
Chapter 2
Fundamental Kernels

In this chapter we discuss the fundamental operations, that are the building blocks
of dense and sparse matrix computations. They are termed kernels because in most
cases they account for most of the computational effort. Because of this, their imple-
mentation directly impacts the overall efficiency of the computation. They occur
often at the lowest level where parallelism is expressed.

Most basic kernels are of the form C = C + AB, where A, B and C can be
matrix, vector and possibly scalar operands of appropriate dimensions. For dense
matrices, the community has converged into a standard application programming
interface, termed Basic Linear Algebra Subroutines (BLAS) that have specific syn-
tax and semantics. The set is organized into three separate sets of instructions. The
first part of this chapter describes these sets. It then considers several basic sparse
matrix operations that are essential for the implementation of algorithms presented
in future chapters. In this chapter we frequently make explicit reference to communi-
cation costs, on account of the well known growing discrepancy, in the performance
characteristics of computer systems, between the rate of performing computations
(typically measured by a base unit of the form flops per second) and the rate of
moving data (typically measured by a base unit of the form words per second).

2.1 Vector Operations

Operations on vectors are known as Level_1 Basic Linear Algebraic Subroutines
(BLAS1) [1]. The two most frequent vector operations are the _AXPY and the
_DOT:

_AXPY: given x, y ∈ R
n and α ∈ R, the instruction updates vector y by:

y = y + αx .
_DOT: given x, y ∈ R

n , the instruction computes the inner product of the two
vectors: s = x�y.

© Springer Science+Business Media Dordrecht 2016
E. Gallopoulos et al., Parallelism in Matrix Computations,
Scientific Computation, DOI 10.1007/978-94-017-7188-7_2

17

18 2 Fundamental Kernels

A common feature of these instructions is that minimal number of data that needs
to be read (loaded) intomemory and then stored back in order for the operation to take
place is O(n). Moreover, the number of computations required on a uniprocessor
is also O(n). Therefore, the ratio of instructions to load from and store to memory
relative to purely arithmetic operations is O(1).

With p = n processors, the _AXPY primitive requires 2 steps which yields
a perfect speedup, n. The _DOT primitive involves a reduction with the sum of n
numbers to obtain a scalar.Weassume temporarily, for the sakeof clarity, thatn = 2m .
At the first step, each processor computes the product of two components, and the
result can be expressed as the vector (s(0)

i)1:n . This computation is then followed by

m steps such that at each step k the vector (s(k−1)
i)1:2m−k+1 is transformed into the

vector (s(k)
i)1:2m−k by computing in parallel s(k)

i = s2i−1
(k−1) + s2i

(k−1), for i =
1, . . . , 2m−k , with the final result being the scalar s(m)

1 . Therefore, the inner product
consumes Tp = m + 1 = (1+ log n) steps, with a speedup of Sp = 2n/(1+ log n)

and an efficiency of Ep = 2/(1 + log n).
On vector processors, these procedures can obtain high performance, especially

for the _AXPY primitive which allows chaining of the pipelines for multiplication
and addition.

Implementing these instructions on parallel architectures is not a difficult task. It
is realized by splitting the vectors in slices of the same length, with each processor
performing the operation on its own subvectors. For the _DOT operation, there is an
additional summation of all the partial results to obtain the final scalar. Following
that, this result has to be broadcast to all the processors. These final steps entail extra
costs for data movement and synchronization, especially for computer systems with
distributed memory and a large number of processors.

We analyze this issue in greater detail next, departing on this occasion from the
assumptions made in Chap.1 and taking explicitly into account the communication
costs in evaluating Tp. The message is that inner products are harmful to parallel
performance of many algorithms.

Inner Products Inhibit Parallel Scalability

Amajor part of this book deals with parallel algorithms for solving large sparse linear
systems of equations using preconditioned iterative schemes. The most effective
classes of thesemethods are dominated by a combination of a “global” inner product,
that is applied on vectors distributed across all the processors, followed by fan-
out operations. As we will show, the overheads involved in such operations cause
inefficiency and less than optimal speedup.

To illustrate this point,we consider such a combination in the formof the following
primitive for vectors u, v, w of size n that appears often in many computations:

w = w − (u�v)u. (2.1)

We assume that the vectors are stored in a consistent way to perform the operations
on the components (each processor stores slices of components of the two vectors

http://dx.doi.org/10.1007/978-94-017-7188-7_1

2.1 Vector Operations 19

with identical indices). The _DOT primitive involves a reduction and therefore an all-
to-one (fan-in) communication. Since the result of a dot product is usually needed
by all processors in the sequel, the communication actually becomes an all-to-all
(fan-out) procedure.

To evaluate the weak scalability on p processors (see Definition 1.1) by taking
communication into account (as mentioned earlier, we depart here from our usual
definition ofTp), let us assume thatn = pq. The number of steps required by the prim-
itive (2.1) is 4q −1. Assuming no overlap between communication and computation,
the cost on p processors,Tp(pq), is the sumof the computational and communication
costs: Tcal

p (pq) and Tcom
p (pq), respectively. For the all-to-all communication,

Tcom
p (pq) is given by: Tcom

p (pq) = K pγ in which 1 < γ ≤ 2, with the
constant K depending on the interconnection network technology. The computa-
tional load, which is well balanced, is given by Tcal

p (pq) = 4q − 1, resulting in
Tp(pq) = (4q − 1) + K pγ , which increases with the number of processors. In
fact, once Tcom

p (pq) dominates Tcal
p (pq), the total cost Tp(pq) increases almost

quadratically with the number of processors.
This fact is of crucial importance in parallel implementation of inner products. It

makes clear that an important goal of a designer of parallel algorithms on distributed
memory architectures is to avoid distributed _DOT primitives as they are detrimental
to parallel scalability. Moreover, because of the frequent occurrence and prominence
of inner products in most numerical linear algebra algorithms, the aforementioned
deleterious effects on the _DOT performance can be far reaching.

2.2 Higher Level BLAS

In order to increase efficiency, vector operations are often packed into a global task
of higher level. This occurs for the multiplication of a matrix by a vector which in
a code is usually expressed by a doubly nested loop. Classic kernels of this type are
gathered into the set known as Level_2 Basic Linear Algebraic Subroutines (BLAS2)
[2]. The most common operations of this type, assuming general matrices, are

_GEMV : given x ∈ R
n , y ∈ R

m and A ∈ R
m×n this performs the matrix-vector

multiplication and accumulate y = y + Ax . It is also possible to multiply (row)
vector by matrix, scale the result before accumulating.

_TRSV : given b ∈ R
n and A ∈ R

n×n upper or lower triangular, this solves the
triangular system Ax = b.

_GER : given scalar α, x ∈ R
n , y ∈ R

m and A ∈ R
m×n , this performs the rank-one

update A = A + αxy�.

A common feature of these instructions is that the smallest number of data that
needs to be read into memory and then stored back in order for the operation to take
place when m = n is O(n2), arithmetic operations is O(1). Moreover, the number
of computations required on a uniprocessor is also O(n2). Therefore, the ratio of
instructions to load from and store to memory relative to purely arithmetic ones is

http://dx.doi.org/10.1007/978-94-017-7188-7_1

20 2 Fundamental Kernels

O(1). Typically, the constants involved are a little smaller than those for the BLAS1
instructions. On the other hand, of far more interest in terms of efficiency.

Although of interest, the efficiencies realized by these kernels are easily surpassed
by those of (BLAS3) [3], where one additional loop level is considered, e.g. matrix
multiplication, and rank-k updates (k > 1). The next section of this chapter is devoted
to matrix-matrix multiplications.

The set of BLAS is designed for a uniprocessor and used in parallel programs in
the sequential mode. Thus, an efficient implementation of the BLAS is of the utmost
importance to enable high performance. Versions of the BLAS that are especially
fine-tuned for certain types of processors are available (e.g. the Intel Math Kernel
Library [4] or the open source set GotoBLAS [5]). Alternately, one can create a
parametrized BLAS set which can be tuned on any processor by an automatic code
optimizer, e.g. ATLAS [6, 7]. Yet, it is hard to outperform well designed methods
that are based on accurate architectural models and domain expertise; cf. [8, 9].

2.2.1 Dense Matrix Multiplication

Given matrices A, B and C of sizes n1 × n2, n2 × n3 and n1 × n3 respectively, the
general operation, denoted by _GEMM, is C = C + AB.

Properties of this primitive include:

• The computation involves three nested loops that may be permuted and split; such
a feature provides great flexibility in adapting the computation for vector and/or
parallel architectures.

• High performance implementations are based on the potential for high data local-
ity that is evident from the relation between the lower bound on the number of
data moved (O(n2)) to arithmetic operations, O(n3) for the classical schemes
and O(n2+μ) for some μ > 0 for the “superfast” schemes described later in this
section.

