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Global Approaches to Alternative Splicing
and Its Regulation—Recent Advances
and Open Questions

Yun-Hua Esther Hsiao, Ashley A. Cass, Jae Hoon Bahn, Xianzhi Lin
and Xinshu Xiao

Abstract Pre-mRNA splicing is an essential RNA processing step in eukaryotes.
Alternative splicing generates distinct spliced isoforms of the same gene, thereby
dramatically increasing transcriptome diversity. Since most human genes undergo
alternative splicing, this process contributes to a wide spectrum of biological
functions in healthy and disease states. Splicing is closely regulated by various cis-
regulatory elements and trans-factors. With the advent of high-throughput experi-
mental technologies and bioinformatic algorithms, we now have powerful means to
study alternative splicing globally and uncover its functional impact and regulatory
mechanisms. As more RNA sequencing (RNA-Seq) data from normal and disease
conditions are becoming available, many studies are underway to dissect global
misregulation of splicing in diseases and develop novel splicing-targeted thera-
peutics. In this chapter, we first discuss the experimental and bioinformatic
approaches for identification of alternative splicing, followed by a comprehensive
review on the state-of-the-art methodologies to study splicing regulation. In addi-
tion, we discuss the current challenges and open questions in the RNA splicing field
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including gene expression kinetics, co-transcriptional splicing, and therapeutic
approaches targeting splicing.

Keywords Alternative splicing - RNA « RNA-Seq - Gene regulation

2.1 Introduction

First discovered nearly 40 years ago [1, 2], pre-mRNA splicing consists of a series
of biochemical reactions that function to remove introns and ligate flanking exons.
Exon-intron boundaries are defined by highly conserved consensus sequences
including the 5’ splice site (5'ss, or donor site), 3’ splice site (3'ss, or acceptor site),
and branch point sequences (BPSs) (Fig. 2.1). These sequences are recognized by
the spliceosome, a dynamic multi-ribonucleoprotein complex composed of small
nuclear ribonucleoproteins (snRNPs) (refer to [3] for detailed reviews). The
spliceosome is the basic machinery that carries out splicing reactions.

In recent years, it was estimated that more than 90 % of human genes are processed
through alternative splicing where multiple spliced isoforms are generated from a
single gene, thus significantly increasing transcriptome diversity [4—6]. The most
extreme case of alternative splicing is the Drosophila Down Syndrome cell adhesion
molecule gene (Dscam) which includes 48 exons and can theoretically produce
38,016 alternative transcripts from a single gene [7]. Different types of alternative
splicing exist with the most common ones being exon skipping, alternative 5'ss usage,
alternative 3'ss usage, mutually exclusive exons, and intron retention [8].

It is now well established that alternative splicing contributes to a wide spectrum
of cellular functions [9]. Disruption of normal splicing was reported for a large
number of human diseases, which has been reviewed extensively [10-12]. As a
functionally critical process, alternative splicing is regulated by a myriad of cis-
elements and trans-acting factors (Fig. 2.1). Splicing regulatory elements (SREs)
reside in exons or introns and function to either enhance or silence splicing. These
cis-elements are thus named accordingly as: exonic splicing enhancers (ESEs),
intronic splicing enhancers (ISEs), exonic splicing silencers (ESSs), and intronic
splicing silencers (ISSs). These cis-elements interact with many frans-acting factors
(i.e., splicing factors), including serine/arginine-rich (SR) proteins and heteroge-
neous nuclear ribonucleoproteins (hnRNPs) [13]. RNA secondary structures also
affect alternative splicing, likely by facilitating or blocking accessibility of splicing
factors to their cognate RNA [14].

Understanding the regulatory mechanisms of alternative splicing in health and
disease is an essential topic of gene regulation. Recent advances in high-throughput
technologies and related bioinformatic methodologies are enabling exciting dis-
coveries in this area. Here, we first focus on global approaches for splicing iden-
tification, followed by an in-depth review of methodologies to study splicing
regulatory mechanisms.
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2.2 Identification and Validation of Alternative Splicing
Events

2.2.1 Identification of Alternative Splicing Events

2.2.1.1 High-Throughput Experimental Approaches

The first high-throughput method developed to detect and quantify alternative
splicing events was customized microarrays [15—17]. An initial study by Hu et al.
[18] used multi-probe design of Affymetrix arrays to detect splicing variants,
demonstrating the utility of microarrays for splicing analyses. Later studies [19, 20]
developed different techniques to improve the microarray probe design and suc-
cessfully profiled alternative splicing events and their expression on the genome-
wide scale. Johnson et al. [19] used splice junction arrays to probe around 10,000
human multi-exon genes across 52 tissues. Besides the known alternative splicing
events, they were also able to discover novel spliced isoforms of many genes. Pan
et al. [20] took the focused probe design approach (see review [16]) with three exon
body probes and three spliced junction probes for each known alternative splicing
event to achieve more sensitive expression quantification. In this study, they were
able to globally determine the tissue specificity of alternative splicing events in
mouse tissues. Many recent studies adopted different probe designs and microarray
platforms to investigate splicing profiles and splicing levels in healthy and disease
samples (reviewed in [15-17]).

