
Chapter 2
Mid to Late Quaternary Landscape and Environmental
Dynamics in the Middle Stone Age of Southern South Africa

Andrew S. Carr, Brian M. Chase, and Alex Mackay

Abstract The southern Cape of South Africa hosts a
remarkably rich Middle Stone Age (MSA) archaeological
record. Many of the associated caves and rock shelters are
coastal sites, which contain evidence for varied occupational
intensity and marine resource use, along with signs of
notable landscape, environmental, and ecological change.
Here, we review and synthesize evidence for Quaternary
landscape and climatic change of relevance to the southern
Cape MSA. We seek to highlight the available data of most
relevance to the analysis and interpretation of the region’s
archaeological record, as well as critical data that are
lacking. The southern Cape MSA occupation spans the full
range of glacial-interglacial conditions (i.e., 170–55 ka). It
witnessed marked changes in coastal landscape dynamics,
which although driven largely by global eustatic sea level
changes, were modulated by local-scale, often inherited,
geological constraints. These prevent simple extrapolations
and generalizations concerning paleolandscape change. Such
changes, including pulses of coastal dune activity, will have
directly influenced resource availability around the region’s
archaeological sites. Evidence for paleoclimatic change is
apparent, but it is scarce and difficult to interpret. It is likely,
however that due to the same diversity of rainfall sources
influencing the region today, compared to parts of the

continental interior, the southern Cape climate was relatively
equable throughout the last 150 kyr. The region’s paleoe-
cology, particularly in relation to the coastal plains exposed
during sea level lowstands, is a key element missing in
attempts to synthesize and model the resources available to
occupants of this region. Technology, settlement, and
subsistence probably changed in response to these
paleoclimate/landscape adjustments, but improvements in
baseline archaeological and paleoenvironmental data are
required to strengthen models of ecosystem variation and
human behavioral response through the MSA.
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Preamble

Recent findings have placed increased emphasis on the role
of southern Africa – notably the southern Cape coastal
region (Fig. 2.1) – in the story of the emergence of modern
humans (e.g., Marean 2010; Parkington 2010). A combina-
tion of the region’s unique environment, ecology, and
oceanographic setting, along with a series of artifact findings
suggestive of cognitively modern behavior (Henshilwood
et al. 2002, 2004, 2011; Marean et al. 2007; Brown et al.
2009), have led to the proposition that this region represents
an early habitat of modern humans, perhaps as long as
*165 ka (Marean et al. 2007; Marean 2010, 2011). Recent
interpretations of archaeological records emphasize the
unique environmental context and history of the southern
Cape (Marean 2011; Compton 2011).

The southern Cape’s Middle Stone Age (MSA; c. 280–
30 ka) archaeological record primarily comprises a series of
coastal cave occupations. These include Die Kelders Cave
(c. 90 km east of Cape Town), Blombos Cave (near to Still
Bay), Pinnacle Point (west of Mossel Bay), Nelson Bay
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Cave (near Plettenberg Bay) and Klasies River (on the
Tsitsikamma coast) (Fig. 2.1). A number of notable MSA
sites on the west coast of South Africa are also situated on
(e.g., Geelbeck [Kandel and Conard 2012] and Ysterfontein
[Klein et al. 2004]) or relatively close (e.g., Diepkloof
[Texier et al. 2010]) to the coastline. The significance of a
dynamic coastal landscape for site formation, site preserva-
tion and in potentially explaining the occupational history of
some sites has long been recognized (Tankard and Sch-
weitzer 1976; Van Andel 1989). With the development of
more robust chronologies for MSA occupations (Vogel et al.
1999; Feathers and Bush 2000; Feathers 2002; Jacobs et al.
2003, 2006, 2008, 2013; Tribolo et al. 2006, 2013;
Jacobs and Roberts 2008; Jacobs 2010; Henshilwood et al.
2011) it is becoming possible to explore potential links
between site occupation, human behavior, climate change,
and landscape change in increasing detail (e.g., Cochrane
et al. 2013).

This wider setting, comprising the regional landscape,
climate, and ecology, their dynamism and influence on early
human habitation, is the subject of this review. While the
contemporary climatic and ecological conditions in the

region are relatively well understood, evidence for pale-
oenvironmental change subsequent to the Last Interglacial
(MIS 5e) remains limited and ambiguous (Chase and
Meadows 2007; Chase 2010). New archaeological findings
have made refining this record and unraveling its com-
plexities a priority (Jacobs and Roberts 2008; Mackay
2011). An increasing pace of research, which includes
several recent publications concerning local paleoclimate
(Bar-Matthews et al. 2010; Chase 2010; Chase et al. 2013,
2015b; Quick et al. in press a, b) and landscape evolution
(Bateman et al. 2011; Fisher et al. 2010; Cawthra et al.
2014) means that a regional-scale and holistic
(re)consideration of paleoclimate and paleogeography is
timely.

In this context, it is the purpose here to:

1. Provide an overview of the contemporary environmental
setting of this region.

2. Synthesize newly published research concerning the
geomorphic evolution of this coastal environment,
highlighting the potential of these data to contribute to a
holistic understanding of coastal landscape change.

Fig. 2.1 Map of southern Africa with key marine and terrestrial
paleoenvironmental sites and records. Key 1 MD962094; 2 GeoB
1711-4; 3 Elands Bay Cave; 4 Diepkloof; 5 MD962081; 6 Die Kelders;

7 Blombos Cave; 8 Pinnacle Point-Crevice Cave; 9 Boomplaas Cave;
10 Nelson Bay Cave; 11 Klasies River; 12 MD962007; 13 MD962048;
14 Cold Air Cave; 15 MD79257; 16 MD79254
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3. Analyze the currently available paleoclimatic data, and
identify spatial, temporal, and interpretative gaps.

4. Consider, the relevance or potential relevance of points 2
and 3 for MSA archaeological research in this region.

Spatial and Temporal Scope

We limit our discussion largely to the temporal framework
established for this volume, which spans MIS 6-2 (190–
12 ka). This is broadly commensurate with the latter half of
the MSA in southern Africa (Lombard 2012). It also
includes the occurrences of the Still Bay and Howiesons
Poort industries (dating to *73.5–70.5 ka and *66–58 ka,
respectively; Jacobs et al. 2008), which have attracted par-
ticular interest (Jacobs et al. 2008; Compton 2011; McCall
and Thomas 2012; Sealy 2016). Geographically (Fig. 2.2),

we focus on the southern South African coastline from Cape
Town to Port Elizabeth, which incorporates a number of
important environmental facets: (1) South Africa’s winter
rainfall zone (WRZ), which presents a climatic gradient from
the winter rainfall dominated environs of Cape Town,
through the year-round rainfall zone (YRZ) of the south
coast, to the interface with the summer rainfall zone
(SRZ) north of Port Elizabeth (i.e., “Axis B” of Chase and
Meadows [2007]); (2) the extensive offshore Agulhas Bank,
which was variously exposed as eustatic sea level changed
throughout MIS 6-2; (3) the peri-coastal region subject to the
climatic influence of the Agulhas Current and localized
near-coastal seasonal upwelling systems (Cohen and Tyson
1995); (4) the southern section of the diverse Cape Floristic
Region (CFR, Linder 2003). It is also the location of major
archaeological sites relevant to current debates surrounding
modern human origins: Die Kelders Cave, Blombos Cave,
the Pinnacle Point complex and Klasies River cave system.

Fig. 2.2 Map of South Africa’s southern Cape with regional
paleoenvironmental and archaeological sites. Topographic contours
are shown at 250 m intervals, while bathymetric contours are shown at
25 m intervals down to −125 m amsl, highlighting the extensive coastal

plain that existed south of Cape Agulhas during the Last Glacial
Maximum. EB = Elands Bay; DI = Diepkloof; CC = Crevice Cave;
Bl = Blombos; Bo = Boomplaas; DK = Die Kelders; NBC = Nelson
Bay Cave; KR = Klasies River
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Context

Given long-standing attempts to consider aspects of hominin
evolution in the context of global-scale climatic forcing, there
remains an impetus to provide contextual environmental
information for fossil finds or sites of human occupation.
These may be variously derived from local proxy data (per-
haps from the same strata as the fossil material) or archives of
“global-scale” change, epitomized by marine and ice core
archives (Behrensmeyer 2006; Kingston 2007; deMenocal
2011). The latter approach presents some fundamental diffi-
culties; primarily the assumption of direct and meaningful
linkages between “global” or “hemispheric” scale signals, and
“local scale” environmental informationwithin archaeological
sequences or single site archives (Behrensmeyer 2006;
Kingston 2007; Chase 2010). This “scale-gap” becomes
increasingly intractable deeper in the geological past, where
proxy records are more fragmentary and/or equivocal (King-
ston 2007).

In a region like South Africa, which lacks detailed ter-
restrial paleoenvironmental archives, this issue presents a
significant problem, even for the middle and late Pleistocene.
In fact, this scale issue has been a point of contention for
many years (cf. Butzer 1984). Notwithstanding this, con-
siderable progress has been made since Butzer’s (1984)
work; both in terms of the number of published proxy
records and associated chronological control (Chase and
Meadows 2007; Jacobs et al. 2008; Mitchell 2008).