Hence, in dense matrix multiplication, it is possible to reuse data stored in cache
memory.

Because of these advantages of dense matrix multiplication over lower level
BLAS, there has been a concerted effort by researchers for a long time now (see
e.g. [10]) to (re)formulate many algorithms in scientific computing to be based on
dense matrix multiplications (such as _GEMM and variants).

A Data Management Scheme Dense Matrix Multiplications

We discuss an implementation strategy for _GEMM:

C = C + AB. (2.2)

2.2 Higher Level BLAS 21

We adopt our discussion from [11], where the authors consider the situation of a
cluster of p processors with a common cache and count loads and stores in their
evaluation. We simplify that discussion and outline the implementation strategy for
a uniprocessor equipped with a cache memory that is characterized by fast access.
The purpose is to highlight some critical design decisions that will have to be faced by
the sequential as well as by the parallel algorithm designer. We assume that reading
one floating-point word of the type used in the multiplication from cache can be
accomplished in one clock period. Since the storage capacity of a cache memory is
limited, the goal of a code developer is to reuse, as much as possible, data stored in
the cache memory.

Let M be the storage capacity of the cachememory and let us assume thatmatrices
A, B and C are, respectively, n1 × n2, n2 × n3 and n1 × n3 matrices. Partitioning
these matrices into blocks of sizes m1 × m2, m2 × m3 and m1 × m3, respectively,
where ni = mi ki for all i = 1, 2, 3, our goal is then to estimate the block sizes mi

which maximize data reuse under the cache size constraint.
Instruction (2.2) can be expressed as the nested loop,

do i = 1 : k1,
do k = 1 : k2,

do j = 1 : k3,
Ci j = Ci j + Aik × Bkj ;

end
end

end

where Ci j , Aik and Bkj are, respectively, blocks of C , A and B, with subscripts
denotinghere the appropriate block indices.The innermost loop, refers to the identical
block Aik in all its iterations. To put it in cache, its dimensions must satisfy m1m2 ≤
M . Actually, the blocks Ci j and Bkj must also reside in the cache and the condition
becomes

m1m3 + m1m2 + m2m3 ≤ M. (2.3)

Further, since the blocks are obviously smaller than the original matrices, we need
the additional constraints:

1 ≤ mi ≤ ni for i = 1, 2, 3. (2.4)

Evaluating the volume of the datamoves using the number of data loads necessary for
the whole procedure and assuming that the constraints (2.3) and (2.4) are satisfied,
we observe that

• all the blocks of the matrix A are loaded only once;
• the blocks of the matrix B are loaded k1 times;
• the blocks of the matrix C are loaded k2 times.

22 2 Fundamental Kernels

Thus the total amount of loads is given by:

L = n1n2 + n1n2n3

(
1

m1
+ 1

m2

)
. (2.5)

Choosing m3 = 1, and hence k3 = n3, (the multiplications of the blocks are
performed by columns) and neglecting for simplicity the necessary storage of the
columns of the blocksCi j and Bkj , the values ofm1 andm2, whichminimize 1

m1
+ 1

m2
under the previous constraints are obtained as follows:

if n1n2 ≤ M then
m1 = n1 and m2 = n2;

else if n2 ≤ √
M then

m1 = M
n2

and m2 = n2;

else if n1 ≤ √
M then

m1 = n1 and m2 = M
n1
;

else
m1 = √

M and m2 = √
M ;

end if

In practice, M should be slightly smaller than the total cache volume to allow for
storing the neglected vectors. With this parameter adjustment, at the innermost level,
the blockmultiplication involves 2m1m2 operations andm1+m2 loads as long as Aik

resides in the cache. This indicates why the matrix multiplication can be a compute
bound program.

The reveal the important decisions that need to be made by the code developer,
and leads to a scheme that is very similar to parallel multiplication.

In [11], the authors consider the situation of a cluster of p processors with a
common cache and count loads and stores in their evaluation. However, the final
decision tree is similar to the one presented here.

2.2.2 Lowering Complexity via the Strassen Algorithm

The classical multiplication algorithms implementing the operation (2.2) for dense
matrices use 2n3 operations. We next describe the scheme proposed by Strassen
which reduces the number of operations in the procedure [12]: assuming that n is
even, the operands can be decomposed in 2 × 2 matrices of n

2 × n
2 blocks:

(
C11 C12
C21 C22

)
=

(
A11 A12
A21 A22

) (
B11 B12
B21 B22

)
. (2.6)

Then, the multiplication can be performed by the following operations on the blocks

2.2 Higher Level BLAS 23

P1 = (A11 + A22)(B11 + B22), C11 = P1 + P4 − P5 + P7,

P2 = (A21 + A22)B11, C12 = P3 + P5,

P3 = A11(B12 − B22), C21 = P2 + P4,

P4 = A22(B21 − B11), C22 = P1 + P3 − P2 + P6.

P5 = (A11 + A12)B22,

P6 = (A21 − A11)(B11 + B12),

P7 = (A12 − A22)(B21 + B22),

(2.7)

The computation of Pk and Ci j is referred as one Strassen step. This procedure
involves 7 block multiplications and 18 block additions of blocks, instead of 8 block
multiplications and 4 block additions as the case in the classical algorithm. Since the
complexity of the multiplications is O(n3) whereas for an addition it is only O(n2),
the Strassen approach is beneficial for large enough n. This approach was improved
in [13] by the following sequence of 7 block multiplications and 15 block additions.
It is implemented in the so-called Strassen-Winograd procedure (as expressed in
[14]):

T0 = A11, S0 = B11, Q0 = T0S0, U1 = Q0 + Q3,

T1 = A12, S1 = B21, Q1 = T1S1, U2 = U1 + Q4,

T2 = A21 + A22, S2 = B12 + B11, Q2 = T2S2, U3 = U1 + Q2,

T3 = T2 − A12, S3 = B22 − S2, Q3 = T3S3, C11 = Q0 + Q1,

T4 = A11 − A12, S4 = B22 − B12, Q4 = T4S4, C12 = U3 + Q5,

T5 = A12 + T3, S5 = B22, Q5 = T5S5, C21 = U2 − Q6,

T6 = A22, S6 = S3 − B21, Q6 = T6S6, C22 = U2 + Q2.

(2.8)

Clearly, (2.7) and (2.8) are still valid for rectangular blocks. If n = 2γ , the approach
can be repeated for implementing the multiplications of the blocks. If it is recursively
applied up to 2×2 blocks, the total complexity of the process becomes O(nω0), where
ω0 = log 7. More generally, if the process is iteratively applied until we get blocks
of order m ≤ n0, the total number of operations is

T (n) = csnω0 − 5n2, (2.9)

with cs = (2n0 + 4)/nω0−2
0 , which achieves its minimum for n0 = 8; cf. [14].

The numerical stability of the above methods has been considered by several
authors. In [15], it is shown that the rounding errors in the Strassen algorithm can
be worse than those in the classical algorithm for multiplying two matrices, with the
situation somewhat worse inWinograd’s algorithm. However, ref. [15] indicates that
it is possible to get a fast and stable version of _GEMM by incorporating in it steps
from the Strassen or Winograd-type algorithms.

Both the Strassen algorithm (2.7), and the Winograd version (2.8), can be imple-
mented on parallel architectures. In particular, the seven block multiplications are
independent, as well as most of the block additions. Moreover, each of these opera-
tions has yet another inner level of parallelism.

24 2 Fundamental Kernels

A parallel implementation must allow for the recursive application of several
Strassen steps while maintaining good data locality. The Communication-Avoiding
Parallel Strassen (CAPS) algorithm, proposed in [14, 16], achieves this aim; cf. [14,
16]. In CAPS, the Strassen steps are implemented by combining two strategies: all
the processors cooperate in computing the blocks Pk and Ci j whenever the local
memories are not large enough to store the blocks. The remaining Strassen steps
consist of block operations that are executed independently on seven sets of proces-
sors. The latter minimizes the communications but needs extra memory. CAPS is
asymptotically optimal with respect to computational cost and data communication.

Theorem 2.1 ([14]) CAPS has computational cost Θ (nω0/p) and requires band-
width Θ

(
max

{(
nω0/pMω0/2

)
log p, log p

})
, assuming p processors, each with

local memory of size M words.

Experiments in [17] show that CAPS uses less communication than some commu-
nication optimal classical algorithms and much less than previous implementations
of the Strassen algorithm. As a result, it can outperform both classical algorithms
for large sized problems, because it requires fewer operations, as well as for small
problems, because of lower communication costs.

