
Chapter 2
Classical and Noncommutative Geometry

Abstract We discuss classical Riemannian geometry and its noncommutative geo-
metric counterparts. At first the definition and properties of the Hodge Laplacian
and the Dirac operator are given. We also derive the characterizations of isome-
tries (resp. orientation preserving isometries) in terms of the Laplacian (resp. Dirac
operator). This is followed by discussion on noncommutative manifolds given by
spectral triples, including the definitions of noncommutative space of forms and the
Laplacian in this set up. The last section of this chapter deals with the quantum group
equivariance in noncommutative geometry where we discuss some natural examples
of equivariant spectral triples on the Podles’ spheres.

2.1 Classical Riemannian Geometry

In this section,we recall some classical facts regarding classical differential geometry
manifolds that will be useful for us.

2.1.1 Forms and Connections

Let M be an n-dimensional compact Riemannian manifold. Let χ(M) denote the
C∞(M)-module of smooth vector fields on the manifold M . A linear or affine con-
nection ∇ on M is given by an assignment χ(M) � X �→ ∇X , where ∇X is an R-
linear map from χ(M) to χ(M) such that χ(M) � X �→ ∇X is C∞(M)-linear and
∇X ( f Y ) = f ∇X (Y ) + X ( f )Y , for all Y ∈ χ(M), f ∈ C∞(M). Given a local chart
in M and coordinates xi , the Christoffel symbols of the connection ∇ are the func-
tions �k

i j defined by: ∇ ∂
∂xi

∂
∂x j

= ∑
k �k

i j
∂

∂xk
. A linear connection is called symmetric

or torsionless if∇X (Y ) − ∇Y (X) = [X,Y ] for all X,Y ∈ χ(M). It is said to be com-
patible with the Riemannian metric if 〈∇X (Y ), Z〉 + 〈Y,∇X (Z)〉 = X 〈Y, Z〉 for all
X,Y, Z ∈ χ(M), where 〈·, ·〉 denotes the Riemannian inner product on the tangent
bundle. There is a unique linear connection on M [1], which is torsionless and com-
patible with the metric, called the Levi-Civita connection on M.
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38 2 Classical and Noncommutative Geometry

Let �k(M) (k = 0, 1, 2, ...n) be the space of smooth k-forms. Set �k(M) = {0}
for k > n. The de-Rham differential d maps �k(M) to�k+1(M). Let � ≡ �(M) =
⊕k�

k(M). We will denote the Riemannian volume element by dvol. We recall that
the Hilbert space L2(M) is obtained by completing the space of compactly supported
smooth functions on M with respect to the pre-inner product given by 〈 f1, f2〉 =∫
M f1 f2dvol.
In an analogous way, one can construct a canonical Hilbert space of forms. The

Riemannian metric 〈. , .〉m (for m in M) on TmM induces an inner product on the
vector space T ∗

mM and hence also �kT ∗
mM, which will be again denoted by 〈. , .〉m .

This gives a natural pre-inner product on the space of compactly supported k-forms
by integrating the compactly supported smooth function m �→ 〈ω(m), η(m)〉m over
M. We will denote the completion of this space byHk(M). Let H = ⊕kHk(M).

Then, one can view d : � → � as an unbounded, densely defined operator (again
denoted by d) on the Hilbert spaceH with the domain �. It can be verified that it is
closable.

2.1.2 The Hodge Laplacian of a Riemannian Manifold

We recall that the Laplacian L on M is an unbounded densely defined self-adjoint
operator−d∗d on the space of zero formsH0(D) = L2(M, dvol)which has the local
expression

L( f ) = 1√
det (g)

n∑

i, j=1

∂

∂x j
(gi j

√
det(g)

∂

∂xi
f )

for f in C∞(M) and where g = ((gi j )) is the Riemannian metric and g−1 = ((gi j )).
Webeginwith awell-known characterization of the isometry group of a (classical)

compact Riemannian manifold. Let (M, g) be a compact Riemannian manifold and
let�1 = �1(M)be the spaceof smoothone forms,whichhas a rightHilbert-C∞(M)-
module structure given by the C∞(M)-valued inner product << ·, · >> defined by

〈ω, η〉 (m) = 〈ω(m), η(m)〉 |m,

where < ·, · > |m is the Riemannian metric on the cotangent space T ∗
mM at the point

m ∈ M . The Riemannian volume form allows us to make�1 a pre-Hilbert space, and
we denote its completion by H1. Let H0 = L2(M, dvol) and consider the de-Rham
differential d as an unbounded linear map from H0 to H1, with the natural domain
C∞(M) ⊂ H0, and also denote its closure by d. Let L := −d∗d. The following
identity can be verified by direct and easy computation using the local coordinates:

(∂L)(φ,ψ) ≡ L(φ̄ψ) − L(φ̄)ψ − φ̄L(ψ) = 2 << dφ, dψ >> for φ,ψ ∈ C∞(M).

(2.1.1)

Let us recall a few well-known facts about the Laplacian L, viewed as a negative
self-adjoint operator on the Hilbert space L2(M, dvol). It is known (see [2] and
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references therein) that L has compact resolvents and all its eigenvectors belong to
C∞(M). Moreover, it follows from the Sobolev Embedding Theorem that

⋂

n≥1

Dom(Ln) = C∞(M).

Let {ei j , j = 1, ..., di ; i = 0, 1, 2, ...} be the set of (normalized) eigenvectors of L,
where ei j ∈ C∞(M) is an eigenvector corresponding to the eigenvalueλi , 0 = |λ0| <

|λ1| < |λ2| < .... We have the following:

Lemma 2.1.1 The complex linear span of {ei j } is norm-dense in C(M).

Proof This is a consequence of the asymptotic estimates of eigenvalues λi , as
well as the uniform bound of the eigenfunctions ei j . For example, it is known
([3], Theorem1.2) that there exist constants C,C ′ such that ‖ei j‖∞ ≤ C |λi | n−1

4 ,

di ≤ C ′|λi | n−1
2 ,wheren is the dimension of themanifoldM . Now, for f ∈ C∞(M) ⊆⋂

k≥1 Dom(Lk), we write f as an a priori L2-convergent series
∑

i j fi j ei j ( fi j ∈ C),
and observe that

∑ | fi j |2|λi |2k < ∞ for every k ≥ 1. Choose and fix sufficiently
large k such that

∑
i≥0 |λi |n−1−2k < ∞, which is possible due to the well-known

Weyl asymptotics of eigenvalues of L. Now, by the Cauchy–Schwarz inequality and
the estimate for di , we have

∑

i j

| fi j |‖ei j‖∞ ≤ C(C ′)
1
2

⎛

⎝
∑

i j

| fi j |2|λi |2k
⎞

⎠

1
2 (

∑

i≥0

|λi |n−1−2k

) 1
2

< ∞.

Thus, the series
∑

i j fi j ei j converges to f in sup-norm, soSp{ei j , j = 1, 2, ..., di ; i =
0, 1, 2, ...} is dense in sup-norm in C∞(M), hence in C(M) as well. �

2.1.3 Spin Groups and Spin Manifolds

We begin with the Clifford algebras. Let Q be a quadratic form on an n-dimensional
vector space V . Then Cl(V, Q) will denote the universal associative algebra C
equipped with a linear map i : V → C, such that i(V ) generates C as a unital algebra
satisfying i(V )2 = Q(V ).1

Let β : V → Cl(V, Q) be defined by β(x) = −i(x). Then, Cl(V, Q) =
Cl0(V, Q) ⊕ Cl1(V, Q) where Cl0(V, Q) = {x ∈ Cl(V, Q) : β(x) = x},
Cl1(V, Q) = {x ∈ Cl(V, Q) : β(x) = −x}.

We will denote by Cn and CC
n the Clifford algebras Cl(Rn,−x21 − ... − x2n ) and

Cl(Cn, z21 + ... + z2n), respectively.

We will denote the vector space C
2[ n2 ] by the symbol �n. It follows that

CC
n = End(�n) if n is even and equals End(�n) ⊕ End(�n) is n is odd. There is

a representation CC
n → End(�n) that is the isomorphism with End(�n) when n is
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even and in the odd case, it is the isomorphism with End(�n) ⊕ End(�n) followed
by the projection onto the first component. This representation restricts to Cn, to be
denoted by κn and called the spin representation. This representation is irreducible
when n is odd and for even n, it decomposes into two irreducible representations,
which decomposes �n into a direct sum of two vector spaces �+

n and �−
n .

Pin(n) is defined to be the subgroup of Cn generated by elements of the form
{x : ‖x‖ = 1, x ∈ R

n}. Spin (n) is the group given by Pin(n) ∩ C0
n . There exists

a continuous group homomorphism from Pin(n) to O(n), which restricts to a 2-
covering map λ : Spin(n) → SO(n).

Let M be an n-dimensional orientable Riemannian manifold. Then we have the
oriented orthonormal bundle of frames over M (which is a principal SO(n) bundle)
which we will denote by F.

Such a manifold M is said to be a spin manifold if there exists a pair (P,�)

(called a spin structure) where
(1) P is a Spin(n) principal bundle over M.

(2) � is a map from P to F such that it is a 2-covering as well as a bundle map
over M.

(3) �(p.̂g) = �(p).g where λ(ĝ) = g, ĝ ∈ Spin(n).

Given such a spin structure, we consider the associated bundle S = P ×Spin(n) �n

called the ‘bundle of spinors’.

2.1.4 Dirac Operators

We follow the notations of the previous subsection. On the space of smooth sections
of the bundle of spinors S on a compact Riemannian spin manifold M , one can define
an inner product by

〈s1, s2〉S =
∫

M
〈s1(x), s2(x)〉 dvol(x).

The Hilbert space obtained by completing the space of smooth sections with
respect to this inner product is denoted by L2(S) and its members are called the
square integrable spinors. The Levi-Civita connection on M induces a canonical
connection on S which we will denote by ∇ S.

Definition 2.1.2 The Dirac operator on M is the self-adjoint extension of the fol-
lowing operator D defined on the space of smooth sections of S:

(Ds)(m) =
n∑

i=1

κn(Xi (m))(∇ S
Xi
s)(m),

where (X1, ...Xn) are local orthonormal (with respect to the Riemannian metric)
vector fields defined in a neighborhood of m. In this definition, we have viewed
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Xi (m) belonging to Tm(M) as an element of the Clifford algebra ClC(TmM), hence
κn(Xi (m)) is a map on the fiber of S at m, which is isomorphic with �n. The self-
adjoint extension of D is again denoted by the same symbol.

