
Preface

Computing instruments were developed to facilitate fast calculations, especially in
computational science and engineering applications. The fact that this is not just a
matter of building a hardware device and its system software, was already hinted to
by Charles Babbage, when he wrote in the mid-nineteenth century, As soon as an
Analytical Engine exists, it will necessarily guide the future course of science.
Whenever any result is sought by its aid, the question will then arise—By what
course of calculation can these results be arrived at by the machine in the shortest
time? [1]. This question points to one of the principal challenges for parallel
computing. In fact, in the aforementioned reference, Babbage did consider the
advantage of parallel processing and the perfect speedup that could be obtained
when adding numbers if no carries were generated. He wrote If this could be
accomplished it would render additions and subtractions with numbers having ten,
twenty, fifty or any number of figures as rapid as those operations are with single
figures. He was also well aware of the limitations, in this case the dependencies
caused by the carries. A little more than half a century after Babbage, in 1922, an
extraordinary idea was sketched by Lewis Fry Richardson. In his treatise Weather
Prediction by Numerical Process he described his “forecast-factory” fantasy to
speed up calculations by means of parallel processing performed by humans
[3, Chap. 11, p. 219]. Following the development of the first electronic computer, in
the early 1950s, scientists and engineers proposed that one way to achieve higher
performance was to build a computing platform consisting of many interconnected
von Neumann uniprocessors that can cooperate in handling what were the large
computational problems of that era. This idea appeared simple and natural, and
quickly attracted the attention of university-, government-, and industrial-research
laboratories. Forty years after Richardson’s treatise, the designers of the first par-
allel computer prototype ever built, introduced their design in 1962 as follows: The
Simultaneous Operation Linked Ordinal Modular Network (SOLOMON), a parallel
network computer, is a new system involving the interconnections and program-
ming, under the supervision of a central control unit, of many identical processing
elements (as few or as many as a given problem requires), in an arrangement that
can simulate directly the problem being solved. It is remarkable how this

vii



introductory paragraph underlines the generality and adaptive character of the
design, despite the fact that neither the prototype nor subsequent designs went as
far. These authors stated further that this architecture shows great promise in aiding
progress in certain critical applications that rely on common mathematical
denominators that are dominated by matrix computations.

Soon after that, the field of parallel processing came into existence starting with
the development of the ILLIAC-IV at the University of Illinois at Urbana-
Champaign led by Daniel L. Slotnick (1931–1985), who was one of the principal
designers of the SOLOMON computer. The design and building of parallel com-
puting platforms, together with developing the underlying system software as well
as the associated numerical libraries, emerged as important research topics. Now,
four decades after the introduction of the ILLIAC-IV, parallel computing resources
ranging from multicore systems (which are found in most modern desktops and
laptops) to massively parallel platforms are within easy reach of most computa-
tional scientists and engineers. In essence, parallel computing has evolved from an
exotic technology to a widely available commodity. Harnessing this power to the
maximum level possible, however, remains the subject of ongoing research efforts.

Massively parallel computing platforms now consist of thousands of nodes
cooperating via sophisticated interconnection networks with several layers of
hierarchical memories. Each node in such platforms is often a multicore architec-
ture. Peak performance of these platforms has reached the persetascale level, in
terms of the number of floating point operations completed in one second, and will
soon reach the exascale level. These rapid hardware technological advances,
however, have not been matched by system or application software developments.
Since the late 1960s different parallel architectures have come and gone in a rel-
atively short time resulting in lack of stable and sustainable parallel software
infrastructure. In fact, present day researchers involved in the design of parallel
algorithms and development of system software for a given parallel architecture
often rediscover work that has been done by others decades earlier. Such lack of
stability in parallel software and algorithm development has been pointed out by
George Cybenko and David Kuck as early as 1992 in [2].

Libraries of efficient parallel algorithms and their underlying kernels are needed
for enhancing the realizable performance of various computational science and
engineering (CSE) applications on current multicore and petascale computing
platforms. Developing robust parallel algorithms, together with their theoretical
underpinnings is the focus of this book. More specifically, we focus exclusively on
those algorithms relevant to dense and sparse matrix computations which govern
the performance of many CSE applications. The important role of matrix compu-
tations was recognized in the early days of digital computers. In fact, after the
introduction of the Automatic Computing Engine (ACE), Alan Turing included
solving linear systems and matrix multiplication as two of the computational
challenges for this computing platform. Also, in what must be one of the first
references to sparse and structured matrix computations, he observed that even
though the storage capacities available then could not handle dense linear systems

viii Preface



of order larger than 50, in practice one can handle much larger systems: The
majority of problems have very degenerate matrices and we do not need to store
anything like as much as … since the coefficients in these equations are very
systematic and mostly zero. The computational challenges we face today are cer-
tainly different in scale than those above but they are surprisingly similar in their
dependence on matrix computations and numerical linear algebra. In the early
1980s, during building the experimental parallel computing platform “Cedar”, led
by David Kuck, at the University of Illinois at Urbana-Champaign, a table was
compiled that identifies the common computational bottlenecks of major science
and engineering applications, and the parallel algorithms that need to be designed,
together with their underlying kernels, in order to achieve high performance.
Among the algorithms listed, matrix computations are the most prominent.
A similar list was created by UC Berkeley in 2009. Among Berkeley’s 13 parallel
algorithmic methods that capture patterns of computation and communication,
which are called “dwarfs”, the top two are matrix computation-based. Not only are
matrix computations, and especially sparse matrix computations, essential in
advancing science and engineering disciplines such as computational mechanics,
electromagnetics, nanoelectronics among others, but they are also essential for
manipulation of the large graphs that arise in social networks, sensor networks, data
mining, and machine learning just to list a few. Thus, we conclude that realizing
high performance in dense and sparse matrix computations on parallel computing
platforms is central to many applications and hence justify our focus.

