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Abstract With the rapid development of high-throughput experimental technol-

ogies, bioinformatics and computational modeling has been a rapid evolving

science field concerned with the development of various analysis methods and

tools for investigating these large biological data efficiently and rigorously.

There are many methods and tools available for the analysis of single omics

dataset. It is a great challenge that biological systems are being further investi-

gated by integrating multiple heterogeneous and large omics data. Many power-

ful methods and algorithmic techniques have been developed to answer

important biomedical questions through integrative analysis. In this chapter, in

order to help the bench biologist analyze omics data, we introduced various

methods from classical statistical techniques for single marker association and

multivariate analysis to more recent advances from gene network analysis and

integrative analysis of multi-omics data.
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2.1 Introduction

In the past decade, with the development of high throughput technologies, massive

biological data have been generated from multiple levels of biological systems —

including DNA sequence data in genomics, RNA expression levels in

transcriptomics, DNA methylation and other epigenetic markers in epigenomics,

protein expression in proteomics and metabolic profiling in metabolomics. These

omics data are high throughput measurements of the abundance and/or structure

features of molecules involved in biological metabolism and regulation. Table 2.1

summarizes the main features of various omics data.

Generally, omics data are high-dimensional data, which means that the number

of subject n (e.g., tissue or samples) is much smaller than the number of variables

p (e.g., number of SNPs in genome wide association, number of genes in an

expression profile). In this setting, we are confronted with thousands of hypothesis

testing simultaneously. There is a high risk that statistical models may overfit the

omics data. In addition, datasets from diverse genomic levels have unique proper-

ties. A better understanding of the data characteristics will help to improve statis-

tical modeling. An increasing number of advanced statistical methods have been

developed to address these issues in omics data analysis at different levels.

Table 2.1 Main features of omics data

Omics Biomarker data Platforms Features

Genome Single nucleotide poly-

morphism (SNP)

Microarray Categorical data

Copy number variation

(CNV)

DNA sequencing Distance-driven

correlation

Loss of heterozygosity

(LOH)

Extremely stable

over time

Rare variant

Transcriptome Gene expression Microarray Continuous data

Alternative splicing RNA sequencing Affected by time

and exposures

Long non-coding RNA Strong measure-

ment noiseSmall RNA

Proteome Protein expression Microarray Continuous data

Mass spectrometry Affected by time

and exposures

Epigenome DNA methylation Microarray Continuous data

Histone modification Bisulfite sequencing Affected by time

and exposuresmiRNA

Metabolome Metabolite profiling Mass spectrometry Continuous data

Nuclear magnetic resonance

(NMR) spectroscopy

Affected by time

and exposures

Structured

correlation

Strongly affected

by exposures
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Instead of analyzing single omics data, it is interesting to integrate multiple levels

of omics data to gain comprehensive insights into biology and disease etiology. It is

recognized that multi-scale features do not act in isolation but interact in complex

networks (within and across individual omics), e.g., genomics information flow

DNA->RNA-> protein-> traits. Therefore, no single type of omics data can pro-

vide a thorough understanding of the complex function/regulatory networks that

mediate gene expression/function for disease etiology. Integrative analysis ofmultiple

omics data with the same subjects has the following advantages: 1) multiple omics

data can provide diverse information that the identified genetic variants may be

consistent in the effects across different omics levels. Consistent results will compen-

sate for unreliable findings in single omics data, which can improve the detection

power for those variants withmodest effects in individual omics data. Complementary

results will confirm the findings to get amore comprehensive understanding of genetic

mechanisms of diseases; 2) importantly, integrative analysis of multiple omics data

will enable the reconstruction of interplay/regulatory relationship among genetic

factors at different levels. The analysis of complex regulatory networks will aid in

functional annotation of individual genes/regulatory factors, gaining new insights into

the molecular mechanisms underlying disease pathogenesis and generating model

hypothesis for further specific testing. Taken together, the integrative trans-omics

studies can provide a much more comprehensive view of complex disease etiology

than can be achieved by examining individual omics data on their own.

In this chapter, we first briefly review statistical methods for biomarker detection

in different omics data. Then we will review integrative statistical analysis involv-

ing at least two different types of omics data.

2.2 Statistical Methods for Biomarker Detection
in Clinical Bioinformatics

Several types of biological data can be used to identify informative biomarker

panels, including SNP data, microarray based gene expression and microRNA.

Statistical methods especially predictive models based on these biomarkers are

becoming increasingly important in clinical, translational and basic biomedical

research. We will first provide illustrations of various statistical methods in the

analysis of SNP and gene expression data, attempting to offer practical advice on

the appropriate methods to use.

2.2.1 Statistical Analysis for Single Omics Data

2.2.1.1 Single Marker Association

Single SNP Association The objective of genetic association analysis is to estab-

lish an association between a phenotype/quantitative trait and a genetic marker.
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Usually genetic association tests are performed separately for each individual SNP.

A variety of statistical methods could be applied according to the data types of the

phenotype/quantitative trait. The phenotype in a study can be case-control (binary),

quantitative (continuous), or categorical. First we will discuss analysis for case-

control, continuous and categorical disease outcomes and then we will present more

advanced statistical methods for multivariate analysis.

Here is the basic problem formulation. Let {X1, . . .,Xp} be a set of P SNPs for

N individuals. Suppose the data with each SNP having minor allele a and major

allele A. We use 0, 1, 2 to represent the homozygous major allele, heterozygous

allele and homozygous minor allele, respectively. Therefore we have

Xpn2 0; 1; 2f g, 1 � p � P, 1 � n � Nð Þ. Let phenotype be Y ¼ y1; . . . ; ynf g.
Depending on the data type, the values of Y can be binary, continuous or categorical.

For case-control phenotype, it can be represented as a binary variable with

0 representing controls and 1 representing cases. The association between a SNP

and case-control status is to test the null hypothesis of no association between the

marker with disease status in a contingency table, which links disease status by either

three genotypes counts (A/A, A/a and a/a) or allele count (A and a). The test of

association is given by Pearson χ2 test for the independence of the rows and columns

in the contingency table (Balding 2006). The choice of degrees of freedom is based

on recessive, dominant and additive models of inheritance. The contingency table can

allow alternative models by summarizing the counts based on the models of inher-

itance. For instance, to test for a dominant model, the contingency table is summa-

rized as 2� 2 table of genotype counts (A/A vs. A/a and a/a). As to a recessive model,

the contingency table is summarized as 2� 2 table of genotype counts (a/a vs. A/A

and A/a). There are two tests commonly used for testing the additive model of

inheritance: the allele test and the trend test, also known as the Cochran-Armitage

trend test. Both tests have the same null hypothesis: Pcase¼Pcontrol, where Pcase and

Pcontrol denote the frequency of A alleles among diseased and non-diseased in a

population, respectively. As the underlying genetic model is unknown in most

genetic association studies, the test for additive model is most commonly used.

However, there is no generally accepted answer to the question about what kind of

test to be used. The analyses could be designed optimally according to the informa-

tion that what proportion of undiscovered disease-predisposing variants function

additively and what proportions are dominant and recessive. Table 2.2 summarizes

different contingency table methods based on diverse tests of association. Take

genotypic association for instance, Table 2.3 is the contingency table. For a SNP

and the phenotype Y, we use Oij to denote the number of individuals whose Xp equals

i and Y equals j. The Pearson χ2 statistics is calculated as
X
i

X
j

Oij � Eij

� �2
Eij

, where

Eij ¼ Oi:O:j

N , Oi: ¼
X
j

Oij and O:j ¼
X
i

Oij. The degree of freedom is 2.

Logistic regression is a statistical method for predicting binary and categorical

outcome. It can be applied to both single-locus and multi-locus association studies

with covariates in the model. Let Y2 0; 1f g be a binary variable and X2 0; 1; 2f g be

26 H. He et al.



a SNP. The conditional probability of Y¼ 1 given a SNP is θ Xð Þ ¼ P Y ¼ 1
��X� �

.

The logit function is defined as logit Xð Þ ¼ ln
θ Xð Þ

1�θ Xð Þ. The logit function can be taken
as a linear predictor function: logit Xð Þeβ0 þ β1X. The model can be modified to

incorporate multiple SNP loci and potential covariates. For example, the following

model fits two predictor SNPs (X1 and X2) and two covariates (Z1 and Z2):
logit Xð Þeβ0 þ β1X1 þ β2X2 þ β3Z1 þ β4Z2.

For continuous (quantitative) traits, the basic statistical tools are linear regres-

sion and analysis of variance (ANOVA).

In regression models, there are two types of variables: dependent variable

(response variable or outcome variable) and independent variable (explanatory

variable or predictor variable). In a regression model, the dependent variable is

modeled as a function of one or more independent variables. When this function is a

linear combination of one or more model parameters, called regression coefficients,

the model is called a linear regression model. A least-squares regression line is

often used to find optimal fit between the phenotype and the genotype.

For simplicity, a single SNP genotype is denoted Xi and the phenotype is

Yi, i ¼ 1, . . . , n. For this given data set (Xi, Yi), we are fitting a simple linear

regression model, Y ¼ β0 þ β1X þ ε, such that E εð Þ ¼ 0 and Var εð Þ ¼ σ2, and

Table 2.2 Tests of association using contingency table methods

Test DF Contingency table description

Genotypic association 2 2� 3 table of N case-control by genotype counts

(A/A vs. A/a vs. a/a)

Dominant model 1 2� 2 table of N case-control by dominant genotype pattern of

inheritance counts

(a/a vs. not a/a)

Recessive model 1 2� 2 table of N case-control by recessive genotype pattern of

inheritance counts

(not A/A vs. A/A)

Cochran-Armitage

trend test

1 2� 3 table of N case-control by genotype counts

(A/A vs. A/a vs. a/a)

Allelic association 1 2� 2 table of 2N case-control by allele counts

(A vs. a)

Note: DF degrees of freedom

Table 2.3 Contingency table for genotypic association test of a single SNP Xp and a phenotype Y

Count

Genotype aa

(Xp ¼ 0
� Genotype Aa

(Xp ¼ 1
� Genotype aa

(Xp ¼ 2
�

Total

Y¼ 0

(Control)

O00 O01 O02 O0.

Y¼ 1 (Case) O10 O11 O12 O1.

Total O.0 O.1 O.2 N
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ε’s are uncorrelated. We can find b0 and b1 as least squares estimators for β0 and β1,

respectively. We have the sums of squares as follows: SXX ¼
Xn
i¼1

Xi � X
� �2

,

SYY ¼
Xn
i¼1

Yi � Y
� �2

, and SXY ¼
Xn
i¼1

Xi � X
� �

Yi � Y
� �

, and the following two

normal equations, b0 þ b1
Xn
i¼1

Xi ¼
Xn
i¼1

Yi and b0
Xn
i¼1

Xi þ b1
Xn
i¼1

X2
i ¼

Xn
i¼1

XiYi.