2.2.3 Accelerating the Multiplication of Complex Matrices

Savings may be realized in multiplying two complex matrices, e.g. see [18]. Let
A = A1 + iA2 and B = B1 + iB2 two complex matrices where A j , B j ∈ R

n×n

for j = 1, 2. The real and imaginary parts C1 and C2 of the matrix C = AB can
be obtained using only three multiplications of real matrices (and not four as in the
classical expression):

T1 = A1B1, C1 = T1 − T2,
T2 = A2B2, C2 = (A1 + A2)(B1 + B2) − T1 − T2.

(2.10)

The savings are realized through the way the imaginary part C2 is computed. Unfor-
tunately, the above formulation may suffer from catastrophic cancellations, [18].

For large n, there is a 25% benefit in arithmetic operations over the conven-
tional approach. Although remarkable, this benefit does not lower the complexity
which remains the same, i.e. O(n3). To push such advantage further, one may use
the Strassen’s approach in the three matrix multiplications above to realize O(nω0)

arithmetic operations.
Parallelism is achieved at several levels:

• All the matrix operations are additions and multiplications. They can be imple-
mented with full efficiency. In addition, the multiplication can be realized through
the Strassen algorithm as implemented in CAPS, see Sect. 2.2.2.

• The three matrix multiplications are independent, once the two additions are per-
formed.

2.3 General Organization for Dense Matrix Factorizations 25

2.3 General Organization for Dense Matrix Factorizations

In this section, we describe the usual techniques for expressing parallelism in the
factorization schemes (i.e. the algorithms that compute anyof thewell-knowndecom-
positions such as LU, Cholesky, or QR). More specific factorizations are included in
the ensuing chapters of the book.

2.3.1 Fan-Out and Fan-In Versions

Factorization schemes can be based on one of two basic templates: the fan-out tem-
plate (see Algorithm 2.1) and the fan-in version (see Algorithm 2.2). Each of these
templates involves two basic procedures which we generically call compute(j) and
update(j, k). The two versions, however, differ only by a single loop interchange.

Algorithm 2.1 Fan-out version for factorization schemes.
do j = 1 : n,
compute(j) ;
do k = j + 1 : n,
update(j, k) ;

end
end

Algorithm 2.2 Fan-in version for factorization schemes.
do k = 1 : n,

do j = 1 : k − 1,
update(j, k) ;

end
compute(k) ;

end

The above implementations are also respectively named as the right-looking and
the left-looking versions. The exact definitions of the basic procedures, when applied
to a givenmatrix A, are displayed in Table2.1 together with their arithmetic complex-
ities on a uniprocessor. They are based on a column oriented organization. For the
analysis of loop dependencies, it is important to consider that column j is unchanged
by task update(j, k) whereas column k is overwritten by the same task; column j is
overwritten by task compute(j).

The two versions are based on vector operations (i.e. BLAS1). It can be seen,
however, that for a given j , the inner loop of the fan-out algorithm is a rank-one
update (i.e. BLAS2), with a special feature for the Cholesky factorization, where
only the lower triangular part of A is updated.

26 2 Fundamental Kernels

Table 2.1 Elementary factorization procedures; MATLAB index notation used for submatrices

Factorization Procedures Complexity

Cholesky on
A ∈ R

n×n
C : A(j : n, j) = A(j : n, j)/

√
A(j, j)

U : A(k : n, k) = A(k : n, j) − A(k : n, j)A(k, j)

1
3n3 + O(n2)

LU on A ∈ R
n×n

(no pivoting)
C : A(j : n, j) = A(j : n, j)/A(j, j)
U : A(j : n, k) = A(j : n, j) − A(j : n, j)A(k, j)

2
3n3 + O(n2)

QR on A ∈ R
m×n

(Householder)
C : u = house(A(j : n, j)) and β = 2/‖u‖2
U : A(j : n, k) = A(j : n, j) − βu(u� A(j : n, j))

2n2(m − 1
3n) +

O(mn)

MGS on A ∈ R
m×n

(Modified
Gram-Schmidt)

C : A(1 : n, j) = A(1 : n, j)/‖A(1 : n, j)‖
U : A(1 : n, k) = A(1 : n, k) −

A(1 : n, k)(A(1 : n, k)� A(1 : n, j))

2mn2 + O(mn)

Notations C: compute(j); U: update(j, k)
v = house(u): computes the Householder vector (see [19])

2.3.2 Parallelism in the Fan-Out Version

In the fan-out version, the inner loop (loop k) of Algorithm 2.1 involves independent
iterations whereas in the fan-in version, the inner loop (loop j) of Algorithm 2.2
must be sequential because of a recursion on vector k.

The inner loop of Algorithm 2.1 can be expressed as a doall loop. The resulting
algorithm is referred to as Algorithm 2.3.

Algorithm 2.3 do/doall fan-out version for factorization schemes.
do j = 1 : n,
compute(j) ;
doall k = j + 1 : n,
update(j, k) ;

end
end

At the outer iteration j , there are n − j independent tasks with identical cost.
When the outer loop is regarded as a sequential one, idle processors will result at
the end of most of the outer iterations. Let p be the number of processors used,
and for the sake of simplicity, let n = pq + 1 and assume that the time spent
by one processor in executing task compute(j) or task update(j, k) is the same
which is taken as the time unit. Note that this last assumption is valid only for
the Gram-Schmidt orthogonalization, since for the other algorithms, the cost of
task compute(j) and task update(j, k) are proportional to n − j or even smaller
for the Cholesky factorization. A simple computation shows that the sequential
process consumes T1 = n(n + 1)/2 steps, whereas the parallel process on p proces-
sors consumes Tp = 1 + p

∑q+1
i=2 i = pq(q+3)

2 + 1 = (n−1)(n−1+3p)
2p + 1 steps. For

2.3 General Organization for Dense Matrix Factorizations 27

Table 2.2 Benefit of pipelining the outer loop in MGS (QR factorization)
steps parallel runs

1 C(1)
2 U(1,2) U(1,3) U(1,4) U(1,5)
3 U(1,6) U(1,7) U(1,8) U(1,9)
4 C(2)
5 U(2,3) U(2,4) U(2,5) U(2,6)
6 U(2,7) U(2,8) U(2,9)
7 C(3)
8 U(3,4) U(3,5) U(3,6) U(3,7)
9 U(3,8) U(3,9)

10 C(4)
11 U(4,5) U(4,6) U(4,7) U(4,8)
12 U(4,9)
13 C(5)
14 U(5,6) U(5,7) U(5,8) U(5,9)
15 C(6)
16 U(6,7) U(6,8) U(6,9)
17 C(7)
18 U(7,8) U(7,9)
19 C(8)
20 U(8,9)
21 C(9)

(a) Sequential outer loop.

steps parallel runs
1 C(1)
2 U(1,2) U(1,3) U(1,4) U(1,5)
3 C(2) U(1,6) U(1,7) U(1,8)
4 U(1,9) U(2,3) U(2,4) U(2,5)
5 C(3) U(2,6) U(2,7) U(2,8)
6 U(2,9) U(3,4) U(3,5) U(3,6)
7 C(4) U(3,7) U(3,8) U(3,9)
8 U(4,5) U(4,6) U(4,7) U(4,8)
9 C(5) U(4,9)

10 U(5,6) U(5,7) U(5,8) U(5,9)
11 C(6)
12 U(6,7) U(6,8) U(6,9)
13 C(7)
14 U(7,8) U(7,9)
15 C(8)
16 U(8,9)
17 C(9)

Notations : C(j) = compute(j)
U(j,k) = update(j,k)

(b) doacross outer loop.

instance, for n = 9 and p = 4, the parallel calculation is performed in 21 steps
(see Table2.2a) whereas the sequential algorithm requires 45 steps. In Fig. 2.1, the
efficiency Ep = n(n+1)

(n−1)(n−1+3p)+2p is displayed for p = 4, 8, 16, 32, 64 processors
when dealing with vectors of length n, where 100 ≤ n ≤ 1000.

The efficiency study above is for the Modified Gram-Schmidt (MGS) algorithm.
Even though the analysis for other factorizations is more complicated, the general
behavior of the corresponding efficiency curves with respect to the vector length,
does not change.

The next question to be addressed is whether the iterations of the outer loop can
be pipelined so that they can be implemented utilizing the doacross.

At step j , for k = j + 1, . . . , n, task update(j, k) may start as soon as
task compute(j) is completed but compute(j) may start as soon as all the tasks
update(l, j), for l = 1, . . . , j − 1 are completed. Maintaining the serial execution
of tasks update(l, j) for l = 1, . . . , j − 1 is equivalent to guaranteeing that any task
update(j, k) cannot start before completion of update(j −1, k). The resulting scheme
is listed as Algorithm 2.4.