Archaeology and the Coastal Landscape

An additional aim here is to consider information pertaining
to wider Quaternary landscape change. Such data reflect our
improved understanding of coastal geomorphic responses to
long-term global climate forcing. The southern Cape land-
scape changed radically throughout MIS 6-2, primarily in
response to global eustatic sea level changes (Van Andel
1989; Butzer 2004; Fisher et al. 2010; Cawthra et al. 2014).
Our understanding of the nature and effects of such changes
is increasingly supported by developments in geochronology
and geophysical surveying. With such information we can
begin to develop hypotheses on the nature of long-vanished
landscapes on the submerged continental shelf.

Given, their potentially equable and resource-rich (eco-
tonal) settings, coastal environments have been variously
highlighted as “refugia” and “migrational routes” for ancient
human populations (inter alia: Stringer 2000; Bailey and
Flemming 2008; Finlayson 2008; Compton 2011; Lambeck
et al. 2011). Several workers in South Africa have also

emphasized this, and have highlighted the marine environ-
ment as a source of reliable food resources through the
vagaries of Pleistocene climate. Such marine resource usage
has also been considered to provide clues concerning human
behavior (Parkington 2003; Marean et al. 2007; Marean
2010, 2011). This interesting issue is not entirely unique to
the southern Cape record, and has also been considered in the
context of Neanderthal behavior (Stringer et al. 2008).
Notwithstanding this, shell middens along the South African
coast are widely distributed, both within rock shelters and the
wider landscape. Marked contrasts between MSA and Late
Stone Age (LSA) midden compositions have been reported,
and the significance of these differences has been debated
(Parkington 2003; Klein et al. 2004).

In the African context, the specific role of the continental
margins as “refugia” during periods of aridity within the
continental interior has been highlighted in various studies
(Walter et al. 2000; Faure et al. 2002; Hetherington et al.
2008; Compton 2011). However, with the exception of the
environmental archives provided by the East African lakes
(e.g., Scholz et al. 2007; Castañeda et al. 2009) the conti-
nental Quaternary paleoclimatic record is sparse and geo-
morphic evidence of paleo-aridity in particular has proved
difficult to interpret (Chase 2009; Thomas and Burroughs
2012; Burrough 2016). Although blanket claims of “Qua-
ternary aridity” or “glacial aridity” should be treated with
caution, phases of enhanced late Quaternary aridity can be
identified within the southern African interior (e.g., Chase
2009, 2010; Chase et al. 2009, 2011; Chevalier and Chase
2015; Collins et al. 2014; Dupont et al. 2011; Lancaster
2002; Partridge et al. 1997; Scholz et al. 2007; Shi et al.
2001; Stager et al. 2011; Stuut et al. 2002; Thomas and
Burrough 2012; Truc et al. 2013). Such periods of interior
aridity are not necessarily restricted to, or specifically char-
acteristic of “glacial” periods, but an emerging theme in
southern African research has been the hypothesis that the
coastal margins may have been of increased importance for
human habitation during periods of interior aridity (e.g.,
Morris 2002; Hetherington 2008; Parkington 2010; Comp-
ton 2011; Blome et al. 2012). In the southern Cape this idea,
perhaps to some extent, reflects the relatively mesic condi-
tions we see in this region today (notably in the Knysna
area). However, today’s largely aseasonal and relatively
humid rainfall regime along parts of the southern Cape owes
its existence to the balanced influence of temperate and
tropical rainfall systems, and this scenario is almost certainly
sensitive to perturbations in global and regional circulation
systems (Stuut et al. 2004; Chase and Meadows 2007; Chase
2010; Chase et al. 2013).

Understanding human occupation of the coastal zone is a
challenging and inherently interdisciplinary task. Westley
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and Dix (2006) emphasize that coasts may: (1) represent
equable and stable habitats; (2) offer uniformity in envi-
ronment along-shore; (3) offer diversity and productivity in
terms of resources; and (4) offer simplified landscapes for
migration and navigation. Yet, they also note that these
propositions should not be assumed. Inferences to this effect,
based on archaeological investigations at a single site should
be treated with caution. All modern coastal landscapes are
geologically young, and the nature of paleocoasts must be
inferred from preserved geological and geomorphic evi-
dence. Most interpretations are derived from fragmentary
evidence sampled largely in the subaerial landscape. Evi-
dence for landscapes on the submerged continental shelf has,
for obvious reasons, been largely lacking. Recent geophys-
ical surveying approaches suggest that there is potential to
resolve this issue (Cawthra et al. 2014).

Contemporary Setting and Drivers
of Change

Landscape

The landscape of the southern Cape is today dominated by
two key elements: (1) the Cape Fold Belt Mountains; and
(2) a coastal platform. The Cape Fold Belt formed from the
orogeny of the Ordovician Table Mountain Group
(TMG) sandstones during the late Paleozoic, and today the
eroded remnants of these mountains form a series of broadly
coast-parallel ridges separating the southern Cape from the
continental interior (Deacon et al. 1992; Compton 2011).
The breakup of Gondwana had a fundamental influence on
the southern Cape coastline; it created an initial platform
seaward of the Cape Fold Mountains (Partridge and Maud
1987; Marker and Holmes 2010) (Fig. 2.2) and, due to a
series of half-grabens formed during the fragmentation,
divided the continental margin into distinct sedimentary
basins (Broad et al. 2006). This structural control produced a
series of resistant TMG sandstone headlands separated by
basins (today these broadly correspond to coastal embay-
ments) containing Late Mesozoic clastic sedimentary infills
(e.g., Enon and Kirkwood Formations), as well as Neogene
and Quaternary eolian and marginal-marine sedimentary
deposits (Malan 1990; Marker and Holmes 2010) (Fig. 2.2).

Coastal Geomorphology

The varied geological, geomorphic, and marine settings of
the southern Cape provide a diversity of environments and
habitats, with a notable dichotomy between the rocky

headlands and open sandy beaches. The South African
continental shelf widens substantially on the south coast,
forming the Agulhas Bank (Fig. 2.2). The southern Cape
experiences high open water wave heights (median heights
*2.5 m at Knysna; Whitfield et al. 1983) and swell direc-
tions are predominantly from the southwest (Davies 1980).
Long-shore sediment fluxes are typically in an easterly
direction (Martin and Flemming 1986) and tidal ranges are
generally low. The combination of the high wave energies
and the low tidal ranges means that the southern Cape is
classed as a wave-dominated coastline (Davis and Hayes
1984). Thus, with the exception of rocky headlands the
coastal geomorphology is dominated by “barrier” landforms,
specifically, wave-deposited sediments and associated land-
forms (e.g., Davis and Hayes 1984; Roy et al. 1994). The
refraction of incoming swell waves means that wave energy
is generally concentrated at headlands, and the embayments
are characterized by wide intermediate to dissipative bea-
ches. Many embayment beaches are backed by extensive
coastal dunes, which in a number of locations are currently
active (Tinley 1985). Seawards-younging sequences of
eolian deposits imply that this situation has persisted since
the Pliocene (e.g., Roberts et al. 2008).

East of Cape Agulhas, notably in the Still Bay and
Knysna areas, landwards dune migration is limited by
abundant vegetation and during the Pleistocene parabolic
dunes stacked upon one another to form large composite
barrier dune systems (Roberts et al. 2008, 2009; Bateman
et al. 2011). Submerged barrier features are present on the
continental shelf, notably off the Wilderness coast and bear
testament to the close links between dune formation and
relative sea level change in this region (Martin and Flem-
ming 1986; Cawthra et al. 2014).

The headlands bounding the half-moon bays are fre-
quently rocky and represent impediments to longshore sed-
iment transport. In some locations this is facilitated by
headland-bypass dune systems (Tinley 1985). These are
long-established landscape elements (Bateman et al. 2004,
2008; Carr et al. 2006a; Carr and Botha 2012).

Climate

The climate of the southern Cape is a function of: (1) the
interplay between the South Atlantic and Indian Ocean high
pressure cells, and the cyclonic westerly systems; and (2) its
position relative to the warm Agulhas Current, which, in
conjunction with heating contrasts between the land and
ocean, enhances moisture delivery to the coast (Tyson 1986;
Jury et al. 1993; Lindesay 1998). For the majority of
southern Africa, the austral summer is the wet season. This is
driven by the southward migration of the ITCZ and the
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influence of the tropical easterlies, producing a flux of
moisture from the Indian Ocean. During the austral winter,
the expansion of the circumpolar vortex causes the westerly
cyclonic systems to track further north, bringing rain to the
WRZ of the southwestern Cape (Fig. 2.3), while stable
anticyclonic (dry) conditions prevail in the SRZ. The
southern Cape represents a complex transitional zone
between these regimes and large parts of it experience a
year-round rainfall regime (YRZ) that derives moisture from
both westerly systems and the Indian Ocean, along with
more localized coastal disturbances (Tyson and
Preston-Whyte 2000). Moving east of Cape Town, rainfall
becomes less seasonal and shifts from a near semi-arid cli-
mate (*450 mm a−1 at Struisbaai) to a more temperate
climate (*800 mm a−1 at Knysna).

It has long been argued that the positioning of the west-
erly cyclonic systems was a key driver of late Quaternary
climatic variability in southwest Africa (van Zinderen

Bakker 1967, 1976; Cockcroft et al. 1987). This has been
linked to shifts in the position of the subtropical front
(STF) (Fig. 2.3), which responds to the extent of Antarctic
sea ice (van Zinderen Bakker 1976; Stuut et al. 2002, 2004;
Chase and Meadows 2007; Chase 2010; Chase et al. 2013).
These ideas are discussed further later in this review.