The estimator of b1 is SXY
SXX

. Then we can test the null hypothesis against the

alternative hypothesis H0 : β1 ¼ β10 versus H1 : β1 6¼ β10, where β10 is a specified
value that could be zero. The test statistics is calculated as

t ¼ b1�β10ð Þ
se b1ð Þ ¼

b1�β10ð Þ
X

Xi � X
� �2n o1

2ffiffiffiffi
S2

p , where S2 is the estimate of residual mean

square σ2Y:X. One can compare |t| with t n� 2, 1� α
2

� �
from a t-table with n� 2ð Þ

degrees of freedom. The test is a two-sided test conducted at the 100α% level.

In one-way ANOVA the F-test is used to assess whether the expected values of a

quantitative variable within several pre-defined groups differ from each other. For a

single SNP, we can divide all the subjects into three groups according to their

genotypes. Let Y
0
i i2 0; 1; 2f gð Þ be the subset of phenotypes for the subjects

corresponding to genotype i. The number of subjects with Y
0
i is denoted as ni.

Note that
X2

i¼0
ni ¼ N. The total sum of squares (SST) can be divided into two

parts, the between-group sum of squares (SSB) and the within-group sum of squares

(SSW).

SSB ¼
X2
i¼1

Y
0
i � Y

� �2

, SST ¼
X2
i¼0

XN
n¼1

Y
0
in � Y

� �2

, and SSW ¼ SST � SSB. The

formula of F-test statistic is F ¼ SSB
SSW, and F follows the F-distribution with 2 and

N-3 degrees of freedom under the null hypothesis.

Gene Expression Analysis In transcriptomics studies for biomarker discovery

among thousands of features, we are interested in which genes/features are differ-

entially expressed under two (or more) conditions. The hypothesis test will be

performed individually for each feature. Statistical significance for each hypothesis

test is assessed according to its corresponding p-value from a statistical test.

Suppose there are K conditions and nk samples in the kth condition in a total of

N samples, where K2 1; 2f g. Let Xijk be an expression value, where sample

i ¼ 1, 2, . . . , nk, gene features j¼ 1, 2,. . ., m, and condition K ¼ 1, 2. Assume

that gene expression values have been background corrected, normalized and

transformed by taking the logarithm to base 2. The sample mean and variance of

gene feature j in group k are given as Xjk ¼

Xnk
i¼1

Xijk

nk
and S2jk ¼

Xn
i¼1

Xijk � Xjk

� �2
nk�1

,

respectively.
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Fold change approach is a simple and straightforward way of evaluating the

degree of differential expression under two conditions. For a gene feature j, the

mean difference is given byMj ¼ Xj1 � Xj2. Then the fold change is a statistic 2Mj .

Gene will be declared as significant if
��Mj

�� is greater than a predefined threshold.

Such procedure assumes that the variances are equal across all genes. However, it is

not the case for gene expression profile. Therefore, this approach may easily yield

many false positive and false negative results in differential expression analyses.

The two-sample t-test is a most used parametric statistical test in differential

expression analysis. It compares the means of expression value in two groups taking

the variance into consideration. Statistically, we want to test the null hypothesisH0

: μj1 ¼ μj2 against the alternative hypothesisH1 : μj1 6¼ μj2 for j¼ 1,2,. . .m. The test

statistic for each j is tj ¼

Xn
i¼1

Xj1 � Xj2

� �2
Sj

,where Sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n1
þ 1

n2

� �
n1�1ð ÞS2j1þ n2�1ð ÞS2j2

n1þn2�2

r
,

called pooled within-group standard error. Under the null hypothesis, tj follows
Student’s t-distribution with n1þ n2�2 degrees of freedom. A p-value can be found

using a t-distribution table. By using the pooled within-group standard error

estimated from each gene separately, the t-statistic takes into consideration of

variance across different genes.

Significance analysis of microarrays (SAM) is a statistical technique for deter-

mining whether changes in gene expression are statistically significant (Tusher

et al. 2001). In SAM, statistically significant genes will be identified based on gene

specific t-tests. A statistic dj for each gene jmeasures the strength of the relationship

between gene expression and a response variable. Non-parametric statistics is used

as the data may not follow a normal distribution. SAM will perform repeated

permutations for the data to determine the significance of any gene with the

response. The use of permutation-based analysis accounts for correlations in

genes and avoids parametric assumptions about the distribution of individual

genes. It assumes equal variance and/or independence of genes. This is an advan-

tage over other techniques. Here is the generic procedure for SAM. A statistic dj is

computed as dj ¼ rj
sjþs0

, where rj is a score, sj is a standard deviation and s0 is an

exchangeability factor. Compared with the standard t-statistic, the SAM’s proce-
dure adds a s0 term to the denominator. The rationale behind it is that the variance sj
tends to be smaller at lower expression levels, making dj dependent on the expres-

sion levels. However, in order to compare dj across all genes, the distribution of dj
should be independent of the expression levels. Therefore, SAM seeks to find a s0
such that the dependence of dj on sj is as small as possible. An appropriate value of

s0 will be picked such that the coefficient of variation of dj is approximately

constant as a function of sj. For details of the SAM procedure, please refer to the

tutorial document for the software package, SAM, at http://statweb.stanford.edu/

~tibs/SAM/sam.pdf.
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The Wilcoxon rank-sum test, also known as the Mann–Whitney U-test, is a

nonparametric test, which can be applied to data with unknown distributions

contrary to t-test applied only to normal distributions. It is nearly as efficient as

the t-test on normal distributions. The null hypothesis of the test is that two samples

come from the same population and an alternative hypothesis is that a particular

population tends to have larger values than the other. TheWilcoxon rank-sum test is

based on the ranks of the original data values. To perform the Wilcoxon rank-sum

test, one first assigns numeric ranks to all the observations, beginning with 1 for the

smallest value. Where there are groups of tied values, assigning a rank equal to the

midpoint of unadjusted rankings. Second, one adds up the ranks for the observa-

tions which came from group 1. The sum of ranks in group 2 is now determinative,

since the sum of all the ranks equals N(Nþ 1)/2 where N is the total number of

observations. Then calculateU1 ¼ R1 � n1 n1þ1ð Þ
2

andU2 ¼ R2 � n2 n2þ1ð Þ
2

. The smaller

value of U1 and U2 is the one used when consulting significance tables.

2.2.1.2 Multiple Testing

As mentioned earlier, in omics studies we are confront with a great number of

hypotheses to be tested simultaneously. It will result in an inflation of the family

wise error rate (FWER) if there is no adjustment for multiple tests. In statistical

hypothesis testing, a type I error occurs when the null hypothesis (H0) is true, but is

rejected (a “false positive”). A type II error occurs when the null hypothesis is false,

but erroneously fails to be rejected (a “false negative”). A type I error is the

incorrect rejection of a true null hypothesis (a “false positive”), while a type II

error is the failure to reject a false null hypothesis (a “false negative”). Basically, in

hypothesis testing, we want to maximize the power (¼1-the type II error) while

controlling the type I error less than or equal to a predetermined significance level

α. In particular, consider the problem of testing simultaneously m null hypothesis

Hj: no differential expression againstH
a
j : differential expression, where j¼ 1, 2, . . .,

m. A gene will be considered as significantly differentially expressed if its p-value

is less than the defined significant level α. However, for hypothesis testing, the

problem of multiple testing problem results from the increase in type I error that

occurs when many statistical tests are used simultaneously. Suppose there are m

independent comparisons, the experiment-wide significance level α, also termed

FWER, is given by α ¼ 1� 1� αð Þm. α increases as the number of comparison

increases. Multiple testing correction is to re-calculate the probabilities obtained

from a statistical test which was repeated multiple times. In order to retain FWER α
in an analysis, the error rate for each comparison must be more stringent than α.

A number of procedures for controlling error rates have been developed to solve

the multiple-testing problem. One of the most commonly used approaches for

multiple comparisons is the Bonferroni procedure for controlling the FWER at

level α, which rejects any hypothesis Hj with unadjusted p-value less than or equal

to α/m. The Bonferroni procedure is very conservative. A less conservative
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procedure is the Benjamini–Hochberg procedure (BH step-up procedure), which

controls the false discovery rate (at level α). The procedure works as follows:

first for a given α, find the largest k such that P kð Þ � k
m α. Second, reject all Hj for

j¼ 1, 2, . . ., k. The BH procedure is valid when the m tests are independent and also

in various scenarios of dependence.

2.2.1.3 Multivariate Analysis

Although many common genetic variants associated with complex traits have been

identified by GWAS, these traits are typically analyzed separately in a univariate

manner for association with DNA markers. However, multivariate analysis for

correlated traits could be very advantageous in several aspects. First, when there

is genetic correlation between different traits, a multivariate analysis can increase

power by using the extra information provided by the cross-trait covariance, which

is ignored by the univariate analysis. Second, a multivariate analysis of multiple

traits can reduce the number of performed tests and alleviate multiple testing

burden compared to analyzing all traits separately. Lastly, a multivariate analysis

is biologically making more sense as a single genetic marker is associated with

multiple traits, compared to the cross-trait comparison in univariate analysis

(Galesloot et al. 2014).

A number of multivariate analysis methods in population-based GWAS have

been published. Here we briefly introduce six methods including as well as their

softwares.

The multivariate test of association MQFAM is implemented in the genetic

association analysis software PLINK (MV-PLINK) (Ferreira and Purcell 2009;

Purcell et al. 2007). The command used for association testing with MV-PLINK

(https://genepi.qimr.edu.au/staff/manuelF/multivariate/main.html) is: plink.multi-
variate –noweb –file geno –mqfam –mult-pheno pheno.phen –out output. For each
genetic variant, MV-PLINK produces an F-statistic and a p-value in the additive

model. Canonical correlation analysis (CCA), which is a multivariate generaliza-

tion of the Pearson product-moment correlation, to measure the association

between the two sets of variables. Specifically, CCA extracts the linear combination

of traits that explain the largest possible amount of the covariation between the

marker and all traits. The interpretation of a significant multivariate test is aided by

the inspection of the weights attributed by the CCA to each phenotype.