We recall three important facts about the Dirac operator:

Proposition 2.1.3 (1) C∞(M) acts on S by multiplication and this action extends
to a representation, say π, of the C∗ algebra C(M) on the Hilbert space L2(S).

(2) For f in C∞(M), [D,π( f )] has a bounded extension.
(3) Furthermore, the Dirac operator on a compact manifold has compact resol-

vents.
As the action of an element f in C∞(M) on L2(S) is by multiplication operator,

we will use the symbol M f in place of π( f ).
The Dirac operator carries a lot of geometric and topological information. We

give two examples.
(a) The Riemannian metric of the manifold is recovered by

d(p, q) = supφ∈C∞(M), ‖[D,Mφ]‖≤1 |φ(P) − φ(q)| . (2.1.2)

(b) For a compact manifold, the operator e−t D2
is trace class for all t > 0. Then

the volume form of the manifold can be recovered by the formula

∫

M
f dvol = c(n)limt→0

Tr(M f e−t D2
)

Tr(e−t D2
)

where dimM = n, c(n) is a constant depending on the dimension.

2.1.5 Isometry Groups of Classical Manifolds

Let M be a Riemannian manifold of dimension n. Then the collection of all isome-
tries of M has a natural group structure and is denoted by ISO(M). The aim of this
subsection is to prepare the necessary background for defining the notion of “quan-
tum isometry”of a noncommutative manifold. Therefore, for a classical Riemannian
(resp, spin) manifold, we give characterizations of an isometry (resp, orientation
preserving isometry) in terms of the Hodge Laplacian (resp, Dirac operator). more-
over, motivated by the work of Woronowicz and Soltan on “quantum families”, we
give characterizations of classical families of isometries (resp, orientation preserving
isometries). We should mention that Proposition2.1.4 and Theorem2.1.12 are well
known [4, 5], but for the sake of completeness, we give detailed proofs.

The topology on ISO(M) is defined in the following way. LetC andU be, respec-
tively, a compact and open subset of M and let W (C,U ) = {h ∈ ISO(M) : h.C ⊆
U }. The compact open topology on ISO(M) is the smallest topology on ISO(M)

for which the sets W (C,U ) are open. It follows (see [4]) that under this topology,
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ISO(M) is a closed locally compact topological group. Moreover, if M is compact,
ISO(M) is also compact.
Characterization of ISO(M) for a Riemannian manifold

We start with the characterization of a single isometry.

Proposition 2.1.4 A smooth map γ : M → M is a Riemannian isometry if and only
if γ commutes with L in the sense that L( f ◦ γ) = (L( f )) ◦ γ for all f ∈ C∞(M).

Proof If γ commutes with L then from the identity (2.1.1), we get for m ∈ M and
φ,ψ ∈ C∞(M) :

< dφ|γ(m), dψ|γ(m) > |γ(m)

=<< dφ, dψ >> (γ(m))

= 1

2
(∂L(φ,ψ) ◦ γ)(m)

= 1

2
∂L(φ ◦ γ,ψ ◦ γ)(m)

=<< d(φ ◦ γ), d(ψ ◦ γ) >> (m)

=< d(φ ◦ γ)|m, d(ψ ◦ γ)|m > |m
=< (dγ|m)∗(dφ|γ(m)), (dγ|m)∗(dψ|γ(m)) > |m,

which proves that (dγ|m)∗ : T ∗
γ(m)M → T ∗

mM is an isometry. Thus, γ is a Riemannian
isometry.

Conversely, if γ is an isometry, both the maps induced by γ on H0 and H1, i.e.,
U 0

γ : H0 → H0 given by U 0
γ ( f ) = f ◦ γ and U 1

γ : H1 → H1 given by U 1
γ ( f dφ) =

( f ◦ γ)d(φ ◦ γ) are unitaries. Moreover, d ◦U 0
γ = U 1

γ ◦ d on C∞(M) ⊂ H0. From
this, it follows that L = −d∗d commutes with U 0

γ . �

Next, we move on to the characterization of a family of isometries, which will
need the following lemma.

Lemma 2.1.5 Let H1,H2 be Hilbert spaces and for i = 1, 2, let Li be (possibly
unbounded) self-adjoint operator on Hi with compact resolvents, and let Vi be the
linear span of eigenvectors of Li . Moreover, assume that there is an eigenvalue of
Li for which the eigenspace is one-dimensional, say spanned by a unit vector ξi . Let
� be a linear map from V1 to V2 such that L2� = �L1 and �(ξ1) = ξ2. Then we
have

〈ξ2, �(x)〉 = 〈ξ1, x〉 ∀x ∈ V1. (2.1.3)

Proof By hypothesis on �, it is clear that there is a common eigenvalue, say λ0,
of L1 and L2, with the eigenvectors ξ1 and ξ2, respectively. Let us write the set of
eigenvalues of Li as a disjoint union {λ0} ⋃

�i (i = 1, 2), and let the correspond-
ing orthogonal decomposition of Vi be given by Vi = Cξi

⊕
λ∈�i

Vλ
i ≡ Cξi ⊕ V ′

i ,
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say, where Vλ
i denotes the eigenspace of Li corresponding to the eigenvalue λ. By

assumption,� maps Vλ
1 to Vλ

2 whenever λ is an eigenvalue ofL2, i.e., Vλ
2 �= {0}, and

otherwise it maps Vλ
1 into {0}. Thus,�(V ′

1) ⊆ V ′
2. Now, (2.1.3) is obviously satisfied

for x = ξ1, so it is enough to prove (2.1.3) for all x ∈ V ′
1. But we have 〈ξ, x〉 = 0 for

x ∈ V ′
1, and since�(x) ∈ V ′

2 = V2
⋂{ξ2}⊥, it follows that 〈ξ2, �(x)〉 = 0 = 〈ξ1, x〉.

�

Now let us consider a compact metrizable (i.e., second countable) space Y with
a continuous map θ : M × Y → M . We abbreviate θ(m, y) as my and denote by ξy
the map M � m �→ my. Let α : C(M) → C(M) ⊗ C(Y ) ∼= C(M × Y ) be the map
given by α( f )(m, y) := f (my) for y ∈ Y , m ∈ M and f ∈ C(M). For a state φ on
C(Y ), denote byαφ the map (id ⊗ φ) ◦ α : C(M) → C(M).We shall also denote by
C the subspace of C(M) ⊗ C(Y ) generated by elements of the form α( f )(1 ⊗ ψ),
f ∈ C(M),ψ ∈ C(Y ). Since C(M) and C(Y ) are commutative algebras, it is easy
to see that C is a ∗-subalgebra of C(M) ⊗ C(Y ). Then we have the following

Theorem 2.1.6 (i) C is norm-dense in C(M) ⊗ C(Y ) if and only if for every y ∈ Y ,
ξy is one-to-one.
(ii) The map ξy is C∞ for every y ∈ Y if and only if αφ(C∞(M)) ⊆ C∞(M) for all
φ.
(iii)Under the hypothesis of (ii), each ξy is also an isometry if and only ifαφ commutes
with (L − λ)−1 for all state φ and all λ in the resolvent of L (equivalently, αφ

commutes with the Laplacian L on C∞(M)).

Proof (i) First, assume that ξy is one-to-one for all y. By Stone-Weierstrass Theorem,
it is enough to show that C separates points. Take (m1, y1) �= (m2, y2) in M × Y .
If y1 �= y2, we can choose ψ ∈ C(Y ) that separates y1 and y2, hence (1 ⊗ ψ) ∈ C
separates (m1, y1) and (m2, y2). So, we can consider the case when y1 = y2 = y
(say), but m1 �= m2. By injectivity of ξy , we have m1y �= m2y, so there exists f ∈
C(M) such that f (m1y) �= f (m2y), i.e., α( f )(m1, y) �= α( f )(m2, y). This proves
the density of C.

For the converse, we argue as in the proof of Proposition3.3 of [6]. Assume that C
is dense in C(M) ⊗ C(Y ), and let y ∈ Y , m1,m2 ∈ M such that m1y = m2y. That
is, α( f )(1 ⊗ ψ)(m1, y) = α( f )(1 ⊗ ψ)(m2, y) for all f ∈ C(M), ψ ∈ C(Y ). By
the density of C, we get χ(m1, y) = χ(m2, y) for all χ ∈ C(M × Y ), so (m1, y) =
(m2, y), i.e., m1 = m2.

(ii) The ‘if part’ of (ii) follows by considering the states corresponding to point
evaluation, i.e., C(Y ) � ψ �→ ψ(y), y ∈ Y . For the converse, we note that an arbi-
trary state φ corresponds to a regular Borel measure μ on Y so that φ(h) = ∫

hdμ,
and thus, αφ( f )(m) = ∫

f (my)dμ(y) for f ∈ C(M). From this, by interchanging
differentiation and integration (which is allowed by the Dominated Convergence
Theorem, since μ is a finite measure), we can prove that αφ( f ) is C∞ whenever f
is so.

The assertion (iii) follows from Proposition2.1.4 in a straightforward way. �
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Lemma 2.1.7 Let Y and α be as in Theorem2.1.6 and let A∞
0 denote the complex

linear span of the eigenvectors of L, where A∞ = C∞(M). Then the following are
equivalent.
(a) For every y ∈ Y , ξy is smooth isometric.
(b) For every state φ on C(Y ), we have αφ(A∞

0 ) ⊆ A∞
0 , and αφL = Lαφ on A∞

0 .