In our particular example, scheduling of the elementary tasks is displayed in
Table2.2b. Comparingwith the non-pipelined scheme, we clearly see that the proces-
sors are fully utilized whenever the number of remaining vectors is large enough. On
the other hand, the end of the process is identical for the two strategies. Therefore,
pipelining the outer loop is beneficial except when p is much smaller than n.

28 2 Fundamental Kernels

100 200 300 400 500 600 700 800 900 1000

0.4

0.5

0.6

0.7

0.8

0.9

1

Vector length

E
ffi

ci
en

cy

p=4
p=8
p=16
p=32
p=64

Fig. 2.1 Efficiencies of the doall approach with a sequential outer loop inMGS

Algorithm 2.4 doacross/doall version for factorization schemes (fan-out.)
doacross j = 1 : n,

if j > 1, then
wait(j) ;

end if
compute(j) ;
doall k = j + 1 : n,
update(j, k) ;
if k = j + 1, then
post(j + 1) ;

end if
end

end

2.3.3 Data Allocation for Distributed Memory.

The previous analysis is valid for shared or distributed memory architectures. How-
ever, for distributed memory systems we need to discuss the data allocation. As an
illustration consider a ring of p processors, numbered from 0 to p − 1, on which r
consecutive columns of A are stored in a round-robin mode. By denoting j̃ = j − 1,
column j is stored on processor s when j̃ = r(pv + t) + s with 0 ≤ s < r and
0 ≤ t < p.

As soon as column j is ready, it is broadcast to the rest of the processors so they
can start tasks update(j, k) for the columns k which they own. This implements the
doacross/doall strategy of the fan-out approach, listed as Algorithm 2.5.

2.3 General Organization for Dense Matrix Factorizations 29

To reduce the number of messages, one may transfer only the blocks of r consec-
utive vectors when they are all ready to be used (i.e. the corresponding compute(j)
tasks are completed). The drawback of this option is increasing the periods during
which there are idle processors. Therefore, the block size r must be chosen so as to
obtain a better trade-off between using as many processors as possible and reduc-
ing communication cost. Clearly, the optimum value is architecture dependent as it
depends on the smallest efficient task granularity.

Algorithm 2.5 Message passing fan-out version for factorization schemes.
Input: processor #q owns the set Cq of columns of A.

do j = 1 : n,
if j ∈ Cq , then
compute(j) ;
sendtoall(j) ;

else
receive(j) ;

end if
do (k ∈ Cq) & (k > j),
update(j, k) ;

end
end

The discussion above could easily be extended to the case of a torus configuration
where each processor of the previous ring is replaced by a ring of q processors. Every
column of the matrix A is now distributed into slices on the corresponding ring in
a round-robin mode. This, in turn, implies global communication in each ring of q
processors.

2.3.4 Block Versions and Numerical Libraries

We have already seen that it is useful to block consecutive columns of A. Actually,
there is benefit of doing so, even on a uniprocessor. In Algorithms 2.1 and 2.2,
tasks compute(j) and update(j, k) can be redefined to operate on a block of vectors
rather than on a single vector. In that case, indices j and k would refer to blocks
of r consecutive columns. In Table2.1 the scalar multiplications correspond now to
matrix multiplications involving BLAS3 procedures. It can be shown that for all the
above mentioned factorizations, task compute(j) becomes the task performing the
original factorization scheme on the corresponding block; cf. [19]. Task update(j, k)
remains formally the same but involving blocks of vectors (rank-r update) instead
of individual vectors (rank-1 update).

The resulting block algorithms aremathematically equivalent to their vector coun-
terparts but they may have different numerical behavior, especially for the Gram-
Schmidt algorithm. This will be discussed in detail in Chap.7.

http://dx.doi.org/10.1007/978-94-017-7188-7_7

30 2 Fundamental Kernels

Well designed block algorithms for matrix multiplication and rank-k updates for
hierarchical machines with multiple levels of memory and parallelism are of critical
importance for the design of solvers for the problems considered in this chapter that
demonstrate high performance and scalability. The libraryLAPACK [20], that solves
the classic matrix-problems, is a case in point by being based on BLAS3 as well as
its parallel version ScaLAPACK [21]:

• LAPACK: This is the main reference for a software library for numerical linear
algebra. It provides routines for solving systems of linear equations and linear least
squares, eigenvalue problems, and singular value decomposition. The involved
matrices can be stored as dense matrices or band matrices. The procedures are
based on BLAS3 and are proved to be backward stable. LAPACK was originally
written in FORTRAN 77, but moved to Fortran 90 in version 3.2 (2008).

• ScaLAPACK: This library can be seen as the parallel version of the LAPACK
library for distributed memory architectures. It is based on the Message Passing
Interface standard MPI [22]. Matrices and vectors are stored on a process grid
into a two-dimensional block-cyclic distribution. The library is often chosen as
the reference to which compare any new developed procedure.

In fact, many users became fully aware of these gains even when using high-
level problem solving environments like MATLAB (cf. [23]). As early works on the
subject had shown (we consider it rewarding for the reader to consider the pioneering
analyses in [11, 24]), the task of designing primitives is far from simple, if one desires
to provide a design that closely resembles the target computer model. The task
becomes more difficult as the complexity of the computer architectures increases.
It becomes even harder when the target is to build methods that can deliver high
performance for a spectrum of computer architectures.

2.4 Sparse Matrix Computations

Most large scale matrix computations in computational science and engineering
involve sparse matrices, that is matrices with relatively few nonzero elements, e.g.
nnz = O(n), for square matrices of order n. See [25] for instances of matrices from
a large variety of applications.

For example, in numerical simulations governed by partial differential equations
approximated using finite difference or finite elements, the number of nonzero entries
per row is related to the topology of the underlying finite element or finite differ-
ence grid. In two-dimensional problems discretized by a 5-point finite difference
discretization scheme, the number of nonzeros is about nnz = 5n and the density of
the resulting sparse matrix (i.e. the ratio between nonzeros entries and all entries) is
d ≈ 5

n , where n is the matrix order.

2.4 Sparse Matrix Computations 31

Methods designed for dense matrix computations are rarely suitable for sparse
matrices since they quickly destroy the sparsity of the original matrix leading to
the need of storing a much larger number of nonzeros. However, with the avail-
ability of large memory capacities in new architectures, factorization methods (LU
and QR) exist that control fill-in and manage the needed extra storage. We do not
present such algorithms in this book but refer the reader to existing literature, e.g. see
[26–28]. Another option is to use matrix-free methods in which the sparse matrix is
not generated explicitly but used as an operator through the matrix-vector multipli-
cation kernel.

To make feasible large scale computations that involve sparse matrices, they are
encoded in some suitable sparse matrix storage format in which only nonzero ele-
ments of the matrix are stored together with sufficient information regarding their
row and column location to access them in the course of operations.

2.4.1 Sparse Matrix Storage and Matrix-Vector
Multiplication Schemes

Let A = (αi j) ∈ R
n×n be a sparse matrix, and nnz the number of nonzero entries

in A.

Definition 2.1 (Graph of a sparse matrix) The graph of the matrix is given by the
pair of nodes and edges (< 1 : n >, G) where G is characterized by

((i, j) ∈ G) iff αi j �= 0.

The adjacency matrix C of the matrix A is C = (γi j) ∈ R
n×n such that

γi j = 1 if (i, j) ∈ G otherwise γi j = 0.

Themost common sparse storage schemes are presented below together with their
associated kernels: MV for matrix-vector multiplication and MTV for the multipli-
cation by the transpose. For a complete description and some additional storage types
see [29].

Compressed Row Sparse Storage (CRS)

All the nonzero entries are successively stored, row by row, in a one-dimensional
array a of length nnz. Column indices are stored in the same order in a vector ja of
the same length nnz. Since the entries are stored row by row, it is sufficient to define a
third vector ia to store the indices of the beginning of each row in a. By convention,
the vector is extended by one entry: ian+1 = nnz + 1. Therefore, when scanning
vector ak for k = 1, . . . , nnz, the corresponding row index i and column index j are
obtained from the following

ak = αi j ⇔
{

j = jak,

iai ≤ k < iai+1.
(2.11)

32 2 Fundamental Kernels

The correspondingMV kernel is given by Algorithm 2.6. The inner loop implements
a sparse inner product through a so-called gather procedure.

Algorithm 2.6 CRS-type MV.
Input: CRS storage (a, ja, ia) of A ∈ R

n×n as defined in (2.11) ; v, w ∈ R
n .