Bayesian multiple phenotype test is implemented in SNPTEST (MV-SNPTEST)

(Marchini et al. 2007). The command used to perform additive association testing

with MV-SNPTEST is provided in the online tutorial (https://mathgen.stats.ox.ac.

uk/genetics_software/snptest/snptest.html#multiple_phenotype_tests). The model

is the Bayesian Multivariate Linear model which is specified by

yi1; . . . ; yiq
� �T ¼ Gi β1; . . . ; βq

� �T þ ei1; . . . ; eiq
� �T

,where ei1; . . . ; eiq
� �TeN 0;

Pð Þ
and (yi1, . . ., yiq) is the vector of the q residual phenotypes measured on the ith
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individual. Gi is the code of the SNP genotype for the ith individual. We use the

conjugate prior for this model. This is an inverse Wishart prior IW(c,Q) on the error

covariance matrix ∑ and a matrix normal (N ) prior on the vector of parameters

β1; . . . ; βq
� ��MeN V;Σð Þ, where M is a mean vector and V is a constant. An

inverse Wishart prior [IW(6,4)] was set on the error covariance matrix ∑ and a

matrix normal prior [N(0.02,∑)] on the vector of parameters, according to recom-

mendations of the authors. Method ‘expected’ will result in the use of expected

genotype counts (~dosages) in the analyses.

MultiPhen is an R package available from CRAN (https://cran.r-project.org/web/

packages/MultiPhen/index.html) (O’Reilly et al. 2012). The regression performed

at a SNP, g, and a phenotype, k, to test for association between the SNP genotypes

and the phenotype is: Yik ¼ αk þ βgkXig þ εigk, where εigk is the residual error

assumed to be normally distributed. The null hypothesis of no association between

SNP and genotype can be tested by performing a t-test on the null hypothesis

βgk ¼ 0. In the MultiPhen approach, the regression is inverted so that the SNP

genotype, X, becomes the dependent variable, and K phenotypes under study

become the predictor variables. The genotype data is an allele count and is

therefore modelled using ordinal regression; we use proportional odds logistic

regression. This model defines the class probabilities as follows.

P Xig � m
� � ¼ 1�

�αgm�
XK
k¼1

βgkYik

�. At each SNP g¼ 1,2,. . .,G, the test for associa-

tion is a likelihood ratio test (LRT) for model fit, testing the null hypothesis

βg1 ¼ . . . ¼ βgk ¼ 0. This results in a p value per trait and a p-value for the LRT.

A Bayesian model comparison and model averaging for multivariate

regression is implemented in BIMBAM software (Stephens 2013). The details

of statistical method are provided in the reference (Stephens 2013). The BIMBAM

software can be run in two different ways. First we test for association between the

multivariate traits, all partitioned in the group of directly affected traits, and

genotype. Second, we consider all possible partitions of traits into the different

categories of traits (directly affected, indirectly affected, and unaffected).

The Principal Component of Heritability Association Test (PCHAT) (Klei

et al. 2008) is implemented in the software available at http://www.wpic.pitt.

edu/wpiccompgen/PCHAT/PCHAT.htm). First, the sample is split into a training

set and a test set. The training set is used to construct the optimal linear combination

of traits from a heritability point of view. A test set is used for association testing

between genotype and the optimal linear combination of traits. In this way, use of

the same data for both estimation of the optimal linear combination of traits and

association testing is avoided. In addition, a ‘bagging’ approach is performed, in

which bootstrap samples are drawn from the training sample and the optimal linear

combination of traits is averaged across bootstrap samples. The null distribution of

the test statistic is obtained in the same way, using permutation of the data.
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A Trait-based Association Test (TATES) is based on Extended Simes procedure

(van der Sluis et al. 2013). TATES (http://ctglab.nl/software) constitutes a powerful

new multivariate strategy that allows researchers to identify novel causal variants.

TATES acquire one trait-based p-value by combing p-values in standard univariate

GWAS, while correcting for correlations between components. It can detect both

genetic variants which are common to multiple phenotypes and those which are

specific to a single phenotype. It requires a correlation matrix of the traits and

univariate association results as input. The corr function in R can be used to

generate the full and symmetrical correlation matrices. TATES was run in R and

the output contains the TATES trait-based p-value corrected for the correlations

between the traits.

2.2.1.4 Gene Set Analysis

In transcriptomics study, massive throughput techniques, such as microarray and

RNA sequencing, allow to identify differentially expressed genes (DEGs) associ-

ated with diseases or phenotypes from genome-wide gene expression profile. The

challenge in expression data analysis in recent years has shifted from single DEG

analysis to gene set analysis (GSA), as biologically many complex diseases may be

modestly regulated by a set of related genes rather than a single gene. The gene sets

are defined based on prior biological knowledge, e.g., biochemical pathways or

coexpression in previous experiments. GSA can alleviate the difficulty in interpre-

tation of multiple testing lists of DEGs and provide insights into biological mech-

anisms for complex diseases. The first and most popular GSA is gene set

enrichment analysis (GSEA) (Subramanian et al. 2005), which is a computational

method that determines whether an a priori defined set of genes shows statistically

significant, concordant differences between two biological states (e.g. phenotypes).

The GSEA method is implemented in a freely available software package at http://

www.broadinstitute.org/gsea/index.jsp. The basic idea for this method is presented

as follow (Subramanian et al. 2005):

Step 1: Calculate an Enrichment Score. Rank genes by their expression difference

in two biological states and then compute cumulative sum over ranked genes.

The magnitude of increment depends on correlation of gene with phenotype.

Record the maximum deviation from zero as the enrichment score.

Step 2: Estimate significance. Permute phenotype labels 1000 times and compute

ES score for each permutation. Then compare ES score for actual data to

distribution of ES scores from permuted data.

Step 3: Multiple Hypothesis Testing. Normalize the ES accounting for size of each

gene set to obtain the normalized enrichment score (NES). Calculate FDR for

each NES to control proportion of false positives by comparing tails of the

observed and null distributions for the NES.

Another interesting GSA method proposed by Efron and Tibshirani attempts to

combine gene and sample randomization in one procedure (Efron and Tibshirani
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2007). It shows that it is more powerful based on the “maxmean” statistic than the

modified Kolmogorov-Smirnov statistic used in GSEA. This method can be

implemented by the R package “GSA”. The basic procedures are summarized here:

1. Compute a summary statistic zi for each gene, for example the two sample

t-statistic for two-class data. Let zs be the vector of zi values for genes in a

gene-set S.

2. For each gene-set S, choose a summary statistic S¼ s(z): the maxmean statisticXm

i¼1
I zi > 0ð Þzi
m

�����
�����

(
,

Xm

i¼1
I zi < 0ð Þzi
m

�����
�����
)

3. Standardize S by its randomization mean and standard deviation as

S
0 ¼ S�mean sð Þð Þ

std sð Þ . For summary statistics such as the mean, mean absolute value

or maxmean, this can be computed from the genewise means and standard

deviations, without having to draw random sets of genes.

4. Compute permutations of the outcome values (e.g., the class labels in the

two-class case) and re-compute S0 on each permuted dataset, yielding permuta-

tion values. Use these permutation values to estimate p-values for each gene-set

score S0 and false discovery rates applied to these p-values for the collection of

gene-set scores.

In 2007, Wang et al. extended the GSEA to GWAS of complex diseases (Wang

et al. 2007), where multiple genes in the same GS/pathway contribute to disease

etiology but where common variations in each of those genes make modest

contributions to disease risk. Gene set analysis tests disease association with genetic

variants in a group of functionally related genes, such as those belonging to the

same biological pathway. It can potentially improve the power to detect causal

GS/pathways and disease mechanisms by considering multiple contribution factors

together, rather than focusing on the top SNPs associated with disease. Individual

SNPs in univariate analysis only account for a small proportion of the heritability of

complex diseases. The method assesses the enrichment of significant associations

for genes in the GS/pathway (as compared with those outside the GS/pathway)

using a weighted Kolmogorov–Smirnov running-sum statistic. The GSEA method

is modified to fit GWAS data. For each SNP Vi (i¼ 1,. . ., L, where L is the total

number of SNPs in a GWA study), its test statistic value is calculated, ri (e.g., a χ2

statistic for a case-control association test). We next associated SNP Viwith geneGj

( j¼ 1,. . ., N, where N is the total number of genes represented by all SNPs) if the

SNP is located within or <500 kb away from the gene. The highest statistic value

among all SNPs mapped to the gene, is assigned as the statistic value of the gene.

For all N genes that are represented by SNPs in the GWA study, their statistic values

are sorted from largest to smallest, denoted by r(1),. . .,r(N). For any given gene set S,
composed of NH genes, a weighted Kolmogorov-Smirnov–like running-sum statis-

tic is calculated which reflects the overrepresentation of genes within the set S at the
top of the entire ranked list of genes in the genome.
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Over recent years, various methods have been published for gene-set or

pathway-based association analysis for GWAS. Basically, these statistical methods

can be classified into two categories based on whether the required input data sets

are a collection of SNP p-values or individual-level SNP genotypes. Additionally,

the null hypothesis can also be categorized as ‘self-contained’ versus ‘competitive’
based on whether comparisons were made between genes in a specific pathway and

non-associated genes or other genes in the genome. Some of these published

algorithms as well as software implementations or web servers are summarized in

the review (Wang et al. 2010).

2.2.1.5 Gene Network Analysis

Recent years many network theories have been applied to gene coexpression

network analysis. As gene expression microarrays measure the transcription levels

of thousands of genes simultaneously, it provides great opportunities to explore

large scale gene regulatory networks. Genes with similar expression patterns may

participate in pathways and in regulatory and signaling circuits and their products

may form complexes. Gene networks provide a systematic understanding of molec-

ular mechanisms underlying biological processes, and the visualization of direct

dependencies facilitates systematic interpretation and comprehension of the rela-

tionships among genes. Most complex human diseases are arising not from a single

gene but from interactions with many other genes, especially in a gene network.

The hub genes, which interact with many other genes, are likely to be drivers of the

disease status. The analysis on the hub genes has become a promising approach for

identifying the key candidate genes for complex diseases.

A great number of statistical methods for gene network reconstruction from gene

expression microarray data have been proposed in recent years. There are four main

categories of statistical methods: (1) Probabilistic networks-based approaches,

mainly Bayesian networks (BN), (2) correlation-based methods, (3) partial-

correlation-based methods, and (4) information-theory-based methods (Allen

et al. 2012). The representative method in each category and the implementation

software are summarized below.