Since the advent of next-generation sequencing (NGS), RNA-Seq became an
essential technology for global studies of alternative splicing (Fig. 2.2a). It provides
a means to directly or indirectly sequence the RNA molecules in a high-throughput
manner. At present, often-used RNA-Seq methods first convert the RNA sample of
interest into cDNAs, which are then made into a sequencing library that consists of
short DNA fragments (corresponding to the RNA of interest) flanked by
pre-designed adapter oligos. The DNA library is then sequenced from one end
(single-end sequencing, or SE) or both ends (paired-end sequencing, or PE) to yield
final RNA-Seq reads [21]. The resulting RNA-Seq reads correspond to a snapshot
of RNA expression in the respective cellular sample.

RNA-Seq is advantageous in several ways. First, it can detect novel isoforms and
alternative splicing events that are not yet annotated [22, 23]. Second, RNA-Seq is not
affected by the cross-hybridization problem that confounds many microarray-based
studies [21]. Third, RNA-Seq data can provide relatively accurate quantification of
levels of gene expression and splicing [21, 24]. Lastly, RNA-Seq provides
single-nucleotide information that enables studies of genetic variants [25, 26] and
RNA editing sites [27-30], in addition to gene or exon expression. Using RNA-Seq, a
large number of alternative splicing events were identified in human and mouse
tissues [4, 5].

Although RNA-Seq has dramatically improved our knowledge on alternative
splicing, there are still remaining challenges to be addressed [21, 31]. RNA-Seq
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<« Fig. 2.1 Overview of previous studies in alternative splicing regulation. Cis-regulatory elements
and trans-acting factors are key components in the splicing regulatory networks (alternative
splicing regulome), which have been actively examined. Combined with global profiles of
alternative splicing patterns, bioinformatic models were developed to predict the relative impacts
of different regulators and splicing outcome of a given exon. Experimental validations are critical
steps to evaluate the accuracy of the predicted splicing regulation. The botfom diagram illustrates
well-known components of splicing regulation. The yellow box represents an alternatively skipped
exon, which has ESE and ESS motifs that can be recognized by splicing factors. The flanking
introns of this exon harbor ISE and ISS motifs. Interactions between the splicing factors and the
core splicing machinery (U1, U2 snRNPs, etc.) are illustrated. Splicing enhancers (ESEs, ISEs)
normally promote exon inclusion, which is represented by the arcs with arrowheads, whereas
splicing silencers (ESSs, ISSs) repress exon inclusion, which is represented by flat-headed arcs.
Genetic variants may disrupt splicing motifs and alter the binding strength of splicing factors
(illustrated by the x). Other mechanisms such as RNA modifications or RNA secondary structures
may also affect alternative splicing, which are not illustrated in this diagram. ESE: exonic splicing
enhancer; ESS: exonic splicing silencer; ISE: intronic splicing enhancer; ISS: intronic splicing
silencer; 5'ss: 5' splice site; 3'ss: 3' splice site and BP: branch point

library construction is the first critical step. Different library preparation protocols
were developed to study various biological questions and thus have their own
merits and limitations [32, 33]. In addition, RNA-Seq library generation protocols
often need optimization for specific RNA samples based on sample quality, con-
centration, and other variables. In large-scale experiments, batch effects in
RNA-Seq data may be a critical problem to consider [34], which may mislead study
conclusions if not properly accounted for. Finally, RNA-Seq experiments are still
costly, especially for studies of alternative splicing. In such applications, reads
covering spliced junctions are examined closely to guide the identification and
quantification of alternative splicing. Thus, it is highly desirable to have a relatively
large number of spliced reads. Often-used settings of RNA-Seq in splicing studies
favor PE reads, long read length (e.g., >75 bp), and high sequencing depth
(=100 million PE reads for human samples) [35, 36].

