

Such a manifold M is said to be a spin manifold if there exists a pair (P, A)
(called a spin structure) where

(1) P is a Spin(n) principal bundle over M.

(2) A is amap from P to F such that it is a 2-covering as well as a bundle map
over M.

(3) A(p.g) = A(p).g where \(g) = g, g € Spin(n).

Given such a spin structure, we consider the associated bundle S = P Xspinn) An
called the ‘bundle of spinors’.

2.1.4 Dirac Operators

We follow the notations of the previous subsection. On the space of smooth sections
of the bundle of spinors S on a compact Riemannian spin manifold M, one can define
an inner product by

<S1,Sz>s=/ (s1(x), $2(x)) dvol(x).
M

The Hilbert space obtained by completing the space of smooth sections with
respect to this inner product is denoted by L?(S) and its members are called the
square integrable spinors. The Levi-Civita connection on M induces a canonical
connection on S which we will denote by V5.

Definition 2.1.2 The Dirac operator on M is the self-adjoint extension of the fol-
lowing operator D defined on the space of smooth sections of S:

(Ds)(m) = D kp(X;(m))(V5,$)(m),
i=1

where (X1, ...X,) are local orthonormal (with respect to the Riemannian metric)
vector fields defined in a neighborhood of m. In this definition, we have viewed
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X, (m) belonging to T,,,(M) as an element of the Clifford algebra Clc(T,, M), hence
Ku(X;(m)) is a map on the fiber of S at m, which is isomorphic with A,. The self-
adjoint extension of D is again denoted by the same symbol.

We recall three important facts about the Dirac operator:

Proposition 2.1.3 (/) C>*(M) acts on S by multiplication and this action extends
to a representation, say , of the C* algebra C(M) on the Hilbert space L*(S).

(2) For f in C®°(M), [D, w(f)] has a bounded extension.

(3) Furthermore, the Dirac operator on a compact manifold has compact resol-
vents.

As the action of an element f in C®(M) on L*(S) is by multiplication operator,
we will use the symbol My in place of w(f).

The Dirac operator carries a lot of geometric and topological information. We
give two examples.

(a) The Riemannian metric of the manifold is recovered by

d(p,q) = SUPyec=(m), l1D. M1 <1 |[p(P) — p(q)] . (2.1.2)

(b) For a compact manifold, the operator e™" D* s trace class forallt > 0. Then

the volume form of the manifold can be recovered by the formula

Tr(Mfe_’Dz)

/Mfdvol=c(n)limf—>0 Tr(e D)

where dimM = n, c(n) is a constant depending on the dimension.

2.1.5 Isometry Groups of Classical Manifolds

Let M be a Riemannian manifold of dimension n. Then the collection of all isome-
tries of M has a natural group structure and is denoted by ISO(M). The aim of this
subsection is to prepare the necessary background for defining the notion of “quan-
tum isometry”’of a noncommutative manifold. Therefore, for a classical Riemannian
(resp, spin) manifold, we give characterizations of an isometry (resp, orientation
preserving isometry) in terms of the Hodge Laplacian (resp, Dirac operator). more-
over, motivated by the work of Woronowicz and Soltan on “quantum families”, we
give characterizations of classical families of isometries (resp, orientation preserving
isometries). We should mention that Proposition2.1.4 and Theorem?2.1.12 are well
known [4, 5], but for the sake of completeness, we give detailed proofs.

The topology on ISO(M) is defined in the following way. Let C and U be, respec-
tively, a compact and open subset of M and let W(C,U) = {h € ISO(M) : h.C C
U}. The compact open topology on ISO(M) is the smallest topology on ISO(M)
for which the sets W(C, U) are open. It follows (see [4]) that under this topology,
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ISO(M) is a closed locally compact topological group. Moreover, if M is compact,
ISO(M) is also compact.
Characterization of ISO(M) for a Riemannian manifold

We start with the characterization of a single isometry.

Proposition 2.1.4 A smoothmap v : M — M is a Riemannian isometry if and only
if v commutes with L in the sense that L(f oy) = (L(f)) oy forall f € C*(M).

Proof If v commutes with £ then from the identity (2.1.1), we get for m € M and
¢, e C¥(M):

< d¢|7(m)» dwh(m) > |7(m)
=<<d¢,dy >> (y(m))

1
= 5(8/:(@ ¥) 0 y)(m)

1
= Eaﬁ(tb 07, ¢ oy)(m)

—<<d($o),d@ o) >> (m)
=< d(¢ © "7/)|m’ d(¢ o 7)|m > |m
=< (d’Y|m)*(d¢|~,/(m))’ (d’7|m)*(dw|'y(m)) > |mv

which proves that (dv|,,)* : T’\?((m)M — TM is anisometry. Thus, ~ is a Riemannian
isometry.

Conversely, if 7 is an isometry, both the maps induced by v on Hy and Hy, i.e.,
Ug : Ho — Hp given by Uf,,)(f) = fo~vyand UA} i H!' — H! given by U;(quﬁ) =
(f oy)d(¢ o ~y) are unitaries. Moreover, d o US = UA} odon C®(M) C Hy. From
this, it follows that £ = —d*d commutes with Ug . ]

Next, we move on to the characterization of a family of isometries, which will
need the following lemma.

Lemma 2.1.5 Let H,, H, be Hilbert spaces and for i = 1,2, let L; be (possibly
unbounded) self-adjoint operator on H; with compact resolvents, and let V; be the
linear span of eigenvectors of L;. Moreover, assume that there is an eigenvalue of
L; for which the eigenspace is one-dimensional, say spanned by a unit vector ;. Let
W be a linear map from Vy to Vs, such that Lo,V = WL, and V(&) = &. Then we
have

(&, W(x)) = (&1, x) Vx € V4. (2.1.3)

Proof By hypothesis on W, it is clear that there is a common eigenvalue, say Ay,
of £, and L,, with the eigenvectors &; and &, respectively. Let us write the set of
eigenvalues of £; as a disjoint union {\o} U A; (i =1, 2), and let the correspond-
ing orthogonal decomposition of V; be given by V; = C& @, V' = C5 @V,
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say, where V;\ denotes the eigenspace of L; corresponding to the eigenvalue \. By
assumption, ¥ maps V{\ to Vé\ whenever \ is an eigenvalue of £,, i.e., VzA # {0}, and
otherwise it maps V]’\ into {0}. Thus, W (V]) € Vi. Now, (2.1.3) is obviously satisfied
forx = &, soitis enough to prove (2.1.3) for all x € V|. But we have (£, x) = 0 for
x € V|, and since ¥ (x) € V) =V, N{&}H, it follows that (&, W(x)) = 0 = (&, x).
O

Now let us consider a compact metrizable (i.e., second countable) space ¥ with
a continuous map 0 : M x Y — M. We abbreviate 0(m, y) as my and denote by &,
themap M > m +— my.Leta: C(M) - C(M)® C(Y) = C(M x Y) be the map
given by a(f)(m,y) := f(my)fory € Y,m € M and f € C(M). For a state ¢ on
C(Y), denote by a the map (id ® ¢) o o : C(M) — C(M). We shall also denote by
C the subspace of C(M) ® C(Y) generated by elements of the form a( f)(1 ® ),
feCM),y e C(Y).Since C(M) and C(Y) are commutative algebras, it is easy
to see that C is a x-subalgebra of C(M) ® C(Y). Then we have the following

Theorem 2.1.6 (i) C is norm-dense in C(M) @ C(Y) if and only if for every y € Y,
&y is one-to-one.

(ii) The map &, is C™ for every y € Y if and only if a,(C*(M)) € C*(M) for all
@.

(iii) Under the hypothesis of (ii), each &, is also an isometry if and only if oy commutes
with (L — \)~" for all state ¢ and all X in the resolvent of L (equivalently, o
commutes with the Laplacian L on C*®°(M)).

Proof (i) First, assume that &, is one-to-one for all y. By Stone-Weierstrass Theorem,
it is enough to show that C separates points. Take (my, y;) # (my, y2) in M x Y.
If y; # y,, we can choose ¥ € C(Y) that separates y; and y,, hence (1 ® ) € C
separates (my, y;) and (m,, y2). So, we can consider the case when y; =y, =y
(say), but m; # m,. By injectivity of &, we have m;y # m2y, so there exists f €
C(M) such that f(my) # f(myy),ie., a(f)(my, y) # a(f)(m,, y). This proves
the density of C.