Probabilistic networks, mainly Bayesian networks, are based on a probabilistic

graphical model that represents a set of variables and their probabilistic indepen-

dencies. The Bayesian networks expand the joint probability in terms of simpler

conditional probabilities, which allow them to handle noise inherent in both bio-

logical processes and microarray experiments. Generally, the joint likelihood

function of nodes X1, . . .,Xp in a Bayesian network can be expressed as

P X1; . . . ;Xp

� � ¼ Yp
i¼1

P
�
Xi

��YG

i

�
, where graph G ¼ V;Eð Þ represents the topolog-

ical structure of the Bayesian network, in whichV ¼ X1; . . .f ,Xp

�
denotes the set of

nodes and E ¼ Xj ! Xi,Xj2
YG

i

n o
denotes the set of edges. Werhli’s
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implementation for Bayesian network construction method is most used and out-

performs other implementations (Werhli et al. 2006). A Bayesian network models

the distribution of observations and a causal network models the distributions of

observations and effects of interventions. A causal network can be interpreted as a

Bayesian network, when we are willing to make the Causal Markov Assumptions:

given the values of a variable’s immediate causes, it is independent of its earlier

causes (Friedman et al. 2000).

Correlation-based methods are the most straightforward and popular way to

explore the gene co-expression network. They have been successfully applied in

many studies and have shown their usefulness in identifying important gene

modules and in interpreting biological results. Basically a gene co-expression

similarity matrix is defined as S¼ [Si,j], where Si,j is the pair-wise transcription

correlation coefficients between gene i and j. S is the correlation matrix (Zhang and

Horvath 2005). Particularly, Weighted Correlation Network Analysis (WGCNA) is

a representative method for the correlation-based approach (Langfelder and

Horvath 2008). The implementation of WGCNA is in R package, which is used

for identifying modules/subnetworks using hierarchical clustering approaches. The

WGCNA R package includes interfaces with Cytoscape (Shannon et al. 2003) for

network visualization and The database for annotation, visualization and integrated

discovery (DAVID) (Dennis et al. 2003) for enrichment analysis. The comprehen-

sive set of online tutorials that guide users through the major steps for gene network

analysis by WGCNA are provided in the website http://labs.genetics.ucla.edu/

horvath/htdocs/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/index.html.

In the tutorials, R code in each step is provided so that the user can copy and paste

into an R session. The tutorials cover the following major topics: correlation

network construction, step-by-step and automatic module identification, consensus

module detection, eigengene network analysis and differential network analysis.

Here we briefly review the key concepts of the WGCNA framework. The nodes

in a gene coexpression network correspond to genes, labeled by indices i,
j¼ 1,2,. . .,n. The edge between two nodes is determined by the pairwise correla-

tion. The network can be specified by its adjacency matrix A, a symmetric matrix

with entries aij in [0,1] that encode the strength of the link between genes i and j. An
unsigned network is defined by the adjacency A in terms of coexpression similarity

Sij ¼
��cor xi; xj

� ���, in which positive and negative correlations are treated equally.

Also if we want to preserve the sign of the correlation, we can use a signed

similarity defined as Sij ¼ 1þcor xi;xjð Þð Þ
2

. The main difference between signed and

unsigned similarities is that genes with a high negative correlation (close to �1)

will have a low similarity in a signed network but a high similarity in an unsigned

network. A weighted network can preserve the continuous nature of the

co-expression information by using a soft thresholding parameter, β� 1. By using

a power function, the connection strength can be assessed, aij ¼ Sβ
ij . The default

values β¼ 6 and β¼ 12 are used for unsigned and signed networks.
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In WGCNA, genes are clustered into network modules based on their coexpression.

Highly coexpressed genes have a small dissimilarity. For example, the adjacency-

based dissimilarity measure is dissAdjij ¼ 1� aij . The dissimilarity measure can be

used as input in average linkage hierarchical clustering. Then, modules are defined as

branches of the resulting cluster tree. If larger andmore robust modules are desired, one

can use a dissimilarity measure based on the topological overlap matrix (TOM):

dissTOMij ¼ 1� TOMij ¼ 1�
X

u 6¼i
aiuauj þ aij

min ki;kjð Þþ1�aij
, where ki ¼

X
u 6¼i

aui denotes the

network connectivity. TOM combines the connection strength between a pair of genes

with their connections to other ‘third party’ genes, which has been shown to be a highly
robust measure of network interconnectedness (proximity). In order to summarize the

module genes by a single representative expression profile, module eigengene is

defined as the first principal component of the standardized expression profiles of a

given module, which is considered as the weighted average of the module gene

expressions. We can correlate the module eigengenes with the trait of interest y. The
correlation coefficient or its corresponding p-value is referred to as the eigengene

significance. For each module, the module significance is defined as the average

absolute gene significance for all genes in the module. WGCNA can alleviate the

multiple testing problem in DEG analysis, as it focuses on a few modules with the trait

rather than thousands of genes and these modules may be included into some important

biological pathways.

Partial-correlation-based methods are based on Gaussian graphic model. These

methods infer the conditional dependency by the non-zero entries in the precision

matrix, C ¼ Ci, j

	 
 ¼ S�1, which is the inverse of covariance matrix (Allen

et al. 2012). The zero entries in the precision matrix imply conditional indepen-

dency between the expression levels of gene i and j given the expression of all other
genes, which means two genes do not interact directly with each other. The sparse

partial correlation estimation (SPACE) algorithm is a representative partial-

correlation-based method (Peng et al. 2009). It converts the concentration matrix

estimation problem to a regression problem and optimizes the results with a

symmetric constraint and an L1 penalization.
Information-theory-based methods use mutual information (MI) to determine

how similar the joint distribution P(X, Y) is to the products of factored marginal

distribution P(X)P(Y). It can determine the dependency among the genes and then

remove indirect interactions. Algorithm for the Reconstruction of Accurate Cellular

Networks (ARACNE) is a successful and popular information-theory-based

method, which has been successfully applied to construct gene regulatory networks

in the context of specific cellular types (Margolin et al. 2006). The calculation of MI

does not assume a monotonic relationship; therefore it is able to identify the

non-linear or irregular dependencies, which will be missed by Pearson correlation.

If the gene network contains non-monotonic dependencies the ARACNE could

outperform correlation-based methods.
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2.2.2 Computational Methods for Integrating
Multi-Omics Data

A variety of statistical methods and tools have been proposed for integrating two or

more omics data. These methods aim to help understand molecular mechanism or

biological pathways underlying variation of different types of clinical traits. Also

they explore the relationship or interactions among diverse omics data for complex

network structure reconstruction and thereby identifying risk modules associated

with clinical outcomes. Integrated information is finally used for subtyping clinical

diseases or predicting the outcome for prospective patients. These computational

methods can be broadly categorized into four types in terms of the objective of

analysis and the way of integrating omics data.

2.2.2.1 Multi-Stage Method: Analyzing Multi-Omics Data Sequentially

Multi-stage method is a way to divide multi-omics analysis into multiple stages,

where each stage only incorporates two levels of omics and subsequently relates

biomarkers to the trait or phenotype of interest. For example, a three stage strategy

is commonly applied for identifying genetic variants associated with the phenotype

and relating the other levels of omics, e.g., gene expression (Holzinger and Ritchie

2012).

Step1. Identifying those significant genetic variants (e.g., SNPs) associated with

phenotype by genome-wide association test with multiple testing corrected.

Step2. Testing those identified SNPs for association with the other omics data, such

as gene expression, DNA methylation, protein expression and other functional

profiling. The corresponding associated SNPs are called expression quantitative

loci (eQTLs (Jansen and Nap 2001)), methylation QTL (meQTLs (Kerkel

et al. 2008)), protein QTL(pQTLs (Melzer et al. 2008)) respectively.

Step3. Those omics features having at least one QTL are further tested for the

association with phenotype. Subsequently, biological pathways can be derived;

some SNPs associate with phenotype through other omics data while some SNPs

can affect phenotype independent of the other omics data. One benefit of multi-

stage method is that each single stage analysis is performed independently with a

variety of statistical methods (Cantor et al. 2010). For example, to identify

significant biomarkers at the first and third stage, both univariate test (e.g., linear

regression or logistic regression) and multivariate methods (e.g., region or

pathway based test (Khatri et al. 2012)) can be applied for genome-wide

detection. At the second stage, many approaches proposed for identifying

eQTLs can also be applied for the analysis of meQTLs, or pQTLs, such as

single-trait QTL tests, multi-trait QTL methods, and QTL test with pedigree or

error correction (Kendziorski et al. 2006).
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Some multi-stage methods have been proposed for sequential analysis of multi-

omics data. For instance, Schadt et al. applies multistep method to analyze DNA

methylation, gene expression and other complex traits to determine if the variation

of DNA methylation that leads to the change of gene expression traits statistically

supports an independent, causative or reactive function relative to the complex

traits (Schadt et al. 2005). Hao et al. performed a systematic analysis and identified

two modules underlying BMD by incorporating GWASs, human PPI network, and

gene expression (He et al. 2014). The tool, Multiple Concerted Disruption (MCD) is

proposed to sequentially search for a set of genes which exhibit concerted disrup-

tion through multiple genomic dimension (DNA methylation, copy number and

allelic status) and consequential change in gene expression (Chari et al. 2010). The

procedure involves four sequential steps with increasing number of genomic data

incorporated to filter out those genes lacking concerted disruption. Similar method

for exploring the relationship between copy number alternation and methylation

(CNAmet) is also proposed (Louhimo and Hautaniemi 2011). In addition, prior

knowledge such as KEGG pathway, gene ontology or functional annotation of the

region (e.g., transcription factor binding, methylated or regulatory motifs) could

also be incorporated into the analysis to refine the specific regions of interest for the

subsequent multi-stage analysis.

Although it is easy to model the relationship among multi-omics data by

exploring their pair-wise relationship sequentially, there is a limitation for the

stepwise hypothesis. If different omics interplay to have joint effect, for example,

miRNA and DNA methylation may simultaneously affect the gene expression, the

multi-stage methods may lose their efficiency.

2.2.2.2 Parallel Analysis: Combining Individual Omics Analysis

Results

Parallel analysis combines multi-omics data into the analysis simultaneously. It can

be generally divided into two categories: concatenation-based integration and

model-based integration.

Concatenation-Based Integration This method is to straightforwardly concate-

nate all of omics data from the same subjects, resulting in a large combined matrix.

One advantage of this integration is the applicability of many single omics analysis

methods if combing features appropriately. For example, a variety of univariate and

multivariate association tests could be applied for biomarker detection from differ-

ent levels of features, especially the penalized likelihood methods which can handle

high dimensionality of data. Lasso is a very useful penalized method and has been

widely used for feature selection (Tibshirani 1996). Recently significant test based

on lasso is also proposed to control the type I error (Lockhart et al. 2014). Other

penalized methods such as sparse logistic regression (Shevade and Keerthi 2003),

cox lasso (Wang et al. 2009), and sparse multinomial regression (Krishnapuram

et al. 2005) have also been used for genetic biomarker identification corresponding
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to different types of phenotypes (e.g., categorical or survival traits). These methods

can be extended to the analysis of concatenated matrix consisting multi-omics data.