Alternative approaches were developed to address some of the above challenges
in RNA-Seq. For example, RNA-mediated oligonucleotide annealing, selection,
and ligation with next-generation sequencing (RASL-Seq) allows for RNA-Seq of a
limited set of exons in hundreds or thousands of biological samples [37] (Fig. 2.2b).
Thus, it is ideal for large-scale analysis of up to 500 exons in complex networks or
pathways [37]. The main difference between RNA-Seq and RASL-Seq is the use of
oligonucleotides that recognize a specific spliced junction in the latter method.
After ligating the pairs of oligos, these specific RNAs are then isolated with
biotinylated oligo-dTs and pulled down with streptavidin-coated magnetic beads.
A unique barcode for each sample is incorporated during PCR, allowing for pooled
sequencing of >1500 samples per lane [37]. Analyzing expression of a limited
number of genes in many samples has clinical applications, such as screening for
drugs that inhibit splicing events implicated in cancer [38]. One factor of consid-
eration in RASL-Seq is the efficiency and specificity of ligation; Rnl2 was shown to
have higher efficiency than T4 ligase [39].
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Fig. 2.2 High-throughput experimental approaches for splicing detection. a RNA-Seq, the most
popular method for splicing analysis, begins with creating cDNA libraries of fragmented RNA.
Then, sequencing adapters are added to make a sequencing library, followed by PCR amplification
and sequencing. In data analysis, reads that span spliced exon junctions and those that are located
within exon bodies are identified bioinformatically to detect and quantify alternative splicing. This
method can provide data for many expressed exons (+++) in the sample of interest. The cost of
RNA-Seq is relatively high, which may limit the number of samples (+) that can be analyzed in a
specific study. b RASL-Seq requires a pair of pre-designed oligonucleotides that recognize specific
splice junctions of intact (i.e., unfragmented) mRNA. Biotinylated oligo-dTs with
streptavidin-coated magnetic beads are then used to pull down the RNA. Barcode incorporation
during PCR allows for pooled sequencing of ~ 1500 samples per sequencing lane. Compared to
RNA-seq, RASL-Seq is ideal for few (up to 500) exons (+) in hundreds or thousands of samples
(+++). ¢ SeqZip uses DNA “ligamers” to directly sequence long transcript isoforms, causing
intermediate regions to loop out. Compared to RNA-Seq and RASL-Seq, SeqZip is specialized for
targeting long transcripts

A limitation common to all sequencing-based methods is the sequencing read
length, which is typically much shorter than the full-length isoform of long tran-
scripts. Full-length isoforms are thus reconstructed computationally using over-
lapping reads, though there is always a degree of uncertainty [40, 41]. To overcome
this limitation, a new method SeqZip was recently developed [42] (Fig. 2.2¢). It
uses ~40-60nt DNA “ligamers” that recognize the 5’ and 3’ ends of single or
multiple alternatively spliced exons that may be thousands of nucleotides apart,
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causing the intermediate sequence to loop out [42]. Multiple ligamers hybridized to
the same transcript are then ligated together, thereby connecting distant exons in the
same transcript. Assessing the length and sequence of the DNA ligamers allows for
deduction of the full-length isoform. Thus, SeqZip greatly improves the ability to
sequence long transcripts.

Aside from the above-mentioned RNA-based approaches, protein-based
approaches may be used to identify changes in protein expression resulting from
alternative splicing events. Mass spectrometry has been used to identify alternative
splicing events in breast cancer [43]. Still, RNA-based approaches are far more
commonly used for alternative splicing identification. The choice of experimental
method depends on the experimental goal. As sequencing technology improves, so
will the ability to identify alternative splicing events.

2.2.1.2 Bioinformatic Algorithms for Analyzing Alternative Splicing
Using RNA-Seq

Current bioinformatic methods for analyzing alternative splicing in RNA-Seq can be
largely classified into two categories: exon-centric and isoform-centric. Exon-centric
approaches directly estimate the splicing level of each exon typically by calculating
its percent spliced-in (PSI) [4], a measure of the frequency of exon inclusion among
all mature mRNA molecules of the gene (also see reviews [44, 45]). In contrast,
isoform-centric methods aim to quantify the abundance of each alternative isoform
of the gene, which can be followed by further comparisons to determine differential
splicing [46—48].

The benefit of using exon-centric splicing detection is that the type and PSI of
each alternatively spliced exon are directly interrogated. Such single-exon infor-
mation is useful in designing experiments to validate and further examine these
events [36, 49]. PSI can be calculated in different ways. First, abundance of reads
aligned directly to alternative exon junctions is used, with the exon body reads
optionally included [36, 49]. However, it is difficult to precisely estimate the PSI
value in cases of complex alternative splicing. To overcome this problem, other
tools, such as SplAdder and DiffSplice [50, 51], adopt a splicing graph strategy to
capture the complexity of alternative splicing by building a graph of spliced iso-
forms where nodes represent exons and edges represent spliced introns. Input
RNA-Seq data are used to update the alternative path in the graph. The challenge in
these approaches is that the splicing graph can be complicated by poorly supported
events, so post-filtering is necessary to reduce false positives. In general,
exon-centric methods alone do not support identification of novel alternative
splicing events due to their requirement of gene annotation.

Instead of focusing on specific splicing events, isoform-centric methods use
RNA-Seq to construct isoforms and estimate their expression levels [52-55]. Most
tools also utilize the reference genome to guide isoform reconstruction, but others
perform de novo transcriptome assembly without relying on the reference genome.
The latter type is particularly helpful for alternative splicing analyses in species
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with poorly annotated genomes. Early isoform-centric methods were developed
under the assumption that the read distribution is uniform, though this is rarely the
case. New methods are now available to account for RNA-Seq read non-uniformity
[56, 57]. Another recent development for isoform-centric analysis is the
alignment-free approach, which bypasses the time-consuming alignment step by
building a hash index from the reference transcripts using sequence k-mers as keys
and applying an expectation maximization algorithm to estimate isoform abundance
[46, 47]. This approach speeds up the computational time considerably while
maintaining prediction accuracy. However, it remains to be evaluated whether such
methods perform well in the presence of sample-specific genetic variants.

