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Abstract With the rapid development of high-throughput experimental technol-
ogies, bioinformatics and computational modeling has been a rapid evolving
science field concerned with the development of various analysis methods and
tools for investigating these large biological data efficiently and rigorously.
There are many methods and tools available for the analysis of single omics
dataset. It is a great challenge that biological systems are being further investi-
gated by integrating multiple heterogeneous and large omics data. Many power-
ful methods and algorithmic techniques have been developed to answer
important biomedical questions through integrative analysis. In this chapter, in
order to help the bench biologist analyze omics data, we introduced various
methods from classical statistical techniques for single marker association and
multivariate analysis to more recent advances from gene network analysis and
integrative analysis of multi-omics data.
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2.1 Introduction

In the past decade, with the development of high throughput technologies, massive
biological data have been generated from multiple levels of biological systems —
including DNA sequence data in genomics, RNA expression levels in
transcriptomics, DNA methylation and other epigenetic markers in epigenomics,
protein expression in proteomics and metabolic profiling in metabolomics. These
omics data are high throughput measurements of the abundance and/or structure
features of molecules involved in biological metabolism and regulation. Table 2.1
summarizes the main features of various omics data.

Generally, omics data are high-dimensional data, which means that the number
of subject n (e.g., tissue or samples) is much smaller than the number of variables
p (e.g., number of SNPs in genome wide association, number of genes in an
expression profile). In this setting, we are confronted with thousands of hypothesis
testing simultaneously. There is a high risk that statistical models may overfit the
omics data. In addition, datasets from diverse genomic levels have unique proper-
ties. A better understanding of the data characteristics will help to improve statis-
tical modeling. An increasing number of advanced statistical methods have been
developed to address these issues in omics data analysis at different levels.

Table 2.1 Main features of omics data
Omics Biomarker data Platforms Features
Genome Single nucleotide poly- | Microarray Categorical data
morphism (SNP)
Copy number variation | DNA sequencing Distance-driven
(CNV) correlation
Loss of heterozygosity Extremely stable
(LOH) over time
Rare variant
Transcriptome | Gene expression Microarray Continuous data
Alternative splicing RNA sequencing Affected by time
and exposures
Long non-coding RNA Strong measure-
Small RNA ment noise
Proteome Protein expression Microarray Continuous data
Mass spectrometry Affected by time
and exposures
Epigenome DNA methylation Microarray Continuous data
Histone modification Bisulfite sequencing Affected by time
miRNA and exposures
Metabolome Metabolite profiling Mass spectrometry Continuous data
Nuclear magnetic resonance Affected by time
(NMR) spectroscopy and exposures
Structured
correlation
Strongly affected
by exposures
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Instead of analyzing single omics data, it is interesting to integrate multiple levels
of omics data to gain comprehensive insights into biology and disease etiology. It is
recognized that multi-scale features do not act in isolation but interact in complex
networks (within and across individual omics), e.g., genomics information flow
DNA- > RNA- > protein- > traits. Therefore, no single type of omics data can pro-
vide a thorough understanding of the complex function/regulatory networks that
mediate gene expression/function for disease etiology. Integrative analysis of multiple
omics data with the same subjects has the following advantages: 1) multiple omics
data can provide diverse information that the identified genetic variants may be
consistent in the effects across different omics levels. Consistent results will compen-
sate for unreliable findings in single omics data, which can improve the detection
power for those variants with modest effects in individual omics data. Complementary
results will confirm the findings to get a more comprehensive understanding of genetic
mechanisms of diseases; 2) importantly, integrative analysis of multiple omics data
will enable the reconstruction of interplay/regulatory relationship among genetic
factors at different levels. The analysis of complex regulatory networks will aid in
functional annotation of individual genes/regulatory factors, gaining new insights into
the molecular mechanisms underlying disease pathogenesis and generating model
hypothesis for further specific testing. Taken together, the integrative trans-omics
studies can provide a much more comprehensive view of complex disease etiology
than can be achieved by examining individual omics data on their own.

In this chapter, we first briefly review statistical methods for biomarker detection
in different omics data. Then we will review integrative statistical analysis involv-
ing at least two different types of omics data.

2.2 Statistical Methods for Biomarker Detection
in Clinical Bioinformatics

Several types of biological data can be used to identify informative biomarker
panels, including SNP data, microarray based gene expression and microRNA.
Statistical methods especially predictive models based on these biomarkers are
becoming increasingly important in clinical, translational and basic biomedical
research. We will first provide illustrations of various statistical methods in the
analysis of SNP and gene expression data, attempting to offer practical advice on
the appropriate methods to use.

2.2.1 Statistical Analysis for Single Omics Data
2.2.1.1 Single Marker Association

Single SNP Association The objective of genetic association analysis is to estab-
lish an association between a phenotype/quantitative trait and a genetic marker.
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Usually genetic association tests are performed separately for each individual SNP.
A variety of statistical methods could be applied according to the data types of the
phenotype/quantitative trait. The phenotype in a study can be case-control (binary),
quantitative (continuous), or categorical. First we will discuss analysis for case-
control, continuous and categorical disease outcomes and then we will present more
advanced statistical methods for multivariate analysis.

Here is the basic problem formulation. Let {X;,...,X,} be a set of P SNPs for
N individuals. Suppose the data with each SNP having minor allele a and major
allele A. We use 0, 1, 2 to represent the homozygous major allele, heterozygous
allele and homozygous minor allele, respectively. Therefore we have
Xm€e{0,1,2},(1 <p<P,1 <n<N). Let phenotype be Y ={y,...,y,}.
Depending on the data type, the values of ¥ can be binary, continuous or categorical.
For case-control phenotype, it can be represented as a binary variable with

0 representing controls and 1 representing cases. The association between a SNP
and case-control status is to test the null hypothesis of no association between the
marker with disease status in a contingency table, which links disease status by either
three genotypes counts (A/A, A/a and a/a) or allele count (A and a). The test of
association is given by Pearson x~ test for the independence of the rows and columns
in the contingency table (Balding 2006). The choice of degrees of freedom is based
on recessive, dominant and additive models of inheritance. The contingency table can
allow alternative models by summarizing the counts based on the models of inher-
itance. For instance, to test for a dominant model, the contingency table is summa-
rized as 2 x 2 table of genotype counts (A/A vs. A/a and a/a). As to a recessive model,
the contingency table is summarized as 2 x 2 table of genotype counts (a/a vs. A/A
and A/a). There are two tests commonly used for testing the additive model of
inheritance: the allele test and the trend test, also known as the Cochran-Armitage
trend test. Both tests have the same null hypothesis: P ,se = Pcontrol, Where Peae and
Pconror denote the frequency of A alleles among diseased and non-diseased in a
population, respectively. As the underlying genetic model is unknown in most
genetic association studies, the test for additive model is most commonly used.
However, there is no generally accepted answer to the question about what kind of
test to be used. The analyses could be designed optimally according to the informa-
tion that what proportion of undiscovered disease-predisposing variants function
additively and what proportions are dominant and recessive. Table 2.2 summarizes
different contingency table methods based on diverse tests of association. Take
genotypic association for instance, Table 2.3 is the contingency table. For a SNP
and the phenotype Y, we use O;; to denote the number of individuals whose X, equals
05 — Ey)’

i and Y equals j. The Pearson XZ statistics is calculated as ( , where

E; = 0"1\?"', 0, = Z Ojand O; = Z O;;. The degree of freedom is 2.
J i

Logistic regression is a statistical method for predicting binary and categorical
outcome. It can be applied to both single-locus and multi-locus association studies
with covariates in the model. Let Y € {0, 1} be a binary variable and X € {0, 1,2} be
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Table 2.2 Tests of association using contingency table methods

Test DF | Contingency table description

Genotypic association |2 2 x 3 table of N case-control by genotype counts
(A/A vs. A/a vs. a/a)

Dominant model 1 2 x 2 table of N case-control by dominant genotype pattern of
inheritance counts

(a/a vs. not a/a)

Recessive model 1 2 x 2 table of N case-control by recessive genotype pattern of
inheritance counts

(not A/A vs. A/A)

Cochran-Armitage 1 2 x 3 table of N case-control by genotype counts

trend test (A/A vs. A/a vs. a/a)

Allelic association 1 2 x 2 table of 2 N case-control by allele counts
(A vs. a)

Note: DF degrees of freedom

Table 2.3 Contingency table for genotypic association test of a single SNP X, and a phenotype Y

Genotype aa Genotype Aa Genotype aa
Count X, =0) X, =1) X, =2) Total
Y=0 Ooo Oo1 Oo> Oo.
(Control)
Y=1 (Case) O1o On O 0.
Total Oy 0, 0, N

a SNP. The conditional probability of ¥ =1 given a SNP is (X) = P(Y = 1|X).
The logit function is defined as logi#(X) = In %. The logit function can be taken
as a linear predictor function: logit(X)~p, + B, X. The model can be modified to
incorporate multiple SNP loci and potential covariates. For example, the following
model fits two predictor SNPs (X; and X,) and two covariates (Z; and Z,):

logit(X)~po + 1 X1 + PoXo + B3 Z1 + PyZs.