Ecology

The southern Cape lies largely within the Cape Floristic
Region (CFR; Goldblatt and Manning 2002). The CFR
comprises a number of separate biomes (Fig. 2.4), which are
closely associated with specific soil types (Cowling and
Holmes 1992; Low and Rebelo 1996). Fynbos (“fine bush”)
is characterized by small, needle-leafed ericoid shrubs, along
with plants characterized by larger sclerophyllous leaves

Fig. 2.3 Map of southern Africa with dominant atmospheric (thin
black arrows) and oceanic circulation patterns (thick gray arrows).
Major oceanic features include the Benguela Current (BC), the
subtropical Front (STF), and the Agulhas Current (AC). Continental
shading indicates the distribution of winter rain as a percentage of the
annual total (darkest = 80%, lightest = 0%). Key marine and terrestrial

paleoenvironmental sites and records are also shown: 1 MD962094; 2
GeoB 1711-4; 3 Elands Bay Cave; 4 Diepkloof; 5 MD962081; 6 Die
Kelders; 7 Blombos Cave; 8 Pinnacle Point-Crevice Cave; 9 Boom-
plaas Cave; 10 Nelson Bay Cave; 11 Klasies River; 12 MD962007; 13
MD962048; 14 Cold Air Cave; 15 MD79257; 16 MD79254
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(Cowling and Holmes 1992). Today it is dominated by plants
using the C3 photosynthetic pathway (Vogel et al. 1978).

Fynbos tends to be found as either upland Montane Fyn-
bos, which is associated with the nutrient-poor sandy soils of
the Cape Fold Belt or Lowland Fynbos, which is often
associated with calcareous soils and dune sands. On
finer-gained substrates (e.g., Bokkeveld Shale) Renosterveld
is a common vegetation type, which, like fynbos, is broadly
classed as a small-leaved shrub land (Cowling 1983; Cowling
et al. 1988). It is often dominated by “Renosterbos”
(Elytropappus rhinocerotis), and is associated with a higher
proportion of grasses (including grasses using the C4 pho-
tosynthetic pathway where more summer rains occur) and
succulents (which will include CAM photosynthesis; contra
Bar-Matthews et al. 2010). Its potential sensitivity to
changing rainfall, in terms of the proportions of succulents
and fynbos species has been noted (Cowling 1983; Low and
Rebelo 1996), and possibly identified within the paleoeco-
logical record (Carr et al. 2006b; Quick et al. in press a, b).
Thicket vegetation is associated with coastal dunes (Rebelo
et al. 1991). A notable component of the southern Cape’s

vegetation is the afromontane forest of the Knysna area
between Mossel Bay and Klasies River. This requires rela-
tively humid year-round rainfall conditions and is relatively
drought-sensitive (Cowling 1983), tending to be associated
with *800–1100 mm mean annual precipitation and low
rainfall seasonality (a coefficient of variation of <17).

The responses of these vegetation communities during the
Quaternary are poorly constrained. Evidence from the
Cederberg in the Western Cape suggests that during the late
Quaternary, Montane Fynbos was largely buffered from
regional-scale climatic changes (Chase et al. 2015a, 2011) by
the wide climatic tolerances of its plant genera, specific
edaphic constraints (association with low nutrient sandstone
substrates; Campbell and Werger 1988) and relatively reli-
able orographic rainfall (Cowling 1983; Meadows and Sug-
den 1993; Chase et al. 2011; Quick et al. 2011; Valsecchi
et al. 2013). The paleoecology of the renosterveld (lowland
fynbos, thicket and afromontane mosaic on the coastal low-
lands), which is perhaps most relevant to the region’s MSA
archaeology, is discussed later, but is very poorly understood.
Prior to the arrival of pastoralists and later, European

Fig. 2.4 Contemporary biomes of the southern Cape region. EB = Elands Bay; DI = Diepkloof; CC = Crevice Cave; Bl = Blombos;
Bo = Boomplaas; DK = Die Kelders; NBC = Nelson Bay Cave; KR = Klasies River
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colonists, a diverse range of fauna is thought to have occu-
pied the southern Cape region (see Boshoff and Kerley 2001).
In general, the large herbivores comprised of mixed feeders
and browsers, including inter alia: African Elephant (Lox-
odonta africana), Cape Buffalo (Syncerus caffer), Red Har-
tebeest (Alcephalus buselaphus), Bontebok (Damaliscus
dorcas dorcas), Quagga (Equus quagga), Blue Antelope
(Hippotragus leucophaeus) and Cape Mountain Zebra
(Equus zebra zebra).

Quaternary Coastal Dynamics

Quaternary Sea Level Change

Notable occupational hiatuses, particularly between MSA
and LSA deposits, in the southern Cape coastal archaeo-
logical record have long been linked to eustatic sea level
change(s) during MIS 5-2 (Van Andel 1989). Benthic oxy-
gen isotope data imply 125–130 m of eustatic sea level
change across glacial-interglacial cycles (e.g., Waelbroeck
et al. 2002). Given the region’s apparent tectonic stability
(Roberts et al. 2012), this is probably a reasonable approx-
imation for the southern Cape during the middle and late
Quaternary (Ramsay and Cooper 2002; Compton 2011). Sea
level change of this magnitude would have expanded the
coastal platform by as much as *50,000 km2 during sea
level lowstands (Fig. 2.2).

Sea Level Change, Site Formation and Site Occupation
Evidence from the MSA deposits of Pinnacle Point Cave 13b
implies that fluctuating marine resource use duringMIS 6 was
correlated with eustatic sea level fluctuations (Marean et al.
2007). Compton (2011) considered the significance of relative
sea level change from a broader perspective, emphasizing its
role in moderating resource availability, competition, hunting
practices and population density as the exposed continental
shelf expanded and contracted. He also emphasized the
importance of sea level change in controlling migration (of
humans and other fauna) to and from the continental interior
via Cape Hangklip and Plettenberg Bay. Such routes would
have avoided the Cape Fold Belt and the presumed arid
Karoo, but are now on the submerged continental shelf
(Fig. 2.2). Periods of potentially easier access to the southern
Cape lowlands via these east and west routes occurred only
when sea levels were at least 75 m below present. Similarly,
Parkington (2010) noted the “pulsing of landscape availabil-
ity” on the continental shelf in the face of proposed periods of
aridity in the continental interior 160–125 ka and 80–60 ka.

Sea level highstands would have significantly reduced the
extent of the coastal lowlands and directly impinged on
some MSA occupations, with obvious implications for site

formation, occupation, and preservation (Hendey and Vol-
man 1986). In the middle to late Quaternary two significant
highstands exceeded contemporary sea level reaching
*13 m and 6–8 m above mean sea level (amsl) (Roberts
et al. 2012). Recent age constraints for the former suggest that
it relates to MIS 11 (391 ± 16 ka; 370 ± 14 ka to 388 ± 14 ka)
(Jacobs et al. 2011; Roberts et al. 2012). The Pinnacle Point
Cave 13b excavation contains potential evidence for this
highstand, with rounded boulders identified at the base of the
western excavation (Karkanas and Goldberg 2010). These
are overlain by a laminated facies, for which an average OSL
age of 385 ± 17 ka has been reported (Jacobs 2010).

The 6–8 m highstand (Tankard 1976a; Marker 1987;
Ramsay and Cooper 2002) holds interest for the archaeolog-
ical community as it is close to the altitude of some coastal
cave sites (Hendey and Volman 1986). Luminescence dating
has recently confirmed that deposits of this altitude most
likely relate to MIS 5e (127 ± 6 to 116 ± 9 ka) (Jacobs and
Roberts 2009; Carr et al. 2010a; Roberts et al. 2012) (Fig. 2.5).

In terms of its impact on coastal archaeological sites, a 6–
8 m MIS 5e highstand would not have flooded cave 13b at
Pinnacle Point, nor Blombos Cave (Henshilwood et al. 2001;
Marean 2010). At present, however, PP13b (15 m amsl) is the
only major southern Cape coastal site unequivocally occu-
pied during MIS 5e, although the exact timing in relation to
the highstand is unclear (Jacobs 2010). The densest occu-
pation of the site seemingly occurred after MIS 5e, between
100 and 90 ka (Jacobs 2010). Pinnacle Point Cave 9 is much
closer to sea level (c. 8–12 m amsl), but is protected by more
recent rock fall debris (Marean et al. 2004). The exposure of
this cave to the elements prior to the rock fall may explain the
more limited archaeology it contains (Marean et al. 2004).
The most recent ages from Blombos Cave (34 m amsl)
constrain the MSA occupation to between 101 ± 4 ka and
68 ± 4 ka (Henshilwood et al. 2011), which therefore post-
dates the MIS 5e highstand. The reliability of a previously
published age for the M3 phase of 143 ± 6 ka (Jacobs et al.
2006) is now questioned (Henshilwood et al. 2011).