Proof We prove only the nontrivial implication (b) ⇒ (a). Assume that αφ leaves
A∞

0 invariant and commutes with L on it, for every state φ. To prove that α is
smooth and isometric, it is enough (see the proof of Theorem2.1.6) to prove that
αy(A∞) ⊆ A∞ for all y ∈ Y , where αy( f ) := (id ⊗ evy)( f ) = f ◦ ξy , evy being
the evaluation at the point y. Let M1, ..., Mk be the connected components of the
compact manifold M . Thus, the Hilbert space L2(M, dvol) admits an orthogonal
decomposition ⊕k

i=1L
2(Mi , dvol), and the Laplacian L is of the form ⊕iLi , where

Li denotes theLaplacian onMi . Since eachMi is connected,wehaveKer(Li ) = Cχi ,
whereχi is the constant function onMi equal to 1. Now,we note that for fixed y and i ,
the image of Mi under the continuous function ξy must be mapped into a component,
say Mj . Thus, by applying Lemma2.1.5 withH1 = L2(Mi ),H2 = L2(Mj ), � = ξy
and the L2-continuity of the map f �→ αy( f ) = f ◦ ξy , we have

∫

Mj

αy( f )(x)dvol(x) =
∫

Mi

f (x)dvol(x)

for all f in the linear span of eigenvectors of Li , hence (by density) for all f in
L2(Mi ). It follows that

∫
M αy( f )dvol = ∫

M f dvol for all f ∈ L2(M), in particular
for all f ∈ C(M). Since αy is a ∗-homomorphism on C(M), we have

〈αy( f ),αy(g)〉 =
∫

M
αy( f g)dvol =

∫

M
f gdvol = 〈 f, g〉,

for all f, g ∈ C(M). Thus, αy extends to an isometry on L2(M), to be denoted by
the same notation, which by our assumption commutes with the self-adjoint operator
L on the core A∞

0 , and hence αy commutes with Ln for all n. In particular, it leaves
invariant the domains of each Ln , which implies αy(A∞) ⊆ A∞. �

Consider the category with objects being the pairs (G,α), where G is a compact
metrizable group acting on M by the smooth and isometric action α. If (G1,α) and
(G2,β) are two objects in this category, Mor((G1,α), (G2,β)) consists of group
homomorphisms π from G1 to G2 such that β ◦ π = α. Then the isometry group of
M is the universal object in this category.

More generally, the isometry group of a classical compact Riemannian manifold,
viewed as a compact metrizable space (forgetting the group structure), can be seen
to be the universal object of a category whose object class consists of subsets (not
generally subgroups) of the set of smooth isometries of the manifold. Then it can
be proved that this universal compact set has a canonical group structure. Thus,
motivated by the ideas of Woronowicz and Soltan [7, 8], one can consider a bigger
category with objects as the pair (S, f ) where S is a compact metrizable space and
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f : S × M → M such that the map from M to itself defined by m �→ f (s,m) is a
smooth isometry for all s in S.Themorphism set is defined as above (replacing group
homomorphisms by continuous set maps). Thus, summarizing the above discussion
and recalling that the span of eigenvectors of the Laplacian is norm-dense in C(M),
we have the following result.

Theorem 2.1.8 Let M be a smooth Riemannian compact manifold and (C∞(M))0
denote the span of eigenvectors of the Laplacian. Then ISO(M) is the universal object
of the category with objects as pairs (C(Y ),α) where Y is a compact metrizable
space and α is a unital C∗-homomorphism from C(M) to C(M) ⊗ C(Y ) satisfying
the following:

a. Sp(α(C(M))(1 ⊗ C(Y )) = C(M) ⊗ C(Y ),

b.αφ = (id ⊗ φ)αmaps (C∞(M))0 into itself and commuteswithLon (C∞(M))0,

for every state φ on C(Y ).

Example 2.1.9 1. The isometry group of the n-sphere Sn is O(n + 1) where the
action is given by the usual action of O(n + 1) on Rn+1. The subgroup of O(n + 1)
consisting of all orientation preserving isometries on Sn is SO(n + 1).

2. The isometry group of the circle S1 is S1 >�Z2. Here the Z2(= {0, 1}) action
on S1 is given by 1.z = z, where z is in S1 while the action of S1 is its action on
itself.

3. ISO(Tn) ∼= T
n >�(Zn

2 >�Sn)where Sn is the permutation group on n symbols.
Here an element of Sn acts on an element (z1, z2, ..., zn) ∈ T

n by permutation. If the
generator of i-th copy of Zn

2 is denoted by 1i , then the action of 1i is given by
1i (z1, z2, ..., zn) = (z1, ..., zi−1, zi , zi+1, ..., zn) where (z1, z2, ..., zn) ∈ T

n. Lastly,
the action of Tn on itself is its usual action.

Characterization of orientation preserving isometries of a spin manifold

This characterization is in the terms of the Dirac operator [9]. For the characteri-
zation of isometries of a Riemannian manifold in terms of the Hodge Dirac operator,
we refer to [10].

We begin with a few basic facts about topologizing the space C∞(M, N ) where
M, N are smooth manifolds. Let� be an open set ofRn . We endow C∞(�)with the
usual Fre’chet topology coming from uniform convergence (over compact subsets)
of partial derivatives of all orders. The space C∞(�) is complete with respect to this
topology, so is a Polish space in particular. Moreover, by the Sobolev imbedding
Theorem (Corollary1.21, [2]),∩k≥0Hk(�) = C∞(�) as a set, where Hk(�) denotes
the k-th Sobolev space. Thus, C∞(�) has also the Hilbertian seminorms coming
from the Sobolev spaces, hence the corresponding Frechet topology. We claim that
these two topologies on C∞(�) coincide. Indeed, the inclusion map from C∞(�)

into ∩k Hk(�), is continuous and surjective, so by the open mapping theorem for
Frechet space, the inverse is also continuous, proving our claim.
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Given two second countable smooth manifolds M, N , we shall equip C∞(M, N )

with the weakest locally convex topology making C∞(M, N ) � φ �→ f ◦ φ ∈
C∞(M) Frechet continuous for every f in C∞(N ).

For topological or smooth fiber or principal bundles E, F over a second countable
smooth manifold M , we shall denote by Hom(E, F) the set of bundle morphisms
from E to F .We remark that the total space of a locally trivial topological bundle such
that the base and the fiber spaces are locally compact Hausdorff second countable
must itself be so, hence in particular Polish (that is, a complete separable metric
space).

In particular, if E, F are locally trivial principal G-bundles over a common base,
such that the (common) base as well as the structure group G are locally compact
Hausdorff and second countable, then Hom(E, F) is a Polish space.

We need a standard fact, stated below as Lemma2.1.11, about the measurable lift
of Polish space valued functions.

Before that, we introduce some notions.
A multifunction G : X → Y is a map with domain X and whose values are non-

empty subsets of Y. For A ⊆ Y, we put G−1(A) = {x ∈ X : G(x) ∩ A �= φ}.
A selection of a multifunction G : X → Y is a point map s : X → Y such that

s(x) belongs to G(x) for all x in X. Now let Y be a Polish space and σX a σ-algebra
on X. A multifunction G : X → Y is called σX measurable if G−1(U ) belongs to
σX for every open set U in Y.

The following well-known selection theorem is Theorem5.2.1 of [11] and was
proved by Kuratowski and Ryll-Nardzewski.

Proposition 2.1.10 Let σX be a σ algebra on X and Y a Polish space. Then, every
σX measurable, closed valued multifunction F : X → Y admits a σX measurable
selection.

A trivial consequence of this result is the following:

Lemma 2.1.11 Let M be a compact metrizable space, B, B̃ Polish spaces such that
there is ann-coveringmap� : B̃ → B.Thenany continuousmap ξ : M → B admits
a lifting ξ̃ : M → B̃, which is Borel measurable and � ◦ ξ̃ = ξ. In particular, if B̃
and B are topological bundles over M, with � being a bundle map, any continuous
section of B admits a lifting which is a measurable section of B̃.

We shall now give an operator-theoretic characterization of the classical group of
orientation preserving Riemannian isometries, which will be the motivation of our
definition of its quantumcounterpart. LetM be a compactRiemannian n-dimensional
spin manifold, with a fixed choice of orientation. We recall the notations as in
Sect. 2.1.3. In particular, the spinor bundle S is the associated bundle of a princi-
pal Spin(n)-bundle P on M which has a canonical 2-covering bundle-map � from
P to the frame-bundle F (which is an SO(n)-principal bundle), such that� is locally
of the form (idM ⊗ λ) where λ is the two covering map from Spin(n) to SO(n).

Moreover, the spinor space will be denoted by�n . Let f be a smooth orientation pre-
serving Riemannian isometry of M , and consider the bundles E = Hom(F, f ∗(F))
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and Ẽ = Hom(P, f ∗(P)) (where Hom denotes the set of bundle maps). We view
d f as a section of the bundle E in the natural way. By the Lemma2.1.11 we obtain
a measurable lift d̃ f : M → Ẽ , which is a measurable section of Ẽ . Using this, we
define a map on the space of measurable section of S = P ×Spin(n) �n as follows:
given a (measurable) section ξ of S, say of the form ξ(m) = [p(m), v], with p(m) in
Pm, v in �n , we define Uξ by (Uξ)(m) = [d̃ f ( f −1(m))(p( f −1(m))), v]. Note that
sections of the above form constitute a total subset in L2(S), and the map ξ �→ Uξ
is clearly a densely defined linear map on L2(S), whose fiber-wise action is unitary
since the Spin(n) action is so on �n . Thus it extends to a unitary U onH = L2(S).
Any suchU , induced by the map f , will be denoted byU f . It is not unique since the
choice of the lifting used in its construction is not unique.

Theorem 2.1.12 Let M be a compact Riemannian spin manifold (hence orientable,
and fix a choice of orientation) with the usual Dirac operator D acting as an
unbounded self-adjoint operator on the Hilbert space H of the square integrable
spinors, and let S denote the spinor bundle, with �(S) being the C∞(M) module
of smooth sections of S. Let f : M → M be a smooth one-to-one map which is a
Riemannian orientation preserving isometry. Then the unitary U f on H commutes
with D and U f MφU ∗

f = Mφ◦ f , for any φ in C(M), where Mφ denotes the operator
of multiplication by φ on L2(S). Moreover, when the dimension of M is even, U f

commutes with the canonical grading γ on L2(S).

Conversely, suppose that U is a unitary on H such that UD = DU and the
map αU (X) = UXU−1 for X in B(H) maps A = C(M) into L∞(M) = A′′. If the
dimension of M is even, assume furthermore that U commutes with the grading
operator γ. Then there is a smooth one-to-one orientation preserving Riemannian
isometry f on M such that U = U f .

Proof From the construction of U f , it is clear that U f MφU
−1
f = Mφ◦ f . Moreover,

since the Dirac operator D commutes with the Spin(n)-action on S, we haveU f D =
DU f on each fiber, hence on L2(S). In the even dimensional case, it is easy to see
that the Spin(n) action commutes with γ (the grading operator), hence U f does so.

