
Chapter 2
Estimates on Grassmann Manifolds

Abstract The main result of this chapter, called the Avalanche Principle (AP),
relates the expansion of a long product of matrices with the product of expansions
of the individual matrices. This principle was introduced by M. Goldstein and
W. Schlag in the context of SL(2, C) matrices. Besides extending the AP to matrices
of arbitrary dimension and possibly non-invertible, the geometric approach we use
here provides a relation between the most expanding (singular) directions of such a
long product ofmatrices and the corresponding singular directions of the first and last
matrices in the product. The AP along with other estimates on the action of matrices
on Grassmann manifolds will play a fundamental role in the next chapters, when we
establish the continuity the LE and of the Oseledets decomposition.

2.1 Grassmann Geometry

Grassmann geometry is the geometric study of manifolds of linear subspaces of
an Euclidean space and of the action of linear groups (and algebras) on them. Its
foundationswere laid in themasterpiece ‘Die linealeAusdehnungslehre’ ofHermann
Grassmann, whose genius is still not fully understood, as explained in the survey [2].

2.1.1 Projective Spaces

The projective space is the simplest compact model to study the action of a linear
map. Given an n-dimensional Euclidean space V , consider the equivalence relation
defined on V \ {0} by u ≡ v if and only if u = λ v for some λ �= 0. For v ∈ V \ {0},
the set v̂ := {λ v : λ ∈ R \ {0}} is the equivalence class of the vector v relative to
this relation. The projective space of V is the quotient P(V ) := {v̂ : v ∈ V \ {0}} of
V \ {0} by this equivalence relation. It is a compact topological space when endowed
with the quotient topology.
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24 2 Estimates on Grassmann Manifolds

The unit sphere S(V ) := {v ∈ V : ‖v‖ = 1} is a compact Riemannian manifold
of constant curvature 1 and diameter π . The natural projection π̂ : S(V ) → P(V ),
π̂(v) = v̂, is a (double) covering map. Hence the projective space P(V ) has a natural
smooth Riemannian structure for which the covering map π̂ is a local isometry. Thus
P(V ) is a compact Riemannian manifold with constant curvature 1 and diameter π

2 .
Given a linear map g ∈ L (V ) define P(g) := {v̂ ∈ P(V ) : g v �= 0}. We refer

to the linear map ϕg : P(g) ⊂ P(V ) → P(V ), ϕg(v̂) := π̂(
g v
‖g v‖ ), as the projective

action of g on P(V ). If g is invertible then ϕg : P(V ) → P(V ) is a diffeomorphism
with inverse ϕg−1 : P(V ) → P(V ). Through these maps, the group GL(V ), of all
linear automorphisms on V , acts transitively on the projective space P(V ).

We will consider three different metrics on the projective space P(V ). The Rie-
mannian distance, ρ, measures the length of an arc connecting two points on the
sphere. More precisely, given u, v ∈ S(V ),

ρ(û, v̂) := min{∠(u, v),∠(u,−v)}. (2.1)

The second metric, d, corresponds to the Euclidean distance. More precisely, given
u, v ∈ S(V ),

d(û, v̂) := min{‖u− v‖, ‖u+ v‖} (2.2)

measures the smallest chord of the arcs between u and v and between u and−v. The
third metric, δ, measures the sine of the arc between two points on the sphere. More
precisely, given u, v ∈ S(V ),

δ(û, v̂) := ‖u ∧ v‖
‖u‖ ‖v‖ = sin(∠(u, v)). (2.3)

The fact that δ is a metric on P(V ) follows from the sine addition law, which implies
that sin(θ + θ ′) ≤ sin θ + sin θ ′, for all θ, θ ′ ∈ [0, π

2 ].
These three distances are equivalent. For all û, v̂ ∈ P(V ),

δ(û, v̂) = sin ρ(û, v̂) and d(û, v̂) = chord ρ(û, v̂). (2.4)

The inequalities

2 θ

π
≤ sin θ ≤ chord θ = 2 sin(θ/2) ≤ θ ∀ 0 ≤ θ ≤ π

2

imply that
2

π
ρ(û, v̂) ≤ δ(û, v̂) ≤ d(û, v̂) ≤ ρ(û, v̂). (2.5)

Because of (2.4), these three metrics determine the same group of isometries on the
projective space.
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2.1.2 Exterior Algebra

Exterior Algebra was introduced by H. Grassmann in the ‘Ausdehnungslehre’. We
present here an informal description of some of its properties. See the book of
Stenberg [8] for a rigorous treatment of the subject.

Let V be a finite n-dimensional Euclidean space. Given k vectors v1, . . . , vk ∈ V ,
their kth exterior product is a formal skew-symmetric product v1 ∧ · · · ∧ vk , in the
sense that for any permutation σ = (σ1, . . . , σk) ∈ Sk ,

vσ1 ∧ · · · ∧ vσk = (−1)sgn(σ )v1 ∧ · · · ∧ vk .