Another advantage of concatenating datasets is that they can account for rela-

tionship among features from different levels of omics data. For example, SNP and

DNAmethylation measure the effect of genetic mutation and environmental factors

on complex traits respectively. They may interact with each other to deregulate

gene expression, leading to the variation of traits. Fridley et al. used Bayesian

modeling to incorporate the relationship between SNPs and mRNA gene expression

into the concatenation-based association model for the prediction of drug cytotox-

icity (Fridley et al. 2012). In penalized likelihood methods, elastic net is used to

simultaneously select features and account for the correlation among features

(Ogutu et al. 2012). Group based penalties (e.g., group lasso, sparse group lasso,

group Bridge, and overlapping group lasso) were proposed to group different levels

of features based on their genomic annotation (e.g., gene or pathway) to increase the

detection power on group level (Huang et al. 2012). In addition, Lando et al. used

the correlation between copy number and phenotype to weight the penalty of gene

expression in a penalized regression model. Genes corresponding to important

CNVs were less penalized in expression regression model (Lando et al. 2009).

In spite of the advantages of concatenating multi-omics data, it is still a chal-

lenge to find an appropriate way to combine these data matrices collected from

different platforms with different scales into one model. In addition, the combina-

tion of these high-dimensional matrices will largely expand the dimension of the

model, which could increase computational burden. Therefore, the concatenation of

multiple datasets is more applicable for omics data integration if there exists an

appropriate way of concatenating matrix and the dimension of data is moderate.

Model-Based Integration To avoid the issues of combing data directly, some

studies try to build a model for each data separately and then transform each model

into an intermediate form, and finally integrate transformed outputs for multi-omics

analysis. Tyekucheva et al. performed gene-level and gene set-level tests on gene

expression and copy number data separately and combined the gene set scores by

meta-analytical approaches (e.g., geometrically averaged P-values and minimum

P-values) to derive the combined gene-set score (Tyekucheva et al. 2011). The

integrative approach identified more reliable glioblastoma multiforme tumor

related gene sets than individual data analysis. Similarly, Poisson et al. proposed

the sum of square statistics to combine gene set score from gene expression and

metabolites to test integrative set enrichment (Soneson et al. 2010). Xiong

et al. developed a tool, Gene Set Association Analysis (GSAA), to test gene-set

enrichment by combing SNP-set and gene expression using different score based

combination methods (e.g., z-score sum, rank sum and fisher’s test) (Xiong

et al. 2012). Analysis Tool for Heritable and Environmental network Association

(ATHENA) is another model-based analysis tool for performing integrative anal-

ysis of different omics data as well as their association with clinical outcomes

(Holzinger et al. 2013).

40 H. He et al.



Besides the statistical model or score integration, multi-task learning is another

powerful strategy to jointly model different but related tasks simultaneously.

Biomarker identification in each single omics is treated as a task and then multiple

tasks are combined by multitask learning. Bennett et al. used multi-task learning to

consider enrichment analysis scores from both SNP and gene expression to identify

several pathways with both genetic and expression differences related to the

phenotype (Bennett et al. 2012). Lin et al. adopted two bi-level penalties in

multitask regression model to integrate multiple diverse genomics datasets under

different level and/or platform for identifying common biomarkers (e.g., genes or

gene-set) (Lin et al. 2014a). They assumed a regression model for each dataset as a

task, and then considered multiple regression models as multiple tasks. Variables

from all datasets were grouped by specific units (e.g., genes) and penalized by

sparse group penalties. The integration shows higher power of detecting risk genes

than single omics data analysis and meta-analysis under the scenarios of both fixed

effect and random effect.

It is noted that model-based integration methods need to build a model for each

data set and then combine the models or their intermediate outputs. The scale of

model errors or the intermediate outputs needs to be comparable for integration. If

each omics data is extremely heterogeneous, this integration method may yield

little improvement over separated analysis.

2.2.2.3 Latent Variable Models: Transform Variables
into New Feature Space for Integration

The high dimensionality of diverse genomic data is a challenge. One commonly

used strategy is to project high dimensional genomic data into low dimensional

space before an integrative analysis is performed. Principle component analysis

(PCA) is popularly used to explain the variance–covariance structure in a single

data. It is widely used for handling pleiotropy with multiple correlated traits (e.g.,

eQTL) with the assumption that multiple correlated traits are able to reveal stronger

signals than are obtained from univariate analysis of each trait separately. PCA

based method collapses a number of correlated variables into a smaller number of

uncorrelated variables as new phenotypes, which captures most variability and then

test association for each new phenotype separately. Christine et al. used PCA to

detect pleiotropic QTLs for boar taint and paternal fertility traits (Große-Brinkhaus

et al. 2015). Jane et al. applied PCA on 70 skeletal traits to explore pleiotropy

pattern through skeleton as well as genetic mechanism of each pattern (Kenney-

Hunt et al. 2008).

Some latent variable models work in two- or multi-block way such as canonical

correlation analysis (CCA) and partial least squares (PLS) with the aim to estimate

latent variate from each dataset respectively (a linear combination of variables) by

maximizing the correlation (CCA) or covariance (PLS) between them. Soneson

et al. applied CCA to explore two pairs of highly correlated features from the gene

expression and copy number variable sets, which represent different characteristic
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in leukemia. Tang et al. proposed a gene-based association test using CCA to detect

QTLs associated with multiple quantitative traits (Tang and Ferreira 2012).

Boulesteix et al. used PLS to predict transcription factor activities from combined

analysis of gene expression and chromatin immunoprecipitation (ChIP) data

(Boulesteix and Strimmer 2007). To integrate multiple datasets or clinical traits,

some multi-block approaches such as multi-set CCA and multi-block

PLS-correlation have also been proposed by summarizing pairwise correlations

(or covariances) among different data sources (Lin et al. 2014b). In addition,

parallel independent component analysis (pICA) and joint ICA are also two block

methods widely used in genetic, imaging and clinical integration to explore inde-

pendent components from each modality respectively while maximizing the corre-

lation of the components simultaneously (Sui et al. 2012). Shen et al. show the

robustness of joint ICA in integrating multi-omics data for biomarker detection and

combined gene expression and copy number variation to identify significant genes

associated with breast cancer (Sheng et al. 2011).

The above latent variables models mainly focus on the linear relationship among

omics data. It may be interesting to consider non-linear relationship to explore more

complicated genetic regulatory mechanism. ‘Kernel trick’ is a popular strategy which
maps omics data into feature space by kernel matrix (e.g., Gaussian kernel matrix).

Reverter et al. used kernel PCA to reduce dimension of metabolomics and genomics

data and combined them for better representation of samples (Reverter et al. 2014).

Yamannishi et al. proposed two types of kernel CCA to measure the correlation

between several heterogeneous datasets, and to extract sets of genes which share

similarities with respect to multiple biological attributes (Yamanishi et al. 2003).

Due to high dimensionality and small sample size of multi-omics data, there are

usually issues of multi-collinearity (linear dependence) in the data and overfitting of

the model. To address these issues, one way is to introduce the sparse

regularizations into the conventional latent model to perform feature selection

and correlative analysis simultaneously. Several types of regularized latent variable

models have been proposed by enforcing different sparse penalties (e.g., lasso,

elastic net and sparse group lasso penalty) on the loading vectors in the model.

Waaijenborg et al. (2008) introduced the L-1 norm and elastic net penalties to the

CCA model to analyze the correlation between gene expression and DNA-markers.

Parkhomenko et al. (2009) proposed a CCA method with lasso penalty based on

SVD (Singular value decomposition). Le Cao et al. (2009) used the penalized CCA

with the elastic net to identify sets of co-expressed genes from two different

microarray platforms. Witten et al. (2009) developed penalized matrix decomposi-

tion (PMD) method and applied it to solve CCA with lasso and fused lasso

penalties. Lin et al. presented a unified framework of formulating these sparse

CCA models as in (2.1):

minu, v � utΣXYvþ λ1 uk kG þ τ1 uk k1 þ λ2 vk kG þ τ2 vk k1 s:t:utΣXXu
� 1, vtΣYYv � 1 ð2:1Þ

where X,Y are the two data matrices; u and v are the loading vectors constrained by
sparse terms;||u||1 and ||v||1 are l�1 norm lasso penalty for performing the selection
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of individual variable/feature, and uk kG ¼
XL

l¼1
ωl ulk k2, vk kG ¼

XH

h¼1
μh vhk k2

are the group penalties to account for joint effects of features within the same group.

The group penalty uses the non-diffentialbility of ||ul||2 (or ||vh||2) at ul¼ 0 (vh¼ 0)

to set the coefficients of the group to 0 so the entire group of features will be

removed to achieve the group sparsity.

Figure 2.1a shows the results of recovered loading vectors u and v by CCA-l1,

CCA-group and CCA-sparse group methods respectively. It can be seen that the

CCA-sparse group method can better estimate true u and v than CCA-l1, CCA-group

method. Figure 2.1b compares the accuracy of recovering loading vectors from three

methods with respect to different noise levels (standard deviation changes from 0.1 to

1 with interval 0.1), corresponding to different degrees of correlations between the two

data sets. The result shows that the CCA-group model can recover the most correlated

variables but gives the highest total discordance. CCA-sparse group has a comparable

recovering accuracy as CCA-group model but much less total discordance especially

when noise level decreases. These methods were also applied to fMRI data and SNP

data and other omics data to identify significant correlated features.

Several other latent variable models were also proposed. Chun et al. proposed

sparse PLS for simultaneous dimension reduction and feature selection in gene

expression and transcriptional factor data. sPLS discriminant analysis (sPLS-DA),

included in mixomics packages (Lê Cao et al. 2011), incorporated disease pheno-

type to extract those latent variables from gene expression or SNPs which are

discriminative in multiclass disease, e.g., Leukemia. Li et al. introduced a sparse

Multi-Block Partial Least Squares (sMBPLS) regression method to identify

multidimensional regulatory modules from copy number variation, DNA methyla-

tion, gene expression and microRNA expression (Li et al. 2012).

2.2.2.4 Integrative Network Analysis

Networks represent the interactions of features within or across different levels of

omics. The methods for reconstructing genetic network in single omics data have

been well studied, as introduced in Sect. 2.2.1.4. However, they are limited to

understand complex biological networks underlying cell and organ functions by

single level of omic data. Integration of different levels of omics data to reconstruct

comprehensive network is able to enrich our understanding of biological processes

and improve the discovery of disease biomarkers. There are mainly two categories

of integrative network reconstruction algorithms: single-stage reconstruction and

multi-stage reconstruction.