For the converse, first note that αU is a unital ∗-homomorphism on L∞(M, dvol)
and thus must be of the form ψ �→ ψ ◦ f for some measurable f . We claim that
f must be smooth. Fix any smooth g on M and consider φ = g ◦ f . We have to
argue that φ is smooth. Let δD denote the generator of the strongly continuous one-
parameter group of automorphism βt (X) = eit D Xe−i t D on B(H) (with respect to
the weak operator topology, say). From the assumption that D and U commute
it is clear that αU maps D := ⋂

n≥1 Dom(δnD) into itself and since C∞(M) ⊂ D,
we conclude that αU (Mφ) = Mφ◦g belongs to D. We claim that this implies the
smoothness of φ. Letm be a point of M and choose a local chart (V,ψ) atm, with the
coordinates (x1, ..., xn), such that� = ψ(V ) ⊆ R

n has compact closure, S|V is trivial
and D has the local expression D = i

∑n
j=1 μ(e j )∇ j , where ∇ j = ∇ ∂

∂x j
denotes the

covariant derivative (with respect to the canonical Levi-Civita connection) operator
along the vector field ∂

∂x j
on L2(�) and μ(v) denotes the Clifford multiplication

by a vector v. Now, φ ◦ ψ−1 ∈ L∞(�) ⊆ L2(�) and it is easy to observe from the
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above local structure of D that [D, Mφ] has the local expression∑
j i M ∂

∂x j
φ ⊗ μ(e j ).

Thus, the fact Mφ ∈ ⋂
n≥1 Dom(δnD) implies φ ◦ ψ−1 is in Dom(d j1 ...d jk ) for every

integer tuple ( j1, ..., jk), ji ∈ {1, ..., n}, where d j := ∂
∂x j

. In other words, φ ◦ ψ−1 is

in Hk(�) for all k ≥ 1, where Hk(�) denotes the k-th Sobolev space on � (see [2]).
By Sobolev’s theorem (see, for example. [2], Corollary 1.21, page 24) it follows that
φ ◦ ψ−1 is in C∞(�).

We note that f is one-to-one as φ → φ ◦ f is an automorphism of L∞. Now, we
shall show that f is an isometry of the metric space (M, d), where d is the metric
coming from the Riemannian structure, and we have the explicit formula (2.1.2)

d(p, q) = supφ∈C∞(M),‖[D,Mφ]‖≤1|φ(p) − φ(q)|.

Since U commutes with D, we have ‖[D, Mφ◦ f ]‖ = ‖[D,UMφU ∗]‖ =
‖U [D, Mφ]U ∗‖ = ‖[D, Mφ]‖ for every φ, from which it follows that d( f (p),
f (q)) = d(p, q). Finally, f is orientation preserving if and only if the volume form
(say ω), which defines the choice of orientation, is preserved by the natural action
of d f on the space of n-forms. This will follow from the explicit description of ω in
terms of D, given by (see [12] page 26, also see [13])

ω(φ0dφ1...dφn) = τ (εMφ0 [D, Mφ1]...[D, Mφn ]),

where φ0, ...,φn belong to C∞(M), ε = 1 in the odd case and ε = γ (the grad-
ing operator) in the even case and τ denotes the volume integral. In fact, τ (X) =
Limt→0+ Tr(e−t D2

X)

Tr(e−t D2
)
(where Lim is as in Sect. 2.2.2), which implies τ (UXU ∗) = τ (X)

for all X in B(H) (using the fact that D and U commute). Thus,

ω(φ0 ◦ f d(φ1 ◦ f ) . . . d(φn ◦ f ))

= τ (εUMφ0U
∗U [D, Mφ1]U ∗...U [D, Mφn ]U ∗)

= τ (UεMφ0 [D, Mφ1 ]...[D, Mφn ]U ∗)

= τ (εMφ0 [D, Mφ1]...[D, Mφn ])

= ω(φ0dφ1...dφn).

�
Now we turn to the case of a family of maps. We are ready to state and prove the

operator-theoretic characterization of a ‘family of orientation preserving isometries’.

Theorem 2.1.13 Let X be a compact metrizable space and ψ : X × M → M is a
map such that ψx defined by ψx (m) = ψ(x,m) is a smooth orientation preserving
Riemannian isometry and x �→ ψx ∈ C∞(M, M) is continuous with respect to the
locally convex topology of C∞(M, M) mentioned before.
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Then there exists a (C(X)-linear) unitary Uψ on the Hilbert C(X)-module
H ⊗ C(X) (where H = L2(S) as in Theorem2.1.12) such that for all x belong-
ing to X, Ux := (id ⊗ evx )Uψ is a unitary of the form Uψx on the Hilbert space
H commuting with D and UxMφU−1

x = Mφ◦ψ−1
x
. If in addition, the manifold is even

dimensional, then Uψx commutes with the grading operator γ.

Conversely, if there exists a C(X)-linear unitary U on H ⊗ C(X) such that
Ux := (id ⊗ evx )(U ) is a unitary commuting with D for all x, (and Ux com-
mutes with the grading operator γ if the manifold is even dimensional) and (id ⊗
evx )αU (L∞(M)) ⊆ L∞(M) for all x in X, then there exists a mapψ : X × M → M
satisfying the conditions mentioned above such that U = Uψ .

Proof Consider the bundles F̂ = X × F and P̂ = X × P over X × M , with fibers at
(x,m) isomorphicwith Fm and Pm , respectively, andwhere F and P are, respectively,
the bundles of orthonormal frames and the Spin(n) bundle discussed before. More-
over, denote by � the map from X × M to itself given by (x,m) �→ (x,ψ(x,m)).

Let πX : Hom(F̂, �∗(F̂)) → X be the obvious map obtained by composing the pro-
jection map of the X × M bundle with the projection from X × M to X and let us
denote by B the closed subset of the Polish spaceC(X,Hom(F̂, �∗(F̂))) consisting
of those f such that for all x , πX ( f (x)) = x . Define B̃ in a similar way replacing
F̂ by P̂ . The covering map from P to F induces a covering map from B̃ to B as
well. Let d

′
ψ : M → B be the map given by d ′

ψ(m)(x) ≡ d ′
ψ(x,m) = dψx |m . Then

by Lemma2.1.11 there exists a measurable lift of d
′
ψ, say d̃

′
ψ from M into B̃. Since

d ′
ψ(x,m) ∈ Hom(Fm, Fψ(x,m)), it is clear that the lift d̃ ′

ψ(x,m) will be an element of
Hom(Pm, Pψ(x,m)).

We can identify H ⊗ C(X) with C(X → H), and since H has a total set F
(say) consisting of sections of the form [p(·), v], where p : M → P is a measurable
section of P and v belongs to �n , we have a total set F̃ of H ⊗ C(X) consisting
of F valued continuous functions from X . Any such function can be written as
[�, v] with � : X × M → P , v ∈ �n , and �(x,m) ∈ Pm , and we define U on F̃
by U [�, v] = [�, v], where

�(x,m) = d̃
′
ψ(x,ψ−1

x (m))(�(x,ψ−1
x (m))).

It is clear from the construction of the lift thatU is indeed aC(X)-linear isometry
thatmaps the total set F̃ onto itself, so extends to a unitary on thewhole ofH ⊗ C(X)

with the desired properties.
Conversely, given U as in the statement of the converse part of the theorem, we

observe that for each x in X , by Theorem2.1.12, (id ⊗ evx )U = Uψx for some ψx

such that ψx is a smooth orientation preserving Riemannian isometry. This defines
the map ψ by setting ψ(x,m) = ψx (m). The proof will be complete if we can show
that x �→ ψx ∈ C∞(M, M) is continuous, which is equivalent to showing that when-
ever xn → x in the topology of X , we must have φ ◦ ψxn → φ ◦ ψx in the Fre’chet
topology of C∞(M), for any φ ∈ C∞(M). However, by Lemma1.1.10, we have
(id ⊗ evxn )αU ([D, Mφ]) → (id ⊗ evx )αU ([D, Mφ]) in the strong operator topol-

http://dx.doi.org/10.1007/978-81-322-3667-2_1
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ogy where αU (X) = UXU−1. Since U commutes with D, this implies

(id ⊗ evxn )[D ⊗ id, αU (Mφ)] → (id ⊗ evx )[D ⊗ id, αU (Mφ)],

that is, for all ξ in L2(S),

[D, Mφ◦ψxn
]ξ L2→ [D, Mφ◦ψx ]ξ.

By choosing φ with support in a local trivializing coordinate neighborhood for
S, and then using the local expression of D used in the proof of Theorem2.1.12,

we conclude that dk(φ ◦ ψxn )
L2→ dk(φ ◦ ψx ) (where dk is as in the proof of Theo-

rem2.1.12). Similarly, by taking repeated commutators with D, we can show the L2

convergence with dk replaced by dk1 ...dkm for any finite tuple (k1, ..., km). In other
words, φ ◦ ψxn → φ ◦ ψx in the topology of C∞(M) described before. �

2.2 Noncommutative Geometry

In this section, we recall those basic concepts of noncommutative geometry, which
we are going to need. We refer to [14–19] for more details.

2.2.1 Spectral Triples: Definition and Examples

Motivated by the facts in Proposition2.1.3, Alain Connes defined a noncommutative
manifold based on the idea of a spectral triple:

Definition 2.2.1 A spectral triple or spectral data is a triple (A∞,H, D) where
H is a separable Hilbert space, A∞ is a ∗ subalgebra of B(H), (not necessarily
norm closed) and D is a self-adjoint (typically unbounded) operator such that for
all a in A∞, the operator [D, a] has a bounded extension. Such a spectral triple
is also called an odd spectral triple. If in addition, we have γ in B(H) satisfying
γ = γ∗ = γ−1, Dγ = −γD and [a, γ] = 0 for all a in A∞, then we say that the
quadruplet (A∞,H, D, γ) is an even spectral triple. The operator D is called the
Dirac operator corresponding to the spectral triple.

Furthermore, given an abstract ∗-algebra B, an odd (even) spectral triple on B
is an odd (even) spectral triple (π(B),H, D) (respectively, (π(B),H, D, γ)) where
π : B → B(H) is a ∗-homomorphism.

Since in the classical case, theDirac operator has compact resolvent if themanifold
is compact, we say that the spectral triple is of compact type if A∞ is unital and D
has compact resolvent. For nonunital C∗ algebras, interesting spectral triples are not
of compact type. Examples of such spectral triples include semifinite spectral triples
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for which we refer to [20, 21], and the references therein. Since, our final goal is to
study quantum isometry groups of spectral triples of compact type, all the spectral
triples under discussion will be assumed to be of compact type.

Definition 2.2.2 We say that two spectral triples (π1(A),H1, D1) and (π2(A),

H2, D2) are said to be unitarily equivalent if there is a unitary operatorU : H1 → H2

such that D2 = UD1U ∗ and π2(.) = Uπ1(.)U ∗ where π j , j = 1, 2 are the represen-
tations of A inH j ,, respectively.