For the converse, we argue as in the proof of Proposition 3.3 of [6]. Assume that C
isdense in C(M) @ C(Y),and lety € Y, m, mp, € M such that m;y = m,y. That
is, a(/)(1 @ ¥)(m1, y) = a(f)(1 @ $)(ma, y) for all f € C(M), ¢ € C(Y). By
the density of C, we get x(my, y) = x(my, y) forall y € C(M x Y), so (my,y) =
(my, ), i.e., m; = ms.

(i1) The ‘if part’ of (ii) follows by considering the states corresponding to point
evaluation, i.e., C(Y) 2 ¢ — #(y), y € Y. For the converse, we note that an arbi-
trary state ¢ corresponds to a regular Borel measure £ on Y so that ¢(h) = [ hdp,
and thus, a,(f)(m) = f fmy)du(y) for f € C(M). From this, by interchanging
differentiation and integration (which is allowed by the Dominated Convergence
Theorem, since (. is a finite measure), we can prove that o (f) is C*° whenever f
is so.

The assertion (iii) follows from Proposition2.1.4 in a straightforward way. [l
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Lemma 2.1.7 Let Y and o be as in Theorem2.1.6 and let A3° denote the complex
linear span of the eigenvectors of L, where A = C*®(M). Then the following are
equivalent.

(a) For every y € Y, &, is smooth isometric.

(b) For every state ¢ on C(Y), we have oy (A € A, and ayL = Loy on A,

Proof We prove only the nontrivial implication (b) = (a). Assume that oy leaves
Ag° invariant and commutes with £ on it, for every state ¢. To prove that « is
smooth and isometric, it is enough (see the proof of Theorem2.1.6) to prove that
ay(A%®) € A% for all y € Y, where o, (f) := (id @ evy)(f) = f 0§, ev, being
the evaluation at the point y. Let My, ..., M; be the connected components of the
compact manifold M. Thus, the Hilbert space L>(M, dvol) admits an orthogonal
decomposition GafleLz(M,-, dvol), and the Laplacian L is of the form &, L;, where
L; denotes the Laplacian on M;. Since each M, is connected, we have Ker(L;) = Cy;,
where Y; is the constant function on M; equal to 1. Now, we note that for fixed y and i,
the image of M; under the continuous function £, must be mapped into a component,
say M;. Thus, by applying Lemma?2.1.5 with H; = L?(M;),H, = L*(M;), ¥ = &,
and the L-continuity of the map f oy (f) = f o&,, we have

/ ay(f)(x)dvol(x)z/ f(x)dvol(x)
M; M;

for all f in the linear span of eigenvectors of £;, hence (by density) for all f in
L*(M;). It follows that [,, oy (f)dvol = [, fdvol for all f € L*(M), in particular
for all f € C(M). Since v, is a x-homomorphism on C (M), we have

(ay(f), ay(g)) = /M oy (fg)dvol = /M fgdvol = (f. g),

for all f, g € C(M). Thus, o, extends to an isometry on L%(M), to be denoted by
the same notation, which by our assumption commutes with the self-adjoint operator
L on the core AF°, and hence o, commutes with £" for all n. In particular, it leaves
invariant the domains of each £", which implies o, (A%) € A%. O

Consider the category with objects being the pairs (G, o), where G is a compact
metrizable group acting on M by the smooth and isometric action «. If (G, o) and
(G, ) are two objects in this category, Mor((G1, ), (G2, (3)) consists of group
homomorphisms 7 from G to G, such that § o m = «. Then the isometry group of
M is the universal object in this category.

More generally, the isometry group of a classical compact Riemannian manifold,
viewed as a compact metrizable space (forgetting the group structure), can be seen
to be the universal object of a category whose object class consists of subsets (not
generally subgroups) of the set of smooth isometries of the manifold. Then it can
be proved that this universal compact set has a canonical group structure. Thus,
motivated by the ideas of Woronowicz and Soltan [7, 8], one can consider a bigger
category with objects as the pair (S, f) where S is a compact metrizable space and
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f 1S X M — M such that the map from M to itself defined by m — f (s, m) is a
smooth isometry for all s in S. The morphism set is defined as above (replacing group
homomorphisms by continuous set maps). Thus, summarizing the above discussion
and recalling that the span of eigenvectors of the Laplacian is norm-dense in C (M),
we have the following result.

Theorem 2.1.8 Let M be a smooth Riemannian compact manifold and (C*(M))g
denote the span of eigenvectors of the Laplacian. Then ISO(M) is the universal object
of the category with objects as pairs (C(Y), o) where Y is a compact metrizable
space and « is a unital C*-homomorphism from C(M) to C(M) @ C(Y) satisfying
the following:

a. Sp(a(C(M))(1 ® C(Y)) = C(M) ® C(Y),

b.ay = (id ® ¢p)aumaps (C*(M))y into itself and commutes with L on (C*(M))o,
for every state ¢ on C(Y).

Example 2.1.9 1. The isometry group of the n-sphere S” is O(n + 1) where the
action is given by the usual action of O (n + 1) on R"**!. The subgroup of O (n + 1)
consisting of all orientation preserving isometries on §” is SO (n + 1).

2. The isometry group of the circle S! is §' ><1Z,. Here the Z,(= {0, 1}) action
on S' is given by 1.z = Z, where z is in S! while the action of S! is its action on
itself.

3.1ISO(T") = T" ><1(Z; ><S,,) where S, is the permutation group on n symbols.
Here an element of S, acts on an element (zy, z2, ..., z,) € T" by permutation. If the
generator of i-th copy of Z) is denoted by 1;, then the action of 1; is given by
1:(21, 225 ey Zn) = (21, ooy Zi1s Zis Zit1s -+ Zn) Where (z1, 22, ..., 7o) € T". Lastly,
the action of T” on itself is its usual action.

Characterization of orientation preserving isometries of a spin manifold

This characterization is in the terms of the Dirac operator [9]. For the characteri-
zation of isometries of a Riemannian manifold in terms of the Hodge Dirac operator,
we refer to [10].

We begin with a few basic facts about topologizing the space C* (M, N) where
M, N are smooth manifolds. Let 2 be an open set of R". We endow C*°(£2) with the
usual Fre’chet topology coming from uniform convergence (over compact subsets)
of partial derivatives of all orders. The space C*°(£2) is complete with respect to this
topology, so is a Polish space in particular. Moreover, by the Sobolev imbedding
Theorem (Corollary 1.21, [2]), Ni>0 Hr (2) = C*°(£2) as a set, where H; (£2) denotes
the k-th Sobolev space. Thus, C*(2) has also the Hilbertian seminorms coming
from the Sobolev spaces, hence the corresponding Frechet topology. We claim that
these two topologies on C*°(£2) coincide. Indeed, the inclusion map from C*°(£2)
into Ny H;(£2), is continuous and surjective, so by the open mapping theorem for
Frechet space, the inverse is also continuous, proving our claim.
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Given two second countable smooth manifolds M, N, we shall equip C*°(M, N)
with the weakest locally convex topology making C*(M,N)> ¢+ fo¢e
C°°(M) Frechet continuous for every f in C*(N).

For topological or smooth fiber or principal bundles E, F over a second countable
smooth manifold M, we shall denote by Hom(E, F) the set of bundle morphisms
from E to F. We remark that the total space of a locally trivial topological bundle such
that the base and the fiber spaces are locally compact Hausdorff second countable
must itself be so, hence in particular Polish (that is, a complete separable metric
space).

In particular, if E, F are locally trivial principal G-bundles over a common base,
such that the (common) base as well as the structure group G are locally compact
Hausdorff and second countable, then Hom(E, F) is a Polish space.

We need a standard fact, stated below as Lemma2.1.11, about the measurable lift
of Polish space valued functions.

Before that, we introduce some notions.

A multifunction G : X — Y is a map with domain X and whose values are non-
empty subsets of Y. For A C Y, weput G"'(A) = {x € X : G(x) N A # ¢}.

A selection of a multifunction G : X — Y is a point map s : X — Y such that
s(x) belongs to G (x) for all x in X. Now let ¥ be a Polish space and ox a o-algebra
on X. A multifunction G : X — Y is called ox measurable if G~!(U) belongs to
o for every open set U in Y.

The following well-known selection theorem is Theorem5.2.1 of [11] and was
proved by Kuratowski and Ryll-Nardzewski.