There are as yet no published MSA records unequivo-
cally relating to MIS 5e at Die Kelders or Klasies River. Die
Kelders lies relatively close to the shore and the MIS 5e
highstand would likely have significantly impacted the site.
The base of cave sequence is only *2 m above modern sea
level (Tankard 1976b; Hendey and Volman 1986), implying
that it was uninhabitable until MIS 5d. Currently published
OSL ages provide a broad estimate of 80–60 ka for the MSA
occupation, which as might be expected, postdates MIS 5e
(Feathers and Bush 2000). The habitability of Klasies River
during and after MIS 5e has been debated (Hendey and
Volman 1986; Deacon and Lancaster 1988). The basal LBS
Member overlies beach deposits at c. 8 m amsl (Deacon and
Lancaster 1988; Deacon and Geleijnse 1988) and the faunal
assemblages in the LBS are reportedly not dissimilar to
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Holocene ones (Deacon 1995) implying that the site was
most likely occupied not long after MIS 5e – probably
*110 ka (Deacon 1995). More recent quartz OSL and
feldspar IRSL ages of 110–115 ka (UW282) for the LBS in

Cave 1 support this notion (Feathers 2002). The LBS is
overlain by the Rock Fall Member, the SAS member and the
Upper Member (which contains Howiesons Poort artifacts).
Single grain OSL ages now suggest that these were

Fig. 2.5 Main Diagram: Distribution of optical luminescence ages
(plotted in rank order) for eolian sediments along the southern Cape
coastline, plotted relative to the eustatic sea level curve of Waelbroeck
et al. (2002). Open circles are ages from the Wilderness Barrier dune
systems (Bateman et al. 2011). Filled circles are OSL ages from the
Agulhas Plain and Still Bay regions (Bateman et al. 2004, 2008; Carr
et al. 2006a; Jacobs et al. 2003; Roberts et al. 2008). Triangles
represent ages from pan-fringing lunette dunes on the Agulhas Plain

(Carr et al. 2006a). The dashed boxes represent phases of eolian activity
identified from statistical analysis of the Wilderness barrier dune OSL
chronology (Bateman et al. 2011). Age ranges for eolian sediments
within Blombos Cave (Jacobs et al. 2003), Pinnacle Point Cave 13b and
Crevice Cave (Bar-Matthews et al. 2010; Jacobs 2010) are marked
(shaded boxes). Inset The timing and magnitude of the southern
Cape MIS 5e sea level highstand (Carr et al. 2010a; Roberts et al. 2012)
relative to Waelbroeck et al.’s (2002) curve
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deposited between c. 72 and c. 58 ka (Jacobs et al. 2008;
Jacobs and Roberts 2008). Significant truncation of the
Klasies River deposits was caused by the mid-Holocene sea
level highstand (Deacon 1995), emphasizing the vulnera-
bility of low altitude coastal sites to marine erosion.
Mid-Holocene sea level probably peaked at 2–3 m amsl
between 7500 and 6000 cal BP (Compton 2001).

Landscape Responses to Sea Level
Change: Some Generalizations

While simple comparison between site altitude, global
eustatic sea levels, and/or geological evidence for the mag-
nitude of interglacial sea level highstands provides some
basic context for the occupational records of specific sites, the
response of wider sedimentary systems (and thus, the coastal
landscape) to Quaternary sea level change is more complex,
particularly within the embayed sections of the southern
Cape coastline. Due to the region’s tectonic stability, middle,
and late Pleistocene sea level highstands reached similar
points in the landscape, often reworking significant volumes
of poorly lithified calcareous sediments within embayment
fills (Roberts et al. 2008; Bateman et al. 2011).

Coastal responses to sea level change will comprise both
the large-scale lateral translation of the shoreline across the
continental shelf, as well as more subtle secondary effects,
which confound simple interpretations of paleocoastal con-
ditions and form. The lateral (onshore-offshore) response is a
function of various factors; viz., sediment supply, accom-
modation space and continental shelf gradient (e.g., Storms
et al. 2002; Cattaneo and Steel 2003). In addition, along-
shore sediment fluxes, induced by waves approaching the
shore obliquely, will respond to both changing wave energy
and incident wave angle (Ashton et al. 2001). At large
temporal and spatial scales the former will alter in response
to wave attenuation (controlled by offshore bathymetry),
while the angle of wave approach will respond to regional
swell-wave conditions, as well as local wind systems and/or
adjustment in the coastal plan-form itself (i.e., feedback
response; Ashton et al. 2001). All are mediated by inherited
geological characteristics (Roy et al. 1994).

The response of coastal locations at spatial/temporal scales
relevant to the occupation of specific archaeological localities
(scales of km and temporal scales of 102–103 years) is hard to
assess. At this scale, noteworthy alterations of coastal envi-
ronments need not occur in response to major environmental
perturbations (e.g., Cooper et al. 2007). Variability in coastal
environments reflects a subtle interplay of sediment supply,
wave energy, and alongshore wave energy gradients, tidal
currents, storm activity, and geological constraints.

Understanding and predicting coastal sedimentary responses
to sea level change, even over decadal and centennial time-
scales, is therefore a huge challenge (Cooper and Pilkey
2004). Hints of local-scale change (albeit over longer time-
scales) within the southern Cape geomorphic record are
apparent. For example, at Cape Agulhas there was seemingly
a shift from a rocky shore to a sandy shore setting withinMIS
5e (Carr et al. 2010a). While at Pinnacle Point, which is
presently rocky headland, the archaeological record contains
evidence of eolian dune formation during MIS 5, which
in-filled and sealed caves (Marean 2010). These dunes would
undoubtedly have required a sandy beach as a sediment
source; implying wave energywas less focused on this section
of coast, allowing beach, and dune formation. Such changes
imply that in headland locations accommodation space and/or
sediment supply all respond to major sea level perturbations.
Thus, models of coastal landscape based on modern bathy-
metry provide a useful means by which to consider the
position of the coastline and the likely access to resources (i.e.,
site to shore distances) (Fisher et al. 2010), but the complexity
of coastal sedimentary systems and their potential to respond
to relatively subtle changes in climate, sea level, and sediment
supply should be remembered, as should the uncertainties
associated with eustatic sea level estimates derived from
locations distant from southern Africa.

Landscape Responses to Sea Level Change:
Coastal Eolian Systems
Our understanding of the timing and mechanisms of coastal
dune formation on the southern Cape has grown considerably
(Vogel et al. 1999; Shaw et al. 2001; Bateman et al. 2004,
2008, 2011; Carr et al. 2007, 2010a; Roberts et al. 2008,
2009). Some of this work was specifically motivated by
reports of eolian sediments within cave sequences and shell
middens within dune fields, but ultimately, it speaks more
broadly to wider questions of coastal landscape adjustment
and evolution.

A synthesis of some 104 coastal dune OSL ages from the
southern Cape illustrates the drivers of eolian sediment
accretion and preservation over glacial-interglacial timescales
in what are presently subaerial environments (Fig. 2.5). The
record suggests that dune formation was strongly mediated by
eustatic sea level change, with dune activity broadly associ-
ated with periods of relatively high sea level (i.e., MIS 1, MIS
5e, and MIS 7). This is consistent with mechanisms of con-
temporary dune formation, whereby parabolic dunes do not
migrate far from their primary sediment source, the modern
shoreline. During sea level regressions eolian activity tracked
the receding coastline across the Agulhas Bank, evidence for
which is preserved in numerous coast-parallel dune ridges
identified at depths of−40,−50,−65 to−70, and−80 to−90m
(Birch et al. 1978; Flemming et al. 1983; Martin and
Flemming 1986) and at−33,−42,−77,−93,−97,−103,−108
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and −115 m in the Wilderness embayment itself (Cawthra
et al. 2014). The orientation of modern parabolic dunes and
analysis of bedding in Quaternary dunes is consistent with
south-westerly to north-westerly formative winds, implying
an association with winter cyclonic systems (Flemming et al.
1983; Carr et al. 2006a; Roberts et al. 2008) and more
specifically, that wind strength and sediment supply, rather
than seasonal aridity, were/are the key factors mobilizing
coastal dunes along the southern Cape.

In evaluating the response of coastal eolian systems over
finer timescales, such as MIS 5e through to MIS 5a (Bate-
man et al. 2004: Fig. 9) identified separate phases of coastal
eolian activity associated with MIS 5e, MIS 5c, and MIS 5a.
The current synthesis (Fig. 2.5), comprising far more OSL
ages from a longer stretch of coastline, suggests that such a
separation is less clear at regional scales. Analysis of the
OSL age distribution for the Wilderness Embayment barrier
dunes reveals clusters of activity centered at c. 87–92 ka,
120–130 ka, 143–159 ka, and 221–241 ka (Bateman et al.
2011). Perhaps more important for the interpretation of
single archaeological sites, the same study demonstrated that
stratigraphic records at single sections of coastline (i.e.,
spatial scales of a few km) can differ significantly. This
could be explained by recourse to the local bathymetry,
which modulates the dune accumulation history of a par-
ticular locale by determining the duration over which the site
was close to its beach sediment source (Bateman et al.
2011). The southern Cape geomorphic record thus demon-
strates both large-scale/long-term drivers of coastal geo-
morphic change (glacial-interglacial sea level change), as
well as local-scale variations in coastal response, driven by
sediment supply and inherited geological constraints (e.g.,
bathymetry). These impart site-specific variation in the pre-
served coastal stratigraphic record.