Real structure on a spectral triple
We now give a definition of the real structure along the lines of [22, 23], which is

a suitable modification of Connes’ original definition (see [14, 24]) to accommodate
the examples coming from quantum groups and quantum homogeneous spaces.

Definition 2.2.3 An odd spectral triple with a real structure is given by a spectral
triple (A∞,H, D) along with a (possibly unbounded, invertible) closed antilinear
operator J̃ on H such that D := Dom(D) ⊆ Dom( J̃ ), J̃D ⊆ D, J̃ commutes with
D on D, and the antilinear isometry J obtained from the polar decomposition of
J̃ satisfies the usual conditions for a real structure in the sense of [23], for a suit-
able sign-convention given by (ε, ε′) ∈ {±1} × {±1} as described in [12], page 30,
i.e., J 2 = εI , J D = ε′DJ , and for all x, y ∈ A∞, the commutators [x, J y J−1] and
[J x J−1, [D, y]] are compact operators.

If the spectral triple is even, a real structure with the sign-convention given by a
triplet (ε, ε′, ε′′) as in [12], page 30, is similar to a real structure in the odd case (with
the sign-convention (ε, ε′)), but with the additional requirement that Jγ = ε′′γ J .

Next, we give a few examples of spectral triples in classical and noncommutative
geometry. We will give more examples in the later chapters of the book.

Example 2.2.4 Let M be a smooth spin manifold. Then from Proposition2.1.3, we
see that (C∞(M),H, D) is a spectral triple over C∞(M) and it is of compact type if
M is compact.

We recall that when the dimension of the manifold is even, �n = �+
n ⊕ �−

n . An
L2 section s has a decomposition s = s1 + s2 where s1(m), s2(m) belongs to�+

n (m)

and �−
n (m) (for all m), respectively, where �±

n (m) denotes the subspace of the fiber
over m. This decomposition of L2(S) induces a grading operator γ on L2(S). It can
be seen that D anticommutes with γ.

Example 2.2.5 This example comes from the classical Hilbert space of forms dis-
cussed in Sect. 2.2.2. One considers the self-adjoint extension of the operator d + d∗
on H = ⊕kHk(M), which is again denoted by d + d∗. C∞(M) has a representa-
tion on each Hk(M) which gives a representation, say π on H. Then it can be seen
that (C∞(M),H, d + d∗) is a spectral triple and d + d∗ is called the Hodge Dirac
operator. When M is compact, this spectral triple is of compact type.

Remark 2.2.6 Let usmake it clear that by a ‘classical spectral triple’ we alwaysmean
the spectral triple obtained by the Dirac operator on the spinors (so, in particular,
manifolds are assumed to be Riemannian spin manifolds), and not just any spectral
triple on the commutative algebra C∞(M).
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Example 2.2.7 The Noncommutative torus
We recall from Sect. 1.1.1 that the noncommutative 2-torusAθ is the universalC∗

algebra generated by two unitaries U and V satisfying UV = e2πiθVU , where θ is
a number in [0, 1].

There are two derivations d1 and d2 onAθ obtained by extending linearly the rule:

d1(U ) = U, d1(V ) = 0,

d2(U ) = 0, d2(V ) = V .

Then d1 and d2 are well defined on the following dense ∗-subalgebra of Aθ :

A∞
θ = {

∑

m,n∈Z

amnU
mV n : supm,n

∣
∣mknlamn

∣
∣ < ∞ for all k, l in IN }.

There is a faithful trace on Aθ defined as follows:

τ (
∑

amnU
mV n) = a00.

LetH = L2(τ ) ⊕ L2(τ ) where L2(τ ) denotes the GNS Hilbert space ofAθ with
respect to the state τ . We note that A∞

θ is embedded as a subalgebra of B(H) by

a �→
(
a 0
0 a

)

.

Now, we define D =
(

0 d1 + id2
d1 − id2 0

)

.

Then, (A∞
θ ,H, D) is a spectral triple of compact type. In particular, for θ = 0,

this coincides with the classical spectral triple on C(T2).

Example 2.2.8 Spectral triples on SUμ(2)
In this example, we discuss the spectral triple on SUμ(2) constructed by

Chakraborty and Pal in [25]. We recall from Sect. 1.2.4 that by the symbols tni, j ,
we will denote the (i, j)-th matrix element of the (2n + 1) dimensional corepresen-
tation of SUμ(2). Moreover, eni j ’s will denote the normalized (with respect to the
Haar state h) tni j ’s.

Then the spectral triple is given by (O(SUμ(2)), L2(SUμ(2), h), DSUμ(2)), where
DSUμ(2) is defined by

DSUμ(2)(eni j )

= (2n + 1)eni j , n �= i

= −(2n + 1)eni j , n = i.

http://dx.doi.org/10.1007/978-81-322-3667-2_1
http://dx.doi.org/10.1007/978-81-322-3667-2_1
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Example 2.2.9 A class of spectral triples on the Podles’ spheres
We discuss the spectral triples on S2μc discussed in [26].

Let s = −c− 1
2 λ−, λ± = 1

2 ± (c + 1
4 )

1
2 .

For all j belonging to 1
2 IN ,

u j = (α∗ − sγ∗)(α∗ − μ−1sγ∗)......(α∗ − μ−2 j+1sγ∗),
w j = (α − μsγ)(α − μ2sγ)........(α − μ2 j sγ),

u− j = E2 j � w j ,

u0 = w0 = 1,

y1 = (1 + μ−2)
1
2 (c

1
2 μ2γ∗2 − μγ∗α∗ − μc

1
2 α∗2),

Nl
k j = ∥

∥Fl−k � (y1l−| j |u j )
∥
∥−1

.

Define

vlk, j = Nl
k, j F

l−k � (yl−| j |
1 u j ), l ∈ 1

2
IN 0, j, k = −l,−l + 1, ......l. (2.2.1)

LetMN be theHilbert subspace of L2(SUμ(2))with the orthonormal basis {vlm,N :
l = |N | , |N | + 1, ........, m = −l, .......l}.

Set
H = M− 1

2
⊕ M 1

2
.

Then it is easy to check that xi keeps H for all i ∈ {−1, 0, 1}. In particular,

xi .v
l
m,N = α−

i (l,m; N )vl−1
m+i,N + α0

i (l,m; N )vlm+i,N + α+
i (l,m; N )vl+1

m+i,N ,

(2.2.2)
where α−

i , α0
i , α+

i are some constants.
Thus, (2.2.2) defines a representation π of S2μ,c onH.

We will often identify π(S2μ,c) with S2μ,c.

Finally by Proposition 7.2 of [26], the following Dirac operator D gives a spectral
triple (O(S2μ,c),H, D) which we are going to work with :

D(vl
m,± 1

2
) = (c1l + c2)v

l
m,∓ 1

2
, (2.2.3)

where c1, c2 are elements of R, c1 �= 0.

2.2.2 The Noncommutative Space of Forms

We start this subsection by recalling the universal space of one forms corresponding
to an algebra.

Proposition 2.2.10 GivenanalgebraB, there is a (uniqueupto isomorphism)B − B
bimodule �1(B) and a derivation δ : B → �1(B) (that is, δ(ab) = δ(a)b + aδ(b)
for all a, b in B), satisfying the following properties:
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(i) �1(B) is spanned as a vector space by elements of the form aδ(b) with a, b
belonging to B; and

(ii) for any B − B bimodule E and a derivation d : B → E, there is an unique
B − B linear map η : �1(B) → E such that d = η ◦ δ.

The bimodule �1(B) is called the space of universal 1-forms an B and δ is called
the universal derivation.

We can also introduce universal space of higher forms on B, �k(B), say, for
k = 2, 3, ..., by defining them recursively as follows: �k+1(B) = �k(B) ⊗B �1(B)

and also set �0(B) = B.

Next, we briefly discuss the notion of the noncommutative Hilbert space of forms
for a spectral triple of compact type. We refer to [27] (page 124 -127) and the
references therein for more details.

Definition 2.2.11 A spectral triple (A∞,H, D) of compact type is said to be �-
summable if e−t D2

is of trace class for all t > 0. A �-summable spectral triple is
called finitely summablewhen there is some p > 0 such that t

p
2 Tr(e−t D2

) is bounded
on (0, δ] for some δ > 0. The infimum of all such p, say p′, is called the dimension
of the spectral triple and the spectral triple is called p′-summable.

Remark 2.2.12 We remark that the definition of �-summability to be used in this
book is stronger than the one in [14] (page 390, Definition 1.) in which a spectral
triple is called �-summable if Tr(e−D2

) < ∞.

For a �-summable spectral triple, let σλ(T ) = Tr(T e− 1
λ
D2

)

Tr(e− 1
λ
D2

)
for λ > 0. We note that

λ �→ σλ(T ) is bounded.
Let

τλ(T ) = 1

logλ

∫ λ

a
σu(T )

du

u
for λ ≥ a ≥ e.

Now consider the quotient C∗ algebra B∞ = Cb([a,∞))/C0([a,∞)). Let for T
in B(H), τ (T ) in B∞ be the class of λ → τλ(T ).

For any state ω on the C∗ algebra B∞, Trω(T ) = ω(τ (T )) for all T in B(H)

defines a functional on B(H). As we are not going to need the choice of ω in this

book, we will suppress the suffix ω and simply write Limt→0+ Tr(T e−t D2
)

Tr(e−t D2
)
for Trω(T ).

This is a kind of Banach limit because if limt→0+ Tr(T e−t D2
)

Tr(e−t D2
)

exists, then it agrees

with the functional Limt→0+ . Moreover, Trω(T ) coincides (upto a constant) with the
Dixmier trace (see Chapter IV, [14]) of the operator T |D|−p when the spectral triple
has a finite dimension p > 0, where |D|−p is to be interpreted as the inverse of the
restriction of |D|p on the closure of its range. In particular, this functional gives back
the volume form for the classical spectral triple on a compact Riemannian manifold.

Let �k(A∞) be the space of universal k-forms on the algebra A∞ which
is spanned by a0δ(a1) · · · δ(ak), ai belonging to A∞, where δ is as in Proposi-
tion2.2.10. There is a natural graded algebra structure on� ≡ ⊕

k≥0 �k(A∞),which
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also has a natural involution given by (δ(a))∗ = −δ(a∗), and using the spectral
triple, we get a ∗-representation 	 : � → B(H) which sends a0δ(a1) · · · δ(ak) to
a0dD(a1) · · · dD(ak), where dD(a) = [D, a]. Consider the state τ on B(H) given

by, τ (X) = Limt→0+ Tr(Xe−t D2
)

Tr(e−t D2
)
, where Lim is as above. Using τ , we define a posi-

tive semi definite sesquilinear form on�k(A∞) by setting 〈w, η〉 = τ (	(w)∗	(η)).