Proposition 2.1.10 Let ox be a o algebra on X and Y a Polish space. Then, every
ox measurable, closed valued multifunction F : X — Y admits a ox measurable
selection.

A trivial consequence of this result is the following:

Lemma 2.1.11 Let M be a compact metrizable space, B, B Polish spaces such that
thereis ann-coveringmap A : B — B.Thenany continuousmap § : M — B admits
a lifting f M — B, which is Borel measurable and A o f &. In particular, if B
and B are topological bundles over M, with A being a bundle map, any continuous
section of B admits a lifting which is a measurable section of B.

We shall now give an operator-theoretic characterization of the classical group of
orientation preserving Riemannian isometries, which will be the motivation of our
definition of its quantum counterpart. Let M be a compact Riemannian n-dimensional
spin manifold, with a fixed choice of orientation. We recall the notations as in
Sect.2.1.3. In particular, the spinor bundle S is the associated bundle of a princi-
pal Spin(n)-bundle P on M which has a canonical 2-covering bundle-map A from
P to the frame-bundle F' (which is an S O (n)-principal bundle), such that A is locally
of the form (idy; ® \) where A is the two covering map from Spin(n) to SO (n).
Moreover, the spinor space will be denoted by A,,. Let f be a smooth orientation pre-
serving Riemannian isometry of M, and consider the bundles E = Hom(F, f*(F))
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and E = Hom(P, f*(P)) (where Hom denotes the set of bundle maps). We view
df as a section of the bundle E in the natural way. By the Lemma?2.1.11 we obtain
a measurable lift d~f ‘M — E , which is a measurable section of E. Using this, we
define a map on the space of measurable section of § = P X gpinm) A, as follows:
given a (measurable) section & of S, say of the form £(m) = [p(m), v], with p(m) in
P, vin A,, we define U¢ by (U€)(m) = [df (f~'(m))(p(f~"(m))), v]. Note that
sections of the above form constitute a total subset in L>(S), and the map & — U¢&
is clearly a densely defined linear map on L2(S), whose fiber-wise action is unitary
since the Spin(n) action is so on A,,. Thus it extends to a unitary U on H = L>(S).
Any such U, induced by the map f, will be denoted by Uy. It is not unique since the
choice of the lifting used in its construction is not unique.

Theorem 2.1.12 Let M be a compact Riemannian spin manifold (hence orientable,
and fix a choice of orientation) with the usual Dirac operator D acting as an
unbounded self-adjoint operator on the Hilbert space 'H of the square integrable
spinors, and let S denote the spinor bundle, with T'(S) being the C*° (M) module
of smooth sections of S. Let f : M — M be a smooth one-to-one map which is a
Riemannian orientation preserving isometry. Then the unitary Uy on H commutes
with D and UfM(/)U; = My.y, for any ¢ in C(M), where My denotes the operator
of multiplication by ¢ on L*>(S). Moreover, when the dimension of M is even, Uy
commutes with the canonical grading v on L*(S).

Conversely, suppose that U is a unitary on 'H such that UD = DU and the
map oy (X) = UXU™! for X in B(H) maps A= C(M) into L°(M) = A". If the
dimension of M is even, assume furthermore that U commutes with the grading
operator . Then there is a smooth one-to-one orientation preserving Riemannian
isometry f on M such that U = Uy.

Proof From the construction of Uy, it is clear that U fMéU;l = M, y. Moreover,
since the Dirac operator D commutes with the Spin(n)-actionon S, wehave Uy D =
DUy on each fiber, hence on L?(S). In the even dimensional case, it is easy to see
that the Spin(n) action commutes with ~y (the grading operator), hence Uy does so.

For the converse, first note that vy is a unital *-homomorphism on L*°(M, dvol)
and thus must be of the form @ — 1 o f for some measurable f. We claim that
f must be smooth. Fix any smooth g on M and consider ¢ = g o f. We have to
argue that ¢ is smooth. Let  denote the generator of the strongly continuous one-
parameter group of automorphism £3,(X) = e/'? Xe~'P on B(H) (with respect to
the weak operator topology, say). From the assumption that D and U commute
it is clear that ooy maps D :=[),., Dom(d7,) into itself and since C*(M) C D,
we conclude that ay (M) = Mo, belongs to D. We claim that this implies the
smoothness of ¢. Let m be a point of M and choose a local chart (V, 1)) at m, with the
coordinates (xy, ..., X,), suchthat Q@ = (V) € R" has compact closure, S|y is trivial
and D has the local expression D = i Z;le j1(ej)V;, where V; = V o denotes the
covariant derivative (with respect to the canonical Levi-Civita connect/ion) operator
along the vector field 0% on L%() and w(v) denotes the Clifford multiplication

by a vector v. Now, ¢ o i/)’l € L®(Q) € L*(Q) and it is easy to observe from the
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above local structure of D that [D, M ] has the local expression ; iM g ® plej).
.’(j

Thus, the fact M, € (-,
integer tuple (ji, ..., ji), ji € {1, ..., n}, where d; := % In other words, ¢ o 1~ is
in H*(Q) for all k > 1, where H*(2) denotes the k-th Sobolev space on 2 (see [2]).
By Sobolev’s theorem (see, for example. [2], Corollary 1.21, page 24) it follows that
¢ o~ lisin C®(Q).

We note that f is one-to-one as ¢ — ¢ o f is an automorphism of L>°. Now, we
shall show that f is an isometry of the metric space (M, d), where d is the metric
coming from the Riemannian structure, and we have the explicit formula (2.1.2)

Dom(&},) implies ¢ o 1)~ is in Dom(d}, ...d;,) for every

d(p,q) = SUPgecoo (M), (D, M,]<1 lo(p) — 9(q)].

Since U commutes with D, we have |[D, My lll =I[D, UMzU*]|| =
IUID, MslU*|| = |I[D, Myl|| for every ¢, from which it follows that d(f(p),
f(g)) =d(p, q). Finally, f is orientation preserving if and only if the volume form
(say w), which defines the choice of orientation, is preserved by the natural action
of df on the space of n-forms. This will follow from the explicit description of w in
terms of D, given by (see [12] page 26, also see [13])

w(pod¢r...ddy) = T(eMy, [ D, My,]...[D, My, 1),

where ¢y, ..., ¢, belong to C*°(M), € =1 in the odd case and ¢ = -y (the grad-
ing operator) in the even case and 7 denotes the volume integral. In fact, 7(X) =

Lim,_ o 2 X (where Lim is as in Sect. 2.2.2), which implies 7(U XU*) = 7(X)

Tr(e~'P%)

for all X in B(H) (using the fact that D and U commute). Thus,

w(goo fd(grof)...d(dno [))
= 7(cUM¢y,U*U[D, My, JU*...U[D, My, 1U*)
= 7(UeMy,[D, My,1...[D, My, 1U*)
= T(eMy,[D, My,]...[D, My, 1)

= w(Qod Py ...ddy).

O

Now we turn to the case of a family of maps. We are ready to state and prove the
operator-theoretic characterization of a ‘family of orientation preserving isometries’.

Theorem 2.1.13 Let X be a compact metrizable space and 1 : X x M — M is a
map such that 1, defined by 1, (m) = ¥ (x, m) is a smooth orientation preserving
Riemannian isometry and x +— 1, € C®(M, M) is continuous with respect to the
locally convex topology of C*° (M, M) mentioned before.
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Then there exists a (C(X)-linear) unitary Uy on the Hilbert C(X)-module
H® C(X) (where H = L*(S) as in Theorem2.1.12) such that for all x belong-
ing to X, Uy := (id ® ev,)Uy, is a unitary of the form Uy, on the Hilbert space
H commuting with D and UM ,U' = M sourt- If in addition, the manifold is even
dimensional, then Uy, commutes with the grading operator .

Conversely, if there exists a C(X)-linear unitary U on H ® C(X) such that
U, :=({d®ev,)(U) is a unitary commuting with D for all x, (and U, com-
mutes with the grading operator +y if the manifold is even dimensional) and (id ®
ev,)ay (L®(M)) C L*®(M) forall x in X, then there existsamap ) : X x M — M
satisfying the conditions mentioned above such that U = U,.