Once alternative splicing is identified, both classes of methods provide a means
to detect differentially spliced events. The outcome from exon-centric analyses is a
list of differentially spliced events that can be directly used for further analysis (e.g.,
experimental validation, functional interpretation, and regulatory studies). On the
other hand, isoform-centric analysis captures the splicing complexity of a series of
related events within the same isoform, but further steps are often needed to pin-
point individual splicing events of interest. In Table 2.1, we summarize often-used
tools for splicing analysis.

2.2.2 Validation of Alternative Splicing Events

In silico tools that detect alternative splicing events based on RNA-Seq data usually
generate a large number of candidates. A subset of these events should be exper-
imentally validated in vivo or in vitro. Verification experiments for alternative
splicing events are readily carried out by reverse transcription followed by PCR
(RT-PCR) using primers that target flanking constitutive exons [58]. This strategy
works well for alternative splicing events in genes with intermediate or high
expression levels. In order to verify lowly expressed events, in vitro minigene
expression analysis by RT-PCR can be utilized [59-61]. Compared with in vivo
assays, the minigene system is able to validate events regardless of their endoge-
nous expression level. However, since only a limited region flanking the exon of
interest can be cloned into the minigene vector, this in vitro approach may not
faithfully reproduce in vivo splicing patterns. It should be noted that both types of
experiments are considered low-throughput and labor intensive, thus only validat-
ing a relatively small number of events.

High-throughput methods for validation of alternative splicing events are in great
demand and several such approaches are on the horizon. For example, RT-PCR
experiments may be scaled up when used in conjunction with microfluidic devices
[62]. In addition, recent methods, such as the “designer exons” approach [63], may
be further developed for this purpose. With the rapid technology development in
synthetic biology and genome editing, it is likely that high-throughput splicing
validation will soon become a reality.
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2.3 Methodologies for Studies of Splicing Regulation

Pre-mRNA splicing is regulated by a large number of cis-elements and trans-acting
factors. In this section, we will review the bioinformatic and experimental
approaches for the identification and analysis of splicing regulatory mechanisms.

2.3.1 Cis-Regulation of Alternative Splicing

2.3.1.1 Splice Site Consensus Sequence

Splice site sequences are among the best-characterized cis-elements in splicing
regulation, owing to the simplicity of their identification. Each internal exon is
flanked by a 5'ss and a 3'ss. Thus, splice site sequences can be easily collected
based on gene annotation. The majority of human exons are flanked by the GU-AG
canonical sequences. However, the splice site signals normally involve a much
longer sequence motif, which confers specificity and a dynamic range of splice site
strength. Using known splice site sequences as training data, many algorithms were
developed to predict splice site strength (see reviews [64, 65]). The most intuitive
model is the position weight matrix (PWM), which is straightforward to implement
but fails to consider the positional dependency between nucleotides in the splice site
[66]. Other algorithms adopt more sophisticated probabilistic models such as neural
networks or maximum entropy to more accurately estimate the splice site scores
[67, 68].

2.3.1.2 Branch Point Sequences (BPSs)

The prediction of BPS is challenging because its location in the intron can be highly
variable. For example, a BPS may be close to the 3'ss (~40nt upstream) or
100—400nt upstream of the 3'ss in the AG exclusion zone (AGEZ) [69].
Additionally, the BPS motif is highly degenerate [70] and multiple potentially
functional BPSs may exist in a particular intron. A number of bioinformatic
methods were developed to identify BPS and evaluate their strength. Human Splice
Finder [66] uses PWMs and the algorithm proposed by Gooding et al. [69] to search
for BPS candidates in a limited region. Another predictive approach makes use of
sequence conservation and partial sequence complementarity of U2 snRNA to the
BPS [71, 72]. A recent study showed that using machine learning methods such as
support vector machines together with polypyrimidine and other sequence infor-
mation could increase accuracy in BPS prediction [73]. Pastuszak et al. took
advantage of the fact that Splicing Factor 1 (SF1) recognizes BPSs and restricted
their motif analysis to sites with high SF1 binding affinity to predict BPS with
relatively high accuracy [74].
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Recently, a few studies used the NGS technology to identify BPS globally. In
the RNA-Seq data, a minority of reads may derive from the junction of the
5'ss-branch point of the intron lariat. A search for such reads has led to successful
identification of hundreds of BPS in human RNA-Seq data sets [75, 76]. The
advantage of these approaches is that they do not require prior knowledge about the
BPS locations or sequences. However, one drawback is that lariat reads are very
rare among those generated from standard RNA-Seq libraries. Thus, very deeply
sequenced data sets are needed to obtain adequate lariat read coverage. Another
NGS-based method, called CaptureSeq [77], was applied recently to identify BPS
[78]. In this method, tiling arrays were designed that contain oligonucleotide probes
to target the 5'ss-branch point junctions [78]. cDNAs from the RNA samples of
interest were then hybridized, eluted, and sequenced. As a complementary
approach, RNase R digestion was applied to enrich for reads containing BPS
without requiring pre-designed arrays. This study identified >50,000 human BPS in
>10,000 genes, which enabled further investigation of global features of this class
of splicing regulatory signal [78].