The presence of eolian sediments within coastal rock
shelters is abundantly clear at sites, such as Blombos Cave
and Pinnacle Point. So far, published OSL ages for Pinnacle
Point sites show good correspondence with the wider eolian
geomorphic record (Fig. 2.5). For example, the LC-MSA
(Upper) at Pinnacle Point 13b preserves evidence for a large
dune that sealed the cave at 93 ± 4 ka (Jacobs 2010). Simi-
larly, the Crevice Cave site indicates dune formation at
90 ± 2 ka (Bar-Matthews et al. 2010). These are both asso-
ciated with the cluster of dune ages in the regional eolian
record associated with MIS 5b (87–92 ka) (Bateman et al.
2011) (Fig. 2.5). At Blombos, new OSL ages, as well as
previous TL ages and U-series dating constrain the M3 phase
to 97.0 ± 2.7 ka (MIS 5c), the M2 phase to MIS 5a (weighted
mean 82 ± 2 ka [MIS 5a]) and the M1 phase to 73 ± 3 ka (MIS
4/3; Henshilwood et al. 2011). Subsequent to the M1 Phase at
69 ± 4 ka, the cave was sealed by a coastal dune (BBC
Hiatus) (Henshilwood et al. 2001; Jacobs et al. 2003; Hen-
shilwood 2005), commensurate with the MIS 4 sea level

regression. What happened at Blombos during and around
MIS 5e is unclear at present, but to the east of Still Bay, a
major phase of (eolian) barrier dune construction occurred
between 140 ka and 121 ka, followed by later phases of
barrier accretion at 114 and 90 ka (Roberts et al. 2008). The
ages of the dune sands preserved in the cave (BBC Hiatus
69 ± 4 ka) and the eolianite remnants surrounding the cave
(70 ± 4 ka and 71 ± 3 ka; Jacobs et al. 2003) are thus rela-
tively young compared to both the eolianite east of Still Bay,
and the synthesis from the Wilderness Embayment (Bateman
et al. 2011), both of which imply that eolian activity was
much reduced after c. 90 ka. Thus, although the occupations
of Blombos and Pinnacle Point were seemingly influenced by
coastal dune formation, there is apparent variation in the
extent to which these phenomena reflect regional scale
climatic/sea level changes (e.g., PP13b), as opposed to local
geomorphic, geological, or preservational factors.

Sea Level Lowstands: Paleolandscapes
and Paleohydrology
The bathymetry of the shelf is such that the area of landscape
exposed off the southern Cape during MIS 5-3 was sub-
stantially less than that exposed relatively briefly during MIS
2 (Van Andel 1989) (Fig. 2.2). For instance, at Pinnacle
Point the shoreline between MIS 5e and MIS 3 was between
0 and 37 km south of the modern coast, extending to more
than 90 km at the Last Glacial Maximum (Fisher et al.
2010). This reflects the relatively steep shelf gradients close
to the shore and a much flatter profile at depths below *
−80 m (Dingle and Rogers 1972; Fisher et al. 2010).

The contemporary coastal platform, which lies between the
Cape Fold Belt and the modern shore, is therefore relatively
narrow compared to most of the Pleistocene. Today this
lowland landscape represents an “unusual” topography and
ecology (compared to the sandstone and fynbos vegetation of
the Cape Fold Mountains), but it would have comprised a
more substantial component of the landscape during the last
glacial cycle. Dingle and Rogers (1972) note a distinct contrast
in geological substrates between the western and the
central/eastern areas of the Agulhas Bank. The coastal margin
between Cape Town andCapeAgulhas is substantially rockier
(pre-Mesozoic) to greater depths compared to areas east of
Cape Agulhas. Recent sediment wedges are usually localized
and the outer boundary of the rocky inner shelf extends to the
140 m isobath (Rogers 1985; Gentle 1987). Compton (2011)
argued that this rocky terrain (especially between Cape
Hangklip and Danger Point) would have been a major
impediment for travel between the coastal lowlands and the
interior of the Western Cape for all periods in which relative
sea level was between 0 and 75 m below modern levels.

Given the strong edaphic controls on the region’s vege-
tation communities, the ecology of the continental shelf
during lowstands may have been strongly influenced by
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bedrock geology. The vegetation on rocky continental shelf
regions around the Cape Peninsula and Cape Hangklip may
not have been too dissimilar to modern fynbos vegetation. To
the east, however, such quartzite exposures are limited more
to headlands and few assumptions concerning substrates on
the central and eastern Agulhas Bank can be made. It has
been proposed that they may have included include finer
grained, more nutrient-rich soil derived from Cretaceous
clays (Dingle and Rogers 1972; Compton 2011). On the
modern coastal platform today such finer grained soils are not
associated with fynbos vegetation and potential modern
analogues for such vegetation communities are more likely to
lie (for example) in the Bokkeveld shale communities (e.g.,
the Agulhas Plain), which are associated with Renosterveld
vegetation; Cowling et al. 1988) or Albany Thicket (Comp-
ton 2011). Renosterveld contains a grass component, which
will contain greater or lesser proportions of C3 and C4 taxa
depending on the annual distribution of rainfall (Mucina and
Rutherford 2006), and its periodic occurrence in what are
now offshore regions may offer some explanation for the
fluctuating proportions of grazing and browsing fauna in the
archaeological record (Deacon 1978; Klein 1976, 1983; Faith
2011a, b). At present such inferences are rather speculative.
The complex sedimentary dynamics associated with sea level
transgressions and regressions, this time across the conti-
nental shelf, will impart spatial variability in substrate com-
position, exposure, and preservation, irrespective of the
temporal vegetation dynamics driven by climatic changes
during the same periods. Notwithstanding, efforts are
underway to model the “palaeoscapes” of the now submerged
continental shelf (Marean et al. 2015).

Pleistocene Paleoenvironments
and Paleoecology

Various attempts have been made to synthesize paleoenvi-
ronmental evidence from the southern Cape (Deacon and
Lancaster 1988; Partridge 1990; Meadows and Baxter 1999;
Partridge et al. 1999). Even more recent reviews are, how-
ever, significantly limited by a lack of reliable data (Chase
2010; Chase and Meadows 2007; Lewis 2008). There are,
fortunately, a wide range of research initiatives underway, the
findings of which (in contrast to many of the older records)
will be independent of material within archaeological
sequences. Here, we review the likely drivers of southern
Cape climatic variability, which we consider in the context of
recent terrestrial proxy records and marine proxies.

East of Still Bay, the southern Cape exists within what is
largely a year-round rainfall zone (YRZ). This year-round
precipitation is a function of moisture derived from

temperate, tropical, and local storm systems (Fig. 2.3).
Given these multiple controls, each of which influenced by
different elements of the global oceanic-climate systems, it is
likely that this is an ephemeral climatic regime. However,
such diversity in potential moisture sources may have buf-
fered the region from the more extreme climatic variability
seen in the continental interior (e.g., Scholz et al. 2007).

Rainfall Regime Configurations During
the Pleistocene

Colder conditions during the Pleistocene have often been
closely linked with enhanced aridity throughout southern
Africa, including the south coast (Partridge et al. 1999).
A conceptual model of southern African climatic variability,
in which there is an anti-phase relationship between the
summer and winter rainfall systems of southern Africa, has
been applied to interpretations of Pleistocene climatic vari-
ability (Tyson 1986; Cockcroft et al. 1987). From this it has
been argued that when tropical systems intensify, the influ-
ence of the westerly storm systems declines, and vice versa
(Tyson 1986; Cockcroft et al. 1987; Chase and Meadows
2007). These adjustments reflect latitudinal shifts in westerly
storm tracks in response to changing hemispheric tempera-
ture gradients, Antarctic sea ice extent and the positioning of
the subtropical front (STF), in addition to changes in the
positioning and seasonal movements of the Atlantic and
Indian Ocean subtropical high pressure systems.

Although – or perhaps because – these models were based
on contemporary/historical climatic variability (Cockcroft
et al. 1987) it has proved difficult to test such ideas in the proxy
record. However, there are now a growing number of records
derived from marine environments, which span the last
125 kyr or more and indicate significant, and often regionally
unique, responses to global forcing mechanisms. Key among
these records are: (1) marine records relating to position of the
STF (Peeters et al. 2004; Bard and Rickaby 2009); (2) records
indicative of changes in the character and flow of the Agulhas
Current (Bard et al. 1997; Sonzogni et al. 1998; Peeters et al.
2004; Caley et al. 2011); and (3) records indicative of changes
in the west coast Benguela upwelling system (Little et al.
1997a, b; Stuut et al. 2002; Pichevin et al. 2005). While these
marine records do not necessarily directly reflect changes in
terrestrial systems, they do indicate, at least in a general sense,
variations in the underlying climate systems. Thus, they can be
used to explore hypotheses of causation. For instance, Stuut
et al. (2002) hypothesized that increased humidity on the
western margins of Namibia during periods of relative global
coldwas the result of increasedwinter rainfall. This hypothesis
finds support in the significant correlation between their record
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and migrations of the STF (Peeters et al. 2004) (Fig. 2.6).
Concerning tropical moisture systems, a pollen record
reflecting conditions in the Limpopo Basin (Dupont et al.
2011) shows similarities with SSTs in the Mozambique
Channel over the last 300 ka, as do several sites in northeast
SouthAfrica during the last 45,000 years (Chevalier andChase
2015; Truc et al. 2013), implying a link between SSTs and
continental humidity in the proximal summer rainfall zone.
This link is seemingly less strong, however, in central South
Africa, where variation in westerly systems also contributed to
overall rainfall variability (Chevalier and Chase 2015).