Let Kk = {w ∈ �k(A∞) : 〈w, w〉 = 0}, for k ≥ 0, and K−1 := (0). Let �k
D be the

Hilbert space obtained by completing the quotient �k(A∞)/Kk with respect to the
inner product mentioned above, and we define Hk

D := P⊥
k �k

D, where Pk denotes
the projection onto the closed subspace generated by δ(Kk−1). The map D′ :=
d + d∗ ≡ dD + d∗

D on Hd+d∗ := ⊕
k≥0 Hk

D has a self-adjoint extension (which is
again denoted by d + d∗). Clearly, Hk

D has a total set consisting of elements of the
form [a0δ(a1) · · · δ(ak)], with ai inA∞ and where [ω] denotes the equivalence class
P⊥
k (w + Kk) for ω belonging to �k(A∞). There is a ∗-representation πd+d∗ : A →

B(Hd+d∗), given by πd+d∗(a)([a0δ(a1) · · · δ(ak)]) = [aa0δ(a1) · · · δ(ak)]. Then it is
easy to see that

Proposition 2.2.13 (A∞,Hd+d∗ , d + d∗) is a spectral triple.

Let us mention that for the classical spectral triple (C∞(M), L2(S), D) on a com-
pact Riemannian spinmanifoldM , the above construction does give the usual Hilbert
space of forms discussed in Sect. 2.1.1. Moreover, the volume form onC∞(M) using
D′ = d + d∗ in place of D agrees with the usual volume form. It is enough to explain
this for smooth functions supported in a small coordinate neighborhood on which
the restriction of the spinor bundle S is trivial. Combining the local expressions
(5.45), (5.48) and (5.49) in [15], one can easily see that D2 has the following local
expression:

D2 = � ⊗ ICk + A,

where A is a first order differential operator, � = −∑
i, j g

i j δ
δxi

δ
δx j

is the Lapla-
cian on the manifold, k is the dimension of the fiber of S, {x1, x2, ..., xn} are local
coordinates, ((gi j )) is the Riemannian metric and ((gi j )) = ((gi j ))−1.

On the other hand, we can obtain the following local expression for (D′)2 on a
suitable trivializing neighborhood for the bundle of forms:

(D′)2 = L ⊗ ICm ,

where L is the Hodge Laplacian on M as in Sect. 2.1.2 and m is the dimension of
the fiber of �∗M.

A direct calculation shows that L − � is a first order differential operator. As
L− n

2 and �− n
2 are of Dixmier trace class, it follows from the discussion in page 307

of [14] and the references cited there that

Trω(M fL− n
2 ) = Trω(M f �

− n
2 ),
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whereM f denotes the operator ofmultiplication by a smooth function f supported
in a small enough coordinate neighborhood on which both S and �∗M are trivial.
Hence we have

Trω(M f (D′)− n
2 )

Trω((D′)− n
2 )

= Trω(M f (D2)− n
2 )

Trω((D2)− n
2 )

.

2.2.3 Laplacian in Noncommutative Geometry

Now we want to formulate and study an analog of the Hodge Laplacian in noncom-
mutative geometry. We recall that in the classical case of a compact Riemannian
manifold, L = −d∗

DdD coincides with the Hodge Laplacian −d∗d (restricted on the
space of smooth functions), where d denotes the de-Rham differential.We need some
mild technical assumptions on the spectral triple to define the associated Laplacian.

Definition 2.2.14 Let (A∞,B(H), D) be a �-summable spectral triple of compact
type. Assume furthermore that it satisfies the following conditions:

(1) It is QC∞, that is, A∞ and {[D, a], a ∈ A∞} are contained in the domains
of all powers of the derivation [|D|, ·].

(2) Under condition (1), τ defined by τ (X) = Limt→0
Tr(Xe−t D2

)

Tr(e−t D2
)
is a positive trace

on the C∗-subalgebra generated by A∞ and {[D, a] : a ∈ A∞}. We assume that τ
is also faithful on this subalgebra.

(3) The unbounded densely defined map dD from H0
D to H1

D given by dD(a) =
[D, a] for a in A∞, is closable and let dD also denote the closure.

(4) L := −d∗
DdD has A∞ in its domain.

Then, we callL the noncommutative Laplacian and Tt = etL the noncommutative
heat semigroup.Moreover, the ∗-subalgebra ofA∞ generated byA∞

0 will be denoted
by A0.

Let us record the following observation.

Lemma 2.2.15 Under the conditions of the Definition2.2.14, then for x ∈ A∞, we
have L(x∗) = (L(x))∗.

Proof It follows by simple calculation using the facts that τ is a trace and dD(x∗) =
−(dD(x))∗ that

τ (L(x∗)∗y)
= τ (dD(x)dD(y)) = τ (dD(y)dD(x)) = −τ ((dD(y∗))∗dD(x))

=< y∗,L(x) >= τ (yL(x)) = τ (L(x)y),

for all y ∈ A∞. By density of A∞ inH0
D (a) follows. �
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It is well known that for compact Riemannian spin manifolds, the conditions (1)
and (2) ofDefinition2.2.14 are satisfied.On the other hand,we know fromSect. 2.1.2,
(for example, Lemma2.1.1) that the Hodge Laplacian on a compact Riemannian
manifold satisfies the properties (3) and (4).

In the noncommutative case, the conditions (1) and (2) hold for many spectral
triples including those coming from Rieffel deformations. The content of the next
lemma is about the other conditions.

Lemma 2.2.16 Let (A∞,H, D) be a spectral triple of compact type and of finite
dimension, say p. Suppose that for every element a ∈ A∞, the map R � t �→
αt (X) := exp(i t D)Xexp(−i t D) is differentiable at t = 0 in the norm-topology of
B(H), where X = a or [D, a]. Then the conditions (3) and (4) of Definition2.2.14
are satisfied. Moreover, we have:

(a) L maps A∞ into the weak closure of A∞ in B(H0
D).

(b) If Tt = exp(tL) maps H0
D into A∞ for all t > 0, then any eigenvector of L

belongs to A∞.

Proof We first observe that τ (αt (A)) = τ (A) for all t and for all A ∈ B(H),
since exp(i t D) commutes with |D|−p. If moreover, A belongs to the domain
of norm-differentiability (at t = 0) of αt , i.e.,

αt (A)−A
t → i[D, A] in operator-

norm, then it follows from the property of the Dixmier trace that τ ([D, A]) =
1
i limt→0

τ (αt (A))−τ (A)

t = 0. Now, since by assumption we have the norm- differentia-
bility at t = 0 ofαt (A) for A belonging to the ∗-subalgebra (sayB) generated byA∞
and [D,A∞], it follows that τ ([D, A]) = 0 ∀A ∈ B. Let us now fix a, b, c ∈ A∞
and observe that

< a dD(b), dD(c) >

= τ ((a dD(b))∗dD(c) >

= −τ ([D, [D, b∗]a∗c]) + τ ([D, [D, b∗]a∗]c)
= τ ([D, [D, b∗]a∗]c),

using the fact that τ ([D, [D, b∗]a∗c]) = 0. This implies

| < a dD(b), dD(c) > | ≤ ‖[D, [D, b∗]a∗]‖τ (c∗c)
1
2 = ‖[D, [D, b∗]a∗]‖‖c‖2,

where ‖c‖2 = τ (c∗c) 1
2 denotes the L2-norm of c ∈ H0

D . This proves that a dD(b)
belongs to the domain of d∗

D for all a, b ∈ A∞, so in particular d∗
D is dense, i.e., dD

is closable. Moreover, taking a = 1, we see that dD(A∞) ⊆ Dom(d∗
D), or in other

words,A∞ ⊆ Dom(d∗
DdD). This proves (3) and (4). The statement (a) can be proved

along the line of Theorem 2.9, page 129, [27]. To prove (b), we note that if x ∈ H0
D

is an eigenvector of L, say L(x) = λx (λ ∈ C), then we have Tt (x) = eλt x , hence
x = e−λt Tt (x) ∈ A∞. �
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2.3 Quantum Group Equivariance in Noncommutative
Geometry

Wehave already seen (Theorem2.1.12) that the classicalDirac operator is equivariant
with respect to the natural action of the group of orientation preserving Riemannian
isometries. It is natural to explore similar equivariance of a spectral triplewith respect
to quantum group coactions. Let us begin by giving a precise definition of quantum
group equivariance.

Definition 2.3.1 Consider a spectral triple (A∞,H, D) along with a coaction α
of a CQG Q on the C∗-algebra A obtained by taking the norm closure of A∞ in
B(H). We say that (A∞,H, D) is aQ-equivariant spectral triple if there is a unitary
corepresentation U of Q on H such that

(i) adU (.) = α(.),

(ii) Ũ (D ⊗ I ) = (D ⊗ I )Ũ .

It was not very easy to get examples of spectral triples, which are equivariant with
respect to “a genuine (i.e., noncommutative as a C∗ algebra) quantum group". In
[25] (i.e., Example2.2.8), the first example of an SUμ(2)-equivariant spectral triple
was constructed. It was followed by the work of a number of mathematicians, see
[26, 28–30] and the references therein. In the next two subsections, we show that the
spectral triples of Examples2.2.8 and 2.2.9 are indeed equivariant.

2.3.1 The Example of SUµ(2)

We deal with Example2.2.8 here. Let U be the regular corepresentation of SUμ(2)
on L2(SUμ(2), h). Then adU (x) = �(x) for all x in SUμ(2). We recall from Exam-
ple2.2.8 the normalized vectors eni j ’s. Then U (eni j ) = ∑

k
1∥

∥
∥tni j

∥
∥
∥‖tnik‖e

n
ik ⊗ tnk j from

which it easily follows

Proposition 2.3.2 ([25]) The spectral triple (O(SUμ(2), L2(SUμ(2), h), DSUμ(2))

of Example2.2.8 is SUμ(2)-equivariant.

2.3.2 The Example of the Podles’ Spheres

Here, we consider the spectral triple constructed in [26] and explained in Exam-
ple2.2.9. We will use the notations of Example2.2.9. From [26], we see that the
vector spaces νl

± 1
2

= Span{vl
m,± 1

2
: m = −l, ....l} are (2l + 1) dimensional Hilbert

spaces on which the SUμ(2) corepresentation is unitarily equivalent to the standard
l-th unitary irreducible corepresentation of SUμ(2), that is, if the corepresentation
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is denoted by U0, then U0(v
l
i,± 1

2
) = ∑

vl
j,± 1

2
⊗ t lj,i where t li, j denotes the matrix

elements in the l-th unitary irreducible corepresentation of SUμ(2).
We now recall Theorem 3.5 of [31].