2.3.1.3 Splicing Regulatory Elements

Besides the core splicing signals, a large number of motifs in the exons or introns
can also regulate splicing (Fig. 2.1) [8]. Identification and characterization of these
SREs are instrumental to the understanding of splicing regulatory mechanisms. In
general, genome-wide experimental or bioinformatic screens have been designed to
identify SREs. Wang et al. developed the first large-scale screen of ESSs using
splicing reporter assays in cultured cells [59]. This effort successfully identified
hundreds of ESS sequences and shed light on the global properties of these ele-
ments. Later, a number of other experimental screens were carried out to identify
different types of SREs [79-82]. These studies greatly expanded the catalog of
known or predicted SREs without the associated trans-factors necessarily identi-
fied. Other experimental methods that pinpoint SREs for known splicing factors
will be discussed later.

In addition to the experimental approaches, bioinformatic methods are also
essential to SRE studies. Fairbrother et al. developed a motif comparison approach,
RESCUE-ESE, to identify ESEs by evaluating motif enrichment correlated with
different features of splicing [83]. Similar principles were applied later to identify
other types of SREs [84, 85]. A myriad of other bioinformatic methods were also
developed for this purpose, such as those based on comparative genomics [86],
PWMs [87], or machine learning techniques [88-91].

With the increasing number of SREs, a great deal of effort was dedicated to
understand the functional interaction among different elements and their
context-dependent roles in splicing regulation. For example, Bayesian networks
were used to study coevolutionary relationships of SREs in eukaryotes that reflect
functional interaction [60]. Bioinformatic and statistical methods, combined with
experimental approaches, were used to infer combinatorial function of different
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types of SREs [92-94]. The function of individual motifs (corresponding to one
splicing factor) was studied in detail via bioinformatic modeling and analysis to
reveal their context-dependent function globally [61, 95-97] (refer to [98] for a
detailed review of this topic).

2.3.2 Genetic Variants Associated with Splicing

Genetic variants [such as mutations or single-nucleotide polymorphisms (SNPs)] play
important roles in gene regulation because they can potentially alter cis-regulatory
motifs. Previous studies estimated that 15-60 % of point mutations that result in
human genetic diseases disrupt splicing [10, 99-102]. In recent years, exciting
progress has been made in analyzing the involvement of genetic variants in modu-
lating alternative splicing, which is reviewed in this section.

2.3.2.1 Splicing QTLs

Splicing quantitative trait loci (sQTL) analysis is an often-used method to identify
SNPs associated with splicing phenotypes. In this method, the correlation between
SNP genotypes and exon inclusion levels is examined using different means,
ranging from simple linear correlation to model-based analysis [103—105]. Early
sQTL studies used microarrays to detect isoform or exon expression levels, which is
rapidly replaced by RNA-Seq-based analysis. However, this method requires a
large number of samples to achieve adequate statistical power. In addition, sQTL
analyses only deduce correlative relationships, without the capability of pinpointing
the causal SNP for splicing alteration.

2.3.2.2 Machine Learning-Based Methods

In contrast to sQTLs, methods based on machine learning principles aim to predict
the functional (causal) SNP that modulates alternative splicing. Different types of
machine learning or statistical methods were adopted for this purpose [106—108].
One study used a random forest-based strategy and predicted exonic splicing-
altering variants [106]. Another study developed a splicing code where “code
quality” was optimized using information theory on a large number of features
[109]. This splicing code was applied to predict genetic variants that may alter
splicing [108-110]. One common challenge to such approaches is the limited
availability of training data sets that should include experimentally validated SNPs
with confirmed function in splicing and those that are known to have no influence
on splicing. To overcome this problem, previous studies used disease-causing
exonic mutations from existing databases as positive training data set and common
SNPs in the general population as negative data set (assuming they do not affect
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splicing) [106, 107]. In contrast, the splicing code-based studies used human
RNA-Seq data of different tissues to derive the code, without the need of direct
model training using splicing-related variants [108—110].