For continuous (quantitative) traits, the basic statistical tools are linear regres-
sion and analysis of variance (ANOVA).

In regression models, there are two types of variables: dependent variable
(response variable or outcome variable) and independent variable (explanatory
variable or predictor variable). In a regression model, the dependent variable is
modeled as a function of one or more independent variables. When this function is a
linear combination of one or more model parameters, called regression coefficients,
the model is called a linear regression model. A least-squares regression line is
often used to find optimal fit between the phenotype and the genotype.

For simplicity, a single SNP genotype is denoted X; and the phenotype is
Yi,i=1,...,n. For this given data set (X;, ¥;), we are fitting a simple linear
regression model, Y = S, + ;X + ¢, such that E(¢) =0 and Var(e) = 6%, and
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€’s are uncorrelated. We can find by and b, as least squares estimators for fy and f,
n
. 52
respectively. We have the sums of squares as follows: Sxxy = E (X i— X) ,
i—1
n n

Syy = Z (Y; - 7)2, and Syy = Z (X; —X)(Y;—Y), and the following two
i=1 i=1

normal equations, by + blzn:X,- = XH:Y,- and bozn:X[ + blzn:Xiz = zn:X,-Y,-.
i=1 i=1 i=1 i=1 i=1

The estimator of b, is gxi)t Then we can test the null hypothesis against the

alternative hypothesis Hy : f; = f,o versus H; : ff; # By, Where 1 is a specified
value that could be zero. The test statistics 1is calculated as

—\2 %
(1) _ (hl—ﬁm{z (X —X) }
se(by) \/S—z
square 6% . One can compare Itl with #(n — 2,1 — %) from a t-table with (n — 2)
degrees of freedom. The test is a two-sided test conducted at the 100a% level.
In one-way ANOVA the F-test is used to assess whether the expected values of a
quantitative variable within several pre-defined groups differ from each other. For a
single SNP, we can divide all the subjects into three groups according to their

genotypes. Let Y,(i€{0,1,2}) be the subset of phenotypes for the subjects

t= , Where $? is the estimate of residual mean

corresponding to genotype i. The number of subjects with Y, is denoted as n;.

2
Note that Zi:() n; = N. The total sum of squares (SST) can be divided into two

parts, the between-group sum of squares (SSB) and the within-group sum of squares
(SSW).

2 2N,
ssB=>" (Y’,~ - Y) ssT=3"%" (Ym - Y) ,and SSW = SST — SSB. The
j i=0 n=1

formula of F-test statistic is F = %, and F follows the F-distribution with 2 and

N-3 degrees of freedom under the null hypothesis.

Gene Expression Analysis In transcriptomics studies for biomarker discovery
among thousands of features, we are interested in which genes/features are differ-
entially expressed under two (or more) conditions. The hypothesis test will be
performed individually for each feature. Statistical significance for each hypothesis
test is assessed according to its corresponding p-value from a statistical test.
Suppose there are K conditions and n; samples in the kth condition in a total of
N samples, where Ke{1,2}. Let X;; be an expression value, where sample
i=1,2,...,n, gene features j=1, 2,..., m, and condition K = 1,2. Assume
that gene expression values have been background corrected, normalized and
transformed by taking the logarithm to base 2. The sample mean and variance of
Ny n

> Xix > (X — Xi)®
i=1 i=1

2
o—— and S = 1 ’

gene feature j in group k are given as Xy =
respectively.
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Fold change approach is a simple and straightforward way of evaluating the
degree of differential expression under two conditions. For a gene feature j, the
mean difference is given by M; = Xj; — X)». Then the fold change is a statistic 2"/
Gene will be declared as significant if |M j’ is greater than a predefined threshold.
Such procedure assumes that the variances are equal across all genes. However, it is
not the case for gene expression profile. Therefore, this approach may easily yield
many false positive and false negative results in differential expression analyses.

The two-sample t-test is a most used parametric statistical test in differential
expression analysis. It compares the means of expression value in two groups taking
the variance into consideration. Statistically, we want to test the null hypothesis H
! Wj) = Hjp against the alternative hypothesis Hy : uj; # pj for j=1,2,...m. The test

n

> X - Xp)*

_ .. = —1)S5 +(n2 1),
statistic for each jis tj = =—————— whereS; = \/ (L + i) 1S oe D%

S; n ny ny+np;—2 ’
called pooled within-group standard error. Under the null hypothesis, #; follows
Student’s t-distribution with n; + n,—2 degrees of freedom. A p-value can be found
using a t-distribution table. By using the pooled within-group standard error
estimated from each gene separately, the f-statistic takes into consideration of
variance across different genes.

Significance analysis of microarrays (SAM) is a statistical technique for deter-
mining whether changes in gene expression are statistically significant (Tusher
etal. 2001). In SAM, statistically significant genes will be identified based on gene
specific ¢-tests. A statistic d, for each gene j measures the strength of the relationship
between gene expression and a response variable. Non-parametric statistics is used
as the data may not follow a normal distribution. SAM will perform repeated
permutations for the data to determine the significance of any gene with the
response. The use of permutation-based analysis accounts for correlations in
genes and avoids parametric assumptions about the distribution of individual
genes. It assumes equal variance and/or independence of genes. This is an advan-
tage over other techniques Here is the generic procedure for SAM. A statistic d; is
computed as d; =

5 H where r; is a score, s; is a standard deviation and s, is an

exchangeability factor. Compared with the standard t-statistic, the SAM’s proce-
dure adds a s, term to the denominator. The rationale behind it is that the variance s;
tends to be smaller at lower expression levels, making d; dependent on the expres-
sion levels. However, in order to compare d; across all genes, the distribution of d;
should be independent of the expression levels. Therefore, SAM seeks to find a s,
such that the dependence of d; on s; is as small as possible. An appropriate value of
so will be picked such that the Coefﬁcwnt of variation of d; is approximately
constant as a function of s;. For details of the SAM procedure, please refer to the
tutorial document for the software package, SAM, at http://statweb.stanford.edu/
~tibs/SAM/sam.pdf.
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The Wilcoxon rank-sum test, also known as the Mann—Whitney U-test, is a
nonparametric test, which can be applied to data with unknown distributions
contrary to f-test applied only to normal distributions. It is nearly as efficient as
the #-test on normal distributions. The null hypothesis of the test is that two samples
come from the same population and an alternative hypothesis is that a particular
population tends to have larger values than the other. The Wilcoxon rank-sum test is
based on the ranks of the original data values. To perform the Wilcoxon rank-sum
test, one first assigns numeric ranks to all the observations, beginning with 1 for the
smallest value. Where there are groups of tied values, assigning a rank equal to the
midpoint of unadjusted rankings. Second, one adds up the ranks for the observa-
tions which came from group 1. The sum of ranks in group 2 is now determinative,
since the sum of all the ranks equals N(N + 1)/2 where N is the total number of

observations. Then calculate U} = R; — Mand U,=R, — M The smaller

value of U; and U, is the one used when consulting significance tables.

2.2.1.2 Multiple Testing

As mentioned earlier, in omics studies we are confront with a great number of
hypotheses to be tested simultaneously. It will result in an inflation of the family
wise error rate (FWER) if there is no adjustment for multiple tests. In statistical
hypothesis testing, a type I error occurs when the null hypothesis (Hp) is true, but is
rejected (a “false positive”). A type II error occurs when the null hypothesis is false,
but erroneously fails to be rejected (a “false negative”). A type I error is the
incorrect rejection of a true null hypothesis (a “false positive”), while a type II
error is the failure to reject a false null hypothesis (a “false negative”). Basically, in
hypothesis testing, we want to maximize the power (=1-the type II error) while
controlling the type I error less than or equal to a predetermined significance level
a. In particular, consider the problem of testing simultaneously m null hypothesis
H}: no differential expression against Hy': differential expression, where j=1,2, ..,
m. A gene will be considered as significantly differentially expressed if its p-value
is less than the defined significant level a. However, for hypothesis testing, the
problem of multiple testing problem results from the increase in type I error that
occurs when many statistical tests are used simultaneously. Suppose there are m
independent comparisons, the experiment-wide significance level @, also termed
FWER, is given by @ = 1 — (1 — @)". @ increases as the number of comparison
increases. Multiple testing correction is to re-calculate the probabilities obtained
from a statistical test which was repeated multiple times. In order to retain FWER a
in an analysis, the error rate for each comparison must be more stringent than a.
A number of procedures for controlling error rates have been developed to solve
the multiple-testing problem. One of the most commonly used approaches for
multiple comparisons is the Bonferroni procedure for controlling the FWER at
level a, which rejects any hypothesis H; with unadjusted p-value less than or equal
to a/m. The Bonferroni procedure is very conservative. A less conservative
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procedure is the Benjamini-Hochberg procedure (BH step-up procedure), which
controls the false discovery rate (at level a). The procedure works as follows:
first for a given a, find the largest k such that Py < %a. Second, reject all H; for
j=1,2, ..., k. The BH procedure is valid when the m tests are independent and also
in various scenarios of dependence.