Single-Stage Integrative Network Reconstruction This type of method tends to

incorporate multi-omics data directly into the model for network construction. A

simple way is using correlation based measurement to weight the interactions

among omics features. WGCNA was used to construct network between

metabolomics and transcriptomics data to identify clusters of metabolites and

transcriptional factors associated with body weight change. A correlation derived
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topological matrix was used for clustering correlated features and cutting into

different modules for association analysis (Wahl et al. 2015). Kayano

et al. developed a statistical method based on low-order partial correlations with a

robust correlation coefficient for estimating metabolic networks from metabolome,

proteome, and transcriptome data (Kayano et al. 2013).

Another way is Bayesian network, which is a directed probabilistic graphical

model with each edge representing the dependence between nodes (e.g., genes).

Bayesian network is based on both prior distribution assumptions and observed data

to design a model which can be mostly trusted. Prior distributions could be

informative, such as conjugate prior, or mostly be non-informative. Some prior

knowledge such as protein-protein interaction database could be incorporated to

improve the accuracy and efficiency of network reconstruction. Conditional inde-

pendence facilitates the integration of diverse data in a coherent way. Zhu

et al. combined genotypic, expression, transcription factor binding site (TFBS),

and protein–protein interaction (PPI) data to reconstruct causal gene networks.

Three levels of Bayesian networks (BN_raw, BN_eQTL and BN_full) incorporat-

ing different prior knowledge (e.g., eQTL) were reconstructed and compared in

terms of their power to infer causal regulators for validated signature gene sets (Zhu

et al. 2008). Some Bayesian clustering models were designed to cluster genes from

multiple omics data based on their interactions. Multiple dataset integration (MDI)

was developed to identify groups of genes that are co-regulated and additionally

their protein products appearing in the same complex (Kirk et al. 2012). To

constrain the consistency of identified clusters across multiple omics sources,

Bayesian consensus clustering was built to find consensus genetic clusters shared

in different omics levels (Lock and Dunson 2013). Instead of finding clusters of

genetic markers, Pathway recognition algorithm using data integration on genomic

models (PARADIGM) was used to infer the molecular pathways altered in a patient

sample by integrating genomic and functional genomic datasets (Vaske et al. 2010).

Pathways were constructed based on prior knowledge database following

CNV->gene expression->protein activity assumption and all measurements were

categorized into three discrete states (inhibited, normal and activated). Joint poste-

rior distribution was then computed based on observed data. The difference

between pre- and post-activity levels indicated the quantitative alternation induced

by the disease. Similarly, Multi-level Ontology Analysis (MONA) was a computa-

tionally efficient method to approximate the marginal posteriors of ontology terms

based on three basis model assumptions (base, cooperative, and inhibitory models),

given lists of genes responding to experimental conditions (Sass et al. 2013). iNET

takes a “feature-specific” approach to model eight underlying biological basis

models for constructing Bayesian network (Wang et al. 2013).

Multi-Stage Integrative Network Reconstruction There are generally two major

steps: constructing network in each single level of omics data; and fusing multiple

networks to an integrated network. The first step could be achieved by using various

single omics network reconstruction algorithms. Network alignment and fusion

methods are usually needed for the second step. Network alignment is the algorithm

to map the nodes from two or multiple types of networks in such a way that
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maximizes the topological and biological similarity between pairs of aligned nodes

(Mitra et al. 2013). This technique is helpful in identifying previously undiscovered

conserved modules that have been maintained across different species and reveal-

ing functionally similar subnetworks. Computational methods for network align-

ment consist of pair-wise alignment for aligning two networks only and multiple

alignment to find transitive alignments among multiple networks. Some alignment

algorithms, e.g., local alignment, aim to identify conserved regions between the

input networks, which is particularly useful in finding known functional compo-

nents (e.g., pathways) in a new species. For instance, PathBLAST allows the

comparison of simple pathways (e.g., linear pathways) or subnetworks (e.g., mod-

ules) based on homology and interaction confidence (Kelley et al. 2004).

NetworkBLAST finds highly conserved local regions greedily using inferred phy-

logeny (Kalaev et al. 2008). Some algorithms, e.g., global alignment, align every

node in the smaller network to the larger network to find an overall network which

enables species-level comparisons and discovery of functional orthologs. For

instance, IsoRank and IsoRankN identify a stationary random walk distribution to

perform global network alignment (Singh et al. 2008; Liao et al. 2009).

Network fusion is a technique to fuse multiple distinct but complementary bio-

logical networks to gain comprehensive insights of cellular structure and function.

One of these approaches is integrating biological networks across different types of

molecular interactions to identify composite modules. A cytoscape-based tool,

PanGIA is designed to detect composite modules by identifying overlapping clusters

of physical and genetic networks (Srivas et al. 2011). Physical interactions are mainly

represented by protein–protein and protein–DNA interactions. Genetic interactions

represent functional relationships between genes, in which the phenotypic effect of

one gene is modified by another. Composite modules are extracted based on the

physical interactions while cluster of genetic interactions between two different

composite modules reflect inter-modular dependencies. Integrative analysis of both

physical and genetic networks can reveal physical mechanism of phenotype associ-

ated with genes in the composite module and also predict the genetic dependence

between composite modules mapped in physical binding assays. Another Cytoscape

tool, GeneMANIA builds a composite functional association network by taking a

weighted average of individual functional association networks (Mostafavi

et al. 2008). It first assigns weights to each of interaction networks. The composite

network is then set to be the weighted average of the individual networks. Each

network weights are calculated on demand and are tailored to the query list.

2.2.3 Statistics for Clinical Disease Diagnosis
and Classification

The above has discussed the analysis of single omics or multi-omics data for

biomarker detection, genetic regulatory network inferring as well as the exploration

of genetic pathways underlying complex diseases. The next step is translating this
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knowledge into clinical diagnosis or prediction. Predictive modeling, particularly

classification, is critical in clinic research where risk biomarkers may vary largely

with different diseases and even the subjects from one group may have subject-

specific genetic variations. An effective method for classification of complex disease

is demanded. We generally categorize them into two types: supervised learning

method and unsupervised learning method. The former usually needs labelled train-

ing dataset for searching the optimal values of model parameters, which helps to

build an accurate model and is more applicable for disease classification. The latter is

data-driven method without knowing the class label from training, which is more

likely to be used for subtyping to explore new subclass of diseases.

2.2.3.1 Supervised Learning in Omics Data

We will introduce several commonly used supervised classifiers in genetic data

for classification of complex diseases. Assume there are m types of omics

dataset, denoted by X ¼ X1;X2; . . . ;Xm½ �, where Xi2RN�Pi , i ¼ 1, 2, . . . ,m, Pi is

the dimension of features in the i-th omics data.Y2RN�c, c is the number of classes,

and the subjects belonged to the j-th class are denoted by wj

� �
, j ¼ 1, 2, . . . , c. The

object is to predict the class of a new sample y given the observed omic feature

matrices X.

Discriminant Analysis Linear discrinant analysis (LDA) and quadratic discrimi-

nant analysis (QDA) are popularly used methods in clinical genomic analysis for

risk feature identification and classification. LDA is a latent variable model which

projects original high dimensional variables (e.g., gene expression measurements)

into a new feature space by linear combinations Xα with large ratios of between-

group to within-group sums of squares, that is, maximizing the ratio αTBα/αTWα,
where B denotes the between-classes covariance matrix, andW denotes the within-

class covariance matrix. The calculation of B and W are given by

B ¼
XC
i¼1

N μi � μð Þ μi � μð ÞT ;W ¼
XC
i¼1

X
x2wj

x� μið Þ x� μið ÞT

where μi ¼ 1
N

X
x2wj

x, μ ¼ 1
N

X
8x

x. For a new subject x, it can be projected to new

feature space by the estimated α and classified to the class which has the minimum

distance by the classification rule:

C x; Lð Þ ¼ argmink Dk xð Þ

where L is the training dataset to estimate LDA model and D(.) is the function to

measure the distance between new subject with each class. LDA is a

non-parametric method that is also a special form of a maximum likelihood
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discriminant rule for multivariate normal class densities with the same covariance

matrix. QDA is similar to LDA with the slight difference that QDA needs to estimate

the covariance for each class separately. Zhang compared the two methods in

recognition of two splice sites (acceptor site and donor site) in exons (Zhang 1997).

The features from internal exons and their flanking regions (e.g., in-frame hexamer

frequency bias) were adopted in LDA to distinguish acceptor site from donor site. To

further consider the complex correlation structure among various acceptor sites or

donor sites among exons, the covariance matrix may not be same between two sites.

QDA was applied and shown better identification accuracy than LDA. There are also

some other modifications of LDA to account for the specific characteristics in the

omics data. For example, sparse LDA is combined with sparse regularizations to

perform feature selection in discriminant analysis with high dimensional dataset,

e.g., gene expression data (Clemmensen et al. 2011). Ye et al. also proposed unrelated

LDA to handle the under-sampled data in genetic analysis and used generalized

singular value decomposition method to make the features in transformed space be

uncorrelated (Ye 2005). The method shows effectiveness in classification of tumors

by gene expression data. Huang et al. compared LDA with other four modified

methods on tumor classification by gene expression and showed the advantage of

LDA modification methods over traditional LDA in terms of the average error and

found no significant difference (Huang et al. 2009).