These formal products are elements of an anti-commutative and associative graded
algebra (∧∗V,+,∧), called the exterior algebra of V . Formal products v1∧ · · ·∧ vk

are called simple k-vectors of V . The kth exterior power of V , denoted by ∧k V , is
the linear span of all simple k vectors of V . Elements of ∧k V are called k-vectors.

An easy consequence of this formal definition is that v1 ∧ · · · ∧ vk = 0 if and
only if v1, . . . , vk are linearly dependent. Another simple consequence is that given
two bases {v1, . . . , vk} and {w1, . . . , wk} of the same k-dimensional linear subspace
of V , if for some real matrix A = (aij) we have wi =∑k

j=1 aij vj for all i = 1, . . . , k,
then

w1 ∧ · · · ∧ wk = (det A) v1 ∧ · · · ∧ vk .

More generally, two families {v1, . . . , vk} and {w1, . . . , wk} of linearly independent
vectors span the same k-dimensional subspace if and only if for some real number
λ �= 0, w1 ∧ · · · ∧ wk = λ v1 ∧ · · · ∧ vk . Hence we identify the line spanned by a
simple k-vector v = v1 ∧ · · · ∧ vk , i.e., the projective point v̂ ∈ P(∧k V ) determined
by v, with the k-dimensional subspace spanned by the vectors {v1, . . . , vk}, denoted
hereafter by 〈〈v1 ∧ · · · ∧ vk〉〉.

The subspaces∧k V induce the grading structure of the exterior algebra∧∗V , i.e.,
we have the direct sum decomposition ∧∗V = ⊕dim V

k=0 ∧k V with (∧k V )∧ (∧k′V ) ⊂
∧k+k′V for all 0 ≤ k, k′ ≤ dim V . Geometrically, the exterior product operation
∧ : ∧k V ×∧k′V → ∧k+k′V corresponds to the algebraic sum of linear subspaces, in
the sense that given families {v1, . . . , vk} and {w1, . . . , wk} of linearly independent
vectors such that 〈〈v1 ∧ · · · ∧ vk〉〉 ∩ 〈〈w1 ∧ · · · ∧ wk′ 〉〉 = 0, then

〈〈v1 ∧ · · · ∧ vk ∧ w1 ∧ · · · ∧ wk′ 〉〉 = 〈〈v1 ∧ · · · ∧ vk〉〉 + 〈〈w1 ∧ · · · ∧ wk′ 〉〉.

LetΛn
k be the set of all k-subsets I = {i1, . . . , ik} ⊂ {1, . . . , n}, with i1 < · · · < ik ,

and order it lexicographically. Given a basis {e1, . . . , en} of V , define for each I ∈ Λn
k ,

the kth exterior product eI = ei1 ∧ · · · ∧ eik . Then the ordered family {eI : I ∈ Λn
k}

is a basis of ∧k V . In particular dim∧k V = (n
k

)
.

The exterior algebra ∧∗V inherits an Euclidean structure from V . More pre-
cisely, there is a unique inner product on ∧∗V such that for any orthonormal basis
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{e1, . . . , en} of V , the family {eI : I ∈ Λn
k, 0 ≤ k ≤ n} is an orthonormal basis of

the exterior algebra ∧∗V .
Given vectors v1, . . . , vk ∈ V let us call parallelepiped generated by these vectors

the set

P(v1, . . . , vk) :=
⎧
⎨

⎩

k∑

j=1
tjvj : tj ∈ [0, 1], j = 1, . . . , k

⎫
⎬

⎭
.

Interestingly, the normof the simple k-vector v1∧· · ·∧vk is equal to the k-dimensional
volume of the parallelepiped generated by its factors vj. More precisely,

‖v1 ∧ · · · ∧ vk‖ = Volk(P(v1, . . . , vk)), (2.6)

where Volk stands for the k-dimensional Hausdorff measure. To explain this fact first
notice that if the vectors v1, . . . , vk are pairwise orthogonal then

‖v1 ∧ · · · ∧ vk‖
‖v1‖ · · · ‖vk‖ = ‖ v1

‖v1‖ ∧ · · · ∧
vk

‖vk‖‖ = 1

because the vectors {vj/‖vj‖: j = 1, . . . , k} are orthonormal. This shows that ‖v1 ∧
· · · ∧ vk‖ = ‖v1‖ · · · ‖vk‖ and establishes (2.6) in this case. In general we use the
Gram-Schmidt orthogonalization method, defining recursively

v′1 = v1 and v′j = vj −
j−1∑

i=1

〈vj, v′i〉
‖v′i‖2

v′i for j = 2, . . . , k.