2.2.1.3 Multivariate Analysis

Although many common genetic variants associated with complex traits have been
identified by GWAS, these traits are typically analyzed separately in a univariate
manner for association with DNA markers. However, multivariate analysis for
correlated traits could be very advantageous in several aspects. First, when there
is genetic correlation between different traits, a multivariate analysis can increase
power by using the extra information provided by the cross-trait covariance, which
is ignored by the univariate analysis. Second, a multivariate analysis of multiple
traits can reduce the number of performed tests and alleviate multiple testing
burden compared to analyzing all traits separately. Lastly, a multivariate analysis
is biologically making more sense as a single genetic marker is associated with
multiple traits, compared to the cross-trait comparison in univariate analysis
(Galesloot et al. 2014).

A number of multivariate analysis methods in population-based GWAS have
been published. Here we briefly introduce six methods including as well as their
softwares.

The multivariate test of association MQFAM is implemented in the genetic
association analysis software PLINK (MV-PLINK) (Ferreira and Purcell 2009;
Purcell et al. 2007). The command used for association testing with MV-PLINK
(https://genepi.qimr.edu.au/staff/manuelF/multivariate/main.html) is: plink.multi-
variate —noweb —file geno —mqfam —mult-pheno pheno.phen —out output. For each
genetic variant, MV-PLINK produces an F-statistic and a p-value in the additive
model. Canonical correlation analysis (CCA), which is a multivariate generaliza-
tion of the Pearson product-moment correlation, to measure the association
between the two sets of variables. Specifically, CCA extracts the linear combination
of traits that explain the largest possible amount of the covariation between the
marker and all traits. The interpretation of a significant multivariate test is aided by
the inspection of the weights attributed by the CCA to each phenotype.

Bayesian multiple phenotype test is implemented in SNPTEST (MV-SNPTEST)
(Marchini et al. 2007). The command used to perform additive association testing
with MV-SNPTEST is provided in the online tutorial (https://mathgen.stats.ox.ac.
uk/genetics_software/snptest/snptest.html#multiple_phenotype_tests). The model
is the Bayesian Multivariate Linear model which is specified by

T T T T~
(yilv"'7yiq) = Gi(ﬂ17"'7ﬂq) + (6517...,61"[) ,Where (6,‘1,...76[([) N(O,Z)
and (y;1,-..,Yig) is the vector of the g residual phenotypes measured on the ith
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individual. G; is the code of the SNP genotype for the ith individual. We use the
conjugate prior for this model. This is an inverse Wishart prior IW(c,Q) on the error
covariance matrix Y, and a matrix normal (N) prior on the vector of parameters
(ﬂl, . ,ﬂq) — M~N(V,X), where M is a mean vector and V is a constant. An
inverse Wishart prior [IW(6,4)] was set on the error covariance matrix ), and a
matrix normal prior [N(0.02,>))] on the vector of parameters, according to recom-
mendations of the authors. Method ‘expected’ will result in the use of expected
genotype counts (~dosages) in the analyses.

MultiPhen is an R package available from CRAN (https://cran.r-project.org/web/
packages/MultiPhen/index.html) (O’Reilly et al. 2012). The regression performed
at a SNP, g, and a phenotype, £, to test for association between the SNP genotypes
and the phenotype is: Yy = ax + ﬁgkXig + &gk, Where g is the residual error
assumed to be normally distributed. The null hypothesis of no association between
SNP and genotype can be tested by performing a t-test on the null hypothesis
Bo = 0. In the MultiPhen approach, the regression is inverted so that the SNP
genotype, X, becomes the dependent variable, and K phenotypes under study
become the predictor variables. The genotype data is an allele count and is
therefore modelled using ordinal regression; we use proportional odds logistic
regression. This model defines the class probabilities as follows.
P(Xig < m) =— 1  Ateach SNP g=12,...,G, the test for associa-

K
(7(1‘@"172/)737]()/1']()
k=1

tion is a likelihood ratio test (LRT) for model fit, testing the null hypothesis
Poi = ... = Pg = 0. This results in a p value per trait and a p-value for the LRT.

A Bayesian model comparison and model averaging for multivariate
regression is implemented in BIMBAM software (Stephens 2013). The details
of statistical method are provided in the reference (Stephens 2013). The BIMBAM
software can be run in two different ways. First we test for association between the
multivariate traits, all partitioned in the group of directly affected traits, and
genotype. Second, we consider all possible partitions of traits into the different
categories of traits (directly affected, indirectly affected, and unaffected).

The Principal Component of Heritability Association Test (PCHAT) (Klei
et al. 2008) is implemented in the software available at http://www.wpic.pitt.
edu/wpiccompgen/PCHAT/PCHAT .htm). First, the sample is split into a training
set and a test set. The training set is used to construct the optimal linear combination
of traits from a heritability point of view. A test set is used for association testing
between genotype and the optimal linear combination of traits. In this way, use of
the same data for both estimation of the optimal linear combination of traits and
association testing is avoided. In addition, a ‘bagging’ approach is performed, in
which bootstrap samples are drawn from the training sample and the optimal linear
combination of traits is averaged across bootstrap samples. The null distribution of
the test statistic is obtained in the same way, using permutation of the data.


https://cran.r-project.org/web/packages/MultiPhen/index.html
https://cran.r-project.org/web/packages/MultiPhen/index.html
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A Trait-based Association Test (TATES) is based on Extended Simes procedure
(van der Sluis et al. 2013). TATES (http://ctglab.nl/software) constitutes a powerful
new multivariate strategy that allows researchers to identify novel causal variants.
TATES acquire one trait-based p-value by combing p-values in standard univariate
GWAS, while correcting for correlations between components. It can detect both
genetic variants which are common to multiple phenotypes and those which are
specific to a single phenotype. It requires a correlation matrix of the traits and
univariate association results as input. The corr function in R can be used to
generate the full and symmetrical correlation matrices. TATES was run in R and
the output contains the TATES trait-based p-value corrected for the correlations
between the traits.

2.2.1.4 Gene Set Analysis

In transcriptomics study, massive throughput techniques, such as microarray and
RNA sequencing, allow to identify differentially expressed genes (DEGs) associ-
ated with diseases or phenotypes from genome-wide gene expression profile. The
challenge in expression data analysis in recent years has shifted from single DEG
analysis to gene set analysis (GSA), as biologically many complex diseases may be
modestly regulated by a set of related genes rather than a single gene. The gene sets
are defined based on prior biological knowledge, e.g., biochemical pathways or
coexpression in previous experiments. GSA can alleviate the difficulty in interpre-
tation of multiple testing lists of DEGs and provide insights into biological mech-
anisms for complex diseases. The first and most popular GSA is gene set
enrichment analysis (GSEA) (Subramanian et al. 2005), which is a computational
method that determines whether an a priori defined set of genes shows statistically
significant, concordant differences between two biological states (e.g. phenotypes).
The GSEA method is implemented in a freely available software package at http://
www.broadinstitute.org/gsea/index.jsp. The basic idea for this method is presented
as follow (Subramanian et al. 2005):

Step 1: Calculate an Enrichment Score. Rank genes by their expression difference
in two biological states and then compute cumulative sum over ranked genes.
The magnitude of increment depends on correlation of gene with phenotype.
Record the maximum deviation from zero as the enrichment score.

Step 2: Estimate significance. Permute phenotype labels 1000 times and compute
ES score for each permutation. Then compare ES score for actual data to
distribution of ES scores from permuted data.

Step 3: Multiple Hypothesis Testing. Normalize the ES accounting for size of each
gene set to obtain the normalized enrichment score (NES). Calculate FDR for
each NES to control proportion of false positives by comparing tails of the
observed and null distributions for the NES.

Another interesting GSA method proposed by Efron and Tibshirani attempts to
combine gene and sample randomization in one procedure (Efron and Tibshirani


http://ctglab.nl/software
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2007). It shows that it is more powerful based on the “maxmean” statistic than the
modified Kolmogorov-Smirnov statistic used in GSEA. This method can be
implemented by the R package “GSA”. The basic procedures are summarized here:

1. Compute a summary statistic z; for each gene, for example the two sample
t-statistic for two-class data. Let z; be the vector of z; values for genes in a
gene-set S.

2. For each gene-set S, choose a summary statistic S = s(z): the maxmean statistic

{ Zz";l I(Z,' > O)Z,' Zil I(Z,' < O)Z,‘ }

m m
3. Standardize S by its randomization mean and standard deviation as

! (S—mean(s)
§ = std(s)( )

or maxmean, this can be computed from the genewise means and standard
deviations, without having to draw random sets of genes.

4. Compute permutations of the outcome values (e.g., the class labels in the
two-class case) and re-compute S’ on each permuted dataset, yielding permuta-
tion values. Use these permutation values to estimate p-values for each gene-set
score " and false discovery rates applied to these p-values for the collection of
gene-set scores.