Paleoclimatic Insights from MIS 2
and MIS 1

As previously reported (Chase and Meadows 2007), the MSA
predates the majority of the region’s terrestrial paleoenviron-
mental evidence (particularly evidence independent of
archaeological/anthropic deposits).We can, however, consider
evidence for terrestrial climate change during the last 25 kyr to
illustrate potential paleoclimatic scenarios, and the responses
of the driving systems. The late Pleistocene-Holocene

transition (18–11 ka) and the mid- to late Holocene demon-
strate the potential diversity of climatic configurations and the
complexity of interpreting such changes based on proxy data
(Figs. 2.3, 2.7).

The Late Pleistocene-Holocene Transition
As argued by Chase (2010) forMIS 4 it is possible to envisage
scenarios within which both temperate and tropical moisture
sources intensify at the same time (cf. Cockcroft et al. 1987).
On the southern Cape the terminal Pleistocene, between 17.0
and 14.0 cal kBP, is potentially an example of this. Evidence
from Boomplaas Cave (Fig. 2.1) indicates that this period
witnessed the highest effective precipitation of the last c.
80 kyr (Scholtz 1986). In contrast, much of this period (in-
cluding “Heinrich stadial 1” (HS-1)) was notably drier
throughout parts of the Afro-Asian Monsoon region (cf.
Stager et al. 2011, and reference therein). The early onset of
warming in the Southern Hemisphere (Blunier et al. 1998;
Pedro et al. 2011) becomes apparent in southwest Indian
Ocean SSTs at *17 ka (Sonzogni et al. 1998; Dupont et al.
2011). These warmer SSTs would have invigorated summer
rainfall systems during the early parts of the
glacial-interglacial transition, and evidence for this is seen in
the increase of forest taxa in the Limpopo Basin (Dupont et al.

Fig. 2.6 Stuut et al.’s (2002) record from MD962094, which is
interpreted as indicative of the significance of winter rainfall along the
Namibian coastline (Black solid line). This is compared to Peeters
et al.’s (2004) record (dotted line) indicative of the position of the STF

(derived from the ratio: Globorotalia truncatulinoides/(Neoglobo-
quadrina pachyderma (dex.) + Globorotalia inflata + G. truncatuli-
noides). The light gray line is the 7 point moving average for this
dataset
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2011). The influence of these easterly systems appears to have
extended across the southern continental interior (cf. Chase
et al. 2015b), and more humid conditions in the Cederberg
Mountains of the southwestern Cape during HS-1 have been
attributed to increases in summer rainfall (Chase et al. 2015a).
Furthermore, it would seem that there was no significant
poleward shift in the STF (Peeters et al. 2004) until the
beginning of the Holocene (*11 ka) indicating that little or
no decline in winter rainfall had occurred. Thus, particularly
humid conditions on the southern Cape from 17 to 14 ka can

perhaps be explained as the combined influence of winter and
summer rainfall (Chase and Meadows 2007).

The Mid- to Late Holocene
During the mid-Holocene (c. 7300–4500 cal BP) the
drought-sensitive afromontane forest, which currently occu-
pies the heart of the YRZ in the Knysna area (Fig. 2.4), was
more restricted than today (Martin 1968; Scholtz 1986), while
evidence for more arid mid Holocene conditions is also
observed at Still Bay to the east (Quick et al. in press a). In
detail, recent evidence from high-resolution rock hyrax mid-
den records from Seweweekspoort in the Groot Swartberg
mountains (170 km northwest of the Knysna area) suggest a
distinct period of aridity 7–5 ka, which is coeval with
anomalies in Antarctic sea ice extent. This is interpreted as
good evidence for the role of the westerly systems (Chase
et al. 2013) in driving variability in southern Cape climatic
conditions. A subsequent period of drier climate and reduced
forest cover also seems to have occurred between 2700 and
1300 cal BP (Scholtz 1986; Carr et al. 2006a, b; Quick et al. in
press a). In this case, the underlying mechanisms are less
straightforward, but a similar pattern of increased aridity at
Cold Air Cave (Lee-Thorp et al. 2001) suggests that this could
also reflect a reduction in summer rainfall (increasing south-
ern Cape rainfall seasonality), perhaps due to lower Agulhas
Current sea surface temperatures (Sonzogni et al. 1998),
which would have promoted drier conditions on the south
coast (Chase and Meadows 2007; Quick et al. in press a, b).

Paleoclimates During the MSA: MIS 5b-3
(95–60 Ka)

The waxing and waning influence of the major
moisture-bearing systems was specifically considered by
Chase (2010) in a review of MSA climates during MIS 4 and
the Howiesons Poort (HP) and Still Bay (SB) industries
(*74–58 ka [Jacobs et al. 2008; Jacobs and Roberts 2008;
Bar-Matthews et al. 2010; McCall and Thomas 2012]). This
review of proxy data from multiple southern African
archaeological sites (e.g., Klein 1976, 1983; Tankard 1976b;
Butzer et al. 1978; Avery 1982; Butzer 1984; Deacon et al.
1984; Klein and Cruz-Uribe 2000) concluded that duringMIS
4 overall conditions were relatively cool and moist compared
to the present (Chase 2010). Such findings imply that southern
African climate systems did not follow apparent global trends
during this period and it was suggested, based on records of
variation in the westerly systems (Stuut et al. 2002) the STF
(Peeters et al. 2004; Bard and Rickaby 2009), the Agulhas
Current (van Campo et al. 1990; Peeters et al. 2004) and the
influence of orbital obliquity on hemispheric temperature
gradients, that MIS 4 was relatively humid as a result of

Fig. 2.7 Comparison of the key paleoclimatic records from southern
Africa and Antarctica discussed in the text: a MD962094 (Stuut et al.
2002); b, c MD962081 (Peeters 2004); d MD79257 (Bard et al. 1997);
e Antarctica Dome C (Jouzel et al. 2007). Dotted vertical lines delimit
MIS 1-6. Shaded zones indicate the ages of the Howiesons Poort (HP)
and Still Bay industries (as per Jacobs et al. 2008)
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increased contributions from both winter and summer rainfall
systems (Chase 2010). New SST records from the southwest
Indian Ocean (Caley et al. 2011) modify this hypothesis to
some extent, but the basic premise still pertains, with periods
of relatively elevated Indian Ocean SSTs combining with a
more northerly position of the STF to enhance both summer
rainfall and westerly derived rainfall, generating relatively
wetter conditions across southern Africa. While more data
will be required to verify this hypothesis, this scenario is
comparable with that outlined for the late glacial and early
Holocene. Recent findings from Sibudu Cave in
KwaZulu-Natal (SRZ) imply summer rainfall comparable to
the present during the HP, with the subsequent post HP period
being relatively drier (Bruch et al. 2012).

More recently, there has been an attempt to directly con-
sider high-resolution paleoenvironmental data for the south-
ern Cape, although the link between the paleoenvironmental
record and underlying processes is difficult to decipher. The
Crevice Cave speleothem record from the Pinnacle Point
excavations (Bar-Matthews et al. 2010) provides a
high-resolution record of stable carbon and oxygen isotope
variations for the period 90–53 ka (MIS 5b-MIS 3). Fluctu-
ations in δ13C within the record are interpreted as reflecting
the relative abundance of C3/C4 grasses. In turn, this is
interpreted as indicative of the degree of winter rainfall,
which, gives the strong linkage between C3 vegetation and
the winter rainfall zone (i.e., growing season temperature), is
how most records of this nature have also been interpreted
(e.g., Lee-Thorp and Beaumont 1995; Scott and Vogel 2000).
The δ13C record shows some marked shifts, with periods of
increased (open?) C4-dominant vegetation inferred for 75–
70 ka and 65–60 ka. Additionally, a period of rapid variation
in the δ13C signal at 65–70 ka is interpreted as a period of
marked climatic/ecological instability between the SB and
HP Industries. The mechanisms behind this are unclear.

Bar-Matthews et al.’s (2010) interpreted changes in
vegetation type are not inconsistent with some long-standing
ideas that suggest grassier environments probably existed on
the continental shelf during periods of relative cold (and low
sea level), explaining the increased prominence of grazing
fauna in many MSA assemblages (e.g., Klein 1972).
Although Rector and Read (2010) caution that it should not
be assumed that such coastal plain grasses were C4,
proposing that complex mosaics of C3 grasses and Fynbos,
would also have been able to support grazing communities.

Despite a detailed analysis, the Crevice Cave record
defies easy interpretation in some respects. The δ18O record
(interpreted as reflecting the seasonality of rainfall) shows
little correlation with regional records of winter rainfall
intensity, the position of the STF, or with data indicative of
Agulhas Current flow and temperature (Stuut et al. 2002;
Peeters et al. 2004; Caley et al. 2011). Counter to previous
models (van Zinderen Bakker 1967, 1976; Cockcroft et al.