Our goal in this book is therefore to provide researchers and practitioners with
the basic principles necessary to design efficient parallel algorithms for dense and
sparse matrix computations. In fact, for each fundamental matrix computation
problem such as solving banded linear systems, for example, we present a family of
algorithms. The “optimal” choice of a member of this family will depend on the
linear system and the architecture of the parallel computing platform under con-
sideration. Clearly, however, executing a computation on a parallel platform
requires the combination of many steps ranging from: (i) the search for an “optimal”
parallel algorithm that minimizes the required arithmetic operations, memory ref-
erences and interprocessor communications, to (ii) its implementation on the
underlying platform. The latter step depends on the specific architectural charac-
teristics of the parallel computing platform. Since these architectural characteristics
are still evolving rapidly, we will refrain in this book from exposing fine imple-
mentation details for each parallel algorithm. Rather, we focus on algorithm
robustness and opportunities for parallelism in general. In other words, even though
our approach is geared towards numerically reliable algorithms that lend themselves
to practical implementation on parallel computing platforms that are currently
available, we will also present classes of algorithms that expose the theoretical
limitations of parallelism if one were not constrained by the number of cores/
processors, or the cost of memory references or interprocessor communications.

Preface ix



In summary, this book is intended to be both a research monograph as well as an
advanced graduate textbook for a course dealing with parallel algorithms in matrix
computations or numerical linear algebra. It is assumed that the reader has general,
but not extensive, knowledge of: numerical linear algebra, parallel architectures,
and parallel programming paradigms. This book consists of four parts for a total of
13 chapters. Part I is an introduction to parallel programming paradigms and
primitives for dense and sparse matrix computations. Part II is devoted to dense
matrix computations such as solving linear systems, linear least squares and alge-
braic eigenvalue problems. Part II also deals with parallel algorithms for special
matrices such as banded, Vandermonde, Toeplitz, and block Toeplitz. Part III deals
with sparse matrix computations: (a) iterative parallel linear system solvers with
emphasis on scalable preconditioners, (b) schemes for obtaining few of the extreme
or interior eigenpairs of symmetric eigenvalue problems, (c) schemes for obtaining
few of the singular triplets. Finally, Part IV discusses parallel algorithms for
computing matrix functions and the matrix pseudospectrum.

Acknowledgments

We wish to thank all of our current and previous collaborators who have been,
directly or indirectly, involved with topics discussed in this book. We thank
especially: Guy-Antoine Atenekeng-Kahou, Costas Bekas, Michael Berry, Olivier
Bertrand, Randy Bramley, Daniela Calvetti, Peter Cappello, Philippe Chartier,
Michel Crouzeix, George Cybenko, Ömer Eğecioğlu, Jocelyne Erhel, Roland
Freund, Kyle Gallivan, Ananth Grama, Joseph Grcar, Elias Houstis, William Jalby,
Vassilis Kalantzis, Emmanuel Kamgnia, Alicia Klinvex, Çetin Koç, Efi
Kokiopoulou, George Kollias, Erricos Kontoghiorghes, Alex Kouris, Ioannis
Koutis, David Kuck, Jacques Lenfant, Murat Manguoğlu, Dani Mezher, Carl
Christian Mikkelsen, Maxim Naumov, Antonio Navarra, Louis Bernard Nguenang,
Nikos Nikoloutsakos, David Padua, Eric Polizzi, Lothar Reichel, Yousef Saad,
Miloud Sadkane, Vivek Sarin, Olaf Schenk, Roger Blaise Sidje, Valeria Simoncini,
Aleksandros Sobczyk, Danny Sorensen, Andreas Stathopoulos, Daniel Szyld,
Maurice Tchuente, Tayfun Tezduyar, John Tsitsiklis, Marian Vajteršic, Panayot
Vassilevski, Ioannis Venetis, Brigitte Vital, Harry Wijshoff, Christos Zaroliagis,
Dimitris Zeimpekis, Zahari Zlatev, and Yao Zhu. Any errors and omissions, of
course, are entirely our responsibility.

In addition we wish to express our gratitude to Yousuff Hussaini who encour-
aged us to have our book published by Springer, to Connie Ermel who typed a
major part of the first draft, to Eugenia-Maria Kontopoulou for her help in preparing
the index, and to our Springer contacts, Kirsten Theunissen and Aldo Rampioni.
Finally, we would like to acknowledge the remarkable contributions of the late
Gene Golub—a mentor and a friend—from whom we learned a lot about matrix
computations. Further, we wish to pay our respect to the memory of our late
collaborators and friends: Theodore Papatheodorou, and John Wisniewski.

x Preface



Last, but not least, we would like to thank our families, especially our spouses,
Aristoula, Elisabeth and Marilyn, for their patience during the time it took us to
produce this book.

Patras Efstratios Gallopoulos
Rennes Bernard Philippe
West Lafayette Ahmed H. Sameh
January 2015

References

1. Babbage, C.: Passages From the Life of a Philosopher. Longman, Green, Longman, Roberts &
Green, London (1864)

2. Cybenko, G., Kuck, D.: Revolution or Evolution, IEEE Spectrum, 29(9), 39–41 (1992)
3. Richardson, L.F.: Weather Prediction by Numerical Process. Cambridge University Press,

Cambridge (1922). (Reprinted by Dover Publications, 1965)

Preface xi



http://www.springer.com/978-94-017-7187-0