In 2007, Wang et al. extended the GSEA to GWAS of complex diseases (Wang
et al. 2007), where multiple genes in the same GS/pathway contribute to disease
etiology but where common variations in each of those genes make modest
contributions to disease risk. Gene set analysis tests disease association with genetic
variants in a group of functionally related genes, such as those belonging to the
same biological pathway. It can potentially improve the power to detect causal
GS/pathways and disease mechanisms by considering multiple contribution factors
together, rather than focusing on the top SNPs associated with disease. Individual
SNPs in univariate analysis only account for a small proportion of the heritability of
complex diseases. The method assesses the enrichment of significant associations
for genes in the GS/pathway (as compared with those outside the GS/pathway)
using a weighted Kolmogorov—Smirnov running-sum statistic. The GSEA method
is modified to fit GWAS data. For each SNP V; (i=1,..., L, where L is the total
number of SNPs in a GWA study), its test statistic value is calculated, r; (e.g., a X2
statistic for a case-control association test). We next associated SNP V; with gene G;
(j=1,..., N, where N is the total number of genes represented by all SNPs) if the
SNP is located within or <500 kb away from the gene. The highest statistic value
among all SNPs mapped to the gene, is assigned as the statistic value of the gene.
For all N genes that are represented by SNPs in the GW A study, their statistic values
are sorted from largest to smallest, denoted by 7(y,. . .,/ qv). For any given gene set S,
composed of Ny genes, a weighted Kolmogorov-Smirnov-like running-sum statis-
tic is calculated which reflects the overrepresentation of genes within the set S at the
top of the entire ranked list of genes in the genome.

. For summary statistics such as the mean, mean absolute value
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Over recent years, various methods have been published for gene-set or
pathway-based association analysis for GWAS. Basically, these statistical methods
can be classified into two categories based on whether the required input data sets
are a collection of SNP p-values or individual-level SNP genotypes. Additionally,
the null hypothesis can also be categorized as ‘self-contained’ versus ‘competitive’
based on whether comparisons were made between genes in a specific pathway and
non-associated genes or other genes in the genome. Some of these published
algorithms as well as software implementations or web servers are summarized in
the review (Wang et al. 2010).

2.2.1.5 Gene Network Analysis

Recent years many network theories have been applied to gene coexpression
network analysis. As gene expression microarrays measure the transcription levels
of thousands of genes simultaneously, it provides great opportunities to explore
large scale gene regulatory networks. Genes with similar expression patterns may
participate in pathways and in regulatory and signaling circuits and their products
may form complexes. Gene networks provide a systematic understanding of molec-
ular mechanisms underlying biological processes, and the visualization of direct
dependencies facilitates systematic interpretation and comprehension of the rela-
tionships among genes. Most complex human diseases are arising not from a single
gene but from interactions with many other genes, especially in a gene network.
The hub genes, which interact with many other genes, are likely to be drivers of the
disease status. The analysis on the hub genes has become a promising approach for
identifying the key candidate genes for complex diseases.

A great number of statistical methods for gene network reconstruction from gene
expression microarray data have been proposed in recent years. There are four main
categories of statistical methods: (1) Probabilistic networks-based approaches,
mainly Bayesian networks (BN), (2) correlation-based methods, (3) partial-
correlation-based methods, and (4) information-theory-based methods (Allen
et al. 2012). The representative method in each category and the implementation
software are summarized below.

Probabilistic networks, mainly Bayesian networks, are based on a probabilistic
graphical model that represents a set of variables and their probabilistic indepen-
dencies. The Bayesian networks expand the joint probability in terms of simpler
conditional probabilities, which allow them to handle noise inherent in both bio-
logical processes and microarray experiments. Generally, the joint likelihood
function of nodes Xi,...,X, in a Bayesian network can be expressed as

14
p

P(Xi,....X,) = HP(Xi’H;'G ), where graph G = (V, E) represents the topolog-
i=1

ical structure of the Bayesian network, in whichV = {Xy,....X 1,} denotes the set of

nodes and FE = {Xj—>X,-,Xj€HiG} denotes the set of edges. Werhli’s
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implementation for Bayesian network construction method is most used and out-
performs other implementations (Werhli et al. 2006). A Bayesian network models
the distribution of observations and a causal network models the distributions of
observations and effects of interventions. A causal network can be interpreted as a
Bayesian network, when we are willing to make the Causal Markov Assumptions:
given the values of a variable’s immediate causes, it is independent of its earlier
causes (Friedman et al. 2000).

Correlation-based methods are the most straightforward and popular way to
explore the gene co-expression network. They have been successfully applied in
many studies and have shown their usefulness in identifying important gene
modules and in interpreting biological results. Basically a gene co-expression
similarity matrix is defined as S=[S;;], where §;; is the pair-wise transcription
correlation coefficients between gene i and j. S is the correlation matrix (Zhang and
Horvath 2005). Particularly, Weighted Correlation Network Analysis (WGCNA) is
a representative method for the correlation-based approach (Langfelder and
Horvath 2008). The implementation of WGCNA is in R package, which is used
for identifying modules/subnetworks using hierarchical clustering approaches. The
WGCNA R package includes interfaces with Cytoscape (Shannon et al. 2003) for
network visualization and The database for annotation, visualization and integrated
discovery (DAVID) (Dennis et al. 2003) for enrichment analysis. The comprehen-
sive set of online tutorials that guide users through the major steps for gene network
analysis by WGCNA are provided in the website http://labs.genetics.ucla.edu/
horvath/htdocs/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/index.html.
In the tutorials, R code in each step is provided so that the user can copy and paste
into an R session. The tutorials cover the following major topics: correlation
network construction, step-by-step and automatic module identification, consensus
module detection, eigengene network analysis and differential network analysis.

Here we briefly review the key concepts of the WGCNA framework. The nodes
in a gene coexpression network correspond to genes, labeled by indices i,
j=12,...n. The edge between two nodes is determined by the pairwise correla-
tion. The network can be specified by its adjacency matrix A, a symmetric matrix
with entries a;; in [0,1] that encode the strength of the link between genes i and j. An
unsigned network is defined by the adjacency A in terms of coexpression similarity
Sij = ’cor (x,-7xj) , in which positive and negative correlations are treated equally.
Also if we want to preserve the sign of the correlation, we can use a signed

similarity defined as S; = (HLZ(”’)) The main difference between signed and
unsigned similarities is that genes with a high negative correlation (close to —1)
will have a low similarity in a signed network but a high similarity in an unsigned
network. A weighted network can preserve the continuous nature of the
co-expression information by using a soft thresholding parameter, § > 1. By using

a power function, the connection strength can be assessed, a; = Sf The default
values =6 and = 12 are used for unsigned and signed networks.


http://labs.genetics.ucla.edu/horvath/htdocs/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/index.html
http://labs.genetics.ucla.edu/horvath/htdocs/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/index.html
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In WGCNA, genes are clustered into network modules based on their coexpression.
Highly coexpressed genes have a small dissimilarity. For example, the adjacency-
based dissimilarity measure is dissAdj; = 1 — a;; . The dissimilarity measure can be
used as input in average linkage hierarchical clustering. Then, modules are defined as
branches of the resulting cluster tree. If larger and more robust modules are desired, one
can use a dissimilarity measure based on the topological overlap matrix (TOM):

Zu;&iaiua"j + aijj
min (ki k; ) +1—a;
network connectivity. TOM combines the connection strength between a pair of genes
with their connections to other ‘third party’ genes, which has been shown to be a highly
robust measure of network interconnectedness (proximity). In order to summarize the
module genes by a single representative expression profile, module eigengene is
defined as the first principal component of the standardized expression profiles of a
given module, which is considered as the weighted average of the module gene
expressions. We can correlate the module eigengenes with the trait of interest y. The
correlation coefficient or its corresponding p-value is referred to as the eigengene
significance. For each module, the module significance is defined as the average
absolute gene significance for all genes in the module. WGCNA can alleviate the
multiple testing problem in DEG analysis, as it focuses on a few modules with the trait
rather than thousands of genes and these modules may be included into some important

biological pathways.

Partial-correlation-based methods are based on Gaussian graphic model. These
methods infer the conditional dependency by the non-zero entries in the precision
matrix, C = [C i’_,«] = S~!, which is the inverse of covariance matrix (Allen
et al. 2012). The zero entries in the precision matrix imply conditional indepen-
dency between the expression levels of gene i and j given the expression of all other
genes, which means two genes do not interact directly with each other. The sparse
partial correlation estimation (SPACE) algorithm is a representative partial-
correlation-based method (Peng et al. 2009). It converts the concentration matrix
estimation problem to a regression problem and optimizes the results with a
symmetric constraint and an L; penalization.