1987; Tyson 1999a, b; Chase and Meadows 2007) periods of
cooling (through correlation with remote records from the
EPICA ice core and an SST record from the Chatham Rise,
New Zealand) are associated with increases in summer
rainfall (lower δ18O) and the expansion of C4 vegetation
(higher δ13C). By way of perspective, it is important to note
that the nearby (85 km north) Cango Cave speleothem
record shows markedly different trends (de Wit et al. 2009).
In the Cango record, variation in δ13C shows strong corre-
lations with changes in the strength of Agulhas flow along
the south coast (Peeters et al. 2004), most notably including
relatively enriched δ13C values (more C4) prior to MIS 4,
and then a shift to more depleted values (more C3) at
*70 ka implying increased winter rainfall during MIS 4.
Similarly, the Holocene portion of the Cango Cave record
(6000 cal BP to present) contrasts with the MIS 2 section of
the record, with the former period exhibiting markedly
higher δ13C than the latter (Talma and Vogel 1992). Here, an
interpretation concerning “interglacial” verses “glacial”
vegetation, based on δ13C, would imply that the “glacial”/
“cooler” conditions were associated with more C3 vegetation
– the opposite of what is seen in the Crevice Cave scenario.

The discrepancies between the Cango and Crevice Cave
records may relate to the fact that while the Cango Cave spe-
leothemwas recovered from a deep cave complex the Crevice
Cave speleothem was recovered from a wave-cut crevice,
which began to form after the hollow was sealed by coastal
dunes c. 90 ka. The context for this speleothem record is
thereforequiteunusual.Atpresent it isnot entirelyclear towhat
depth the cave was buried, and to what extent it was ventilated
during formation. The latter aspect can have a substantial
impact on isotopic equilibrium due to de-gassing effects in
areas (or periods) of greater ventilation, creating variability
unrelated to the inferred climatic parameters (Talma andVogel
1992; Mickler et al. 2004; Tremaine et al. 2011). Some data
(from two laminae) are presented concerning this nonequilib-
rium precipitation issue (“Hendy tests”), but these issues
warrant further investigation. In the case of both theCango and
Crevice cave records, neither considers (or is easily able to
consider) the influence of CAM plants, which are common at
both sites. These may display a range of δ13C values (Rundel
et al. 1999), and may influence δ13C signals in some paleoen-
vironmental archives in this region (Carr et al. 2010b).

Southern Cape Paleoecology

Aside from the aforementioned Crevice Cave record, pale-
oecological data for the MSA are largely restricted to faunal
remains recovered from archaeological sites. Broadly speak-
ing, there appears to be a significant correlation between gla-
cial periods and increased numbers and diversity of grazing
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animals (Klein 1972, 1976, 1978, 1983; Klein and Cruz-Uribe
2000; Faith 2011a, b; Rector and Reed 2010). Based on these
data, the inference has long been that glacial periods supported
more open, grassier environments. Recent faunal evidence
from PP13b, notably the Upper Roof Spall layer dating to 98–
91 ka, has been interpreted as indicative of more open, mosaic
habitats (Rector and Reed 2010), while data for the periods
134–94 ka and 102–91 ka were also thought to be suggestive
of relatively open conditions, as well as moist (“vlei”) con-
ditions (Rector and Reed 2010). Nelson Bay Cave on the
Robberg Peninsula is one of the few coastal archaeological
sites with a faunal record crossing the Pleistocene-Holocene
transition and a clear switch from dominantly grazing to
dominantly browsing fauna seems to have occurred during the
period 12,000–9,000 14C BP (Deacon 1978).

While the relationship between grazers and open, grassier
environments is clear, it does not follow that this was the
result of drier climates. Presently, the southern Cape coastal
plain hosts a complex variety of vegetation types, and the
shrubby renosterveld vegetation that would dominate parts
of the coastal plain (were it not for modern land use prac-
tices) is on the drier end (250–550 mm a−1) of the climatic
continuum. It is only with increased humidity (500–750 mm
a−1) that grasses become a more important component of the
vegetation (Cowling 1983).

Unfortunately, aside from the aforementioned speleothem
records, there are very few data available that can assist in the
interpretation offluctuations within these faunal assemblages.
Botanical remains are often poorly preserved in archaeolog-
ical contexts, and there are few suitable and adequately
studied wetlands in the region. At present only three lake
sediment records extend beyond the Holocene (Fig. 2.1):
(1) Voëlvlei and Soetendalsvlei from the Agulhas Plain (Carr
et al. 2006b); (2) Rietvlei near to Still Bay (Carr et al. 2010c;
Quick et al. in press a); and (3) Vankervelsvlei near to Knysna
(Irving and Meadows 1997; Irving 1998; Quick et al. in press
b). Voëlvlei and Soetendalsvlei have relatively coarse
chronological control. However, Rietvlei and Vankervelsvlei
are the subject of recent studies and provide detailed
multi-proxy records spanning the last*35 kyr (Quick et al. in
press a) and 140 kyr (Quick et al. in press b), respectively.

At the Voëlvlei site modern vegetation is heavily modified
by human activity, but the natural vegetation was probably
renosterveld. The pollen records, derived from pan sediments,
have limited chronological control. However, in conjunction
with the surrounding geomorphic evidence they suggest a
period of relative humidity, probably within MIS 3 (ages span
>48,000–33,000 cal BP). The pollen spectra are rich in both
fynbos pollen and characteristic renosterveld pollen. Grass
pollen is also present, but not markedly abundant (Carr et al.
2006b). A core from the margins of nearby Soetendalsvlei
dating to 14,400–13,300 cal BP produced pollen spectra
similar to the modern limestone fynbos around the site,

implying a comparable situation to the present (Carr et al.
2006b). Thus, evidence for significant reorganizations of the
Pleistocene Agulhas Plain vegetation communities is rather
equivocal, although coastal Fynbos was clearly present at
Cape Agulhas from 14,000 cal BP. Further to the east, in the
year-round rainfall zone, the Vankervelsvlei record spans
*140 kyr. The site is located within the drought-sensitive
afromontane forest of the Knysna area (see section “Land-
scape Responses to Sea Level Change: Coastal Eolian Sys-
tems”), and like the Holocene records discussed above (e.g.,
Scholtz 1986) shows clear fluctuations in the extent of
afromontane forest. MIS 2 is associated with increases in the
relative significance of fynbos pollen, perhaps implying a
decrease in humidity and/or increased rainfall seasonality
(Irving 1998). Recent work has extended this record back to
140 kyr using luminescence dating (Quick et al. in press b).
This study reveals distinctly warmer temperatures duringMIS
5d compared to later MIS 5, MIS 4, and MIS 3. Evidence for
increased summer rainfall duringMIS 5d is also identified, but
importantly although there is some evidence for increased
rainfall seasonality from *96 kyr onwards, significant
reductions in overall humidity did not seemingly occur during
MIS 4 and MIS 3, perhaps implying that reductions in
(summer) rainfall were offset by lower evapotranspiration due
to cooler temperatures. East of Still Bay, the Rietvlei wetland
dates back to at least 35,000 cal BP (Carr et al. 2010c; Quick
et al. in press a). Additional evidence suggests a persistent
wetland of some form was present as early asMIS 5e (Roberts
et al. 2008). Nearby MIS 5e eolianites contain trace fossils
revealing a diversity of mammal fauna in the immediate area,
suggesting that animals congregated here. The site is perhaps
analogous to the coastal “vlei” environments inferred by
Rector and Reed (2010). The Rietvlei record itself shows
evidence for relatively humid conditions during MIS 3, but
also distinct evidence for arid phases within this period.
A clear contrast between relatively humid early Holocene and
more arid mid Holocene conditions is also apparent.

Fundamentally, the nature of the vegetation on the con-
tinental shelf remains a critical unresolved element for
interpretations of both the human and faunal records in this
region (Rector and Reed 2010). Aside from the poorly
defined nature and distribution of continental shelf sub-
strates, the unknown hydrology of continental margin is a
complicating factor. It is of specific relevance to models of
coastal-zone habitability (Parkington 2003). The “coastal
oasis” model argues that during sea level regressions steeper
peri-coastal water table gradients increased the hydraulic
head on continental aquifers, promoting spring activity and
primary productivity on the continental margins (Faure et al.
2002). This potentially increased availability of water and
biomass would have rendered the continental shelves more
attractive environments for both grazing fauna and human
occupation (e.g., Compton 2011). At present there is a little
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specific evidence to support this hypothesis on the southern
Cape, although there is some limited geomorphic evidence
for an adjustment in the southern Cape coastal hydrology in
the Agulhas Plain salt pans (Carr et al. 2006a). These
became inactive after c. 45 ka, as they ceased to intersect the
water table, implying a response to sea level change con-
sistent with that envisaged by Faure et al. (2002).

Summary: Integrating Human
Occupation and Subsistence
with Paleolandscape and Paleoclimates

A full understanding of the human story during the MSA
requires an integration of the archaeological record with data
pertaining to the landscapes and environments at that time.
Linking specific aspects of human development such as stone
tool industries or technocomplexes to environmental change
is fundamentally difficult and contentious. For example,
McCall (2007) argues for a direct correlation between the HP
and colder temperatures during late MIS 4 (see also Ambrose

and Lorenz 1990). Jacobs et al. (2008) argue that there can be
no such association given that global temperatures at this
time exhibit a warming trend. Hiscock et al. (2011) argue that
the HP is a response to this warming. All of these arguments
use global temperature data to model environmental change,
and none is able to make significant use of local paleoenvi-
ronmental records that directly reflect subsistence conditions.
As paleoenvironmental and paleogeographic evidence
accrues, however, we can begin to offer a guide to some of
the (potentially) most relevant facets of the environment for
the region. We attempt to summarize these linkages in
Fig. 2.8. Many elements of this diagram might be considered
as generic, but based on the preceding we can highlight how
they are uniquely manifested on the southern Cape.