Proposition 2.3.3 Let R0 be an operator onH defined by R0(v
n
i,± 1

2
) = μ−2i∓1vn

i,± 1
2
.

Then Tr(R0e−t D2
) < ∞ (for all t > 0) and one has

(τR0 ⊗ id)(Ũ0(x ⊗ 1)Ũ0
∗
) = τR0(x).1,

for all x in B(H), where τR0(x) = Tr(x R0e−t D2
).

We define a positive, unbounded operator R on H by R(vn
i,± 1

2
) = μ−2ivn

i,± 1
2
.

Proposition 2.3.4 adU0 preserves the R-twisted volume. In particular, for x in
π(S2μ,c) and t > 0, we have h(x) = τR(x)

τR(1) , where τR(x) := Tr(x Re−t D2
), and h

denotes the restriction of the Haar state of SUμ(2) to the subalgebra S2μ,c, which
is the unique SUμ(2)-invariant state on S2μ,c.

Proof It is enough to prove that τR is αU0 -invariant. Let us denote by P1
2
, P− 1

2
the

projections onto the closed subspaces generated by {vl
i, 12

} and {vl
i,− 1

2
}, respectively.

Moreover, let τ± be the functionals defined by τ±(x) = Tr(x R0P± 1
2
e−t D2

). Now

observing that R0, e−t D2
andU0 commute with P± 1

2
and using Proposition2.3.3, we

have, for x belonging to B(H),

(τ± ⊗ id)(αU0(x))

= (Tr ⊗ id)(Ũ0(x ⊗ 1)Ũ0
∗
(R0P± 1

2
e−t D2 ⊗ id))

= (Tr ⊗ id)(Ũ0(x P± 1
2
⊗ 1)Ũ0

∗
(R0e

−t D2 ⊗ id))

= (τR0 ⊗ id)(αU0(x P1
2
))

= τR0(x P± 1
2
)

= τ±(x).1,

that is, τ± are αU0 -invariant.
Thus, x �→ Tr(x R0P± 1

2
e−t D2

) is invariant under αU0 . Moreover, since we have

RP± 1
2

= μ±R0P± 1
2
, the functional τR coincides with μ−1τ+ + μτ−, hence is αU0 -

invariant. �

Theorem 2.3.5 The spectral triple described on the Podles’ sphere S2μ,c as described
in Example2.2.9 is SUμ(2) equivariant. If α : S2μ,c → S2μ,c ⊗ SOμ(3) ⊆ SUμ(2) ⊗
SOμ(3) denotes the canonical coaction of SOμ(3) on S2μ,c (Sect.1.3.3) and U0 is as
above, then adU0(π(x)) = (π ⊗ id)α(x) Moreover, adU0 preserves τR .

http://dx.doi.org/10.1007/978-81-322-3667-2_1
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Proof

(D ⊗ id)U0(v
l
i,± 1

2
) = (D ⊗ id)(

∑
vl
j,± 1

2
⊗ t lj,i )

= (c1l + c2)
∑

vl
j,∓ 1

2
⊗ t lj,i

= (c1l + c2)U0(v
l
i,∓ 1

2
)

= U0D(vl
i,± 1

2
).

Thus, the above spectral triple is equivariant w.r.t. the corepresentation U0.

For the second statement, let U denote the right regular corepresentation of
SUμ(2) on L2(SUμ(2), h), so that U0 = U |H. We already noted that the coaction
α of SUμ(2) is the restriction of the coproduct, that is, α(x) = U (x ⊗ 1)U ∗ for
x ∈ S2μ,c ⊆ B(L2(S2μ,c)). Now, π(x) = x |H, and we also observed that both x andU
(hence U ∗) leaves H invariant. Thus,

adU0(π(x)) = U0(π(x) ⊗ id)U ∗
0 = (U (x ⊗ id)U ∗)|H⊗SOμ(3) = α(x)|H⊗SOμ(3)

= (π ⊗ id)(α(x)).
Finally, adU0 preserves τR by Proposition2.3.4. �

2.3.3 Constructions from Coactions by Quantum Isometries

In this subsection,we shall briefly discuss the relevance of quantum isometry group to
the problem of constructing quantum group equivariant spectral triples, which is
important to understand the role of quantum groups in the framework of noncom-
mutative geometry. There has been a lot of activity in this direction recently, see, for
example, the articles by Chakraborty and Pal [25], Connes [32], Landi et al. [28], and
the references therein. In the classical situation, there exists a natural unitary repre-
sentation of the isometry group G = ISO(M) of a manifold M on the Hilbert space
of forms, so that the operator d + d∗ (where d is the de-Rham differential operator)
commutes with the representation. Indeed, d + d∗ is also a Dirac operator for the
spectral triple given by the natural representation of C∞(M) on the Hilbert space of
forms, so we have a canonical construction of G-equivariant spectral triple. Our aim
in this subsection is to generalize this to the noncommutative framework, by proving
that dD + d∗

D is equivariant with respect to a canonical unitary corepresentation on
the Hilbert space of ‘noncommutative forms’.

Consider an admissible spectral triple (A∞,H, D) and moreover, make the
assumption ofLemma2.2.16, i.e., assume that t �→ eit Dxe−i t D is norm-differentiable
at t = 0 for all x in the ∗-algebra B generated by A∞ and [D,A∞].
Lemma 2.3.6 In the notation of Lemma2.2.16, we have the following (where b, c ∈
A∞):

d∗
D(dD(b)c) = −1

2
(bL(c) − L(b)c − L(bc)) . (2.3.1)
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Proof Denote byχ(b, c) the right hand side of Eq. (2.3.1) and fix any a ∈ A∞. Using
the facts the the functional τ is a faithful trace on the ∗-algebra B, L = −d∗

DdD and
that τ ([D, X ]) = 0 for any X in B, we have,

τ (a∗χ(b, c))

= −1

2
{τ (a∗bL(c)) − τ (ca∗L(b)) − τ (a∗L(bc))}

= 1

2
{τ ([D, a∗b][D, c]) − τ ([D, ca∗][D, b]) − τ ([D, a∗][D, bc])}

= 1

2
{τ (a∗[D, b][D, c]) − τ ([D, c]a∗[D, b]) − τ (c[D, a∗][D, b]) − τ ([D, a∗][D, b]c)}

= −τ ([D, a∗][D, b]c)
= τ ([D, a]∗[D, b]c)
= 〈dD(a), dD(b)c〉
= τ (a∗(d∗

D(dD(b)c))).

From this, we get the following by a simple computation:

〈adD(b), a′dD(b′)〉 = −1

2
τ (b∗�(a∗a′, b′)), (2.3.2)

for a, b, a′, b′ ∈ A∞, and where�(x, y) := L(x)y − xL(y).Now, let us denote the
quantum isometry group of the given spectral triple (A∞,H, D) by (G,�,α). Let
A0 denote the ∗-algebra generated byA∞

0 andG0 denote the ∗-algebra ofG generated
by matrix elements of irreducible corepresentations. Clearly, α : A0 → A0 ⊗alg G0

is a Hopf-algebraic coaction of G0 on A0. Define a C-bilinear map �̃ : (A0 ⊗alg

G0) × (A0 ⊗alg G0) → A0 ⊗alg G0 by setting

�̃((x ⊗ q), (x ′ ⊗ q ′)) := �(x, x ′) ⊗ (qq ′).

It follows from the relation (L ⊗ id) ◦ α = α ◦ L on A0 that

�̃(α(x),α(y)) = α(�(x, y)). (2.3.3)

We now define a linear map α(1) from the linear span of {adD(b) : a, b ∈ A0} to
H1

D ⊗ G by setting

α(1)(adD(b)) :=
∑

i, j

a(1)
i dD(b(1)

j ) ⊗ a(2)
i b(2)

j ,

where for any x ∈ A0 we write α(x) = ∑
i x

(1)
i ⊗ x (2)

i ∈ A0 ⊗alg G0 (summation
over finitelymany terms).We shall sometimes use the Sweedler convention ofwriting
the above simply as α(x) = x (1) ⊗ x (2). It then follows from the identities (2.3.2)
and (2.3.3), and also the fact that (τ ⊗ id)(α(a)) = τ (a)1 for all a ∈ A0 that
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〈α(1)(a dD(b)),α(1)(a′ dD(b′))〉G
= −1

2
(τ ⊗ id)(α(b∗)�̃(α(a∗a′),α(b′)))

= −1

2
(τ ⊗ id)(α(b∗)α(�(a∗a′, b′)))

= −1

2
(τ ⊗ id)(α(b∗�(a∗a′, b′)))

= −1

2
τ (b∗�(a∗a′, b′))1G

= 〈adD(b), a′dD(b′)〉1G .

This proves that α(1) is indeed well-defined and extends to a G-linear isometry on
H1

D ⊗ G, to be denoted byU (1), which sends (adD(b)) ⊗ q to α(1)(adD(b))(1 ⊗ q),
a, b ∈ A0, q ∈ G. Moreover, since the linear span of α(A∞

0 )(1 ⊗ G) is dense in
H0

D ⊗ G, it is easily seen that the range of the isometryU (1) is the whole ofH1
D ⊗ G,

i.e., U (1) is a unitary. In fact, from its definition it can also be shown that U (1) is a
unitary corepresentation of the compact quantum group G on H1

D .
In a similarway,we can construct unitary corepresentationU (n) ofG on theHilbert

space of n-forms for any n ≥ 1, by defining

U (n)((a0dD(a1)dD(a2)...dD(an)) ⊗ q)

= a(1)
0 dD(a(1)

1 )...dD(a(1)
n ) ⊗ (a(2)

0 a(2)
1 ...a(2)

n q),

(where ai ∈ A∞
0 , q ∈ G, and Sweedler convention is used),

and verifying that it extends to a unitary. We also denote by U (0) the unitary corep-
resentation α̃ on H0

D discussed before. Finally, we have a unitary corepresentation
U = ⊕

n≥0U
(n) of G on H̃ := ⊕

n Hn
D , and also extend dD as a closed densely

defined operator on H̃ in the obvious way, by defining dD(a0dD(a1)...dD(an)) =
dD(a0)...dD(an). It is now straightforward to see the following:

Theorem 2.3.7 Theoperator D′ := dD + d∗
D is equivariant in the sense thatU (D′ ⊗

1) = (D′ ⊗ 1)U.