Information-theory-based methods use mutual information (MI) to determine
how similar the joint distribution P(X, Y) is to the products of factored marginal
distribution P(X)P(Y). It can determine the dependency among the genes and then
remove indirect interactions. Algorithm for the Reconstruction of Accurate Cellular
Networks (ARACNE) is a successful and popular information-theory-based
method, which has been successfully applied to construct gene regulatory networks
in the context of specific cellular types (Margolin et al. 2006). The calculation of MI
does not assume a monotonic relationship; therefore it is able to identify the
non-linear or irregular dependencies, which will be missed by Pearson correlation.
If the gene network contains non-monotonic dependencies the ARACNE could
outperform correlation-based methods.

dissTOM;; =1 —-TOM;; =1 — , wWhere k; = Zu 7éia,,,« denotes the
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2.2.2 Computational Methods for Integrating
Multi-Omics Data

A variety of statistical methods and tools have been proposed for integrating two or
more omics data. These methods aim to help understand molecular mechanism or
biological pathways underlying variation of different types of clinical traits. Also
they explore the relationship or interactions among diverse omics data for complex
network structure reconstruction and thereby identifying risk modules associated
with clinical outcomes. Integrated information is finally used for subtyping clinical
diseases or predicting the outcome for prospective patients. These computational
methods can be broadly categorized into four types in terms of the objective of
analysis and the way of integrating omics data.

2.2.2.1 Multi-Stage Method: Analyzing Multi-Omics Data Sequentially

Multi-stage method is a way to divide multi-omics analysis into multiple stages,
where each stage only incorporates two levels of omics and subsequently relates
biomarkers to the trait or phenotype of interest. For example, a three stage strategy
is commonly applied for identifying genetic variants associated with the phenotype
and relating the other levels of omics, e.g., gene expression (Holzinger and Ritchie
2012).

Stepl. Identifying those significant genetic variants (e.g., SNPs) associated with
phenotype by genome-wide association test with multiple testing corrected.
Step2. Testing those identified SNPs for association with the other omics data, such
as gene expression, DNA methylation, protein expression and other functional
profiling. The corresponding associated SNPs are called expression quantitative
loci (eQTLs (Jansen and Nap 2001)), methylation QTL (meQTLs (Kerkel

et al. 2008)), protein QTL(pQTLs (Melzer et al. 2008)) respectively.

Step3. Those omics features having at least one QTL are further tested for the
association with phenotype. Subsequently, biological pathways can be derived;
some SNPs associate with phenotype through other omics data while some SNPs
can affect phenotype independent of the other omics data. One benefit of multi-
stage method is that each single stage analysis is performed independently with a
variety of statistical methods (Cantor et al. 2010). For example, to identify
significant biomarkers at the first and third stage, both univariate test (e.g., linear
regression or logistic regression) and multivariate methods (e.g., region or
pathway based test (Khatri et al. 2012)) can be applied for genome-wide
detection. At the second stage, many approaches proposed for identifying
eQTLs can also be applied for the analysis of meQTLs, or pQTLs, such as
single-trait QTL tests, multi-trait QTL methods, and QTL test with pedigree or
error correction (Kendziorski et al. 2006).
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Some multi-stage methods have been proposed for sequential analysis of multi-
omics data. For instance, Schadt et al. applies multistep method to analyze DNA
methylation, gene expression and other complex traits to determine if the variation
of DNA methylation that leads to the change of gene expression traits statistically
supports an independent, causative or reactive function relative to the complex
traits (Schadt et al. 2005). Hao et al. performed a systematic analysis and identified
two modules underlying BMD by incorporating GWASs, human PPI network, and
gene expression (He et al. 2014). The tool, Multiple Concerted Disruption (MCD) is
proposed to sequentially search for a set of genes which exhibit concerted disrup-
tion through multiple genomic dimension (DNA methylation, copy number and
allelic status) and consequential change in gene expression (Chari et al. 2010). The
procedure involves four sequential steps with increasing number of genomic data
incorporated to filter out those genes lacking concerted disruption. Similar method
for exploring the relationship between copy number alternation and methylation
(CNAmet) is also proposed (Louhimo and Hautaniemi 2011). In addition, prior
knowledge such as KEGG pathway, gene ontology or functional annotation of the
region (e.g., transcription factor binding, methylated or regulatory motifs) could
also be incorporated into the analysis to refine the specific regions of interest for the
subsequent multi-stage analysis.

Although it is easy to model the relationship among multi-omics data by
exploring their pair-wise relationship sequentially, there is a limitation for the
stepwise hypothesis. If different omics interplay to have joint effect, for example,
miRNA and DNA methylation may simultaneously affect the gene expression, the
multi-stage methods may lose their efficiency.

2.2.2.2 Parallel Analysis: Combining Individual Omics Analysis
Results

Parallel analysis combines multi-omics data into the analysis simultaneously. It can
be generally divided into two categories: concatenation-based integration and
model-based integration.

Concatenation-Based Integration This method is to straightforwardly concate-
nate all of omics data from the same subjects, resulting in a large combined matrix.
One advantage of this integration is the applicability of many single omics analysis
methods if combing features appropriately. For example, a variety of univariate and
multivariate association tests could be applied for biomarker detection from differ-
ent levels of features, especially the penalized likelihood methods which can handle
high dimensionality of data. Lasso is a very useful penalized method and has been
widely used for feature selection (Tibshirani 1996). Recently significant test based
on lasso is also proposed to control the type I error (Lockhart et al. 2014). Other
penalized methods such as sparse logistic regression (Shevade and Keerthi 2003),
cox lasso (Wang et al. 2009), and sparse multinomial regression (Krishnapuram
et al. 2005) have also been used for genetic biomarker identification corresponding
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to different types of phenotypes (e.g., categorical or survival traits). These methods
can be extended to the analysis of concatenated matrix consisting multi-omics data.

Another advantage of concatenating datasets is that they can account for rela-
tionship among features from different levels of omics data. For example, SNP and
DNA methylation measure the effect of genetic mutation and environmental factors
on complex traits respectively. They may interact with each other to deregulate
gene expression, leading to the variation of traits. Fridley et al. used Bayesian
modeling to incorporate the relationship between SNPs and mRNA gene expression
into the concatenation-based association model for the prediction of drug cytotox-
icity (Fridley et al. 2012). In penalized likelihood methods, elastic net is used to
simultaneously select features and account for the correlation among features
(Ogutu et al. 2012). Group based penalties (e.g., group lasso, sparse group lasso,
group Bridge, and overlapping group lasso) were proposed to group different levels
of features based on their genomic annotation (e.g., gene or pathway) to increase the
detection power on group level (Huang et al. 2012). In addition, Lando et al. used
the correlation between copy number and phenotype to weight the penalty of gene
expression in a penalized regression model. Genes corresponding to important
CNVs were less penalized in expression regression model (Lando et al. 2009).

In spite of the advantages of concatenating multi-omics data, it is still a chal-
lenge to find an appropriate way to combine these data matrices collected from
different platforms with different scales into one model. In addition, the combina-
tion of these high-dimensional matrices will largely expand the dimension of the
model, which could increase computational burden. Therefore, the concatenation of
multiple datasets is more applicable for omics data integration if there exists an
appropriate way of concatenating matrix and the dimension of data is moderate.

Model-Based Integration To avoid the issues of combing data directly, some
studies try to build a model for each data separately and then transform each model
into an intermediate form, and finally integrate transformed outputs for multi-omics
analysis. Tyekucheva et al. performed gene-level and gene set-level tests on gene
expression and copy number data separately and combined the gene set scores by
meta-analytical approaches (e.g., geometrically averaged P-values and minimum
P-values) to derive the combined gene-set score (Tyekucheva et al. 2011). The
integrative approach identified more reliable glioblastoma multiforme tumor
related gene sets than individual data analysis. Similarly, Poisson et al. proposed
the sum of square statistics to combine gene set score from gene expression and
metabolites to test integrative set enrichment (Soneson et al. 2010). Xiong
et al. developed a tool, Gene Set Association Analysis (GSAA), to test gene-set
enrichment by combing SNP-set and gene expression using different score based
combination methods (e.g., z-score sum, rank sum and fisher’s test) (Xiong
et al. 2012). Analysis Tool for Heritable and Environmental network Association
(ATHENA) is another model-based analysis tool for performing integrative anal-
ysis of different omics data as well as their association with clinical outcomes
(Holzinger et al. 2013).
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Besides the statistical model or score integration, multi-task learning is another
powerful strategy to jointly model different but related tasks simultaneously.
Biomarker identification in each single omics is treated as a task and then multiple
tasks are combined by multitask learning. Bennett et al. used multi-task learning to
consider enrichment analysis scores from both SNP and gene expression to identify
several pathways with both genetic and expression differences related to the
phenotype (Bennett et al. 2012). Lin et al. adopted two bi-level penalties in
multitask regression model to integrate multiple diverse genomics datasets under
different level and/or platform for identifying common biomarkers (e.g., genes or
gene-set) (Lin et al. 2014a). They assumed a regression model for each dataset as a
task, and then considered multiple regression models as multiple tasks. Variables
from all datasets were grouped by specific units (e.g., genes) and penalized by
sparse group penalties. The integration shows higher power of detecting risk genes
than single omics data analysis and meta-analysis under the scenarios of both fixed
effect and random effect.