Landscape Factors

Landscape factors are a function of geology and relative sea
level change. Sea level change, mediated by local-scale
geological control, has operated as an overarching driver of

Fig. 2.8 A schematic representation of the interactions between
landscape, palaeoclimate, resource availability (including fauna), and
human behavior. The primary purpose is to summarize potential
interconnections identified in this review, not to provide a prescriptive

framework. The diagram highlights the role of (inherited) characteris-
tics (e.g., geology) in mediating local responses to global-scale forcers
of landscape and climate change
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landscape dynamism and resource availability throughout
the Pleistocene. It is a global-scale pacemaker (eustatic sea
level change) mediated by (inherited) local geological con-
trol (e.g., Compton 2011). Landscape factors are somewhat
interrelated, but are significant in terms of:

1. Geological constraints act on landscape structure and
topography. They control coastal landscape configura-
tion both locally (bays and headlands, sandy/rocky
shores) and regionally (continental shelf topography).
As a result they influence site to shore distance, marine
resource availability, and site selection. Through the
topography of the continental shelf they also determine
local sensitivity to eustatic sea level changes. Regional
geological structures might have presented impediments
to migration between the interior and margins of South
Africa. Periodic isolation of communities and fauna is a
possible outcome (Compton 2011).

2. Sea level constraints on coastal landscape, landscape
dynamism and site occupation. Eustatic sea level is a
global signal but it is moderated at both local and
regional scales by geological constraints. In coastal
locations, sea level influences site access, habitability,
and preference (i.e., occupational hiatuses), both directly
through flooding/inaccessibility during sea level high-
stands (e.g., De Kelders during MIS 5e), and indirectly
via local and regional-scale pulses of coastal eolian
activity (Pinnacle Point, Blombos). The relative avail-
ability of marine food resources will have been directly
influenced by most of these factors, as will the avail-
ability of fresh water (e.g., Avery 1974; Faure et al. 2002;
Carr et al. 2006a).

3. Soils, vegetation, and game resources. Soil properties –
largely a function of geology – control the distribution of
the major vegetation types in this region. The vegetation
on the exposed continental shelf during the Pleistocene
was probably also strongly influenced by this phe-
nomenon. It is potentially a key driver of habitat extent
and heterogeneity, and thus, game resources (e.g., the
extent of grazing). Habitat extent and heterogeneity will
have been affected by relative sea level change. It
remains a critical unresolved issue.

In considering these landscape factors the present evi-
dence implies that caution is required when applying
regional-scale trends at local (site) scales. Uncertainties in
sediment supply/accommodation space and the absolute
magnitude of relative sea level change remain (note that in
southern Africa we are largely applying eustatic records
derived from distant locations). Overinterpretation in the
absence of stratigraphic evidence should be avoided.

Paleoclimatic and Paleoecological
Factors

Paleoclimatic and paleoecological factors are not indepen-
dent of our basic geological and sea level framework. They
however are fundamentally related to terrestrial and shore-
margin ecosystem productivity. In terrestrial environments,
the availability, density, and type of water and food
resources available are directly relevant to issues of popu-
lation density, settlement organization, and technological
change (Mackay 2009). They can be summarized as follows:

1. The diversity of climatic drivers: The southern Cape
climate is a function of several components of the global
climate circulation. This results in a diversity of
moisture-bearing systems, which combine to create a
variable, but resilient resource base. While the amount
and seasonality of surface-available fresh water varied
through the late Pleistocene, it is unlikely that the region
was ever truly arid or “harsh”.

2. The complexity of vegetation response: The available
evidence suggests that the delivery of moisture to this
region did vary, but the specific impacts on the region’s
vegetation communities, mediated by substrate type and
availability (exposure), are difficult to resolve. Weak
knowledge of the region’s lowland and continental shelf
paleoecology is a critical issue, particularly concerning
the significance of “grassier” communities and the dri-
vers of such structural changes in the region’s vegetation.
At present we have insufficient evidence to disentangle
the role of paleoclimate (moisture source/seasonality)
from substrate and as drivers of vegetation change on the
coastal lowlands.

3. Local mediating factors, which are difficult to predict: As
with landscape controls, local-scale controls will serve to
buffer/mask the effects of global scale “climate deterio-
rations” through the influence of (for example) soil
substrate patterns, marine resource availability and local
hydrology (e.g., coastal springs).

Human Interaction and Subsistence

Human subsistence behavior is structured by the spatial and
temporal distribution of key resources, principally water,
food, and shelter (Kelly 1995). The effects of these factors
are mediated by changes in mobility, settlement systems and
prey choice; technology likely responds to all three.
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Shelter selection on the south coast is likely to have been
influenced by a combination of sea level and inherited
(contingent) local responses. The appearance and disap-
pearance of springs, shifts in beach ridges and dunes, and the
reconfiguration of shore lines will all have influenced the
ways in which sites were used and indeed whether they were
used at all. That the operation of these factors is difficult to
predict may provide some explanation for the limited tem-
poral overlap or nonoverlap in relatively proximate south
coast MSA sequences (e.g., Blombos, Klasies River, Nelson
Bay Cave and Pinnacle Point). Such local controls, along
with the small sample of well-resolved south coast sites,
makes attempts to correlate periodicities of site usage with
population fluxes problematic. Local resource availability
and landscape configuration likely exert stronger control than
absolute population size. As noted, proximity to shoreline
will have influenced the viability of marine resource use, with
implications for shelter use (e.g., Marean et al. 2007).
Beyond this, however, shifts in the availability of marine
resources may have affected patterns of mobility and tech-
nological systems, the former with potential impacts on
duration of site occupancy. Sessile marine resources provide
a reliable food source, which can be harvested with minimal
technological constraint. Many marine resources can with-
stand longer and more intensive harvesting than can their
terrestrial equivalents (Binford 2001; Kelly 1995). Proximity
of marine resources may thus have allowed periods of
extended occupancy within a regime of diminished residen-
tial mobility at near-shore sites during high-stand periods
(though note Borrero and Barbarena 2006).

In a similar vein, shifts between seasonal and aseasonal
moisture regimes resulting from changes in the relative
strength of summer and winter rainfall systems can alter
patterns in the organization of landscape use. Surface water
availability has a structuring effect on mobility; with
diminished surface water, a greater frequency of movements
involving entire groups is expected (Kelly 1995; Read
2008). Conversely, extended residential occupation of sites
becomes more viable with greater water availability
(Mackay 2009). Due to attendant local resource suppression
resulting from extended occupancy, a shift in the configu-
ration of mobility from residential to logistical is plausible
(cf., Binford 1980; Kelly 1983). Such a shift may have
occurred during relatively humid phases, potentially
explaining the large assemblage sizes in MIS 4 at many
south coast sites (Mackay 2009). Greater incorporation of
small game might be expected to follow local resource
suppression under such circumstances.

A secondary effect of shifting seasonality may have been
on the complexity of technological systems deployed.
Ethnographic data suggest that length of growing season
affects technological complexity (Bousman 1993; Collard
et al. 2005; Read 2008; Torrence 1983). Shorter or less

predictable rainy seasons would have operated to increase
subsistence risk. A second controlling factor here, however,
is effective temperature, which is difficult to model at the
local scale with available data. Expanded grasslands may
have supported large herds of grazers, potentially generating
a stronger hunting-resource base, but fynbos is notably
resilient and supports both browsing game and a rich suite of
edible floral resources including tubers (Marean 2010;
Parkington 1977). We might anticipate that changes in the
past composition of floral communities in the southern Cape
are likely to have influenced technological systems. Data
from the LSA suggest that reductions in grasslands around
the transition from MIS 2 to MIS 1 were associated with a
shift from microlithic to macrolithic technologies (Deacon
1984). Without proposing a direct relationship we might
expect to see technological changes of some kind tracking
earlier shifts in southern Cape flora. As we discussed above,
however, such vegetation responses are presently difficult to
model, emphasizing the need for local archives.

Conclusions

The southern Cape hosts a remarkable archaeological record;
the significance of which is steadily being revealed. Here we
have sought to summarize the environmental facets most
relevant to the interpretation of these archaeological findings.
In doing so, we emphasize the legacy of geological controls in
influencing both macro and meso-scale landscape responses
to environmental change. The region’s climate presents both
challenges (complexity of interpretation) and opportunities
(relevance to synoptic scale climatic controls), but it is likely
that regional climates were never sufficiently “harsh” to fully
prevent occupation of the southern Cape. Although the
specific composition of south coast ecosystems during the late
Quaternary remains unclear, the potential combination of
mosaic-like vegetation communities and marine food
resources implies a relatively diverse and resilient, if variable,
resource base. Taken as a whole, the occupational record for
the southern Cape probably spans much of the period 170–
50 ka, the full range glacial-interglacial conditions. Systems
of technology, settlement, and subsistence undoubtedly
changed through this period and we have attempted to high-
light some of the relevant factors and linkages, and how they
may be operationalized. Improvements in baseline archaeo-
logical and paleoenvironmental data are now required to
strengthen our modeling of ecosystem variation and human
behavioral response through the MSA.
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