1: do i = 1 : n,

2: do k = iai : iai+1 − 1,
3: wi = wi + akv jak ; //Gather
4: end
5: end

Compressed Column Sparse Storage (CCS)

This storage is the dual of CRS: it corresponds to storing A� via a CRS format.
Therefore, the nonzero entries are successively stored, column by column, in a vector
a of length nnz. Row indices are stored in the same order in a vector ia of length
nnz. The third vector ja stores the indices of the beginning of each column in a. By
convention, the vector is extended by one entry: jan+1 = nnz + 1. Thus (2.11) is
replaced by,

ak = αi j ⇔
{

j = iak,

ja j ≤ k < ja j+1.
(2.12)

The correspondingMV kernel is given by Algorithm 2.7. The inner loop implements
a sparse _AXPY through a so-called scatter procedure.

Algorithm 2.7 CCS-type MV.
Input: CCS storage (a, ja, ia) of A ∈ R

n×n as defined in (2.12) ; v, w ∈ R
n .

Output: w = w + Av.
1: do j = 1 : n,

2: do k = ja j : ja j+1 − 1,
3: wiak = wiak + akv j ; //Scatter
4: end
5: end

Compressed Storage by Coordinates (COO)

In this storage, no special order of the entries is assumed. Therefore three vectors a,
ia and ja of length nnz are used satisfying

ak = αi j ⇔
{

i = iak,

j = jak
(2.13)

The correspondingMV kernel is given by Algorithm 2.8. It involves both the scatter
and gather procedures.

2.4 Sparse Matrix Computations 33

Algorithm 2.8 COO-type MV.
Input: COO storage (a, ja, ia) of A ∈ R

n×n as defined in (2.13) ; v, w ∈ R
n .

Output: w = w + Av.
1: do k = 1 : nnz,
2: wiak = wiak + akv jak ;
3: end

MTV Kernel and Other Storages

When A is stored in one of the above mentioned compressed storage formats the
MTV kernel

w = w + A�v,

is expressed for a CRS-stored matrix by Algorithm 2.7 and for a CCS-stored one by
Algorithm 2.6. For a COO-stored matrix, the algorithm is obtained by inverting the
roles of the arrays ia and ja in Algorithm 2.8.

Nowadays, the scatter-gather procedures (see step 3 in Algorithm 2.6 and step 3
in Algorithm 2.7) are pipelined on the architectures allowing vector computations.
However, their startup time is often large (i.e. order of magnitude of n1/2—as defined
in Sect. 1.1.2—is in the hundreds. If inMV a were a densematrixn1/2 would be in the
tens). The vector lengths in Algorithms 2.6 and 2.7 are determined by the number of
nonzero entries per row or per column. They often are so small that the computations
are run at sequential computational rates. There have been many attempts to define
sparse storage formats that favor larger vector lengths (e.g. see the jagged diagonal
format mentioned in [30, 31]).

An efficient storage format which combines the advantages of dense and sparse
matrix computations attempts to define a square block structure of a sparse matrix in
which most of the blocks are empty. The non empty blocks are stored in any of the
above formats, e.g. CSR, or the regular dense storage depending on the sparsity
density. Such a sparse storage format is called either Block Compressed Sparse
storage (BCRS) where the sparse nonempty blocks are stored using the CRS format,
or Block Compressed Column storage (BCCS) where the sparse nonempty blocks
are strored using the CCS format.

Basic Implementation on Distributed Memory Architecture

Let us consider the implementation ofw = w+Av andw = w+ A�v on a distributed
memory parallel architecture with p processors where A ∈ R

n×n and v, w ∈ R
n . The

first stage consists of partitioning the matrix and allocating respective parts to the
local processor memories. Each processor Pq with q = 1, . . . , p, receives a block
of rows of A and the corresponding slices of the vectors v and w:

http://dx.doi.org/10.1007/978-94-017-7188-7_1

34 2 Fundamental Kernels

P1 :
P2 :
...

Pp :
A =

⎛
⎜⎜⎜⎝

A1,1 A1,2 · · · A1,p

A2,1 A2,2 · · · A2,p
...

...
...

Ap,1 Ap,2 · · · Ap,p

⎞
⎟⎟⎟⎠ v =

⎛
⎜⎜⎜⎝

v1
v2
...

vp

⎞
⎟⎟⎟⎠ w =

⎛
⎜⎜⎜⎝

w1

w2
...

wp

⎞
⎟⎟⎟⎠

With the blocks Aq, j (j = 1, . . . , p) residing on processor Pq , this partition
determines the necessary communications for performing the multiplications. All
the blocks are sparse matrices with some being empty. To implement the kernels
w = w + Av and w = w + A�v, the communication graph is defined by the sets
R(q) andC (q)which respectively include the list of indices of the nonempty blocks
Aq, j of the block row q and A j,q of the block column q (j = 1, . . . , p). The two
implementations are given by Algorithms 2.9 and 2.10, respectively.

Algorithm 2.9 MV: w = w + Av
Input: q : processor number.

R(q) : list of indices of the nonempty blocks of row q.
C (q) : list of indices of the nonempty blocks of column q.

1: do j ∈ C (q),
2: send vq to processor Pj ;
3: end
4: compute wq = wq + Aq,q vq .
5: do j ∈ R(q),
6: receive v j from processor Pj ;
7: compute wq = wq + Aq, j v j ;
8: end

Algorithm 2.10 MTV: w = w + A�v
Input: q : processor number.

R(q) : list of indices of the nonempty blocks of row q.
C (q) : list of indices of the nonempty blocks of column q.

1: do j ∈ R(q),
2: compute t j = A�

q, j vq ;
3: send t j to processor Pj ;
4: end
5: compute wq = wq + A�

q,q vq ;
6: do j ∈ C (q),
7: receive u j from processor Pj ;
8: compute wq = wq + u j ;
9: end

The efficiency of the two procedures MV and MTV are often quite different,
depending on the chosen sparse storage format.

2.4 Sparse Matrix Computations 35

A
p

A
3

A
2

A
1

A =

ν
1
2

ν
1
3=ν

2
1

ν
2
2

ν
2
3=ν

3
1

ν
3
2

ν
p−1
3 =ν

p
1

ν
p
2

ν
p

ν
2

ν
1

ν
3
 ...

Fig. 2.2 Partition of a block-diagonal matrix with overlapping blocks; vector v is decomposed in
overlapping slices

Scalable Implementation for an Overlapped Block-Diagonal Structure

If the sparse matrix A ∈ R
n×n can be reordered to result in p overlapping diagonal

blocks denoted by Aq , q = 1, . . . , p as shown in Fig. 2.2, then a matrix-vector
multiplication primitive can be designed in high parallel scalability. Let block Aq

be stored in the memory of the processor Pq and the vectors v, w ∈ R
n stored

accordingly. It is therefore necessary to maintain the consistency between the two
copies of the components corresponding to the overlaps.

To perform the MV computation w = w + Av, the matrix A may be considered
as a sum of p blocks Bq (q = 1, . . . , p) where Bp = Ap and all earlier blocks Bq

are the same as Aq with the elements of lower right submatrix corresponding to the
overlap are replaced by zeros (see Fig. 2.3).

Let vector vq be the subvector of v corresponding to the q-block row indices. For

2 ≤ q ≤ p − 1, the vector vq is partitioned into v�
q =

(
v1q

�
, v2q

�
, v3q

�)
, according

to the overlap with the neighboring blocks. The first and the last subvectors are

partitioned as v�
1 =

(
v21

�
, v31

�)
and v�

p =
(

v1p
�
, v2p

�)
.

Denoting B̄q and v̄q the prolongation by zeros of Bq and vq to the full order n,
the operation w + Av = w + ∑p

q=1 B̄q v̄q can be performed via Algorithm 2.11.
After completion, the vector w is correctly updated and distributed on the processors
with consistent subvectors wq (i.e. w3

q−1 = w1
q for q = 2, . . . , p). This algorithm

Fig. 2.3 Elementary blocks
for the MV kernel

36 2 Fundamental Kernels

Algorithm 2.11 Scalable MV multiplication w = w + Av.
Input: q: processor number.

In the local memory: Bq , v�
q = [(v1q)�, (v2q)�, (v3q)�], and w�

q = [(w1
q)�, (w2

q)�, (w3
q)�].

Output: w = w + A v.
1: zq = Bq vq ;
2: if q < p, then
3: send z3q to processor Pq+1 ;
4: end if
5: if q > 1, then
6: send z1q to processor Pq−1 ;
7: end if
8: wq = wq + zq ;
9: if q < p, then
10: receive t from processor Pq+1 ;
11: w3

q = w3
q + t ;

12: end if
13: if q > 1, then
14: receive t from processor Pq−1 ;
15: w1

q = w1
q + t ;

16: end if

does not involve global communications and it can be implemented on a linear
array of processors in which every processor only exchanges information with its
two immediate neighbors: each processor receives one message from each of its
neighbors and it sends back one message to each.