It is noted that model-based integration methods need to build a model for each
data set and then combine the models or their intermediate outputs. The scale of
model errors or the intermediate outputs needs to be comparable for integration. If
each omics data is extremely heterogeneous, this integration method may yield
little improvement over separated analysis.

2.2.2.3 Latent Variable Models: Transform Variables
into New Feature Space for Integration

The high dimensionality of diverse genomic data is a challenge. One commonly
used strategy is to project high dimensional genomic data into low dimensional
space before an integrative analysis is performed. Principle component analysis
(PCA) is popularly used to explain the variance—covariance structure in a single
data. It is widely used for handling pleiotropy with multiple correlated traits (e.g.,
eQTL) with the assumption that multiple correlated traits are able to reveal stronger
signals than are obtained from univariate analysis of each trait separately. PCA
based method collapses a number of correlated variables into a smaller number of
uncorrelated variables as new phenotypes, which captures most variability and then
test association for each new phenotype separately. Christine et al. used PCA to
detect pleiotropic QTLs for boar taint and paternal fertility traits (Groe-Brinkhaus
et al. 2015). Jane et al. applied PCA on 70 skeletal traits to explore pleiotropy
pattern through skeleton as well as genetic mechanism of each pattern (Kenney-
Hunt et al. 2008).

Some latent variable models work in two- or multi-block way such as canonical
correlation analysis (CCA) and partial least squares (PLS) with the aim to estimate
latent variate from each dataset respectively (a linear combination of variables) by
maximizing the correlation (CCA) or covariance (PLS) between them. Soneson
et al. applied CCA to explore two pairs of highly correlated features from the gene
expression and copy number variable sets, which represent different characteristic
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in leukemia. Tang et al. proposed a gene-based association test using CCA to detect
QTLs associated with multiple quantitative traits (Tang and Ferreira 2012).
Boulesteix et al. used PLS to predict transcription factor activities from combined
analysis of gene expression and chromatin immunoprecipitation (ChIP) data
(Boulesteix and Strimmer 2007). To integrate multiple datasets or clinical traits,
some multi-block approaches such as multi-set CCA and multi-block
PLS-correlation have also been proposed by summarizing pairwise correlations
(or covariances) among different data sources (Lin et al. 2014b). In addition,
parallel independent component analysis (pICA) and joint ICA are also two block
methods widely used in genetic, imaging and clinical integration to explore inde-
pendent components from each modality respectively while maximizing the corre-
lation of the components simultaneously (Sui et al. 2012). Shen et al. show the
robustness of joint ICA in integrating multi-omics data for biomarker detection and
combined gene expression and copy number variation to identify significant genes
associated with breast cancer (Sheng et al. 2011).

The above latent variables models mainly focus on the linear relationship among
omics data. It may be interesting to consider non-linear relationship to explore more
complicated genetic regulatory mechanism. ‘Kernel trick’ is a popular strategy which
maps omics data into feature space by kernel matrix (e.g., Gaussian kernel matrix).
Reverter et al. used kernel PCA to reduce dimension of metabolomics and genomics
data and combined them for better representation of samples (Reverter et al. 2014).
Yamannishi et al. proposed two types of kernel CCA to measure the correlation
between several heterogeneous datasets, and to extract sets of genes which share
similarities with respect to multiple biological attributes (Yamanishi et al. 2003).

Due to high dimensionality and small sample size of multi-omics data, there are
usually issues of multi-collinearity (linear dependence) in the data and overfitting of
the model. To address these issues, one way is to introduce the sparse
regularizations into the conventional latent model to perform feature selection
and correlative analysis simultaneously. Several types of regularized latent variable
models have been proposed by enforcing different sparse penalties (e.g., lasso,
elastic net and sparse group lasso penalty) on the loading vectors in the model.
Waaijenborg et al. (2008) introduced the L-1 norm and elastic net penalties to the
CCA model to analyze the correlation between gene expression and DNA-markers.
Parkhomenko et al. (2009) proposed a CCA method with lasso penalty based on
SVD (Singular value decomposition). Le Cao et al. (2009) used the penalized CCA
with the elastic net to identify sets of co-expressed genes from two different
microarray platforms. Witten et al. (2009) developed penalized matrix decomposi-
tion (PMD) method and applied it to solve CCA with lasso and fused lasso
penalties. Lin et al. presented a unified framework of formulating these sparse
CCA models as in (2.1):

min,,, — u'Zxyy + 4 ||ullg + willull; + |l + 2vll, st Exxu
S 1,v’Zyyv S 1 (21)

where X,Y are the two data matrices; u and v are the loading vectors constrained by
sparse terms;llull; and lIvll; are /—1 norm lasso penalty for performing the selection
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L H
of individual variable/feature, and ||u||; = lel ollul,, vl = Zth wnllvally

are the group penalties to account for joint effects of features within the same group.
The group penalty uses the non-diffentialbility of llull, (or llv,l,) at u;=0 (v,=0)
to set the coefficients of the group to 0 so the entire group of features will be
removed to achieve the group sparsity.

Figure 2.1a shows the results of recovered loading vectors u and v by CCA-11,
CCA-group and CCA-sparse group methods respectively. It can be seen that the
CCA-sparse group method can better estimate true u and v than CCA-11, CCA-group
method. Figure 2.1b compares the accuracy of recovering loading vectors from three
methods with respect to different noise levels (standard deviation changes from 0.1 to
1 with interval 0.1), corresponding to different degrees of correlations between the two
data sets. The result shows that the CCA-group model can recover the most correlated
variables but gives the highest total discordance. CCA-sparse group has a comparable
recovering accuracy as CCA-group model but much less total discordance especially
when noise level decreases. These methods were also applied to fMRI data and SNP
data and other omics data to identify significant correlated features.

Several other latent variable models were also proposed. Chun et al. proposed
sparse PLS for simultaneous dimension reduction and feature selection in gene
expression and transcriptional factor data. sPLS discriminant analysis (sPLS-DA),
included in mixomics packages (L€ Cao et al. 2011), incorporated disease pheno-
type to extract those latent variables from gene expression or SNPs which are
discriminative in multiclass disease, e.g., Leukemia. Li et al. introduced a sparse
Multi-Block Partial Least Squares (sSMBPLS) regression method to identify
multidimensional regulatory modules from copy number variation, DNA methyla-
tion, gene expression and microRNA expression (Li et al. 2012).

2.2.2.4 Integrative Network Analysis

Networks represent the interactions of features within or across different levels of
omics. The methods for reconstructing genetic network in single omics data have
been well studied, as introduced in Sect. 2.2.1.4. However, they are limited to
understand complex biological networks underlying cell and organ functions by
single level of omic data. Integration of different levels of omics data to reconstruct
comprehensive network is able to enrich our understanding of biological processes
and improve the discovery of disease biomarkers. There are mainly two categories
of integrative network reconstruction algorithms: single-stage reconstruction and
multi-stage reconstruction.

Single-Stage Integrative Network Reconstruction This type of method tends to
incorporate multi-omics data directly into the model for network construction. A
simple way is using correlation based measurement to weight the interactions
among omics features. WGCNA was used to construct network between
metabolomics and transcriptomics data to identify clusters of metabolites and
transcriptional factors associated with body weight change. A correlation derived
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topological matrix was used for clustering correlated features and cutting into
different modules for association analysis (Wahl et al. 2015). Kayano
et al. developed a statistical method based on low-order partial correlations with a
robust correlation coefficient for estimating metabolic networks from metabolome,
proteome, and transcriptome data (Kayano et al. 2013).

Another way is Bayesian network, which is a directed probabilistic graphical
model with each edge representing the dependence between nodes (e.g., genes).
Bayesian network is based on both prior distribution assumptions and observed data
to design a model which can be mostly trusted. Prior distributions could be
informative, such as conjugate prior, or mostly be non-informative. Some prior
knowledge such as protein-protein interaction database could be incorporated to
improve the accuracy and efficiency of network reconstruction. Conditional inde-
pendence facilitates the integration of diverse data in a coherent way. Zhu
et al. combined genotypic, expression, transcription factor binding site (TFBS),
and protein—protein interaction (PPI) data to reconstruct causal gene networks.
Three levels of Bayesian networks (BN_raw, BN_eQTL and BN_full) incorporat-
ing different prior knowledge (e.g., eQTL) were reconstructed and compared in
terms of their power to infer causal regulators for validated signature gene sets (Zhu
et al. 2008). Some Bayesian clustering models were designed to cluster genes from
multiple omics data based on their interactions. Multiple dataset integration (MDI)
was developed to identify groups of genes that are co-regulated and additionally
their protein products appearing in the same complex (Kirk et al. 2012). To
constrain the consistency of identified clusters across multiple omics sources,
Bayesian consensus clustering was built to find consensus genetic clusters shared
in different omics levels (Lock and Dunson 2013). Instead of finding clusters of
genetic markers, Pathway recognition algorithm using data integration on genomic
models (PARADIGM) was used to infer the molecular pathways altered in a patient
sample by integrating genomic and functional genomic datasets (Vaske et al. 2010).
Pathways were constructed based on prior knowledge database following
CNV->gene expression->protein activity assumption and all measurements were
categorized into three discrete states (inhibited, normal and activated). Joint poste-
rior distribution was then computed based on observed data. The difference
between pre- and post-activity levels indicated the quantitative alternation induced
by the disease. Similarly, Multi-level Ontology Analysis (MONA) was a computa-
tionally efficient method to approximate the marginal posteriors of ontology terms
based on three basis model assumptions (base, cooperative, and inhibitory models),
given lists of genes responding to experimental conditions (Sass et al. 2013). iNET
takes a “feature-specific” approach to model eight underlying biological basis
models for constructing Bayesian network (Wang et al. 2013).