At each step, when we replace vj by v′j, both wedge products and k-volumes are
preserved. Hence v′1 ∧ · · · ∧ v′k = v1 ∧ · · · ∧ vk and

‖v1 ∧ · · · ∧ vk‖ = ‖v′1 ∧ · · · ∧ v′k‖ = ‖v′1‖ . . . ‖v′k‖
= Volk(P(v′1, . . . , v′k)) = Volk(P(v1, . . . , vk)).

Formula (2.6) also implies that for any simple vectors e = e1 ∧ · · · ∧ er and
f = f1 ∧ · · · ∧ fs in V ,

‖e ∧ f ‖ ≤ ‖e‖ ‖f ‖. (2.7)

Moreover, equality holds if and only if 〈ei, fj〉 = 0 for all i = 1, . . . , r and j =
1, . . . , s.

A simple k-vector v1 ∧ · · · ∧ vk of norm one is called a unit k-vector. From the
previous considerations the correspondence v1 ∧ · · · ∧ vk �→ 〈〈v1 ∧ · · · ∧ vk〉〉 is one-
to-one, between the set of unit k-vectors in∧k V and the set of oriented k-dimensional
linear subspaces of V . In particular, if V is an oriented Euclidean space then the 1-
dimensional space ∧nV has a canonical unit n-vector, denoted by ω, and called the
volume element of∧nV . In this case there is a unique operator, called the Hodge star
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operator, ∗ : ∧∗V → ∧∗V defined by

v ∧ (∗w) = 〈v, w〉ω, for all v, w ∈ ∧∗V .

The Hodge star operator maps ∧k V isomorphically, and isometrically, onto ∧n−k V ,
for all 0 ≤ k ≤ n. Geometrically it corresponds to the orthogonal complement
operation on linear subspaces, i.e., for any simple k-vector,

〈〈∗(v1 ∧ · · · ∧ vk)〉〉 = 〈〈v1 ∧ · · · ∧ vk〉〉⊥.

A dual product operation ∨ : ∧∗V ×∧∗V → ∧∗V can be defined by

v ∨ w := ∗((∗v) ∧ (∗w)), for all v, w ∈ ∧∗V .

This operation maps ∧k V ×∧k′V to ∧k+k′−nV , and describes the intersection opera-
tion on linear subspaces, in the sense that given families {v1, . . . , vk} and {w1, . . . , wk}
of linearly independent vectors with 〈〈v1 ∧ · · · ∧ vk〉〉 + 〈〈w1 ∧ · · · ∧ wk′ 〉〉 = V , then

〈〈(v1 ∧ · · · ∧ vk) ∨ (w1 ∧ · · · ∧ wk′)〉〉 = 〈〈v1 ∧ · · · ∧ vk〉〉 ∩ 〈〈w1 ∧ · · · ∧ wk′ 〉〉.

The geometric meaning of the ∨-operation reduces by duality to that of the sum
∧-operation and the complement ∗-operation.

Any linear map g : V → V induces a linear map ∧kg : ∧k V → ∧k V , called the
kth exterior power of g, such that for all v1, . . . , vk ∈ V ,

∧kg(v1 ∧ · · · ∧ vk) = g(v1) ∧ · · · ∧ g(vk).

This construction is functorial in the sense that for all linear maps g, g′ : V → V ,

∧kidV = id∧k V , ∧k(g
′ ◦ g) = ∧kg′ ◦ ∧kg and ∧k g∗ = (∧kg)∗,

where g∗ : V → V denotes the adjoint operator.
A clear consequence of these properties is that if g : V → V is an orthogonal

automorphism, i.e., g∗ ◦ g = idV , then so is ∧kg : ∧k V → ∧k V .
Consider a matrix A ∈ Mat(n, R). Given I, J ∈ Λn

k , we denote by AI×J the square
sub-matrix ofA indexed in I×J . If a linearmapg : V → V is representedbyA relative
to a basis {e1, . . . , en}, then the kth exterior power∧kg : ∧k V → ∧k V is represented
by the matrix ∧kA := (det AI×J)I,J relative to the basis {eI : I ∈ Λn

k}. The matrix
∧kA is called the kth exterior power of A. Obviously, matrix exterior powers satisfy
the same functorial properties as linear maps, i.e., for all A, A′ ∈ Mat(n, R),

∧kIn = I(n
k)

, ∧k(A
′A) = (∧kA′)(∧kA) and ∧k A∗ = (∧kA)∗,

where A∗ denotes the transpose matrix of A.
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Let n = dim V and {ei : i = 1, . . . , n} be an eigen-basis of a linear endomorphism
g : V → V with eigenvalues {λi : i = 1, . . . , n}, i.e., gei = λiei for all i = 1, . . . , n.
Then the family {eI : I ∈ Λn

k} is an eigen-basis of ∧kg : ∧k V → ∧k V with eigen-
values

λI = λi1λi2 . . . λik , I = {i1, . . . , ik} ∈ Λn
k .