Proposition 2.1 Algorithm 2.11 which implements the MV kernel for a sparse
matrix with an overlapped block-diagonal structure on a ring of p processors is
weakly scalable as long as the number of nonzeros entries of each block and the
overlap sizes are independent of the number of processors p.

Proof Let TBMV be the bound on the number of steps for theMV kernel of each indi-
vidual diagonal block, and � being the maximum overlap sizes, then on p processors
the number of steps is given by

Tp ≤ TBMV + 4(β + �τc),

where β is the latency for a message and τc the time for sending a word to an
immediate neighbouring node regardless of the latency. Since Tp is independent of
p, weak scalability is assured.

2.4.2 Matrix Reordering Schemes

Algorithms for reordering sparse matrices play a vital role in enhancing the parallel
scalability of various sparse matrix algorithms and their underlying primitives, e.g.,
see [32, 33].

2.4 Sparse Matrix Computations 37

Early reordering algorithms such as minimum-degree and nested dissection have
been developed for reducing fill-in in sequential direct methods for solving sparse
symmetric positive definite linear systems, e.g., see [26, 34, 35]. Similarly, algo-
rithms such as reverse Cuthill-McKee (RCM), e.g., see [36, 37], have been used
for reducing the envelope (variable band or profile) of sparse matrices in order to:
(i) enhance the efficiency of uniprocessor direct factorization schemes, (ii) reduce
the cost of sparse matrix-vector multiplications in iterative methods such as the con-
jugate gradients method (CG), for example, and (iii) obtain preconditioners for the
PCG scheme based on incomplete factorization [38, 39]. In this section, we here
describe a reordering scheme that not only reduces the profile of sparse matrices,
but also brings as many of the heaviest (larger magnitude) off-diagonal elements as
possible close to the diagonal. For solving sparse linear systems, for example, one
aims at realizing an overall cost, with reordering, that is much less than that without
reordering. In fact, in many time-dependent computational science and engineering
applications, this is possible. In such applications, the relevant nested computational
loop occurs as shown in Fig. 2.4.

The outer-most loop deals with time-step t , followed by solving a nonlinear set
of equations using a variant of Newton’s method, with the inner-most loop dealing
with solving a linear system in each Newton iteration to a relatively modest relative
residual ηk . Further, it is often the case that it is sufficient to realize the benefits of
reordering by keep using the permutation matrices obtained at time step t for several
subsequent time steps. This results not only in amortization of the cost of reordering,
but also in reducing the total cost of solving all the linear systems arising in such an
application.

With such a reordering, we aim to obtain a matrix C = PAQ, where A = (αi j)

is the original sparse matrix, P and Q are permutation matrices, such that C can be
split as C = B + E , with the most important requirements being that: (i) the sparse
matrix E contains far fewer nonzero elements than A, and is of a much lower rank,
and (i i) the central band B is a “generalized-banded” matrix with a Frobenius norm
that is a substantial fraction of that of A.

Fig. 2.4 Common structure
of programs in
time-dependent simulations

38 2 Fundamental Kernels

Fig. 2.5 Reordering to a
narrow-banded matrix

Hence, depending on the original matrix A, the matrix B can be extracted as:

(a) “narrow-banded” of bandwidth β much smaller than the order n of the matrix
A, i.e., β = 10−4n, for n ≥ 106, for example (the most fortunate situation), see
Fig. 2.5,

(b) “medium-banded”, i.e., of the block-tridiagonal form [H, G, J], in which the
elements of the off-diagonal blocks H and J are all zero except for their small
upper-right and lower-left corners, respectively, see Fig. 2.6, or

(c) “wide-banded”, i.e., consisting of overlapped diagonal blocks, in which each
diagonal block is a sparse matrix, see Fig. 2.7.

The motivation for desiring such a reordering scheme is three-fold. First, B can
be used as a preconditioner of a Krylov subspace method when solving a linear
system Ax = f of order n. Since E is of a rank p much less than n, the precondi-
tionedKrylov subspace schemewill converge quickly. In exact arithmetic, theKrylov
subspace method will converge in exactly p iterations. In floating-point arithmetic,
however, this translates into the method achieving small relative residuals in less
than p iterations. Second, since we require the diagonal of B to be zero-free with the
product of its entries maximized, and that the Frobenius norm of B is close to that of
A, this will enhance the possibility that B is nonsingular, or close to a nonsingular
matrix. Third, multiplying C by a vector can be implemented on a parallel archi-
tecture with higher efficiency by splitting the operation into two parts: multiplying
the “generalized-banded” matrix B by a vector, and a low-rank sparse matrix E by
a vector. The former, e.g. v = Bu, can be achieved with high parallel scalability on
distributed-memory architectures requiring only nearest neighbor communication,
e.g. see Sect. 2.4.1 for the scalable parallel implementation of an overlapped block
diagonal matrix-vector multiplication scheme. The latter, e.g. w = Eu, however,
incurs much less irregular addressing penalty compared to y = Au since E contains
far fewer nonzero entries than A.

Since A is nonsymmetric, in general, we could reduce its profile by using RCM
(i.e. via symmetric permutations only) applied to (|A| + |A�|), [40], or by using
the spectral reordering introduced in [41]; see also [42]. However, this will neither

2.4 Sparse Matrix Computations 39

Fig. 2.6 Reordering to a medium-banded matrix

Fig. 2.7 Reordering to a wide-banded matrix

realize a zero-free diagonal, nor insure bringing the heaviest off-diagonal elements
close to the diagonal. Consequently, RCM alone will not realize a central “band”
B with its Frobenius norm statisfying: ‖B‖F ≥ (1 − ε)∗‖A‖F . In order to solve
this weighted bandwidth reduction problem, we use a weighted spectral reordering
technique which is a generalization of spectral reordering. To alleviate the shortcom-
ings of using only symmetric permutations, and assuming that the matrix A is not
structurally singular, this weighted spectral reordering will need to be coupled with

40 2 Fundamental Kernels

a nonsymmetric ordering technique such as the maximum traversal algorithm [43]
to guarantee a zero-free diagonal, and to maximize the magnitude of the product
of the diagonal elements, via the MPD algorithm (Maximum Product on Diagonal
algorithm) [44, 45]. Such a procedure is implemented in the Harwell Subroutine
Library [46] as (HSL-MC64).

Thus, the resulting algorithm, which we refer to as WSO (Weighted Spectral
Ordering), consists of three stages:

Stage 1: Nonsymmetric Permutations

Here, we obtain a permutation matrix Q that maximizes the product of the absolute
values of the diagonal entries of QA, [44, 45]. This is achieved by a maximum
traversal search followed by a scaling procedure resulting in diagonal entries of
absolute values equal to 1, and all off-diagonal elements with magnitudes less than
or equal to 1. After applying this stage, a linear system Ax = f , becomes of the
form,

(Q D2AD1)(D−1
1 x) = (Q D2 f) (2.14)

in which each D j , j = 1, 2 is a diagonal scaling matrix.

Stage 2: Checking for Irreducibility

In this stage, we need to detect whether the sparse matrix under consideration is
irreducible, i.e., whether the corresponding graph has one strongly connected com-
ponent. This is achieved via Tarjan’s strongly connected component algorithm [47],
see also related schemes in [48], or [49]. If the matrix is reducible, we apply the
weighted spectral reordering simultaneously on each strongly connected component
(i.e. on each sparse diagonal block of the resulting upper block triangular matrix).
For the rest of this section, we assume that the sparse matrix A under considera-
tion is irreducible, i.e., the corresponding graph has only one strongly connected
component.

Stage 3: The Weighted Spectral Reordering Scheme [50]

As in other traditional reordering algorithms,wewish tominimize the half-bandwidth
of a matrix A which is given by,

BW (A) = max
i, j :αi j �=0

|i − j |, (2.15)

i.e., to minimize the maximum distance of a nonzero entry from the main diagonal.
Let us assume for the time being that A is a symmetric matrix, and that we aim at
extracting a central band B = (βi j) of minimum bandwidth such that, for a given
tolerance ε, ∑

i, j |αi j − βi j |∑
i, j |αi j | ≤ ε, (2.16)

2.4 Sparse Matrix Computations 41

and
βi j = αi j if |i − j | ≤ k,

βi j = 0
(2.17)

The idea behind this formulation is that if a significant part of the matrix is packed
into a central band B, then the rest of the nonzero entries can be dropped to obtain an
effective preconditioner. In order to find a heuristic solution to the weighted band-
width reduction problem, we use a generalization of spectral reordering. Spectral
reordering is a linear algebraic technique that is commonly used to obtain approx-
imate solutions to various intractable graph optimization problems [51]. It has also
been successfully applied to the bandwidth and envelope reduction problems for
sparse matrices [41]. The core idea of spectral reordering is to compute a vector
x = (ξi) that minimizes

σA(x) =
∑

i, j :αi j �=0

(ξi − ξ j)
2, (2.18)

subject to ‖x‖2 = 1 and x�e = 0. As mentioned above we assume that the matrix
A is real and symmetric. The vector x that minimizes σA(x) under these constraints
provides a mapping of the rows (and columns) of matrix A to a one-dimensional
Euclidean space, such that pairs of rows that correspond to nonzeros are located as
close as possible to each other. Consequently, the ordering of the entries of the vector
x provides an ordering of the matrix that significantly reduces the bandwidth.