2.3.2.3 Allele-Specific Alternative Splicing

To infer genetic regulation of alternative splicing, another powerful approach is
built upon allele-specific expression (ASE) of genetic variants. ASE refers to the
biased expression of the two alleles of a variant in diploid cells. RNA-Seq data
provide single-nucleotide information that is appropriate for ASE studies. One
advantage of ASE analysis is that the two alleles of a variant serve as within-sample
controls of each other, which naturally eliminates the environmental and trans-
acting effects that might alter splicing patterns or introduce variance in the data
[111]. Nevertheless, one challenge in using RNA-Seq for ASE analysis lies in the
step of read mapping. It is now clear that standard mapping methods induce a
mapping bias that favors the reference allele of the genetic variant because the
reference genome is utilized in mapping [112, 113]. Various strategies were
developed to reduce this type of bias [27, 28]. Once ASE patterns are identified,
they can be further analyzed to detect allele-specific alternative splicing events, as
proposed in [25]. While sQTL studies and machine learning methods necessitate
many data points for correlative analysis or model training, the ASE-based
approach can predict splicing-associated genetic variants using RNA-Seq data of a
single individual. Thus, it is both cost-effective and computationally inexpensive.

2.3.3 Trans-acting Regulators of Alternative Splicing

2.3.3.1 Methods for Identification of Splicing Factors

Recently, an increasing number of RNA-binding proteins (RBPs) have been iden-
tified as regulators of splicing [98]. However, the associated splicing factors are not
yet known for a large number of SREs identified using the experimental or bioin-
formatic methods described above. To this end, a modified RNA affinity purification
method was used to identify trans-factors for known SREs [81, 82, 114]. In addition,
in vivo siRNA screens targeting known splicing factors were also used to reveal the
trans-factor for specific SREs [79, 115-117].

Previous efforts were also dedicated to predict or validate proteins with splicing
regulatory activity [98]. For example, a computational pipeline was designed to
search for proteins with splicing factor-like properties, which led to the discovery of
an SR-related protein with important function in neuronal tissues [118]. Given a
pool of RBPs, a previous study screened for splicing-related ones by examining the
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correlation of their expression with changes in levels of alternative splicing [119].
Combined with motif analysis, the authors successfully identified known and novel
splicing factors.

2.3.3.2 Methods for Identifying Binding Motifs of Splicing Factors

Given a splicing factor or RBP, a number of experimental methods were developed
to identify their binding motifs globally. These methods can be largely categorized
into two classes depending on their in vitro or in vivo nature. The Systematic
Evolution of Ligands by EXponential enrichment (SELEX) approach is one of the
in vitro methods [120]. SELEX was applied to identify ESEs and other SREs in
several studies [121]. Recently, this method was combined with microarray assays
to increase the throughput [122]. Another in vitro method called RNAcompete uses
in vitro transcribed RNA (structured or unstructured) for pull-down with an RBP of
interest, followed by microarray analysis of the bound RNA [123]. Binding motifs
of over 200 RBPs were determined by this method [119]. More recently, a new
in vitro method called RNA Bind-n-Seq (RBNS) was developed to improve
quantification of the sequence and structural specificity of RBPs [124]. Besides
canonical motifs, RBNS identified additional near-optimal binding motifs, which
were shown to be functional in vivo [124].

To identify global in vivo binding sites of RBPs, the most widely used method is
UV cross-linking and immunoprecipitation (CLIP) followed by sequencing
(CLIP-Seq) [125]. Variations of this method are also used for different applications,
including high-throughput sequencing of RNAs isolated by CLIP (HITS-CLIP)
[126], photoactivatable-ribonucleoside-enhanced cross-linking and precipitation
(PAR-CLIP) [127], and individual-nucleotide resolution UV cross-linking and
immunoprecipitation (iCLIP) [128]. Detailed discussions of these methods are
provided by previous reviews [129, 130]. Briefly, CLIP-based methods have rela-
tively high sensitivity and specificity compared to RNA immunoprecipitation alone.
However, the cross-linking efficiency is generally limited in regular CLIP, which is
improved in PAR-CLIP via the usage of 4-thiouridine, a photo-activated nucleotide.
Deletions, substitutions, or insertions usually occur near the cross-linking sites in
CLIP-Seq/HITS-CLIP [131], whereas T-to-C substitutions are observed near the
cross-linking sites in PAR-CLIP. These mutations can serve as diagnostic features to
pinpoint binding sites. Nonetheless, accurate read mapping tolerating such mutations
is challenging. Currently, bioinformatic tools are designed to handle read mapping,
cluster calling, and motif enrichment. In the future, development of tools that inte-
grate these basic analyses with RNA secondary structure, evolutionary conservation,
and in vitro binding data will tremendously facilitate a systematic understanding of
protein—RNA interaction.
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Notably, the ENCODE Consortium has devoted great efforts to generate
CLIP-Seq data of about 200 RBPs. In addition, shRNA knockdown experiments of
each RBP are carried out followed by RNA-Seq in cultured cells (K562 and
HepG2). These data sets will facilitate identification of splicing regulatory motifs,
analysis of splicing factor functions, and generation of global regulatory maps of
these RBPs.