In other words, (∧kg)eI = λI eI for all I ∈ Λn
k .

2.1.3 Grassmann Manifolds

Grassmannians, like projective spaces, are compact Riemannian manifolds which
stage the action of linear maps. For each 0 ≤ k ≤ n, the Grassmannian Grk(V ) is
the space of all k-dimensional linear subspaces of V . Notice that the projective space
P(V ) and the Grassmannian Gr1(V ) are the same object if we identify each point
v̂ ∈ P(V ) with the line 〈v〉 = {λ v : λ ∈ R}. The full Grassmannian Gr(V ) is the
union of all Grassmannians Grk(V )with 0 ≤ k ≤ n. Denote byL (V ) the algebra of
linear endomorphisms on V , and consider the map π : Gr(V ) → L (V ), E �→ πE ,
that assigns the orthogonal projection πE onto E, to each subspace E ∈ Gr(V ). This
map is one-to-one, and we endow Gr(V ) with the unique topology that makes the
mapπ : Gr(V ) → π(Gr(V )) a homeomorphsim.With it, Gr(V ) becomes a compact
space, and each Grassmannian Grk(V ) is a closed connected subspace of Gr(V ).

The group GL(V ) acts transitively on each Grassmannian. The action of GL(V )

on Grk(V ) is given by · : GL(V )× Grk(V ) → Grk(V ), (g, E) �→ g E. The special
orthogonal group SO(V ), of orientation preserving orthogonal automorphisms, acts
transitively on Grassmannians too. All Grassmannians are compact homogeneous
spaces.

For each 0 ≤ k ≤ n, the Plücker embedding is the map ψ : Grk(V ) → P(∧k V )

that to each subspace E in Grk(V ) assigns the projective point v̂ ∈ P(∧k V ), where
v = v1 ∧ · · · ∧ vk is any simple k-vector formed as exterior product of a basis
{v1, . . . , vk} of E. This map is one-to-one and equivariant, i.e., for all g ∈ GL(V )

and E ∈ Gr(V ),
ψ(g E) = ϕ∧kgψ(E). (2.8)

We will consider the metrics ρ, d, δ : Grk(V )×Grk(V )→ [0,+∞) defined for
any given E, F ∈ Grk(V ) by

ρ(E, F) := ρ(ψ(E), ψ(F)), (2.9)

d(E, F) := d(ψ(E), ψ(F)), (2.10)

δ(E, F) := δ(ψ(E), ψ(F)). (2.11)

which assign diameter π
2 ,
√
2 and 1, respectively, to the manifold Grk(V ). These

distances are preserved by the action of orthogonal linear maps in SO(V ).
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Given k, k′ ≥ 0 such that k + k′ ≥ n = dim V , the intersection of subspaces is
an operation ∩ : Grk,k′(∩) ⊂ Grk(V )× Grk′(V )→ Grk+k′−n(V ) where:

Definition 2.1 The domain is defined by

Grk,k′(∩) := {(E, E′) ∈ Grk(V )× Grk′(V ) : E + E′ = V }.

Similarly, given k, k′ ≥ 0 such that k + k′ ≤ n = dim V , the algebraic sum of
subspaces is operation + : Grk,k′(+) ⊂ Grk(V )× Grk′(V )→ Grk+k′−n(V ) where:

Definition 2.2 The domain is defined by

Grk,k′(+) := {(E, E′) ∈ Grk(V )× Grk′(V ) : E ∩ E′ = {0}}.

The considerations in Sect. 2.1.2 show that the Plücker embedding satisfies the fol-
lowing relations:

Proposition 2.1 Given E ∈ Grk(V ), E′ ∈ Grk′(V ), consider unit vectors v ∈ Ψ (E)

and v′ ∈ Ψ (E′).

(a) If (E, E′) ∈ Grk,k′(∩) then ψ(E ∩ E′) = v̂ ∨ v′.
(b) If (E, E′) ∈ Grk,k′(+) then ψ(E + E′) = v̂ ∧ v′.

A duality between sums and intersections stems from these facts.

Proposition 2.2 The orthogonal complement operation E �→ E⊥ is a d-isometric
involution on Gr(V ) which maps Grk,k′(+) to Grn−k,n−k′(∩) and satisfies for all
(E, E′) ∈ Grk,k′(+),

(E + E′)⊥ = (E⊥) ∩ (E′)⊥.

The composition semigroup L (V ) has two partial actions on Grassmannians,
called the push-forward action and the pull-back action. Before introducing them, a
couple of facts are needed.

Definition 2.3 Given g ∈ L (V ), we denote by Kg := {v ∈ V : g v = 0} the kernel
of g, and by Rg := {g v : v ∈ V } the range of g.