Fiedler [52] first showed that the optimal solution to this problem is given by the
eigenvector corresponding to the second smallest eigenvalue of the Laplacian matrix
L = (λi j) of A,

λi j = −1 if i �= j ∧ αi j �= 0,
λi i = |{ j : αi j �= 0}|. (2.19)

Note that the matrix L is positive semidefinite, and the smallest eigenvalue of this
matrix is equal to zero. The eigenvector x that minimizes σA(x) = x�Lx , such that
‖x‖2 = 1 and x�e = 0, is the eigenvector corresponding to the second smallest
eigenvalue of the Laplacian, i.e. the symmetric eigenvalue problem

Lx = λx, (2.20)

and is known as the Fiedler vector. The Fiedler vector of a sparse matrix can be
computed efficiently using any of the eigensolvers discussed in Chap. 11, see also
[53].

While spectral reordering is shown to be effective in bandwidth reduction, the
classical approach described above ignores the magnitude of nonzeros in the matrix.
Therefore, it is not directly applicable to the weighted bandwidth reduction problem.
However, Fiedler’s result can be directly generalized to the weighted case [54]. More
precisely, the eigenvector x that corresponds to the second smallest eigenvalue of the

http://dx.doi.org/10.1007/978-94-017-7188-7_11

42 2 Fundamental Kernels

weighted Laplacian L minimizes

σ̄A(x) = x�Lx =
∑
i, j

|αi j |(ξi − ξ j)
2, (2.21)

where L is defined as
λi j = −|αi j | if i �= j,

λi i =
∑

j

|αi j |. (2.22)

We now showhowweighted spectral reordering can be used to obtain a continuous
approximation to the weighted bandwidth reduction problem. For this purpose, we
first define the relative bandweight of a specified band of the matrix as follows:

wk(A) =
∑

i, j :|i− j |<k |αi j |∑
i, j |αi j | . (2.23)

In other words, the bandweight of a matrix A, with respect to an integer k, is equal
to the fraction of the total magnitude of entries that are encapsulated in a band of
half-width k.

For a given α, 0 ≤ α ≤ 1, we define α-bandwidth as the smallest half-bandwidth
that encapsulates a fraction α of the total matrix weight, i.e.,

BWα(A) = min
k:wk (A)≥α

k. (2.24)

Observe that α-bandwidth is a generalization of half-bandwidth, i.e., when α = 1,
the α-bandwidth is equal to the half-bandwidth of the matrix. Now, for a given
vector x = (ξ1, ξ2,, ξn)� ∈ R

n , define an injective permutation function π :
{1, 2, . . . , n} → {1, 2, . . . , n}, such that, for 1 ≤ i , j ≤ n, ξπi ≤ ξπ j iff i ≤ j . Here,
n denotes the number of rows (columns) of the matrix A. Moreover, for a fixed k,
define the function δk(i, j) : {1, 2, . . . , n}×{1, 2, . . . , n} → {0, 1}, which quantizes
the difference between πi and π j with respect to k, i.e.,

δk(i, j) =
{
0 if |πi − π j | ≤ k,

1 else
(2.25)

Let Ā be the matrix obtained by reordering the rows and columns of A according to
π , i.e.,

Ā(πi , π j) = αi j for 1 ≤ i, j ≤ n. (2.26)

Then δk(i, j) = 0 indicates that αi j is inside a band of half-width k in the matrix
Ā while δk(i, j) = 1 indicates that it is outside the band. Defining

2.4 Sparse Matrix Computations 43

σ̂k(A) =
∑
i, j

|αi j |δk(i, j), (2.27)

then,

σ̂k(A) = (1 − wk(Ā))
∑
i, j

|αi j |. (2.28)

Therefore, for a fixed α, the α-bandwidth of the matrix Ā is equal to the smallest

k that satisfies σ̂A(k)/
∑
i, j

|αi j | ≤ 1 − α.

Note that the problem of minimizing σ̄x (A) is a continuous relaxation of the
problem of minimizing σ̂k(A) for a given k. Therefore, the Fiedler vector of the
weighted Laplacian L provides a good basis for reordering A to minimize σ̂k(A).
Consequently, for a fixed ε, this vector provides a heuristic solution to the problem
of finding a reordered matrix Ā = (ᾱi j) with minimum (1− ε)-bandwidth. Once the
matrix is obtained, we extract the central band B as follows:

B = {βi j = ᾱi j if |i − j | ≤ BW1−ε(Ā), otherwise βi j = 0}. (2.29)

Clearly, B satisfies (2.16) and is of minimal bandwidth.
Note that spectral reordering is defined specifically for symmetric matrices, and

the resulting permutation is symmetric as well. Since our main focus here concerns
general nonsymmetricmatrices,we apply spectral reordering to nonsymmetricmatri-
ces by computing the Laplacian matrix of |A| + |A�| instead of |A|. We note also
that this formulation results in a symmetric permutation for a nonsymmetric matrix,
which may be considered overconstrained.

Once, the Fiedler vector yields the permutation P , we obtain the matrix C as,

C = (PQD2AD1P�), (2.30)

and the linear system Ax = f becomes of the final form,

(PQD2AD1P�)(PD−1
1 x) = (PQD2 f). (2.31)

References

1. Lawson, C., Hanson, R., Kincaid, D., Krogh, F.: Basic linear algebra subprograms for Fortran
usage. ACM Trans. Math. Softw. 5(3), 308–323 (1979)

2. Dongarra, J., Croz, J.D., Hammarling, S., Hanson, R.: An extended set of FORTRAN basic
linear algebra subprograms. ACM Trans. Math. Softw. 14(1), 1–17 (1988)

3. Dongarra, J., Du Croz, J., Hammarling, S., Duff, I.: A set of level-3 basic linear algebra
subprograms. ACM Trans. Math. Softw. 16(1), 1–17 (1990)

4. Intel company: Intel Math Kernel Library. http://software.intel.com/en-us/intel-mkl

http://software.intel.com/en-us/intel-mkl

44 2 Fundamental Kernels

5. Texas advanced computer center, University of Texas: GotoBLAS2. https://www.tacc.utexas.
edu/tacc-software/gotoblas2

6. Netlib Repository at UTK and ORNL: Automatically Tuned Linear Algebra Software
(ATLAS). http://www.netlib.org/atlas/

7. Whaley, R., Dongarra, J.: Automatically tuned linear algebra software. In: Proceedings of 1998
ACM/IEEE Conference on Supercomputing, Supercomputing’98, pp. 1–27. IEEE Computer
Society, Washington (1998). http://dl.acm.org/citation.cfm?id=509058.509096

8. Yotov, K., Li, X., Ren, G., Garzarán, M., Padua, D., Pingali, K., Stodghill, P.: Is search really
necessary to generate high-performance BLAS? Proc. IEEE 93(2), 358–386 (2005). doi:10.
1109/JPROC.2004.840444

9. Goto, K., van de Geijn, R.: Anatomy of high-performance matrix multiplication. ACM Trans.
Math. Softw. 34(3), 12:1–12:25 (2008). doi:10.1145/1356052.1356053. http://doi.acm.org/10.
1145/1356052.1356053

10. Gallivan, K.A., Plemmons, R.J., Sameh, A.H.: Parallel algorithms for dense linear algebra
computations. SIAM Rev. 32(1), 54–135 (1990). doi:http://dx.doi.org/10.1137/1032002

11. Gallivan, K., Jalby, W., Meier, U.: The use of BLAS3 in linear algebra on a parallel processor
with a hierarchical memory. SIAM J. Sci. Stat. Comput. 8(6), 1079–1084 (1987)

12. Strassen, V.: Gaussian elimination is not optimal. NumerischeMathematik 13, 354–356 (1969)
13. Winograd, S.: On multiplication of 2× 2 matrices. Linear Algebra Appl. 4(4), 381–388 (1971)
14. Ballard, G., Demmel, J., Holtz, O., Lipshitz, B., Schwartz, O.: Communication-optimal parallel

algorithm for Strassen matrix multiplication. Technical report UCB/EECS-2012-32, EECS
Department, University of California, Berkeley (2012). http://www.eecs.berkeley.edu/Pubs/
TechRpts/2012/EECS-2012-32.html