Proof Consider the bundles F=XxFandP =X x PoverX x M , with fibers at
(x, m) isomorphic with F,, and P,,, respectively, and where F and P are, respectively,
the bundles of orthonormal frames and the Spin(n) bundle discussed before. More-
over, denote by W the map from X x M to itself given by (x, m) — (x, Y (x, m)).
Let 7y : Hom(F, W*(F)) — X be the obvious map obtained by composing the pro-
jection map of the X x M bundle with the projection from X x M to X and let us
denote by B the closed subset of the Polish space C (X, Hom(I:“ \If*(I:“ ))) consisting
of those f such that for all x, mx(f(x)) = x. Define B in a similar way replacing
F by P. The covering map from P to F induces a covering map from B to B as
well. Let dw : M — B be the map given by d/,(m)(x) = )(x, m) = di|,n. Then

by Lemma?2.1.11 there exists a measurable lift of d//, say dl'p from M into B. Since

d,l’b (x,m) € Hom(F,,, Fy(x,m), it is clear that the lift dl/) (x, m) will be an element of
Hom(P,, Pyex,m))-

We can identify 'H ® C(X) with C(X — H), and since H has a total set F
(say) consisting of sections of the form [p(-), v], where p : M — P is a measurable
section of P and v belongs to A,, we have a total set F of H ® C(X) consisting
of F valued continuous functions from X. Any such function can be written as
[E,v]withE: X xM — P,veA,, and E(x, m) € P,, and we define U on F
by U[E, v] = [®, v], where

O, m) = d,(x, ¥ (m)(E(x, ¥y (m))).

It is clear from the construction of the lift that U is indeed a C (X)-linear isometry
that maps the total set F ontoitself, so extends to a unitary on the whole of H ® C(X)
with the desired properties.

Conversely, given U as in the statement of the converse part of the theorem, we
observe that for each x in X, by Theorem2.1.12, (id ® ev,)U = Uy, for some ),
such that 1), is a smooth orientation preserving Riemannian isometry. This defines
the map ¢ by setting 1 (x, m) = 1), (m). The proof will be complete if we can show
that x — v, € C*°(M, M) is continuous, which is equivalent to showing that when-
ever x, — x in the topology of X, we must have ¢ o ¢,, — ¢ o 9, in the Fre’chet
topology of C*(M), for any ¢ € C*°(M). However, by Lemma 1.1.10, we have
(id ® evy, ) ay ([D, My]) — (id ® ev,)ay([D, My]) in the strong operator topol-
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ogy where oy (X) = UXU™!. Since U commutes with D, this implies
(id ® evy,)[D ®id, ay(My)] — (id Q@ evy)[D ®id, ay(My)l,

that is, for all £ in L2(S),

12
[D, Mgoy, 1§ = [D, Myoy, 5.

By choosing ¢ with support in a local trivializing coordinate neighborhood for
S, and then using the local expression of D used in the proof of Theorem?2.1.12,

we conclude that di (¢ o 1y,) ii di(¢ o ¥y) (where dy is as in the proof of Theo-
rem2.1.12). Similarly, by taking repeated commutators with D, we can show the L?
convergence with di replaced by d, ...d, for any finite tuple (ki, ..., k). In other
words, ¢ o ¢, — ¢ o 1), in the topology of C*° (M) described before. (]

2.2 Noncommutative Geometry

In this section, we recall those basic concepts of noncommutative geometry, which
we are going to need. We refer to [14—19] for more details.

2.2.1 Spectral Triples: Definition and Examples

Motivated by the facts in Proposition2.1.3, Alain Connes defined a noncommutative
manifold based on the idea of a spectral triple:

Definition 2.2.1 A spectral triple or spectral data is a triple (A, H, D) where
‘H is a separable Hilbert space, A is a * subalgebra of B(H), (not necessarily
norm closed) and D is a self-adjoint (typically unbounded) operator such that for
all @ in A, the operator [D, a] has a bounded extension. Such a spectral triple
is also called an odd spectral triple. If in addition, we have ~ in B(H) satisfying
v=~*=~"", Dy=—vD and [a,y] = 0 for all a in A*, then we say that the
quadruplet (A>, H, D, ) is an even spectral triple. The operator D is called the
Dirac operator corresponding to the spectral triple.

Furthermore, given an abstract x-algebra B, an odd (even) spectral triple on B
is an odd (even) spectral triple (7(B), H, D) (respectively, (7(B), H, D, v)) where
m : B — B(H) is a x-homomorphism.

Since in the classical case, the Dirac operator has compact resolvent if the manifold
is compact, we say that the spectral triple is of compact type if A is unital and D
has compact resolvent. For nonunital C* algebras, interesting spectral triples are not
of compact type. Examples of such spectral triples include semifinite spectral triples
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for which we refer to [20, 21], and the references therein. Since, our final goal is to
study quantum isometry groups of spectral triples of compact type, all the spectral
triples under discussion will be assumed to be of compact type.

Definition 2.2.2 We say that two spectral triples (m(A), Hy, D) and (m,(A),
‘H», Dy) are said to be unitarily equivalent if there is a unitary operator U : ‘H; — H»
such that D, = UDU* and my(.) = Um(.)U* where 7;, j = 1, 2 are the represen-
tations of A in H,, respectively.

Real structure on a spectral triple

We now give a definition of the real structure along the lines of [22, 23], which is
a suitable modification of Connes’ original definition (see [14, 24]) to accommodate
the examples coming from quantum groups and quantum homogeneous spaces.

Definition 2.2.3 An odd spectral triple with a real structure is given by a spectral
triple (A%, H, D) along with a (possibly unbounded, invertible) closed antilinear
operator J on H such that D := Dom(D) € Dom(J), J JD € D, J commutes with
D on D, and the antilinear isometry J obtained from the polar decomposition of
J satisfies the usual conditions for a real structure in the sense of [23], for a suit-
able sign-convention given by (e, ¢') € {£1} x {£1} as described in [12], page 30,
ie,JJ?=¢l,JD =¢DJ,andforall x, y € A®, the commutators [x, JyJ~!] and
[JxJ ' [D, y]] are compact operators.

If the spectral triple is even, a real structure with the sign-convention given by a
triplet (e, €, €”) as in [12], page 30, is similar to a real structure in the odd case (with
the sign-convention (e, €)), but with the additional requirement that J~v = €"~J.

Next, we give a few examples of spectral triples in classical and noncommutative
geometry. We will give more examples in the later chapters of the book.

Example 2.2.4 Let M be a smooth spin manifold. Then from Proposition2.1.3, we
see that (C*°(M), H, D) is a spectral triple over C*° (M) and it is of compact type if
M is compact.

We recall that when the dimension of the manifold is even, A, = AT @ A, . An
L? section s has a decomposition s = s; + s, where s, (m), s, (m) belongs to A (m)
and A, (m) (for all m), respectively, where A,ﬁf(m) denotes the subspace of the fiber
over m. This decomposition of L?(S) induces a grading operator v on L>(S). It can
be seen that D anticommutes with .

Example 2.2.5 This example comes from the classical Hilbert space of forms dis-
cussed in Sect.2.2.2. One considers the self-adjoint extension of the operator d + d*
on H = @ H*(M), which is again denoted by d + d*. C*°(M) has a representa-
tion on each H* (M) which gives a representation, say 7 on 7{. Then it can be seen
that (C*°(M), H,d + d*) is a spectral triple and d + d* is called the Hodge Dirac
operator. When M is compact, this spectral triple is of compact type.

Remark 2.2.6 Letus make it clear that by a ‘classical spectral triple’ we always mean
the spectral triple obtained by the Dirac operator on the spinors (so, in particular,
manifolds are assumed to be Riemannian spin manifolds), and not just any spectral
triple on the commutative algebra C*(M).
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Example 2.2.7 The Noncommutative torus

We recall from Sect. 1.1.1 that the noncommutative 2-torus Ay is the universal C*
algebra generated by two unitaries U and V satisfying UV = ™V U, where 0 is
a number in [0, 1].

There are two derivations ¢, and d, on Ay obtained by extending linearly the rule:

di(U)=U, di(V) =0,
d,(U)=0, dr(V)=V.
Then d; and d, are well defined on the following dense x-subalgebra of Ay :

AP ={ Z A U™ V" 2 sup, |mkn]am,,| < oo forallk,lin IN}.

m,nel

There is a faithful trace on 4, defined as follows:
7O amU"V") = ag.