Lemma 2.1 Given g ∈ L (V ) and E ∈ Gr(V ),

1. if E ∩ (Kg) = {0} then the linear map g|E : E → g(E) is an isomorphism, and
in particular dim g(E) = dim E.

2. if E+ (Rg) = V then the linear map g∗|E⊥ : E⊥ → g−1(E)⊥ is an isomorphism,
and in particular dim g−1(E) = dim E.

Proof The first statement is obvious because ifE ∩ (Kg) = {0} thenK(g|E) = {0}. If
E+(Rg) = V then, since Kg∗ = (Rg)⊥, we haveE⊥∩(Kg∗) = E⊥∩(Rg)⊥ = (E+
Rg)⊥ = {0}. Hence by 1, the linear map g∗|E⊥ : E⊥ → g∗(E⊥) is an isomorphism.
It is now enough to remark that g∗(E⊥) = g−1(E)⊥. In fact, the inclusion g∗(E⊥) ⊂
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g−1(E)⊥ is clear. Since g∗|E⊥ is injective, dim g∗(E⊥) = dim(E⊥). On the other
hand, by the transversality condition, g−1(E) has dimension

dim g−1(E) = dim
(
(g|(Kg)⊥)

−1(E ∩ Rg)
)+ dim(Kg)

= dim(E ∩ Rg)+ dim(Kg)

= dim(E)+ dim(Rg)− n+ dim(Kg) = dim(E).

Hence both g∗(E⊥) and g−1(E)⊥ have dimension equal to dim(E⊥), and the equality
follows. �

Given g ∈ L (V ) and k ≥ 0 such that k + dim(Kg) ≤ n = dim V , the push-
forward by g is the map ϕg : Grk(g) ⊂ Grk(V ) → Grk(V ), E �→ gE, where:

Definition 2.4 The domain is defined by

Grk(g) := {E ∈ Grk(V ) : E ∩ (Kg) = {0}}.

We warn the reader that the notation ϕg is used for both the projective and the
Grassmannian actions of g ∈ L (V ).

Similarly, given k ≥ 0 such that k + dim(Rg) ≥ n = dim V , the pull-back by g
is the map ϕg−1 : Grk(g−1) ⊂ Grk(V )→ Grk(V ), E �→ g−1E, where:

Definition 2.5 The domain is defined by

Grk(g
−1) := {E ∈ Grk(V ) : E + (Rg) = V }.

From the proof of Proposition 2.1 we obtain a duality between push-forwards and
pull-backs which can be expressed as follows.

Proposition 2.3 Given g ∈ L (V ) and k ≥ 0 such that k+ dim(Rg) ≥ n = dim V ,
we have Grk(g−1) = Grn−k(g∗)⊥ and for all E ∈ Grk(g−1),

(g−1E)⊥ = g∗(E⊥).

In Sect. 2.3 we derive a modulus of Lipschitz continuity, w.r.t. the metric δ, for
the sum and intersection operations.

2.1.4 Flag Manifolds

Let V be a finite n-dimensional Euclidean space. Any strictly increasing sequence of
linear subspaces F1 ⊂ F2 ⊂ · · · ⊂ Fk ⊂ V is called a flag in the Euclidean space V .
Formally, flags are denoted as listsF = (F1, . . . , Fk). The sequence τ = (τ1, . . . , τk)

of dimensions τj = dim Fj is called the signature of the flag F. The integer k is called
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the length of the flag F, and the length of the signature τ . Let F(V ) be the set of all
flags in V , and define Fτ (V ) to be the space of flags with a given signature τ . Two
special cases of flag spaces are the projective space P(V ) = Fτ (V ), when τ = (1),
and the Grassmannian Grk(V ) = Fτ (V ), when τ = (k).

The general linear group GL(V ) acts naturally on F(V ). Given g ∈ GL(V )

the action of g on Fτ (V ) is given by the map ϕg : Fτ (V ) → Fτ (V ), ϕgF =
(gF1, . . . , gFk). The special orthogonal subgroup SO(V ) ⊂ GL(V ) acts transitively
on Fτ (V ). Hence, all flag manifolds Fτ (V ) are compact homogeneous spaces. Each
of them is a compact connected Riemannian manifold where the group SO(V ) acts
by isometries. Since Fτ (V ) ⊂ Grτ1(V ) × Grτ2(V ) × · · · × Grτk (V ), the product
distances

ρτ (F, F ′) = max
1≤j≤k

ρ(Fj, F ′j) (2.12)

dτ (F, F ′) = max
1≤j≤k

d(Fj, F ′j) (2.13)

δτ (F, F ′) = max
1≤j≤k

δ(Fj, F ′j) (2.14)

are equivalent to the Riemannian distance on Fτ (V ). With these metrics, the flag
manifold Fτ (V ) has diameter π

2 ,
√
2 and 1, respectively. The group SO(V ) acts

isometrically on Fτ (V ) with respect to these distances.
Given a signature τ = (τ1, . . . , τk), if n = dim V , we define

τ⊥ := (n− τk, . . . , n− τ1).