15. Higham, N.J.: Exploiting fast matrix multiplication within the level 3 BLAS. ACM Trans.
Math. Softw. 16(4), 352–368 (1990)

16. Ballard, G., Demmel, J., Holtz, O., Schwartz, O.: Graph expansion and communication costs of
fast matrix multiplication. J. ACM 59(6), 32:1–32:23 (2012). doi:10.1145/2395116.2395121.
http://doi.acm.org/10.1145/2395116.2395121

17. Lipshitz, B., Ballard,G., Demmel, J., Schwartz, O.: Communication-avoiding parallel Strassen:
implementation and performance. In: Proceedings of the International Conference onHigh Per-
formance Computing, Networking, Storage and Analysis, SC’12, pp. 101:1–101:11. IEEE
Computer Society Press, Los Alamitos (2012). http://dl.acm.org/citation.cfm?id=2388996.
2389133

18. Higham, N.J.: Stability of a method for multiplying complex matrices with three real matrix
multiplications. SIAM J. Matrix Anal. Appl. 13(3), 681–687 (1992)

19. Golub, G., Van Loan, C.: Matrix Computations, 4th edn. Johns Hopkins (2013)
20. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J.,

Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd
edn. Society for Industrial and Applied Mathematics, Philadelphia (1999)

21. Blackford, L., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J.,
Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.: ScaLAPACK
User’s Guide. SIAM, Philadelphia (1997). http://www.netlib.org/scalapack

22. Gropp,W.,Lusk,E., Skjellum,A.:UsingMPI: Portable Parallel Programmingwith theMessage
Passing Interface. MIT Press, Cambridge (1994)

23. Moler, C.: MATLAB incorporates LAPACK. Mathworks Newsletter (2000). http://www.
mathworks.com/company/newsletters/articles/matlab-incorporates-lapack.html

24. Gallivan, K., Jalby, W., Meier, U., Sameh, A.: The impact of hierarchical memory systems on
linear algebra algorithm design. Int. J. Supercomput. Appl. 2(1) (1988)

25. Davis, T., Hu, Y.: The University of Florida Sparse Matrix Collection. ACM Trans. Math.
Softw. 38(1), 1:1–1:25 (2011). http://doi.acm.org/10.1145/2049662.2049663

26. Duff, I., Erisman, A., Reid, J.: Direct Methods for Sparse Matrices. Oxford University Press
Inc., New York (1989)

27. Davis, T.: Direct Methods for Sparse Linear Systems. SIAM, Philadelphia (2006)

https://www.tacc.utexas.edu/tacc-software/gotoblas2
https://www.tacc.utexas.edu/tacc-software/gotoblas2
http://www.netlib.org/atlas/
http://dl.acm.org/citation.cfm?id=509058.509096
http://dx.doi.org/10.1109/JPROC.2004.840444
http://dx.doi.org/10.1109/JPROC.2004.840444
http://dx.doi.org/10.1145/1356052.1356053
http://doi.acm.org/10.1145/1356052.1356053
http://doi.acm.org/10.1145/1356052.1356053
http://dx.doi.org/10.1137/1032002
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-32.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-32.html
http://dx.doi.org/10.1145/2395116.2395121
http://doi.acm.org/10.1145/2395116.2395121
http://dl.acm.org/citation.cfm?id=2388996.2389133
http://dl.acm.org/citation.cfm?id=2388996.2389133
http://www.netlib.org/scalapack
http://www.mathworks.com/company/newsletters/articles/matlab-incorporates-lapack.html
http://www.mathworks.com/company/newsletters/articles/matlab-incorporates-lapack.html
http://doi.acm.org/10.1145/2049662.2049663

References 45

28. Zlatev, Z.: Computational Methods for General Sparse Matrices, vol. 65. Kluwer Academic
Publishers, Dordrecht (1991)

29. Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H.: Templates for the Solution of
Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia (2000)

30. Melhem, R.: Toward efficient implementation of preconditioned conjugate gradient methods
on vector supercomputers. Int. J. Supercomput. Appl. 1(1), 70–98 (1987)

31. Philippe, B., Saad, Y.: Solving large sparse eigenvalue problems on supercomputers. Technical
report RIACS TR 88.38, NASA Ames Research Center (1988)

32. Schenk, O.: Combinatorial Scientific Computing. CRC Press, Switzerland (2012)
33. Kepner, J., Gilbert, J.: Graph Algorithms in the Language of Linear Algebra. SIAM, Philadel-

phia (2011)
34. George, J., Liu, J.: Computer Solutions of Large Sparse Positive Definite Systems. Prentice

Hall (1981)
35. Pissanetzky, S.: Sparse Matrix Technology. Academic Press, New York (1984)
36. Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In: Proceedings

of 24th National Conference Association Computer Machinery, pp. 157–172. ACM Publica-
tions, New York (1969)

37. Liu, W., Sherman, A.: Comparative analysis of the Cuthill-McKee and the reverse Cuthill-
McKee ordering algorithms for sparse matrices. SIAM J. Numer. Anal. 13, 198–213 (1976)

38. D’Azevedo, E.F., Forsyth, P.A., Tang, W.P.: Ordering methods for preconditioned conjugate
gradient methods applied to unstructured grid problems. SIAM J. Matrix Anal. 13(3), 944–961
(1992)

39. Duff, I., Meurant, G.: The effect of ordering on preconditioned conjugate gradients. BIT 29,
635–657 (1989)

40. Reid, J., Scott, J.: Reducing the total bandwidth of a sparse unsymmetric matrix. SIAM J.
Matrix Anal. Appl. 28(3), 805–821 (2005)

41. Barnard, S., Pothen, A., Simon, H.: A spectral algorithm for envelope reduction of sparse
matrices. Numer. Linear Algebra Appl. 2, 317–334 (1995)

42. Spielman, D., Teng, S.: Spectral partitioning works: planar graphs and finite element meshes.
Numer. Linear Algebra Appl. 421, 284–305 (2007)

43. Duff, I.: On algorithms for obtaining a maximum transversal. ACM Trans. Math. Softw. 7,
315–330 (1981)

44. Duff, I., Koster, J.: On algorithms for permuting large entries to the diagonal of a sparse matrix.
SIAM J. Matrix Anal. Appl. 22, 973–966 (2001)

45. Duff, I., Koster, J.: The design and use of algorithms for permuting large entries to the diagonal
of sparse matrices. SIAM J. Matrix Anal. Appl. 20, 889–901 (1999)

46. The HSL mathematical software library. See http://www.hsl.r1.ac.uk/index.html
47. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160

(1972)
48. Cheriyan, J., Mehlhorn, K.: Algorithms for dense graphs and networks on the random access

computer. Algorithmica 15, 521–549 (1996)
49. Dijkstra, E.: ADiscipline of Programming, Chapter 25. Prentice Hall, Englewood Cliffs (1976)
50. Manguoğlu, M., Mehmet, K., Sameh, A., Grama, A.: Weighted matrix ordering and parallel

banded preconditioners for iterative linear system solvers. SIAM J. Sci. Comput. 32(3), 1201–
1206 (2010)

51. Hendrickson, B., Leland, R.: An improved spectral graph partitioning algorithm for mapping
parallel computations. SIAM J. Sci. Comput. 16(2), 452–469 (1995). http://citeseer.nj.nec.
com/hendrickson95improved.html

52. Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Math. J. 23, 298–305 (1973)
53. Kruyt, N.: A conjugate gradientmethod for the spectral partitioning of graphs. Parallel Comput.

22, 1493–1502 (1997)
54. Chan, P., Schlag, M., Zien, J.: Spectral k-way ratio-cut partitioning and clustering. IEEE Trans.

CAD-Integr. Circuits Syst. 13, 1088–1096 (1994)

http://www.hsl.r1.ac.uk/index.html
http://citeseer.nj.nec.com/hendrickson95improved.html
http://citeseer.nj.nec.com/hendrickson95improved.html

http://www.springer.com/978-94-017-7187-0

	2 Fundamental Kernels
	2.1 Vector Operations
	2.2 Higher Level BLAS
	2.2.1 Dense Matrix Multiplication
	2.2.2 Lowering Complexity via the Strassen Algorithm
	2.2.3 Accelerating the Multiplication of Complex Matrices

	2.3 General Organization for Dense Matrix Factorizations
	2.3.1 Fan-Out and Fan-In Versions
	2.3.2 Parallelism in the Fan-Out Version
	2.3.3 Data Allocation for Distributed Memory.
	2.3.4 Block Versions and Numerical Libraries

	2.4 Sparse Matrix Computations
	2.4.1 Sparse Matrix Storage and Matrix-Vector Multiplication Schemes
	2.4.2 Matrix Reordering Schemes

	References