Decision Tree

Decision tree is one of most widely used machine learning methods. A decision tree

model is built by a tree-like structure, where each internal node represents a specific

test of an attribute, each branch represents one of the possible test results, and each

leaf node represents an outcome. There are mainly two types of decision tree:

decision tree classification and decision tree regression. The former aims to output

the classifications labels (e.g., class) while the latter can output any real number of

measurement. Decision tree can be learned by splitting the node into subsets

according to the attribute value test. The splitting process is repeated in a recursive

manner until the subsets of a node have all the same value of target variable or no

more information could be added after splitting. Several algorithms have been

developed to determine if splitting the node at each step, such as Gini impurity,

information gain or variance reduction, leads to several types of decision trees,

e.g., C4.5, C5, IDE, GINI, Codrington’s and CART (classification and regression

tree). Chen et al. used CART tree to select important genes for improving cancer

classification (Chen et al. 2014). CART was also applied to explore the influence of

the interactions among those genes that influence androgen in prostate cancer and if

these interactions are able to improve the cancer prediction (Barnholtz-Sloan

et al. 2011). There are also many other successful biological applications of decision

tree based classification, including coding and noncoding DNA classification

(Langfelder and Horvath 2008), protein secondary structure prediction (Shannon

et al. 2003), and operon structure classification (Dennis et al. 2003).
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Support Vector Machine

Support vector machines (SVM) are a family of classifiers which transform the

input samples into a high dimensional space by a linear or kernel function, named

feature space. Then a linear hyperplane could be drawn to separate two classes

mapped in the feature space. To avoid overfitting, SVMs choose a specific hyper-

plane that maximizes the minimum distance from the hyperplane to the closest

training point which is called support vectors. The optimal hyperplane is defined by

the pair (w, b) by solving the following problem:

min wk k2

s:t: yi w ∙ xi þ bð Þ � 1 � 0, 8i ¼ 1, 2, . . . ,N

where kwk2 measures the inverse of distance between two boundaries to obtain

the maximum margin. w ∙ xi þ b ¼ �1 indicates two boundary hyperplanes sepa-

rating subjects from two different classes (y ¼ 1 or� 1). Boundary hyperplanes are

built on the support vectors. It is efficient for SVM to classify new examples since

the majority of the training examples can be safely ignored. In order to transform

original variables into high dimensional feature space and measure the non-linear

correlation in feature space, a kernel function K(xi, xj) is usually applied such as

polynomial kernel, Gaussian radial basis function and hyperbolic function.

Support vector machines have drawn a lot of research efforts from diverse fields

(Noble 2004). In bioinformatics, it is widely used for cancer diagnosis and classi-

fication, protein structure and function prediction and gene expression pattern

recognition. An early application example of SVM is to identify important genes

and further improve the classification on leukemia and colon cancers (Guyon

et al. 2002). Ferry et al. used SVM to not only classify cancer tissue samples

based on microarray data but also identify those samples wrongly classified by

experts. Hua and Sun used SVMs to perform protein classification with respect to

subcellular localization (Hua and Sun 2001). A 20-feature composition kernel

function is applied and shown to produce more accurate classifications than other

competing methods, including a neural network, a Markov Distinguishing model

and the covariant discriminant algorithm. Yeang et al. extended SVM to multi-class

SVM which can address the multiple classes issue. The method was applied for

multi-class tumor classification on a data set of 190 samples from 14 tumor classes

(Yeang et al. 2001). Nguyue et al. compared several multi-lass SVM algorithms on

protein secondary structure prediction including: one-against-all, one-against-one,

and directed acyclic graph, and two approaches for multi-class problem by solving

one single optimization problem (Nguyen and Rajapakse 2003). The results dem-

onstrated better recovery accuracy of multi-class SVMs proposed by Vapnik and

Weston than the other multi-class SVMs, including binary SVMs.
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Ensemble Learning

Ensemble learning is an effective technique that constructs a set of classifiers and

combines them to improve overall prediction accuracy (Dietterich 2000). There are

a lot of ensemble methods that have been applied to biological data analysis in

addressing small sample size but high dimensional data sets and reducing the

overfitting risk. The classification accuracy is also improved by generating multiple

prediction models and aggregating these multiple models (called basis classifiers)

to make the final prediction in a consensus way. There are several types of ensemble

learning algorithms including bagging (Breiman 1996), boosting (Freund and

Schapire 1996) and random forests (Breiman 2001). Being the principle ensemble

learning methods, they are usually combined with the other classifiers such as

decision trees.

There are several applications of ensemble learning methods such as sample/

tissue classification and gene-gene interaction prediction. Ben-Dor et al. (2000) and

Dudoit et al. (2002) applied bagging and boosting methods to classify tumors using

gene expression profiles. Both studies compared the ensemble methods with other

individual classifiers such as k-nearest neighbors (kNN), clustering based classi-

fiers, SVM, LDA, and classification trees. The conclusion was that ensemble

methods (e.g., bagging and boosting) performed similarly to other single classifi-

cation algorithms. Wu et al. (2003), compared several methods for the classification

of ovarian cancer based on MS spectra including the ensemble methods of bagging,

boosting, and random forests to individual classifiers, e.g., LDA, QDA, kNN, and

SVM. The study found that among all methods random forests outperforms the

others with the lowest error rate. Moon et al. developed a new ensemble-based

classification algorithm, Classification by Ensembles from Random Partitions

(CERP) combined with classification and decision tree (CART) and applied it to

genomic data on leukemia patients and on breast cancer patients (Moon et al. 2006).

The performance was compared with other classifiers such as single decision tree

(e.g., CART), SVM, diagonal LDA and other ensemble learning methods (e.g., RF

and boosting). The results demonstrate that CERP is a consistently better algorithm

and maintains a good balance between sensitivity and specificity even in case of

unbalanced sample size.

2.2.3.2 Unsupervised Learning in Omics Data

Clustering is a popular unsupervised learning method and commonly applied in

omics data analysis such as clustering genes based on their expression, or clustering

samples based on their omics features to identify subgroups or subtypes of diseases.

There are several clustering methods proposed including partition clustering and

hierarchical clustering.
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Partition Clustering

This type of clustering methods mainly partition objects and change the clusters

based on the dissimilarity or distance between objects with clusters. The fixed

number of clusters could be specified before the clustering.

K-means clustering is a popular method for clustering genes or subjects. The

general procedure is as follows:

(1) Randomly generate k clusters and calculate the centroid of each cluster;

(2) Calculate the distance of each point with each cluster centroid and assign each

point to the cluster with shortest distance.

(3) Update the centroid of each new cluster;

(4) Repeat until certain convergence is met, e.g., no changes of assignment of each

point.

There are some applications of k-means in bioinformatics, such as gene clustering

or subtyping. Lehmann et al. used k-means to analyze gene expression profiles of

587 TNBC cases from 21 breast cancer to subtype TNBC. Each TNBC case contained

13,060 genes after normalization for clustering analysis by K-means. The optimal

number of clusters was determined by the change of proportion of area under

empirical cumulative distribution curve and consequently, 6 Triple-negative breast

cancer subtypes were identified with unique gene expression and ontologies (Lehmann

et al. 2011). Further they predicted “driver” signaling pathways of each subtypes to

show that analysis of distinct GE signatures can inform therapy selection.

Fuzzy C-means (FCM) clustering is another clustering method using the ‘soft’
clustering instead of ‘hard’ clustering in k-means. For each subject, FCM assigns a

degree of membership in each cluster, which can account for the uncertainty of

some subjects. It has been widely used in imaging analysis (Li et al. 2013) since it is

more suitable for the scenario that there is overlapping among clusters, which is

also common in clinical analysis such as tumor classification where unlabeled

tumor samples may not necessarily be clear members of one class or another.

Wang et al. applied FCM clustering on gene expression data for tumor classification

and gene prediction (Wang et al. 2003). Given a dataset X ¼ X1;X2; . . . ;XN½ �
2RN�p from N tumor subjects measured on p gene expression levels. We assume

the existence of Nc tumor classes, whose centers are denoted by

C ¼ C1;C2; . . . ;CNc½ � which are unknown and to be estimated.

U ¼ Ui, 1;Ui, 2; . . . ;Ui,Nc½ � is fuzzy membership matrix for the i-th subject on all

of tumor classes, whose value between zero and one. FCM clustering can be

obtained by solving the optimization issue:

minU,C
XNc
k¼1

XN
i¼1

uq
k, i Xi � Ckk k2 , subject to

XNc
k¼1

uq
k, i ¼ 1

where q is a weight on each fuzzy membership and determines the degree of

fuzziness. Each tumor subject will have a membership in every class; membership
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close to one indicates a high degree of similarity between the subject and a tumor

class while membership close to zero implies little similarity. The subject is

assigned to the class with the highest membership values. The second term is

used to constrain that the summation of membership of different classes equals

one to make sure the value of membership is between zero and one. The tests on

four different tumor datasets show the efficiency of FCM clustering in terms of

reduced error rates and the importance of selected features for medical diagnostics

and cancer classification.

Hierarchical Clustering

Hierarchical clustering is a clustering method to represent the objects in a tree-like

structure, where each node has zero or more child nodes below it. There are mainly

two types of strategies to generate the hierarchical tree: agglomerative, a ‘bottom
up’ approach which takes each object as its own cluster and merge clusters as one

moves up the hierarchy; divisive, a ‘top down’ approach which takes all objects as

one cluster and split it recursively as one moves down the hierarchy. Here shows the

procedure of agglomerative as an example:

(1) Start with n clusters with each contains one object;

(2) Merge the most similar pair of clusters from the proximity matrix which can be

built based on different distance measurements, e.g., single linkage, complete

linkage and average linkage, which take the minimum, maximum and average

of pairwise distance between two clusters, respectively.

(3) Update the proximity matrix by replacing the individual clusters with merged

cluster;

(4) Repeat until only one cluster is left.

Hierarchical clustering is also applied for clinical classification and gene clus-

tering. Makretsov et al. used hierarchical clustering to determine the efficiency in

improving prognostication in patients with invasive breast cancer by multiple

immunomarkers (protein expression profiles) (Makretsov et al. 2004). They iden-

tified three cluster groups with significant differences in clinical outcome and

demonstrated that hierarchical clustering by using multiple markers can group

breast cancers into classes with clinical relevance and outperform individual prog-

nostic markers. Furlan et al. applied unsupervised hierarchical clustering analysis to

126 colorectal carcinomas to combine 13 routinely assessed clinicopathologic

features and all five molecular markers to distinguish four molecular subtypes of

sporadic colorectal carcinomas (Furlan et al. 2011). The results demonstrate the

superiority of classification based on the combination of clinicopathologic and

molecular features of colorectal cancers over single features, and also indicate

that hierarchical clustering is a useful tool to define a diagnostic and prognostic

signature for different carcinomas.
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Lê Cao K-A, Boitard S, Besse P. Sparse PLS discriminant analysis: biologically relevant feature

selection and graphical displays for multiclass problems. BMC Bioinf. 2011;12:253.

Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, et al. Identification of human

triple-negative breast cancer subtypes and preclinical models for selection of targeted thera-

pies. J Clin Invest. 2011;121:2750.

Li W, Zhang S, Liu C-C, Zhou XJ. Identifying multi-layer gene regulatory modules from multi-

dimensional genomic data. Bioinformatics. 2012;28:2458–66.

Li J, Lin D, Cao H, Wang Y-P. An improved sparse representation model with structural

information for Multicolour Fluorescence In-Situ Hybridization (M-FISH) image classifica-

tion. BMC Syst Biol. 2013;7:S5.