Let H = L?(7) @ L?(7) where L*(7) denotes the GNS Hilbert space of .4y with
respect to the state 7. We note that AJ° is embedded as a subalgebra of B(H) by
N (a 0)

O0al”

Now, we define D = di —Oid2 d —Bldz .

Then, (A°, 'H, D) is a spectral triple of compact type. In particular, for § = 0,
this coincides with the classical spectral triple on C (T?).

Example 2.2.8 Spectral triples on SU,(2)

In this example, we discuss the spectral triple on SU,(2) constructed by
Chakraborty and Pal in [25]. We recall from Sect.1.2.4 that by the symbols 7/,
we will denote the (i, j)-th matrix element of the (2n 4 1) dimensional corepresen-
tation of SU,(2). Moreover, elf’j’s will denote the normalized (with respect to the
Haar state h) ti"j’s.

Then the spectral triple is given by (O(SU,,(2)), L*(SU,,(2), h), DSY«®), where

D3V is defined by

DSU“(Z) (elnj)

= (2n+1)e;’j, n#i

=—-2n+ l)e;’j, n=i.
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Example 2.2.9 A class of spectral triples on the Podles’ spheres
We discuss the spectral triples on Sﬁc discussed in [26].

1 1
Lets = —c72A_, A\p = % + (c+ }t)z.
For all j belonging to %ﬂ\’ i
u] = (a* — sv")(a* — ;f sY9)......(a* —p
= (o — pusy)(a — p2s7y)........ (o — p*s7),
U_ j = E¥ wj,
Up = wy = 1
yi=4p )7ty — e’ — peza?),
Ny = [F e n' Vil |-
Define

2.,%2

L 1
v = NF T s (7 ), e sNo, jok=—L—l+1 ... Q21

Let M y be the Hilbert subspace of L2(SU 1,(2)) with the orthonormal basis {vfn’ N
I =|N|, IN|+1, ....... ,m=—I, ... I}.
Set
H = ./\/L% ©® ./\/l%

Then it is easy to check that x; keeps H for all i € {—1, 0, 1}. In particular,

I+1
m—+i,N°

(2.2.2)

xivh v = o (,m; N)Um+11v +a?(l,m;N)vfn+i,N+Oz;“(l,m;N)v

where o, of, «; are some constants.

Thus, (2.2.2) defines a representation 7 of Sf“. on H.

We will often identify 7(S7, ) with S7. ..

Finally by Proposition 7.2 of [26], the followmg Dirac operator D gives a spectral
triple (O(S? u,c)’ ‘H, D) which we are going to work with :

D(vfn,i%) = (cil + cQ)ij%, (2.2.3)

where ¢y, ¢; are elements of R, ¢; # 0.

2.2.2 The Noncommutative Space of Forms

We start this subsection by recalling the universal space of one forms corresponding
to an algebra.

Proposition 2.2.10 Givenanalgebra BB, there is a (unique upto isomorphism) B — B
bimodule Q' (B) and a derivation § : B — QY(B) (that is, §(ab) = §(a)b + ad(b)
for all a, b in B), satisfying the following properties:
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(i) Q(B) is spanned as a vector space by elements of the form ad(b) with a, b
belonging to B; and

(ii) for any B — BB bimodule E and a derivation d : B — E, there is an unique
B — B linear map n : Q"(B) — E such thatd =1 o 6.

The bimodule Q' (B) is called the space of universal 1-forms an B3 and  is called
the universal derivation.

We can also introduce universal space of higher forms on B, QK (B), say, for
k = 2,3, ..., by defining them recursively as follows: QT1(B) = Q¥(B) @5 Q'(B)
and also set Q°(B) = B.

Next, we briefly discuss the notion of the noncommutative Hilbert space of forms
for a spectral triple of compact type. We refer to [27] (page 124 -127) and the
references therein for more details.

Definition 2.2.11 A spectral triple (A, H, D) of compact type is said to be ®-
summable if ¢'2” is of trace class for all 7 > 0. A ©-summable spectral triple is
called finitely summable when there is some p > 0 such that 2 Tr(e™'P 2) is bounded
on (0, 8] for some § > 0. The infimum of all such p, say p’, is called the dimension
of the spectral triple and the spectral triple is called p’-summable.

Remark 2.2.12 We remark that the definition of ®-summability to be used in this
book is stronger than the one in [14] (page 390, Definition 1.) in which a spectral
triple is called ®-summable if Tr(e’Dz) < 00.

)
IrTe 2 ) for A\ > 0. We note that

For a ®-summable spectral triple, let o) (T) = —
(e X7 )
A+ o0, (T) is bounded.

Let .
1 d

T)\(T)Z—/ Uu(T)—Mfor)\zaze,
log A J, u

Now consider the quotient C* algebra By, = Cj([a, 00))/Co([a, o0)). Let for T
in B(H), 7(T) in By, be the class of A — 7,(T).

For any state w on the C* algebra By,, Tr,(T) = w(r(T)) for all T in B(H)
defines a functional on B(). As we are not going to need the choice of w in this

_ip?
book, we will suppress the suffix w and simply write Lim;_, g+ TTrEZ:_rDL;)) for Tr,(T).

Te(Te 'P?)
. . . - T .
with the functional Lim;_, ¢+. Moreover, Tr,(T) coincides (upto a constant) with the

Dixmier trace (see Chapter IV, [14]) of the operator T'| D|~? when the spectral triple
has a finite dimension p > 0, where | D|™? is to be interpreted as the inverse of the
restriction of | D|” on the closure of its range. In particular, this functional gives back
the volume form for the classical spectral triple on a compact Riemannian manifold.

Let QF(A*) be the space of universal k-forms on the algebra 4> which
is spanned by agd(ay) - --d(ax), a; belonging to A%, where ¢ is as in Proposi-
tion2.2.10. There is a natural graded algebra structure on 2 = €, ., QF(A>), which

This is a kind of Banach limit because if lim,_, o+

exists, then it agrees
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also has a natural involution given by (§(a))* = —d(a™), and using the spectral
triple, we get a x-representation IT : Q — B(H) which sends aypd(a;) - - - d(ay) to
apdp(ay) - - - dp(ax), where dp(a) = [D, a]. Consider the state 7 on B(H) given
Tr(Xe~'P%)
Tr(e'P?%) °
tive semi definite sesquilinear form on Q¥ (A>) by setting (w, ) = 7(IT(w)*I1(n)).
Let K* = {w € QX(A®) : (w, w) =0}, fork > 0,and K~ := (0). Let Q%) be the
Hilbert space obtained by completing the quotient Q(A>)/K* with respect to the

by, 7(X) = Lim,_, o+ where Lim is as above. Using 7, we define a posi-

inner product mentioned above, and we define 'H’,‘j = Pkl Q’,‘), where P denotes
the projection onto the closed subspace generated by §(K*~!). The map D’ :=
d+d* =dp+dj on Hyra = Py HkD has a self-adjoint extension (which is
again denoted by d + d*). Clearly, 'HkD has a total set consisting of elements of the
form [apd(ay) - - - (ay)], with a; in A% and where [w] denotes the equivalence class
P (w + K*) for w belonging to ¥ (A™). There is a *-representation 74+ : A —
B(Hata+), given by mapq+(a)([aod(a)) - - - 0(ax)]) = [aapd(ay) - - - 6(ax)]. Then it is
easy to see that

Proposition 2.2.13 (A, Hyi4+, d + d*) is a spectral triple.

Let us mention that for the classical spectral triple (C* (M), L?(S), D) on a com-
pact Riemannian spin manifold M, the above construction does give the usual Hilbert
space of forms discussed in Sect. 2.1.1. Moreover, the volume form on C* (M) using
D’ = d + d* inplace of D agrees with the usual volume form. It is enough to explain
this for smooth functions supported in a small coordinate neighborhood on which
the restriction of the spinor bundle S is trivial. Combining the local expressions
(5.45), (5.48) and (5.49) in [15], one can easily see that D? has the following local
expression:

D>*=AQ® I+ A,
where A is a first order differential operator, A = — 3",  g" %%
cian on the manifold, k is the dimension of the fiber of S, {x1, x», ..., x,} are local
coordinates, ((g;;)) is the Riemannian metric and ((g")) = ((g;;)) "
On the other hand, we can obtain the following local expression for (D’)? on a
suitable trivializing neighborhood for the bundle of forms:

is the Lapla-

(D) =L ® Icn,

where L is the Hodge Laplacian on M as in Sect.2.1.2 and m is the dimension of
the fiber of A*M.