2.3.4 Splicing Code

While most existing methods focus mainly on one or a few aspects of splicing
regulation, Barash et al. took a step further to assemble a “splicing code” by
integrating hundreds of RNA features and the alternative splicing patterns of a wide
panel of tissues [109]. This model takes as input exon sequences of interest and
their flanking introns, and recursively selects for features and parameters that
maximize the “code quality.” The code was later improved using Bayesian neural
networks on an expanded list of RNA features [132, 133] and applied to predict
splicing-altering disease mutations [108]. The above work mainly focused on
analysis of alternatively skipped exons. A more recent splicing code was designed
to identify RNA sequence features that categorize several major classes of alter-
native splicing, including exon skipping, alternative 5'ss, and alternative 3'ss exons
[134]. This work demonstrated that RNA sequence features (splice sites, conser-
vation levels, and exon/intron architecture) confer strong discriminatory contribu-
tions to classify different types of splicing.

Current versions of the splicing code are not able to predict absolute levels of
exon inclusion, but rather focus on predictions of relative changes in splicing across
tissues or in the presence of genetic mutations. Future development of the splicing
code could be empowered by consideration of regulatory networks of multiple
splicing factors, epigenetic influence, and kinetic aspects of splicing, some of which
are discussed below.

2.3.5 Useful Databases

Over the years, the splicing community has built many databases and Web
resources to include data on global profiling of alternative splicing and systematic
analysis of splicing regulatory mechanisms. Table 2.2 summarizes some of these
resources ranging from catalogs of alternative splicing events to disease-related
mutations that affect splicing.
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2.4 Ongoing Questions

2.4.1 Gene Expression Kinetics and Co-Transcriptional
Splicing

With the advent of RNA-Seq and related methodologies described previously in this
chapter, it is now possible to study kinetics of gene expression and splicing on the
global scale. It was recently shown that several steps in RNA processing often, but
not always, occur co-transcriptionally, including capping, splicing, and polyadeny-
lation, allowing for efficient and accurate pre-mRNA maturation (reviewed in
[121, 135, 136]). In particular, co-transcriptional splicing depends on the rate of RNA
Pol I elongation with the idea that slower elongation allows more time for splicing to
complete. Pol II elongation can be affected by nucleosome positioning, DNA
methylation, histone modifications, and chromatin remodeling [137, 138] (Fig. 2.3).
Additionally, the C-terminal domain of RNA Pol II can be post-translationally and
reversibly modified to guide interactions with different proteins involved in RNA
processing. Thus, chromatin modifications, transcription, and splicing are all inter-
connected processes [136, 137].

To study dynamic regulation of gene expression and/or co-transcriptional
splicing, nascent RNA must be captured. Modified RNA-Seq methods such as
genomic run-on sequencing (GRO-Seq) or sequencing of 4-thiouridine-labeled
RNA may be analyzed in conjunction with RNA-Seq [139-141]. Additionally, cell
fractionation and selection of non-polyadenylated RNA in the chromatin fraction
may be used. Recently, a native elongating transcript sequencing (NET-Seq)
approach was used by two groups to identify spliceosome-mediated cleavage, Pol IT
dynamics related to splicing, and antisense transcription [142, 143]. Figure 2.3
illustrates co-transcriptional splicing and other events described below including
RNA editing, mirtron biogenesis, and circRNA biogenesis.

2.4.2 RNA Modifications

RNA modifications such as methylation (primarily N®-methyladenosine, or m6A)
and RNA editing were not extensively studied until recently. m6A, originally
identified in tRNAs, rRNAs, and snoRNAs, was recently shown to be widespread
in mRNAs with potential impact on splicing, mRNA degradation, and RNA sec-
ondary structures [144, 145]. The most prevalent form of RNA editing is the
conversion of adenosine to inosine (A-to-I) via deamination, typically in
double-stranded RNA (dsRNA) regions by adenosine deaminases acting on RNA
(ADARs) (Fig. 2.3). In order for editing to affect splicing, it is expected to occur
before splicing is completed. Indeed, several lines of evidence suggest editing
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Fig. 2.3 Co-transcriptional splicing and related RNA products. Co-transcriptional splicing of two
introns with splicing rates o and f is shown. The following epigenetic factors are illustrated: DNA
methylation (m) enrichment in exons [138], dynamic phosphorylation (P) of the C-terminal
domain of RNA Pol II [137], and nucleosomes slowing down Pol II transcription. Splicing coupled
with RNA editing and the biogenesis of mirtrons and circRNAs are shown in the insets. RNA
editing can generate new splice sites (e.g., changing A to I may create a new AG 3'ss, RNA editing
inset, top [146]) and prevent circRNA biogenesis (RNA editing inset, bottom [151]). Mirtrons are
derived from lariats that are debranched by DBR1 and processed by DICER (mirtron biogenesis
inset [147]). QKI regulates the production of a subset of circRNAs (circRNA Biogenesis inset
[1551)

precedes splicing (reviewed in [146]), although exceptions do exist. These findings
are only the beginning of a new era of functional and mechanistic studies of RNA
modifications.