54 H. He et al.



Liao C-S, Lu K, Baym M, Singh R, Berger B. IsoRankN: spectral methods for global alignment of

multiple protein networks. Bioinformatics. 2009;25:i253–8.

Lin D, Zhang J, Li J, He H, Deng H-W, et al. Integrative analysis of multiple diverse omics datasets

by sparse group multitask regression. Frontiers in cell and developmental biology. 2014a;2:62.

Lin D, Cao H, Calhoun VD, Wang Y-P. Sparse models for correlative and integrative analysis of

imaging and genetic data. J Neurosci Methods. 2014b;237:69–78.

Lock EF, Dunson DB. Bayesian consensus clustering. Bioinformatics. 2013;29(20):2610–6.

Lockhart R, Taylor J, Tibshirani RJ, Tibshirani R. A significance test for the lasso. Ann Stat.

2014;42:413.

Louhimo R, Hautaniemi S. CNAmet: an R package for integrating copy number, methylation and

expression data. Bioinformatics. 2011;27:887–8.

Makretsov NA, Huntsman DG, Nielsen TO, Yorida E, Peacock M, et al. Hierarchical clustering

analysis of tissue microarray immunostaining data identifies prognostically significant groups

of breast carcinoma. Clin Cancer Res. 2004;10:6143–51.

Marchini J, Howie B, Myers S, McVean G, Donnelly P. A new multipoint method for genome-

wide association studies by imputation of genotypes. Nat Genet. 2007;39:906–13.

Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, et al. ARACNE: an algorithm for

the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinf.

2006;7 Suppl 1:S7.

Melzer D, Perry JR, Hernandez D, Corsi A-M, Stevens K, et al. A genome-wide association study

identifies protein quantitative trait loci (pQTLs). PLoS Genet. 2008;4:e1000072.

Mitra K, Carvunis A-R, Ramesh SK, Ideker T. Integrative approaches for finding modular

structure in biological networks. Nat Rev Genet. 2013;14:719–32.

Moon H, Ahn H, Kodell RL, Lin C-J, Baek S, et al. Classification methods for the development of

genomic signatures from high-dimensional data. Genome Biol. 2006;7:R121.

Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q. GeneMANIA: a real-time multiple

association network integration algorithm for predicting gene function. Genome Biol. 2008;9:S4.

Nguyen MN, Rajapakse JC. Multi-class support vector machines for protein secondary structure

prediction. Genome Inform. 2003;14:218–27.

Noble WS. Support vector machine applications in computational biology. In: Kernel methods in

computational biology. The MIT Press; 2014. p. 71–92.

Ogutu JO, Schulz-Streeck T, Piepho H-P. Genomic selection using regularized linear regression

models: ridge regression, lasso, elastic net and their extensions. BioMed Cent Ltd.

2012;6(2):1–6.

O’Reilly PF, Hoggart CJ, Pomyen Y, Calboli FC, Elliott P, et al. MultiPhen: joint model of

multiple phenotypes can increase discovery in GWAS. PLoS ONE. 2012;7:e34861.

Parkhomenko E, Tritchler D, Beyene J. Sparse canonical correlation analysis with application to

genomic data integration. Stat Appl Genet Mol Biol. 2009;8:1–34

Peng J, Wang P, Zhou N, Zhu J. Partial correlation estimation by joint sparse regression models. J

Am Stat Assoc. 2009;104:735–46.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, et al. PLINK: a tool set for whole-

genome association and population-based linkage analyses. Am J Hum Genet.

2007;81:559–75.

Reverter F, Vegas E, Oller JM. Kernel-PCA data integration with enhanced interpretability. BMC

Syst Biol. 2014;8:S6.

Sass S, Buettner F, Mueller NS, Theis FJ. A modular framework for gene set analysis integrating

multilevel omics data. Nucleic Acids Res. 2013;41:9622–33.

Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, et al. An integrative genomics approach to infer

causal associations between gene expression and disease. Nat Genet. 2005;37:710–17.

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. Cytoscape: a software environment for

integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

2 Biostatistics, Data Mining and Computational Modeling 55



Sheng J, Deng H-W, Calhoun V, Wang Y-P. Integrated analysis of gene expression and copy

number data on gene shaving using independent component analysis. IEEE/ACM Transac

Comput Biol Bioinform (TCBB). 2011;8:1568–79.

Shevade SK, Keerthi SS. A simple and efficient algorithm for gene selection using sparse logistic

regression. Bioinformatics. 2003;19:2246–53.

Singh R, Xu J, Berger B. Global alignment of multiple protein interaction networks with appli-

cation to functional orthology detection. Proc Natl Acad Sci. 2008;105:12763–8.

Soneson C, Lilljebj€orn H, Fioretos T, Fontes M. Integrative analysis of gene expression and copy

number alterations using canonical correlation analysis. BMC Bioinf. 2010;11:191.

Srivas R, Hannum G, Ruscheinski J, Ono K, Wang P-L, et al. Assembling global maps of cellular

function through integrative analysis of physical and genetic networks. Nat Protoc.

2011;6:1308–23.

Stephens M. A unified framework for association analysis with multiple related phenotypes. PLoS

ONE. 2013;8:e65245.

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. Gene set enrichment

analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc

Natl Acad Sci U S A. 2005;102:15545–50.

Sui J, Adali T, Yu Q, Chen J, Calhoun VD. A review of multivariate methods for multimodal

fusion of brain imaging data. J Neurosci Methods. 2012;204:68–81.

Tang CS, Ferreira MA. A gene-based test of association using canonical correlation analysis.

Bioinformatics. 2012;28:845–50.

Tibshirani R. Regression shrinkage and selection via the lasso. J Royal Stat Soc Ser B (Methodol).

1996;58(1):267–88.

Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing

radiation response. Proc Natl Acad Sci U S A. 2001;98:5116–21.

Tyekucheva S, Marchionni L, Karchin R, Parmigiani G. Integrating diverse genomic data using

gene sets. Genome Biol. 2011;12:R105.

van der Sluis S, Posthuma D, Dolan CV. TATES: efficient multivariate genotype-phenotype

analysis for genome-wide association studies. PLoS Genet. 2013;9:e1003235.

Vaske CJ, Benz SC, Sanborn JZ, Earl D, Szeto C, et al. Inference of patient-specific pathway

activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics.

2010;26:i237–45.

Waaijenborg S, Hamer PCVDW, Zwinderman AH. Quantifying the association between gene

expressions and DNA-Markers by penalized canonical correlation analysis. Stat Appl Genet

Mol Biol. 2008; 7

Wahl S, Vogt S, Stückler F, Krumsiek J, Bartel J, et al. Multi-omic signature of body weight

change: results from a population-based cohort study. BMC Med. 2015;13:48.

Wang J, Bø TH, Jonassen I, Myklebost O, Hovig E. Tumor classification and marker gene

prediction by feature selection and fuzzy c-means clustering using microarray data. BMC

Bioinf. 2003;4:60.

Wang K, Li M, Bucan M. Pathway-based approaches for analysis of genomewide association

studies. Am J Hum Genet. 2007;81:1278–83.

Wang S, Nan B, Zhu N, Zhu J. Hierarchically penalized Cox regression with grouped variables.

Biometrika. 2009;96:307–22.

Wang K, Li M, Hakonarson H. Analysing biological pathways in genome-wide association

studies. Nat Rev Genet. 2010;11:843–54.

Wang W, Baladandayuthapani V, Holmes CC, Do K-A. Integrative network-based Bayesian

analysis of diverse genomics data. BMC Bioinf. 2013;14:S8.

Werhli AV, Grzegorczyk M, Husmeier D. Comparative evaluation of reverse engineering gene

regulatory networks with relevance networks, graphical gaussian models and bayesian net-

works. Bioinformatics. 2006;22:2523–31.

Witten DM, Tibshirani R, Hastie T. A penalized matrix decomposition, with applications to sparse

principal components and canonical correlation analysis. Biostatistics. 2009;10:515–34.

56 H. He et al.



Wu B, Abbott T, Fishman D, McMurray W, Mor G, et al. Comparison of statistical methods

for classification of ovarian cancer using mass spectrometry data. Bioinformatics.

2003;19:1636–43.

Xiong Q, Ancona N, Hauser ER, Mukherjee S, Furey TS. Integrating genetic and gene expression

evidence into genome-wide association analysis of gene sets. Genome Res. 2012;22:386–97.

Yamanishi Y, Vert J-P, Nakaya A, Kanehisa M. Extraction of correlated gene clusters from

multiple genomic data by generalized kernel canonical correlation analysis. Bioinformatics.

2003;19:i323–30.

Ye J. Characterization of a family of algorithms for generalized discriminant analysis on

undersampled problems. J Mach Learn Res JMLR. 2005;6:483–502.

Yeang C-H, Ramaswamy S, Tamayo P, Mukherjee S, Rifkin RM, et al. Molecular classification of

multiple tumor types. Bioinformatics. 2001;17:S316–22.

Zhang MQ. Identification of protein coding regions in the human genome by quadratic discrim-

inant analysis. Proc Natl Acad Sci. 1997;94:565–8.

Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat

Appl Genet Mol Biol. 2005;4:Article17.

Zhu J, Zhang B, Smith EN, Drees B, Brem RB, et al. Integrating large-scale functional genomic

data to dissect the complexity of yeast regulatory networks. Nat Genet. 2008;40:854–61.

2 Biostatistics, Data Mining and Computational Modeling 57



http://www.springer.com/978-94-017-7541-0


	Chapter 2: Biostatistics, Data Mining and Computational Modeling
	2.1 Introduction
	2.2 Statistical Methods for Biomarker Detection in Clinical Bioinformatics
	2.2.1 Statistical Analysis for Single Omics Data
	2.2.1.1 Single Marker Association
	2.2.1.2 Multiple Testing
	2.2.1.3 Multivariate Analysis
	2.2.1.4 Gene Set Analysis
	2.2.1.5 Gene Network Analysis

	2.2.2 Computational Methods for Integrating Multi-Omics Data
	2.2.2.1 Multi-Stage Method: Analyzing Multi-Omics Data Sequentially
	2.2.2.2 Parallel Analysis: Combining Individual Omics Analysis Results
	2.2.2.3 Latent Variable Models: Transform Variables into New Feature Space for Integration
	2.2.2.4 Integrative Network Analysis

	2.2.3 Statistics for Clinical Disease Diagnosis and Classification
	2.2.3.1 Supervised Learning in Omics Data
	Decision Tree
	Support Vector Machine
	Ensemble Learning

	2.2.3.2 Unsupervised Learning in Omics Data
	Partition Clustering
	Hierarchical Clustering



	References