A direct calculation shows that £ — A is a first order differential operator. As
L£~7 and A~ are of Dixmier trace class, it follows from the discussion in page 307
of [14] and the references cited there that

Tr,(M;L72) = Tr, (MfA™2),
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where M ; denotes the operator of multiplication by a smooth function f supported
in a small enough coordinate neighborhood on which both S and A*M are trivial.
Hence we have

Tr,(M; (D)%) _ Tro(M;(D*)~%)
Tr, (D)%) Tr, (D)%)

2.2.3 Laplacian in Noncommutative Geometry

Now we want to formulate and study an analog of the Hodge Laplacian in noncom-
mutative geometry. We recall that in the classical case of a compact Riemannian
manifold, £ = —d},dp coincides with the Hodge Laplacian —d*d (restricted on the
space of smooth functions), where d denotes the de-Rham differential. We need some
mild technical assumptions on the spectral triple to define the associated Laplacian.

Definition 2.2.14 Let (A*°, B(H), D) be a ®-summable spectral triple of compact
type. Assume furthermore that it satisfies the following conditions:

(1) Itis QC*°, thatis, A% and {[D, a], a € A} are contained in the domains
of all powers of the derivation [| D], -].

(2) Under condition (1), 7 defined by 7(X) = Lim,_,¢ T;Ei 8;1,52)) is a positive trace
on the C*-subalgebra generated by A and {[D, a] : a € A*}. We assume that 7
is also faithful on this subalgebra.

(3) The unbounded densely defined map dp from H% to H}, given by dp(a) =
[D, a] for a in A, is closable and let dp also denote the closure.

(4) £ := —d},dp has A% in its domain.

Then, we call £ the noncommutative Laplacian and 7, = e'£ the noncommutative
heat semigroup. Moreover, the *-subalgebra of A generated by Af° will be denoted

by .Ao.

Let us record the following observation.

Lemma 2.2.15 Under the conditions of the Definition2.2.14, then for x € A%, we
have L(x*) = (L(x))*.

Proof It follows by simple calculation using the facts that 7 is a trace and dp (x*) =
—(dp(x))* that

T(LEM)y)
= 7(dp(x)dp(y)) = 7(dp(y)dp(x)) = —7((dp(y"))"dp(x))
=<y L(x) >=7(L(X)) = T(L(Kx)y),

for all y € A™. By density of A* in HY, (a) follows. O
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It is well known that for compact Riemannian spin manifolds, the conditions (1)
and (2) of Definition 2.2.14 are satisfied. On the other hand, we know from Sect.2.1.2,
(for example, Lemma?2.1.1) that the Hodge Laplacian on a compact Riemannian
manifold satisfies the properties (3) and (4).

In the noncommutative case, the conditions (1) and (2) hold for many spectral
triples including those coming from Rieffel deformations. The content of the next
lemma is about the other conditions.

Lemma 2.2.16 Let (A*, H, D) be a spectral triple of compact type and of finite
dimension, say p. Suppose that for every element a € A, the map R >t —
o, (X) = exp(it D) Xexp(—it D) is differentiable at t = O in the norm-topology of
B(H), where X = a or [D, a). Then the conditions (3) and (4) of Definition2.2.14
are satisfied. Moreover, we have:

(a) L maps A into the weak closure of A in B(H%).

(b) If T, = exp(tL) maps HY into A for all t > 0, then any eigenvector of L
belongs to A

Proof We first observe that 7(«,(A)) = 7(A) for all ¢+ and for all A € B(H),
since exp(itD) commutes with |D|~7. If moreover, A belongs to the domain
of norm-differentiability (at + = 0) of «, i.e., M — i[D, A] in operator-
norm, then it follows from the property of the Dixmier trace that 7([D, A]) =
ll lim,_, o 227 — (. Now, since by assumption we have the norm- differentia-
bility atz = 0 of a, (A) for A belonging to the x-subalgebra (say B) generated by A
and [D, A, it follows that 7([D, A]) =0 VA € B. Let us now fix a, b, c € A®
and observe that

<adp(b),dp(c) >

= 7((a dp(b))*dp(c) >

= —7([D, [D, b*la*c]) + 7([D, [D, b*]a*]c)
= 7([D, [D, b*]a"]c),

using the fact that 7([D, [D, b*]a*c]) = 0. This implies
| <adp(b),dp(c) > | < |[D,[D,b*la*1|7(c*e)> = ID, [D, b*1a*]lll|c]l2,

where ||c|, = T(C*C)% denotes the L%-norm of ¢ € H%. This proves that a dp(b)
belongs to the domain of d}, for all a, b € A*, so in particular d}, is dense, i.e., dp
is closable. Moreover, taking a = 1, we see that dp(A*) € Dom(d},), or in other
words, A* € Dom(d},dp). This proves (3) and (4). The statement (a) can be proved
along the line of Theorem 2.9, page 129, [27]. To prove (b), we note that if x € H%
is an eigenvector of £, say £(x) = Ax (\ € C), then we have T} (x) = ¢ x, hence
x=eMT,(x) e A®. O
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2.3 Quantum Group Equivariance in Noncommutative
Geometry

We have already seen (Theorem 2.1.12) that the classical Dirac operator is equivariant
with respect to the natural action of the group of orientation preserving Riemannian
isometries. Itis natural to explore similar equivariance of a spectral triple with respect
to quantum group coactions. Let us begin by giving a precise definition of quantum
group equivariance.

Definition 2.3.1 Consider a spectral triple (A*, H, D) along with a coaction «
of a CQG Q on the C*-algebra A obtained by taking the norm closure of A in
B(H). We say that (A*°, H, D) is a Q-equivariant spectral triple if there is a unitary
corepresentation U of Q on H such that

(i) ady () = a(), }

UMD =D NHU.

It was not very easy to get examples of spectral triples, which are equivariant with
respect to “a genuine (i.e., noncommutative as a C* algebra) quantum group". In
[25] (i.e., Example 2.2.8), the first example of an SU,(2)-equivariant spectral triple
was constructed. It was followed by the work of a number of mathematicians, see
[26, 28-30] and the references therein. In the next two subsections, we show that the
spectral triples of Examples2.2.8 and 2.2.9 are indeed equivariant.

2.3.1 The Example of SU,,(2)

We deal with Example2.2.8 here. Let U be the regular corepresentation of SU,(2)
on LZ(SU/,,(Z), h). Then ady (x) = A(x) for all x in SU,(2). We recall from Exam-

ple2.2.8 the normalized vectors e;’s. Then U(e};) = D h ”e?k ® 1;); from
i

A
which it easily follows

Proposition 2.3.2 (/25]) The spectral triple (O(SU,(2), L2(SU# (2), h), DSUs@)
of Example2.2.8 is SU,,(2)-equivariant.

2.3.2 The Example of the Podles’ Spheres

Here, we consider the spectral triple constructed in [26] and explained in Exam-

ple2.2.9. We will use the notations of Example2.2.9. From [26], we see that the

vector spaces Vi:l = Span{v Lim= —I[, ....I} are (2] 4+ 1) dimensional Hilbert
2 m,x3

spaces on which the SU,,(2) corepresentation is unitarily equivalent to the standard

[-th unitary irreducible corepresentation of SU,(2), that is, if the corepresentation
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: 1 _ I I I :
is denoted by Uy, then Uo(vl.i%) => vj’i% Qt;; where L denotes the matrix

elements in the /-th unitary irreducible corepresentation of SU,,(2).
‘We now recall Theorem 3.5 of [31].

n

Proposition 2.3.3 Let Ry be an operator on 'H defined by Ry(v} ) = p 2! vl
U2 L)

Then Tr(Rge”Dz) < oo (for all t > 0) and one has
(Tr, ®1d) (Uo(x @ DUy ) = 78, (x).1,

for all x in B(H), where Tg,(x) = Tr(x Roe™'>").

—2i,n

We define a positive, unbounded operator R on H by R(vlfZ L) =p vl
T2 T2

Proposition 2.3.4 ady, preserves the R-twisted volume. In particular, for x in

W(SZ’C) and t > 0, we have h(x) = :Zg’fi, where Tg(x) := Tr(xRe™'P"), and h

denotes the restriction of the Haar state of SU,(2) to the subalgebra Sﬁ’c, which

is the unique SU,,(2)-invariant state on Sﬁ’c.