We point out that there is a natural corepresentation π of A on H̃ given by
π(a)(a0dD(a1)...dD(an)) = aa0dD(a1)...dD(an), and (π(A∞), H̃, D′) is indeed a
spectral triple, which is G-equivariant.

Although the relation between spectral properties of D and D′ is not clear in
general, in many cases of interest (e.g., when there is an underlying type (1, 1)
spectral data in the sense of [27]) these two Dirac operators are closely related. As
an illustration, consider the canonical spectral on the noncommutative 2-torus Aθ,
which is discussed in some details in the next section. In this case, the Dirac operator
D acts on L2(Aθ, τ ) ⊗ C

2, and it can easily be shown (see [27]) that theHilbert space
of forms is isomorphic with L2(Aθ, τ ) ⊗ C

4 ∼= L2(Aθ) ⊗ C
2; thus D′ is essentially

same as D in this case.
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2.3.4 R-twisted Volume Form Coming from the Modularity
of a Quantum Group

Let (S,�)be a compact quantumgroup and (A∞,H, D)be anS-equivariant spectral
triple with a unitary corepresentation V onH commuting with D. In this subsection,
our aim is to show the existence of a densely defined positive functional on B(H),

to be interpreted as a generalization of “volume form”, which is kept invariant under
adV .

The Hilbert space H, on which D acts decomposes into finite dimensional
eigenspaces Hk (k ≥ 1) of the operator D, i.e., H = ⊕kHk . Since D commutes
with V , V preserves each of the Hk’s and on each Hk , V is a unitary corepresenta-
tion of the compact quantum groupQ. Then we have the decomposition of eachHk

into the irreducibles, say
Hk = ⊕π∈IkC

dπ ⊗ C
mπ,k ,

wheremπ,k is the multiplicity of the irreducible corepresentation of type π onHk and
Ik is some finite subset of Rep(Q). Since R commutes with V , R preserves direct
summands ofHk . Let {eπ

i : i = 1, 2, · · ·dπ} be an orthonormal basis ofCdπ such that
V (eπ

i ) = ∑
j e

π
j ⊗ uπ

j i .

Let ED denote theWOT-dense ∗-subalgebra of B(H) generated by rank one oper-
ators of the form |ξ >< η|, where ξ, η are eigenvectors of D. We note that since V
maps Hk intoHk ⊗alg S0 for all k, adV will map ED into ED ⊗alg S0.

With the above set up and notations, we give the following definition.

Definition 2.3.8 An R-twisted spectral data (of compact type) is given by a quadru-
plet (A∞,H, D, R), where

1. (A∞,H, D) is a spectral triple of compact type.
2. R a positive (possibly unbounded) invertible operator such that R commutes

with D.

We shall also sometimes refer to (A∞,H, D) as an R-twisted spectral triple.

Remark 2.3.9 We remark that in the above definition,we do not need the full strength
of Definition 2.2 in [33].

Definition 2.3.10 The functional τR definedbelowon theweaklydense∗-subalgebra
ED of B(H) will be called the R-twisted volume form:

τR(x) = Tr(Rx), x ∈ ED.

We now characterize those R for which adV preserves the functional τR .

Theorem 2.3.11 Let (A∞,H, D, R) be an R-twisted spectral data of compact type
which is equivariant with respect to a corepresentation V of a CQG S on H. Then
adV preserves the R-twisted volume form if and only if R is of the following form:
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R|Hk = ⊕π∈Ik F
π ⊗ Tπ,k, (2.3.4)

for some Tπ,k ∈ B(Cmπ,k ), where Fπ’s are as in Sect.1.2.2.

Proof Let { f π,k
j }mπ,k

j=1 be anorthonormal basis forCmπ,k .Then {eπ
i ⊗ f π,k

j : i = 1, 2, · ·
·dπ, j = 1, . . .mπ,k} is an orthonormal basis forHk .As R commuteswith D, it leaves
Hk invariant. Let us write

R(eπ
i ⊗ f π,k

j ) =
∑

s,t

Rπ,k(s, t, i, j)es ⊗ ft .

Let h denote the extension of the Haar state of S to a vector state on B(L2(S, h))

given by h(x) =< 1, x1 > .

For a fixedπ, k, denoting eπ
i , f π,k

j , Rπ,k(s, t, i, j) by ei , f j , R(s, t, i, j), respec-
tively, and for a in ED , we have the following:

(τR ⊗ h)adV (a) =
∑

i, j

< V ∗(ei ⊗ f j ⊗ 1Q), (a ⊗ 1)V ∗R(ei ⊗ f j ) >

=
∑

i, j,k,s,t,u

< ek ⊗ f j ⊗ (uπ
ik)

∗, R(s, t, i, j)a(eu ⊗ ft ) ⊗ (uπ
su)

∗ >

=
∑

i, j,k,s,t,u

R(s, t, i, j)

Mπ
< ek ⊗ f j , a(eu ⊗ ft ) > δis F

π(k, u)

=
∑

i, j,k,t,u

R(i, t, i, j)

Mπ
< ek ⊗ f j , a(eu ⊗ ft ) > Fπ(k, u).

On the other hand

τR(a) = Tr(a.R)

=
∑

i, j

< ei ⊗ f j , aR(ei ⊗ f j ) >

=
∑

k, j,u,t

R(u, t, k, j) < ek ⊗ f j , a(eu ⊗ ft ) > .

Now observe that if R is of the form given in the theorem, then R(s, t, i, j) =
Fπ(i, s)Tπ,k( j, t). Plugging this in the expressions for (τR ⊗ h)adV (a) and τR(a)

obtained above, and using the fact thatMπ = ∑
i F

π(i, i),we get (τR ⊗ h)adV (a) =
τR(a). It follows easily that adV preserves τR .

We now prove the necessity part of the theorem. We note that (τR ⊗ h)adV (a) =
τR(a) implies:

http://dx.doi.org/10.1007/978-81-322-3667-2_1
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∑

i, j,k,t,u

R(i, t, i, j)

Mπ
< ek ⊗ f j , a(eu ⊗ ft ) > Fπ(k, u)

=
∑

k, j,u,t

R(u, t, k, j) < ek ⊗ f j , a(eu ⊗ ft ) > . (2.3.5)

Now fix u0, t0 and consider a ∈ B(H) such that a(eu0 ⊗ ft0) = ep ⊗ fq and zero on
the other basis elements. Then from (2.3.5), we get

∑

i, j,k

R(i, t0, i, j)

Mπ
< ek ⊗ f j , ep ⊗ fq > Fπ(k, u0)

=
∑

k, j

R(u0, t0, k, j) < ek ⊗ f j , ep ⊗ fq >,

which gives
∑

i
R(i,t0,i,q)

Mπ
Fπ(p, u0) = R(u0, t0, p, q).

This proves that R|Hk = ⊕π∈Ik F
π ⊗ Tπ,k with some Tπ,k ∈ B(Cmπ,k ) given by

Tπ,k(t0, q) = ∑
i
R(i,t0,i,q)

Mπ
. �

As an immediate corollary, we get the following:

Proposition 2.3.12 Let R = 	V (φ1) ∈ B(H), where φ1 is the functional defined in
Proposition1.2.19 and 	V is as in Theorem1.4.1. Suppose also that L ∈ B(H) is
(S, V ) equivariant. Then we have:

a. R is a (possibly unbounded) positive operator with Dom(R) containing the
subspaces Hk, k ≥ 1.

b. RD = DR.

c. adV preserves the functional τR .

Thus, given a spectral triple (A∞,H, D) (of compact type)which isS-equivariant
with respect to a corepresentation V of a CQG S on H, we can always construct a
positive (possibly unbounded) invertible operator R onH such that (A∞,H, D, R)

is a twisted spectral data and adV preserves the functional τR .

Proof This follows from Theorem2.3.11 as R is of the form (2.3.4) with Tπ,k = I
for all π, k. �

Remark 2.3.13 If L in Proposition2.3.12 is such that RL is trace class, then the
functional χ is defined and bounded on B(H) and the conclusion of the proposition
holds as well.

Remark 2.3.14 (a)When the spectral triple in question has a real structure as in
Definition2.2.3, there is a canonical choice of R (see Remark3.3.3).

(b) When the Haar state of S is tracial, then it follows from the definition of R
and Theorem 1.5 part 1. of [34] that R can be chosen to be I.

We record the following lemma for future use.

http://dx.doi.org/10.1007/978-81-322-3667-2_1
http://dx.doi.org/10.1007/978-81-322-3667-2_1
http://dx.doi.org/10.1007/978-81-322-3667-2_3
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Lemma 2.3.15 The adV -invariance of the functional τR on ED is equivalent to the
adV -invariance of the functional X �→ Tr(XRe−t D2

) on ED for each t > 0. If, fur-
thermore, the R-twisted spectral triple is �-summable in the sense that Re−t D2

is trace class for every t > 0, then adV preserves the functional B(H) � x �→
Limt→0+ Tr(x Re−t D2

)

Tr(Re−t D2
)
, where Lim is as defined in Sect.2.2.2.

Proof IfWλ denotes the eigenspace of D corresponding to the eigenvalue, say λ, it is
clear that τR(X) = etλ

2
Tr(Re−t D2

X) for all X = |ξ >< η|with ξ, η belonging toWλ

and for any t > 0. Thus, the adV -invariance of the functional τR on ED is equivalent to
the adV -invariance of the functional X �→ Tr(XRe−t D2

) on ED for each t > 0. This
can be argued as follows. Let adV be τR invariant on ED, that is, for all |ξ >< η|with
ξ, η belonging toWλ, (τR ⊗ id)adV (|ξ >< η|) = τR(|ξ >< η|).1 Therefore, (τR ⊗
id)adV (|ξ >< η|) = τR(|ξ >< η|).1 = etλ

2
Tr(Re−t D2 |ξ >< η|).On theother hand,

(τR ⊗ id)adV (|ξ >< η|) = etλ
2
(Tr(RetD

2
.) ⊗ id)adV (|ξ >< η|). If the R-twisted

spectral triple is �-summable, the above is also equivalent to the adV -invariance of
the bounded normal functional X �→ Tr(XRe−t D2

) on the whole of B(H). In partic-

ular, this implies that adV preserves the functionalB(H) � x �→ Limt→0+ Tr(x Re−t D2
)

Tr(Re−t D2
)
.

�
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