When τ = (τ1, . . . , τk) we will write τ⊥ = (τ⊥1 , . . . , τ⊥k ), where τ⊥j = n− τk+1−i.

Definition 2.6 Given a flag F = (F1, . . . , Fk) ∈ Fτ (V ), its orthogonal complement
is the τ⊥-flag F⊥ := (F⊥k , . . . , F⊥1 ).

The map ·⊥ : F(V )→ F(V ) is an isometric involution on F(V ), mapping Fτ (V )

onto Fτ⊥(V ). The involution character, (F⊥)⊥ = F for all F ∈ F(V ), is clear. As
explained in Sect. 2.1.2, the Hodge star operator ∗ : ∧k V → ∧n−k V is an isom-
etry between these Euclidean spaces. By choice of metrics on the Grassmannians,
see (2.10), the Plücker embeddings are isometries. Finally, the Plücker embedding
conjugates the orthogonal complement map ·⊥ : Grk(V ) → Grn−k(V ) with the
Hodge star operator. Hence for each 0 ≤ k ≤ n, the map ·⊥ : Grk(V ) → Grn−k(V )

is an isometry. The analogous conclusion for flags follows from the definition of
distance dτ .

Given g ∈ L (V ) and a signature τ such that τi + dim(Kg) ≤ n for all i, the
push-forward by g on flags is the map ϕg : Fτ (g) ⊂ Fτ (V ) → Fτ (V ), ϕgF :=
(g F1, . . . , g Fk), where:

Definition 2.7 The domain of ϕg is defined by

Fτ (g) := {F ∈ Fτ (V ) : Fk ∩ (Kg) = {0}}.



32 2 Estimates on Grassmann Manifolds

Similarly, given a signature τ such that τi + dim(Rg) ≥ n for all i, the pull-
back by g on flags is the map ϕg−1 : Fτ (g−1) ⊂ Fτ (V ) → Fτ (V ), ϕg−1F :=
(g−1F1, . . . , g−1Fk), where:

Definition 2.8 The domain of ϕg−1 is defined by

Fτ (g
−1) := {F ∈ Fτ (V ) : F1 + (Rg) = V }.

The duality between duality between push-forwards and pull-backs is expressed
as follows.

Proposition 2.4 Given g ∈ L (V ), Fτ (g−1) = Fτ⊥(g∗)⊥ and for all F ∈ Fτ (g−1),

(ϕg−1F)⊥ = ϕg∗(F
⊥).

2.2 Singular Value Geometry

Singular value geometry refers here to the geometry of the singular value decom-
position (SVD) of a linear endomorphism g : V → V on some Euclidean space V .
It also refers to some geometric properties of the action of g on Grassmannians and
flag manifolds related to the singular value decomposition of g.

2.2.1 Singular Value Decomposition

Let V be a Euclidean space of dimension n.

Definition 2.9 Given g ∈ L (V ), the singular values of g are the square roots of the
eigenvalues of the quadratic form Qg : V → R, Qg(v) = ‖g v‖2 = 〈gv, gv〉, i.e., the
eigenvalues of the positive semi-definite self-adjoint operator

√
g∗g.

Given g ∈ L (V ), let

s1(g) ≥ s2(g) ≥ · · · ≥ sn(g) ≥ 0,

denote the sorted singular values of g. The adjoint g∗ has the same singular values
as g because the operators

√
g∗g and

√
g g∗ are conjugate.

The largest singular value, s1(g), is the square root of the maximum value of Qg

over the unit sphere, i.e., s1(g) = max‖v‖=1‖g v‖ = ‖g‖ is the operator norm of g.
Likewise, the least singular value, sn(g), is the square root of the minimum value
of Qg over the unit sphere, i.e., sn(g) = min‖v‖=1‖g v‖. This number, also denoted
by m(g), is called the least expansion of g. If g is invertible then m(g) = ‖g−1‖−1,
while otherwise m(g) = 0.



2.2 Singular Value Geometry 33

Definition 2.10 The eigenvectors of the quadratic formQg, i.e., of the positive semi-
definite self-adjoint operator

√
g∗g, are called the singular vectors of g.

By the spectral theory of self-adjoint operators, for any g ∈ L (V ) there exists an
orthonormal basis consisting of singular vectors of g.

Proposition 2.5 Given g ∈ L (V ), let v ∈ V be such that g∗g v = λ2 v with λ ≥ 0
and ‖v‖ = 1, i.e., v is a unit singular vector of g with singular value λ. Then there
exists a unit vector w ∈ V such that

(a) g v = λ w,
(b) g g∗ w = λ2 w, i.e., w is a singular vector of g∗.