Multi-Stage Integrative Network Reconstruction There are generally two major
steps: constructing network in each single level of omics data; and fusing multiple
networks to an integrated network. The first step could be achieved by using various
single omics network reconstruction algorithms. Network alignment and fusion
methods are usually needed for the second step. Network alignment is the algorithm
to map the nodes from two or multiple types of networks in such a way that
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maximizes the topological and biological similarity between pairs of aligned nodes
(Mitra et al. 2013). This technique is helpful in identifying previously undiscovered
conserved modules that have been maintained across different species and reveal-
ing functionally similar subnetworks. Computational methods for network align-
ment consist of pair-wise alignment for aligning two networks only and multiple
alignment to find transitive alignments among multiple networks. Some alignment
algorithms, e.g., local alignment, aim to identify conserved regions between the
input networks, which is particularly useful in finding known functional compo-
nents (e.g., pathways) in a new species. For instance, PathBLAST allows the
comparison of simple pathways (e.g., linear pathways) or subnetworks (e.g., mod-
ules) based on homology and interaction confidence (Kelley et al. 2004).
NetworkBLAST finds highly conserved local regions greedily using inferred phy-
logeny (Kalaev et al. 2008). Some algorithms, e.g., global alignment, align every
node in the smaller network to the larger network to find an overall network which
enables species-level comparisons and discovery of functional orthologs. For
instance, IsoRank and IsoRankN identify a stationary random walk distribution to
perform global network alignment (Singh et al. 2008; Liao et al. 2009).

Network fusion is a technique to fuse multiple distinct but complementary bio-
logical networks to gain comprehensive insights of cellular structure and function.
One of these approaches is integrating biological networks across different types of
molecular interactions to identify composite modules. A cytoscape-based tool,
PanGIA is designed to detect composite modules by identifying overlapping clusters
of physical and genetic networks (Srivas et al. 2011). Physical interactions are mainly
represented by protein—protein and protein—DNA interactions. Genetic interactions
represent functional relationships between genes, in which the phenotypic effect of
one gene is modified by another. Composite modules are extracted based on the
physical interactions while cluster of genetic interactions between two different
composite modules reflect inter-modular dependencies. Integrative analysis of both
physical and genetic networks can reveal physical mechanism of phenotype associ-
ated with genes in the composite module and also predict the genetic dependence
between composite modules mapped in physical binding assays. Another Cytoscape
tool, GeneMANIA builds a composite functional association network by taking a
weighted average of individual functional association networks (Mostafavi
et al. 2008). It first assigns weights to each of interaction networks. The composite
network is then set to be the weighted average of the individual networks. Each
network weights are calculated on demand and are tailored to the query list.

2.2.3 Statistics for Clinical Disease Diagnosis
and Classification

The above has discussed the analysis of single omics or multi-omics data for
biomarker detection, genetic regulatory network inferring as well as the exploration
of genetic pathways underlying complex diseases. The next step is translating this
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knowledge into clinical diagnosis or prediction. Predictive modeling, particularly
classification, is critical in clinic research where risk biomarkers may vary largely
with different diseases and even the subjects from one group may have subject-
specific genetic variations. An effective method for classification of complex disease
is demanded. We generally categorize them into two types: supervised learning
method and unsupervised learning method. The former usually needs labelled train-
ing dataset for searching the optimal values of model parameters, which helps to
build an accurate model and is more applicable for disease classification. The latter is
data-driven method without knowing the class label from training, which is more
likely to be used for subtyping to explore new subclass of diseases.

2.2.3.1 Supervised Learning in Omics Data

We will introduce several commonly used supervised classifiers in genetic data
for classification of complex diseases. Assume there are m types of omics
dataset, denoted by X = [X|, X2, ..., X,,], where X; eRV*Fi i = 1,2, ...,m, P;is
the dimension of features in the i-th omics data. ¥ € RV*¢, ¢ is the number of classes,
and the subjects belonged to the j-th class are denoted by {wj},j =1,2,...,c. The
object is to predict the class of a new sample y given the observed omic feature
matrices X.

Discriminant Analysis Linear discrinant analysis (LDA) and quadratic discrimi-
nant analysis (QDA) are popularly used methods in clinical genomic analysis for
risk feature identification and classification. LDA is a latent variable model which
projects original high dimensional variables (e.g., gene expression measurements)
into a new feature space by linear combinations Xa with large ratios of between-
group to within-group sums of squares, that is, maximizing the ratio o’ Ba/a’ Wa,
where B denotes the between-classes covariance matrix, and W denotes the within-
class covariance matrix. The calculation of B and W are given by

C C
B=) Nii—mpi—p) s W=3 > (x—p)x—p)

i=1 xow;

where p; = lNZx B = %Zx For a new subject x, it can be projected to new
XEW; Vx

feature space by the estimated e and classified to the class which has the minimum

distance by the classification rule:

C(x,L) = argminy Dy (x)

where L is the training dataset to estimate LDA model and D(.) is the function to
measure the distance between new subject with each class. LDA is a
non-parametric method that is also a special form of a maximum likelihood
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discriminant rule for multivariate normal class densities with the same covariance
matrix. QDA is similar to LDA with the slight difference that QDA needs to estimate
the covariance for each class separately. Zhang compared the two methods in
recognition of two splice sites (acceptor site and donor site) in exons (Zhang 1997).
The features from internal exons and their flanking regions (e.g., in-frame hexamer
frequency bias) were adopted in LDA to distinguish acceptor site from donor site. To
further consider the complex correlation structure among various acceptor sites or
donor sites among exons, the covariance matrix may not be same between two sites.
QDA was applied and shown better identification accuracy than LDA. There are also
some other modifications of LDA to account for the specific characteristics in the
omics data. For example, sparse LDA is combined with sparse regularizations to
perform feature selection in discriminant analysis with high dimensional dataset,
e.g., gene expression data (Clemmensen et al. 2011). Ye et al. also proposed unrelated
LDA to handle the under-sampled data in genetic analysis and used generalized
singular value decomposition method to make the features in transformed space be
uncorrelated (Ye 2005). The method shows effectiveness in classification of tumors
by gene expression data. Huang et al. compared LDA with other four modified
methods on tumor classification by gene expression and showed the advantage of
LDA modification methods over traditional LDA in terms of the average error and
found no significant difference (Huang et al. 2009).

Decision Tree

Decision tree is one of most widely used machine learning methods. A decision tree
model is built by a tree-like structure, where each internal node represents a specific
test of an attribute, each branch represents one of the possible test results, and each
leaf node represents an outcome. There are mainly two types of decision tree:
decision tree classification and decision tree regression. The former aims to output
the classifications labels (e.g., class) while the latter can output any real number of
measurement. Decision tree can be learned by splitting the node into subsets
according to the attribute value test. The splitting process is repeated in a recursive
manner until the subsets of a node have all the same value of target variable or no
more information could be added after splitting. Several algorithms have been
developed to determine if splitting the node at each step, such as Gini impurity,
information gain or variance reduction, leads to several types of decision trees,
e.g., C4.5, C5, IDE, GINI, Codrington’s and CART (classification and regression
tree). Chen et al. used CART tree to select important genes for improving cancer
classification (Chen et al. 2014). CART was also applied to explore the influence of
the interactions among those genes that influence androgen in prostate cancer and if
these interactions are able to improve the cancer prediction (Barnholtz-Sloan
et al. 2011). There are also many other successful biological applications of decision
tree based classification, including coding and noncoding DNA classification
(Langfelder and Horvath 2008), protein secondary structure prediction (Shannon
et al. 2003), and operon structure classification (Dennis et al. 2003).
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Support Vector Machine

Support vector machines (SVM) are a family of classifiers which transform the
input samples into a high dimensional space by a linear or kernel function, named
feature space. Then a linear hyperplane could be drawn to separate two classes
mapped in the feature space. To avoid overfitting, SVMs choose a specific hyper-
plane that maximizes the minimum distance from the hyperplane to the closest
training point which is called support vectors. The optimal hyperplane is defined by
the pair (w, b) by solving the following problem:

. 2
min ||w||

st.y(wxi+b)—1>0,Vi=1,2,...,N

where ||w||* measures the inverse of distance between two boundaries to obtain
the maximum margin. w-x; +b = %1 indicates two boundary hyperplanes sepa-
rating subjects from two different classes (y = 1 or — 1). Boundary hyperplanes are
built on the support vectors. It is efficient for SVM to classify new examples since
the majority of the training examples can be safely ignored. In order to transform
original variables into high dimensional feature space and measure the non-linear
correlation in feature space, a kernel function K(x;, x;) is usually applied such as
polynomial kernel, Gaussian radial basis function and hyperbolic function.