Proof It is enough to prove that 7 is ay,-invariant. Let us denote by P%, P_% the
projections onto the closed subspaces generated by {vf ,} and {vf 1}, respectively.
) »T2

Moreover, let 71 be the functionals defined by 74 (x) = Tr(x Ry P, 1 e*tDz)_ Now

observing that Ry, e~'P * and Uy commute with Py and using Proposition2.3.3, we

have, for x belonging to B(H),

(T+ @ id) (ay, (x))

= (Tr ® id)(Uo(x ® DTy (RyPy1e”” @ id))
= (Tr@id)(Uo(x Pyy ® DTy (Roe " ® id)
= (7, ® id)(a, (x Py))

= TRO(XP:‘:%)

=T7+(x).1,

that is, 74 are oy, -invariant.

_ 2. . . . .
Thus, x — Tr(x RoPi%e D7) is invariant under a,. Moreover, since we have

RPi% = ;FROPi%, the functional 7¢ coincides with y~!7, + u7_, hence is ay,-

invariant. U

Theorem 2.3.5 The spectral triple described on the Podles’ sphere Si,c as described
in Example2.2.9 is SU,,(2) equivariant. If o : SZ’C — Sic ®50,3) € SU,2Q) ®
S$0,,(3) denotes the canonical coaction of §O,,(3) on Sﬁ,c (Sect. 1.3.3) and Uy is as

above, then ady, (m(x)) = (1 ® id)a(x) Moreover, ady, preserves Tg.
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Proof

(D ®iUs(v),,) = (D @i v, 1 ®1})

= (a1l + ) Zv;# ® té’i

2

= (1l +e)Vo(v; 1)
T2
= UoD(; ,.,)-

Thus, the above spectral triple is equivariant w.r.t. the corepresentation Uj.

For the second statement, let U denote the right regular corepresentation of
SU,(2) on L2(SUN(2), h), so that Uy = U|y. We already noted that the coaction
a of SU,(2) is the restriction of the coproduct, that is, a(x) = U(x ® 1)U* for
X € Sﬁ,c c B(LZ(S/%’C)). Now, m(x) = x|, and we also observed that both x and U
(hence U*) leaves ‘H invariant. Thus,

ady, (m(x)) = Up(m(x) ® id)Us = (U (x @ id)U™)|ugso,3) = a(X)|He50,3)
= (7 ® id)(a(x)).

Finally, ady, preserves 7 by Proposition2.3.4. O

2.3.3 Constructions from Coactions by Quantum Isometries

In this subsection, we shall briefly discuss the relevance of quantum isometry group to
the problem of constructing quantum group equivariant spectral triples, which is
important to understand the role of quantum groups in the framework of noncom-
mutative geometry. There has been a lot of activity in this direction recently, see, for
example, the articles by Chakraborty and Pal [25], Connes [32], Landi et al. [28], and
the references therein. In the classical situation, there exists a natural unitary repre-
sentation of the isometry group G = ISO(M) of a manifold M on the Hilbert space
of forms, so that the operator d 4+ d* (where d is the de-Rham differential operator)
commutes with the representation. Indeed, d 4+ d* is also a Dirac operator for the
spectral triple given by the natural representation of C°° (M) on the Hilbert space of
forms, so we have a canonical construction of G-equivariant spectral triple. Our aim
in this subsection is to generalize this to the noncommutative framework, by proving
that dp + dj, is equivariant with respect to a canonical unitary corepresentation on
the Hilbert space of ‘noncommutative forms’.

Consider an admissible spectral triple (A>, H, D) and moreover, make the
assumption of Lemma2.2.16,i.e., assume that t > e''Pxe~'" is norm-differentiable
at t = 0 for all x in the x-algebra 3 generated by A and [D, A*].

Lemma 2.3.6 In the notation of Lemma2.2.16, we have the following (where b, ¢ €
AX): X
d}(dp(b)c) = -3 (bL(c) — L(b)c — L(bc)) . (2.3.1)
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Proof Denote by x (b, ¢) the right hand side of Eq. (2.3.1) and fix any a € A*. Using
the facts the the functional 7 is a faithful trace on the *-algebra B, £ = —d},dp and
that 7([D, X]) = O for any X in B3, we have,

(@ x(b, ¢))

= —%{T(a*bﬁ(c)) — 7(ca*L(b)) — T(a*L(bc))}

1
= 5 {r(D. a*blD, c]) — 7([D, ca™1[D, b]) — 7(ID, a*1[D, be)}

1
= E{T(a*[D’ bI[D, c]) = 7(ID, cla*[D, b)) = 7(c[D, a*1[D, b)) — 7([D, a*1[D, blc)}

= —7([D, a*][D, b]c)
=7([D,al*[D, b]c)
= (dp(a),dp(b)c)

= 7(a*(d}(dp(b)C))).

From this, we get the following by a simple computation:
1
(adp(b), d'dp (b)) = —ET(b*‘I’(a*a’, b)), (2.32)

fora,b,a’, b’ € A, and where W (x, y) := L(x)y — xL(y). Now, let us denote the
quantum isometry group of the given spectral triple (A*, H, D) by (G, A, ). Let
Ay denote the x-algebra generated by AS° and G denote the *-algebra of G generated
by matrix elements of irreducible corepresentations. Clearly, o : Ag — Ap ®alg Go
is a Hopf-algebraic coaction of Gy on Aj. Define a C-bilinear map U (Ao Rag
Go) x (Ap ®ag Go) = Ao ®aig Go by setting

V((xr®q), (X ®¢") = W(x, x)® (qq).
It follows from the relation (£ ® id) o @ = av o L on A that
T (ax), a(y)) = a(¥(x, y)). (2.3.3)

We now define a linear map o'" from the linear span of {adp(b) : a,b € Ay} to
H}, ® G by setting

aP(adp(®)) = > a"dp(b") ® ab}?,

iJj

where for any x € Ay we write a(x) = [x[(l) ® xi(z) € Ay ®aig Go (summation
over finitely many terms). We shall sometimes use the Sweedler convention of writing
the above simply as a(x) = x ® x®. It then follows from the identities (2.3.2)
and (2.3.3), and also the fact that (7 ® id)(«(a)) = 7(a)1 for all a € A that
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(a@WD(a dp (b)), V(@ dp)))g

1 ;
= —5(7 ® id)(a(b") W (a(a*a’), a(b)))
1
= —E(T ® id)(a(b*)a (¥ (a*d’, b))
= —%(T ® id)(a(b* Y (a*d’, b))

= —%T(b*\ll(a*a’, b'Nlg
= (adp(b), d'dp(b))1g.

This proves that o'V is indeed well-defined and extends to a G-linear isometry on
HL ® G, to be denoted by UV, which sends (adp (b)) ® ¢ to o'V (adp(b))(1 ® q),
a,b e Ay, g € G. Moreover, since the linear span of (A7) (1 ® §) is dense in
H% ® G, itis easily seen that the range of the isometry U M is the whole of H'D ®3a,
i.e., UM is a unitary. In fact, from its definition it can also be shown that U™V is a
unitary corepresentation of the compact quantum group G on H},.

In a similar way, we can construct unitary corepresentation U ™ of G on the Hilbert
space of n-forms for any n > 1, by defining

U™ ((apdp(a))dp(az)...dp(ay)) ® q)
=ai"dp@)...dpa") ® (a(()z)aiz)...aff)q),
(where a; € A°, ¢ € G, and Sweedler convention is used),

and verifying that it extends to a unitary. We also denote by U® the unitary corep-
resentation & on HY, discussed before. Finally, we have a unitary corepresentation

U=@,.0U" of G on H =, M}, and also extend dp as a closed densely

defined operator on H in the obvious way, by defining dp(apdp(ay)...dp(a,)) =
dp(ag)...dp(ay,). It is now straightforward to see the following:

Theorem 2.3.7 The operator D' := dp + dj, is equivariant in the sense that U (D' @
=D e HU.

We point out that there is a natural corepresentation 7 of A on H given by
7(a)(apdp (@y)...dp(ay)) = aaydp(ar)...dp(a,), and (m(A®), H, D') is indeed a
spectral triple, which is G-equivariant.