Proof Let v ∈ V be a unit singular vector of g. Then g∗g v = λ2 v with λ ≥ 0
and λ2 = 〈λ2 v, v〉 = 〈g∗g v, v〉 = ‖g v‖2, which implies that λ = ‖g v‖. Since
(g g∗) (g v) = g (g∗g) v = λ2 g v, if λ �= 0 then setting w = g v/‖g v‖ = λ−1 g v, we
have (g g∗) w = λ2 w, which proves that w is a singular vector of g∗. By definition
g v = λ w. When λ = 0, take w to be any unit vector in Kg∗. Notice that dim(Kg) =
dim(Kg∗). In this case v and w are singular vectors of g and g∗, respectively, such
that g v = 0 = λ w. �

By the previous proposition, given g ∈ L (V ) there exist two orthonormal sin-
gular vector basis of V , {v1(g), . . . , vn(g)} and {v1(g∗), . . . , vn(g∗)} for g and g∗,
respectively, such that

g vj(g) = sj(g) vj(g
∗) for all 1 ≤ j ≤ n.

Denote by Dg the diagonal matrix with diagonal entries sj(g), 1 ≤ j ≤ n, seen as
an operator Dg ∈ L (Rn). Define the linear maps Ug, Ug∗ : R

n → V by Ug(ej) =
vj(g) and Ug∗(ej) = vj(g∗), for all 1 ≤ j ≤ n, where the ej are the vectors of the
canonical basis in R

n. By construction Ug and Ug∗ are isometries and the following
decomposition holds

g = Ug∗ Dg (Ug)
∗,

known as the singular value decomposition (SVD) of g.
We say that g has a simple singular spectrum if its n singular values are all distinct.

When g has simple singular spectrum, the singular vectors vj(g) and vj(g∗) above
are uniquely determined up to a sign, and in particular they determine well-defined
projective points vj(g), vj(g∗) ∈ P(V ).

Definition 2.11 Given g ∈ L (V ), we call singular basis of g any orthonormal
basis {v1, . . . , vn} of V formed by singular vectors of g ordered in such a way that
‖g vi‖ = si(g) for all i = 1, . . . , n.

Given g ∈ L (V ), consider singular bases {v1, . . . , vn} and {v∗1, . . . , v∗n} for g and
g∗, respectively, such that

g vj = sj v∗j with sj = sj(g) for all 1 ≤ j ≤ n.
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For any I = {i1, . . . , ik} ∈ Λn
k we have

(∧kg)(vi1 ∧ · · · ∧ vik ) = (si1 . . . sik ) (v∗i1 ∧ · · · ∧ v∗ik ).

Therefore, by the considerations at the end of Sect. 2.1.2, the families of k-vectors
{vI = vi1∧· · ·∧vik : I ∈ Λn

k} and {v∗I = v∗i1∧· · ·∧v∗ik : I ∈ Λn
k} form two singular bases

for ∧kg and ∧kg∗, respectively, while the products sI = si1 . . . sik are the singular
values of both ∧kg and ∧kg∗.

Proposition 2.6 For any 1 ≤ k ≤ dim V , ‖∧kg‖ = s1(g) . . . sk(g).

Proof The maximum product sI is attained when I = {1, . . . , k} ∈ Λn
k . Hence‖∧kg‖ = s1 . . . sk . �

The volume expansion factor of a linear map g : V → V ′ between two Euclidean
spaces V and V ′ is defined by

det+(g) := √det(g∗g).

This name is justified by the following fact.

Proposition 2.7 Given a linear map g : V → V ′ between Euclidean spaces, with
n = dim V , for any Borel set B ⊂ V ,

Voln(g(B)) = det+(g)Voln(B),

where Voln denotes the n-dimensional Hausdorff measure.

Proof Let {v1, . . . , vn} be any basis of V and consider the parallelipiped B =
P(v1, . . . , vn). By Proposition 2.9 below and formula (2.6),

Voln(g(B)) = ‖(gv1) ∧ · · · ∧ (gvn)‖ = ‖(∧ng)(v1 ∧ · · · ∧ vn)‖
= ‖∧ng‖‖v1 ∧ · · · ∧ vn‖ = det+(g)Voln(B).

On the third step we have used the fact that ∧nV has dimension 1. �

Because of this property the volume expansion factor behaves multiplicatively.

Proposition 2.8 Given Euclidean spaces V , V ′ and V ′′, if g : V → V ′ is an
isomorphism and g′ : V ′ → V ′′ any linear map then

det+(g′ ◦ g) = det+(g′) det+(g).

Proposition 2.9 Let V and V ′ be Euclidean spaces with n = dim V ≤ dim V ′.
Then for any linear map g : V → V ′

det+(g) = s1(g) . . . sn(g) = ‖∧ng‖.
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Proof The squares s2i = si(g)2 (1 ≤ i ≤ n) are the eigenvalues of g∗g. �

Next proposition provides a method to compute the volume expansion factor.