2.4.3 Splicing Generates Other RNA Species

Although introns are typically degraded after removal, certain introns can also be
further processed to generate other RNA species. For example, biogenesis pathways
of snoRNAs, mirtrons, and simtrons rely on intron splicing (reviewed in [147]).
Whereas canonical miRNA biogenesis depends on the microprocessor (DGCR8
and DROSHA), mirtrons depend on lariat debranching (Fig. 2.3) and simtrons
depend on Ul snRNP. Another RNA species underappreciated until recently are
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Fig. 2.4 Therapeutic approaches to modulate splicing. a Small molecule therapy. Phosphorylation
or dephosphorylation of SR proteins are regulated by CDC2-like kinase (CLK), dual-specificity
tyrosine-(Y)-phosphorylation-regulated kinase (DYRK), SR protein kinase (SRPK), and protein
phosphatase-1 (PP1). Inhibitors of these kinases and phosphatase affect the associated splicing
events. b Antisense oligonucleotides therapy. SR protein or other splicing factor binding sites can
be blocked by ASO to achieve specific alternation of splicing. ¢ Trans-splicing therapy. ASO
linked to a restoring normal exon can rescue an abnormal splicing event that may result due to
multiple mutations

circular RNAs (circRNAs) (reviewed in [148, 149]). It was shown that biogenesis
of certain circRNAs depends on intronic sequence content [150-152], which may
compete with pre-mRNA splicing [153]. Additionally, circRNAs can contain both
exons and introns, and two of these were shown to regulate gene expression [154].
The splicing factor QKI was shown to regulate production of many circRNAs
(Fig. 2.3) [155]. The biogenesis and functions of circRNAs are currently under
active investigation.

2.4.4 Global Misregulation of Splicing in Disease

Since splicing is required for RNA maturation, misregulation of splicing may lead
to disease states [11]. In addition to well-known splicing diseases, such as myotonic
dystrophy [156], there are several examples of point mutations in specific genes that
cause splicing misregulation (reviewed in [121, 157]). Furthermore, global splicing
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misregulation also characterizes some diseases such as cancer. The Cancer Genome
Atlas (TCGA, www.cancergenome.nih.gov) provides a wealth of genomic data
from cancer patients and controls, allowing for the study of global splicing alter-
ations within and across cancer types [158, 159]. Splicing abnormalities were also
shown in autistic brains [160]. Although splicing alterations in cancer are well
established, it is difficult to identify the mechanistic cause and functional signifi-
cance of these events, especially considering that up to hundreds of RBPs may be
involved in the regulation of thousands of alternative splicing events in both normal
and disease states [121, 157]. In the future, an understanding of the causes and
functional consequences may lead to splicing-targeted therapeutics.

2.5 Splicing as a Therapeutic Target

Given the critical roles of splicing misregulation in disease, a number of strategies
are under development to therapeutically correct aberrant splicing events. First,
small molecules can be used to directly modulate the activity of splicing factors
[161]. The advantage of this method is the ease of delivery and the potential for
individual-specific dosage control. As examples, small molecule inhibitors were
examined that target SR protein kinases (SRPKs), CDC2-like kinases (CLKs), or
protein phosphatase-1 (PP1), which can then modulate phosphorylation of SR
proteins (Fig. 2.4). However, such inhibitors often have off-target effects and affect
splicing of many genes.

A more targeted approach involves usage of antisense oligonucleotides (ASO),
reverse complementary sequences that bind to target mRNA sequences. Because
ASOs are sequence-specific, they can block binding of splicing factors at specific
loci and modulate alternative splicing. For example, aberrant splicing events caused
by an intronic mutation in the human PB-globin gene were corrected by ASO
treatment in a P-thalassemia mouse model [162]. In addition, clinical trials are
underway for ASO-based therapy of Duchenne muscular dystrophy and spinal
muscular atrophy [163]. Although ASO therapy overcomes the nonspecificity issue
of small molecules, their delivery is relatively difficult. Another method,
trans-splicing, is an effective strategy for repairing multiple mutations in exons or
transcripts. Also referred to as Spliceosomal-mediated RNA trans-splicing
(SMaRT) [164], this method can replace the entire mRNA sequence 5’ or 3’ of a
target splice site by trans-splicing between an ASO and the endogenous RNA [165].
This approach was proposed as a therapy for B-thalassemia to replace the first exon
of the B-globin gene resulting from aberrant splicing [166]. However, the delivery
of trans-splicing therapy is also challenging, as it necessitates incorporation of DNA
vectors to cells (10).
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2.6 Conclusions

In recent years, technological advances brought a fundamental shift in our approa-
ches to splicing-related questions. Global analyses that combine high-throughput
experimental assays and bioinformatic methods are becoming indispensible. As a
result, numerous novel insights have been revealed regarding the landscape of
alternative splicing and the regulatory mechanisms of splicing in various cell types.
These global discoveries constitute a foundation for further mechanistic and func-
tional studies in model systems and translational research. However, there still exist
many challenges in handling high-throughput experiments and data analysis. We
expect that these challenges will be addressed via methodology development
and standardization, which will further catalyze exciting discoveries in splicing
research.
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