Although the relation between spectral properties of D and D’ is not clear in
general, in many cases of interest (e.g., when there is an underlying type (1, 1)
spectral data in the sense of [27]) these two Dirac operators are closely related. As
an illustration, consider the canonical spectral on the noncommutative 2-torus Ay,
which is discussed in some details in the next section. In this case, the Dirac operator
D acts on L2(Ag, 7) ® C2, and it can easily be shown (see [27]) that the Hilbert space
of forms is isomorphic with L?(Ag, 7) ® C* = L?*(Ag) ® C?; thus D’ is essentially
same as D in this case.
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2.3.4 R-twisted Volume Form Coming from the Modularity
of a Quantum Group

Let (S, A) be acompact quantum group and (A>, H, D) be an S-equivariant spectral
triple with a unitary corepresentation V on H commuting with D. In this subsection,
our aim is to show the existence of a densely defined positive functional on B(H),
to be interpreted as a generalization of “volume form”, which is kept invariant under
adV .

The Hilbert space H, on which D acts decomposes into finite dimensional
eigenspaces Hy (k > 1) of the operator D, i.e., H = @;Hy. Since D commutes
with V, V preserves each of the H;’s and on each Hy, V is a unitary corepresenta-
tion of the compact quantum group Q. Then we have the decomposition of each H;
into the irreducibles, say

Hi = @rer,C" @ C",

where m ; is the multiplicity of the irreducible corepresentation of type 7 on H; and
Ty is some finite subset of Rep(Q). Since R commutes with V, R preserves direct
summands of Hy. Let {e] : i = 1,2, - - -d;} be an orthonormal basis of C% such that
V(el) = Zj e; @uj;.

Let £p denote the WOT-dense *-subalgebra of B(H) generated by rank one oper-
ators of the form £ >< 7|, where &, n are eigenvectors of D. We note that since V
maps Hy into Hy ®ae So for all k, ady will map Ep into Ep ®qig So-

With the above set up and notations, we give the following definition.

Definition 2.3.8 An R-twisted spectral data (of compact type) is given by a quadru-
plet (A%, 'H, D, R), where

1. (A%, H, D) is a spectral triple of compact type.

2. R a positive (possibly unbounded) invertible operator such that R commutes
with D.

We shall also sometimes refer to (A, H, D) as an R-twisted spectral triple.

Remark 2.3.9 Weremark that in the above definition, we do not need the full strength
of Definition 2.2 in [33].

Definition 2.3.10 The functional 74 defined below on the weakly dense x-subalgebra
Ep of B(H) will be called the R-twisted volume form:

Tr(x) =Tr(Rx), x € &p.

We now characterize those R for which ady preserves the functional 7.

Theorem 2.3.11 Let (A%, 'H, D, R) be an R-twisted spectral data of compact type
which is equivariant with respect to a corepresentation V of a COG S on 'H. Then
ady preserves the R-twisted volume form if and only if R is of the following form:
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Ry, = Orer F™ @ Tk (2.3.4)

for some Ty ; € B(C"+), where F™’s are as in Sect. 1.2.2.

Proof Let{ff'k}j.q;'f be an orthonormal basis for C"~+. Then {e] ® ff’k i=1,2,--
“dr, j = 1,...mq}is an orthonormal basis for H;. As R commutes with D, it leaves
‘Hy invariant. Let us write

R(e] @ 7% =D R™ (s, 1.1, j)e; ® fr.
s,t

Let & denote the extension of the Haar state of S to a vector state on B(L2(S, h))
given by h(x) =< 1,x1 > .

Forafixed m, k, denoting e, ff’k, R™F(s,t, 1, J)byei, fj, R(s,t,i, j),respec-
tively, and for a in £p, we have the following:

(R ®@Mady(@) = D < V(@ ® f;® 1), @® DV R(e ® f}) >
ij
= D <a®fi® ) Rt ale, ® f) ® (uf)* >

i,jk.s,tu

R(s,t,i,j
= Z % <erQ fi,ale, ® fi) > 0is F™(k, u)

™

i,j.k,s,t.u

R, 1., )) .
= D>~ <a®fiae® f) > Frku).

ijktu g

On the other hand

Tr(a.R)
= Z <e ® fj,aR(e; @ fj) >
i,j

> Rtk j) <e® fjale,® f)>.

k,ju,t

Tr(a)

Now observe that if R is of the form given in the theorem, then R(s, t, 1, j) =
F™(i, s)Tz x(j, t). Plugging this in the expressions for (7 ® h)ady(a) and 7z (a)
obtained above, and using the fact that M, = >", F™(i, i), we get (Tg ® h)ady (a) =
Tr(a). It follows easily that ady preserves 7g.

‘We now prove the necessity part of the theorem. We note that (7 ® h)ady (a) =
Tg(a) implies:
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RG.1.0. ]
z % <er® fi,ale, ® fi) > FT(k,u)

i,j.k.tu

= D> R.t.k.j)<e® f.ale,® f) > . (2.3.5)

k,jout

Now fix u, tp and consider a € B(H) such that a(e,, ® f;,) = ¢, ® f, and zero on
the other basis elements. Then from (2.3.5), we get

R(, ty,i,]
>R e fe® fy > Fkuw)

ij.k T

=D Rl ok, j) < ex ® fj. e, ® fy >,
k.j

which gives 3", X o Rt (. ug) = R(ug, to, p, q)-
This proves that R |1, = Brez, F™ ® T with some T, € B(C") given by

T x(to.q) =2, W :
As an immediate corollary, we get the following:

Proposition 2.3.12 Let R = Ty (¢1) € B(H), where ¢ is the functional defined in
Proposition 1.2.19 and Tly is as in Theorem 1.4.1. Suppose also that L € B(H) is
(S, V) equivariant. Then we have:

a. R is a (possibly unbounded) positive operator with Dom(R) containing the
subspaces Hy, k > 1.

b. RD = DR.

c. ady preserves the functional .

Thus, given a spectral triple (A, H, D) (of compact type) which is S-equivariant
with respect to a corepresentation V of a COG S on 'H, we can always construct a
positive (possibly unbounded) invertible operator R on H such that (A*, H, D, R)
is a twisted spectral data and ady preserves the functional Tg.

Proof This follows from Theorem2.3.11 as R is of the form (2.3.4) with T, = I
for all m, k. O

Remark 2.3.13 1f L in Proposition2.3.12 is such that RL is trace class, then the
functional x is defined and bounded on B(7) and the conclusion of the proposition
holds as well.

Remark 2.3.14 (a)When the spectral triple in question has a real structure as in
Definition 2.2.3, there is a canonical choice of R (see Remark 3.3.3).

(b) When the Haar state of S is tracial, then it follows from the definition of R
and Theorem 1.5 part 1. of [34] that R can be chosen to be 1.

We record the following lemma for future use.
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Lemma 2.3.15 The ady -invariance of the functional Tg on Ep is equivalent to the
ady -invariance of the functional X + Tr(XRe™'P") on Ep for each t > 0. If, fur-
thermore, the R-twisted spectral triple is ®-summable in the sense that Re™'D’

is trace class for every t > 0, then ady preserves the functional B(H) > x —

¢ Re—1D? . . .
%, where Lim is as defined in Sect. 2.2.2.

LimtaOJr
Proof If W) denotes the eigenspace of D corresponding to the eigenvalue, say A, itis
clear that 74 (X) = ¢V Tr(Re™'P* X) forall X = |€ >< n| with&, n belonging to W),
and forany ¢ > 0. Thus, the ady -invariance of the functional 74 on £p is equivalent to
the ady -invariance of the functional X + Tr(XRe™’ Dz) on &p for each t > 0. This
can be argued as follows. Let ady be 7¢ invariant on £p, thatis, for all |£ > < 7| with
&, nbelonging to W), (1 ® id)ady (| >< n|) = 7r(|§ >< n]).1 Therefore, (7x ®
idyady (| >< n)) = 7R(I€ >< n]).1 = X Tr(Re '’ |¢ > < n|). Onthe other hand,
(T @ id)ady (|€ >< n]) = e (Tr(Re'” ) ® id)ady (|¢ >< n]). If the R-twisted
spectral triple is ®-summable, the above is also equivalent to the ady-invariance of
the bounded normal functional X +— Tr(X Re™’ Dz) on the whole of B(H). In partic-

ular, this implies that ady preserves the functional B(H) > x +— Lim;_ o+ TTT&R—‘:Z;_)).
e

O
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