Support vector machines have drawn a lot of research efforts from diverse fields
(Noble 2004). In bioinformatics, it is widely used for cancer diagnosis and classi-
fication, protein structure and function prediction and gene expression pattern
recognition. An early application example of SVM is to identify important genes
and further improve the classification on leukemia and colon cancers (Guyon
et al. 2002). Ferry et al. used SVM to not only classify cancer tissue samples
based on microarray data but also identify those samples wrongly classified by
experts. Hua and Sun used SVMs to perform protein classification with respect to
subcellular localization (Hua and Sun 2001). A 20-feature composition kernel
function is applied and shown to produce more accurate classifications than other
competing methods, including a neural network, a Markov Distinguishing model
and the covariant discriminant algorithm. Yeang et al. extended SVM to multi-class
SVM which can address the multiple classes issue. The method was applied for
multi-class tumor classification on a data set of 190 samples from 14 tumor classes
(Yeang et al. 2001). Nguyue et al. compared several multi-lass SVM algorithms on
protein secondary structure prediction including: one-against-all, one-against-one,
and directed acyclic graph, and two approaches for multi-class problem by solving
one single optimization problem (Nguyen and Rajapakse 2003). The results dem-
onstrated better recovery accuracy of multi-class SVMs proposed by Vapnik and
Weston than the other multi-class SVMs, including binary SVMs.
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Ensemble Learning

Ensemble learning is an effective technique that constructs a set of classifiers and
combines them to improve overall prediction accuracy (Dietterich 2000). There are
a lot of ensemble methods that have been applied to biological data analysis in
addressing small sample size but high dimensional data sets and reducing the
overfitting risk. The classification accuracy is also improved by generating multiple
prediction models and aggregating these multiple models (called basis classifiers)
to make the final prediction in a consensus way. There are several types of ensemble
learning algorithms including bagging (Breiman 1996), boosting (Freund and
Schapire 1996) and random forests (Breiman 2001). Being the principle ensemble
learning methods, they are usually combined with the other classifiers such as
decision trees.

There are several applications of ensemble learning methods such as sample/
tissue classification and gene-gene interaction prediction. Ben-Dor et al. (2000) and
Dudoit et al. (2002) applied bagging and boosting methods to classify tumors using
gene expression profiles. Both studies compared the ensemble methods with other
individual classifiers such as k-nearest neighbors (kNN), clustering based classi-
fiers, SVM, LDA, and classification trees. The conclusion was that ensemble
methods (e.g., bagging and boosting) performed similarly to other single classifi-
cation algorithms. Wu et al. (2003), compared several methods for the classification
of ovarian cancer based on MS spectra including the ensemble methods of bagging,
boosting, and random forests to individual classifiers, e.g., LDA, QDA, kNN, and
SVM. The study found that among all methods random forests outperforms the
others with the lowest error rate. Moon et al. developed a new ensemble-based
classification algorithm, Classification by Ensembles from Random Partitions
(CERP) combined with classification and decision tree (CART) and applied it to
genomic data on leukemia patients and on breast cancer patients (Moon et al. 2006).
The performance was compared with other classifiers such as single decision tree
(e.g., CART), SVM, diagonal LDA and other ensemble learning methods (e.g., RF
and boosting). The results demonstrate that CERP is a consistently better algorithm
and maintains a good balance between sensitivity and specificity even in case of
unbalanced sample size.

2.2.3.2 Unsupervised Learning in Omics Data

Clustering is a popular unsupervised learning method and commonly applied in
omics data analysis such as clustering genes based on their expression, or clustering
samples based on their omics features to identify subgroups or subtypes of diseases.
There are several clustering methods proposed including partition clustering and
hierarchical clustering.
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Partition Clustering

This type of clustering methods mainly partition objects and change the clusters
based on the dissimilarity or distance between objects with clusters. The fixed
number of clusters could be specified before the clustering.

K-means clustering is a popular method for clustering genes or subjects. The
general procedure is as follows:

(1) Randomly generate k clusters and calculate the centroid of each cluster;

(2) Calculate the distance of each point with each cluster centroid and assign each
point to the cluster with shortest distance.

(3) Update the centroid of each new cluster;

(4) Repeat until certain convergence is met, e.g., no changes of assignment of each
point.

There are some applications of k-means in bioinformatics, such as gene clustering
or subtyping. Lehmann et al. used k-means to analyze gene expression profiles of
587 TNBC cases from 21 breast cancer to subtype TNBC. Each TNBC case contained
13,060 genes after normalization for clustering analysis by K-means. The optimal
number of clusters was determined by the change of proportion of area under
empirical cumulative distribution curve and consequently, 6 Triple-negative breast
cancer subtypes were identified with unique gene expression and ontologies (Lehmann
et al. 2011). Further they predicted “driver” signaling pathways of each subtypes to
show that analysis of distinct GE signatures can inform therapy selection.

Fuzzy C-means (FCM) clustering is another clustering method using the ‘soft’
clustering instead of ‘hard’ clustering in k-means. For each subject, FCM assigns a
degree of membership in each cluster, which can account for the uncertainty of
some subjects. It has been widely used in imaging analysis (Li et al. 2013) since it is
more suitable for the scenario that there is overlapping among clusters, which is
also common in clinical analysis such as tumor classification where unlabeled
tumor samples may not necessarily be clear members of one class or another.
Wang et al. applied FCM clustering on gene expression data for tumor classification
and gene prediction (Wang et al. 2003). Given a dataset X = [X|, Xz, ..., Xy]
€RY*P from N tumor subjects measured on p gene expression levels. We assume
the existence of Nc¢ tumor classes, whose centers are denoted by
C=[C,GC,...,Cy] which are wunknown and to be estimated.
U=[U,U.,,...,U\y. is fuzzy membership matrix for the i-th subject on all
of tumor classes, whose value between zero and one. FCM clustering can be
obtained by solving the optimization issue:

Nc N Nc
. 2 .
ming, ¢ E E ui || Xi — Cil|”, subject to E ul ;=1

where ¢ is a weight on each fuzzy membership and determines the degree of
fuzziness. Each tumor subject will have a membership in every class; membership
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close to one indicates a high degree of similarity between the subject and a tumor
class while membership close to zero implies little similarity. The subject is
assigned to the class with the highest membership values. The second term is
used to constrain that the summation of membership of different classes equals
one to make sure the value of membership is between zero and one. The tests on
four different tumor datasets show the efficiency of FCM clustering in terms of
reduced error rates and the importance of selected features for medical diagnostics
and cancer classification.

Hierarchical Clustering

Hierarchical clustering is a clustering method to represent the objects in a tree-like
structure, where each node has zero or more child nodes below it. There are mainly
two types of strategies to generate the hierarchical tree: agglomerative, a ‘bottom
up’ approach which takes each object as its own cluster and merge clusters as one
moves up the hierarchy; divisive, a ‘top down’ approach which takes all objects as
one cluster and split it recursively as one moves down the hierarchy. Here shows the
procedure of agglomerative as an example:

(1) Start with n clusters with each contains one object;

(2) Merge the most similar pair of clusters from the proximity matrix which can be
built based on different distance measurements, e.g., single linkage, complete
linkage and average linkage, which take the minimum, maximum and average
of pairwise distance between two clusters, respectively.

(3) Update the proximity matrix by replacing the individual clusters with merged
cluster;

(4) Repeat until only one cluster is left.

Hierarchical clustering is also applied for clinical classification and gene clus-
tering. Makretsov et al. used hierarchical clustering to determine the efficiency in
improving prognostication in patients with invasive breast cancer by multiple
immunomarkers (protein expression profiles) (Makretsov et al. 2004). They iden-
tified three cluster groups with significant differences in clinical outcome and
demonstrated that hierarchical clustering by using multiple markers can group
breast cancers into classes with clinical relevance and outperform individual prog-
nostic markers. Furlan et al. applied unsupervised hierarchical clustering analysis to
126 colorectal carcinomas to combine 13 routinely assessed clinicopathologic
features and all five molecular markers to distinguish four molecular subtypes of
sporadic colorectal carcinomas (Furlan et al. 2011). The results demonstrate the
superiority of classification based on the combination of clinicopathologic and
molecular features of colorectal cancers over single features, and also indicate
that hierarchical clustering is a useful tool to define a diagnostic and prognostic
signature for different carcinomas.
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