Proposition 2.10 Let g : V → V ′ be a linear map between Euclidean spaces. Given
orthonormal bases {vi : i = 1, . . . , n} of V and {v′i : i = 1, . . . , n} of the range gV ,

det+(g) = ∣∣det (〈gvi, v′j〉
)

i,j

∣
∣.

Proof The matrix A ∈ Mat(n, R) with entries aij = 〈gvi, v′j〉 represents the linear
map g in the given orthonormal bases. Consider the isometries U : R

n → V and
U ′ : R

n → V ′ respectively defined by Uei = vi and U ′ei = v′i for all i = 1, . . . , n.
Then g = U ′AU∗ and

det+(g)2 = det(g∗g) = det(UA∗AU∗)

= det(A∗A) = det(A)2.

This proves that det+(g) = ∣∣det A
∣
∣. �

2.2.2 Gaps and Most Expanding Directions

Consider a linear map g ∈ L (V ) and a number 1 ≤ k < dim V .

Definition 2.12 The kth gap ratio of g is defined to be

grk(g) := sk(g)

sk+1(g)
≥ 1.

We will also write gr(g) instead of gr1(g).

Definition 2.13 We say that g has a first singular gap when gr(g) > 1. More
generally, we say that g has a k singular gap when grk(g) > 1.

In some occasions it is convenient to work with the inverse quantity, denoted by

σk(g) := grk(g)−1 ≤ 1. (2.15)

Proposition 2.11 For any 1 ≤ k < dim V,

grk(g) = ‖∧kg‖2
‖∧k−1g‖ ‖∧k+1g‖ = gr1(∧kg).

Proof The first equality follows from Proposition 2.6. The two first singular values
of ∧kg are s1(∧kg) = s1(g) . . . sk−1(g)sk(g) and s2(∧kg) = s1(g) . . . sk−1(g)sk+1(g).
Hence
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gr1(∧kg) = s1(∧kg)

s2(∧kg)
= sk(g)

sk+1(g)
= grk(g). �

Given g ∈ L (V ), if gr(g) > 1 then the singular value s1(g) = ‖g‖ is simple.

Definition 2.14 In this case we denote by v(g) ∈ P(V ) the associated singular
direction, and refer to it as the g-most expanding direction.

By definition we have
ϕgv(g) = v(g∗). (2.16)

More generally, given 1 ≤ k < dim V , we have:

Definition 2.15 If grk(g) > 1 we define the g-most expanding k-subspace to be

vk(g) := Ψ −1 (v(∧kg)
)
,

where Ψ stands for the Plücker embedding defined in Sect. 2.1.3.

The subspace vk(g) is the direct sum of all singular directions associated with the
singular values s1(g), . . . , sk(g). We have

ϕgvk(g) = vk(g
∗). (2.17)

Analogously, let n = dim V and assume grn−k(g) > 1.

Definition 2.16 We define the g-least expanding k-subspace as

vk(g) := vn−k(g)⊥.

The subspace vk(g) is the direct sum of all singular directions associated with the
singular values sn−k+1(g), . . . , sn(g). Again we have

ϕgvk(g) = vk(g
∗). (2.18)

Let τ = (τ1, . . . , τk) be a signature with 1 ≤ τ1 < · · · < τk < dim V .

Definition 2.17 We define the τ -gap ratio of g to be

grτ (g) := min
1≤j≤k

grτj
(g).

When grτ (g) > 1 we say that g has a τ -gap pattern.

Note that grτ (g) > 1 means that g has a τj singular gap for 1 ≤ j ≤ k. Recall
that Fτ (V ) denotes the space of all τ -flags, i.e., flags F = (F1, . . . , Fk) such that
dim(Fj) = τj for j = 1, . . . , k.



2.2 Singular Value Geometry 37

Definition 2.18 If grτ (g) > 1 then the most expanding τ -flag is

vτ (g) := (vτ1(g), . . . , vτk (g)) ∈ Fτ (V ).

Given g ∈ L (V ) the domain of its push-forward action on Fτ (V ) is

Definition 2.19 Fτ (g) := {F ∈ Fτ (V ) : Fk ∩ Kg = {0}}.
The push-forward of a flag F ∈ Fτ (g) by g is

ϕgF = g F := (g F1, . . . , g Fk).

Proposition 2.12 Given g ∈ L (V ) such that grτ (g) > 1, the push-forward induces
a map ϕg : Fτ (g) → Fτ (g∗) such that ϕgvτ (g) = vτ (g∗).

Proof Given F ∈ Fτ (g), we have Fj ∩ Kg = {0} for all j = 1, . . . , k. Hence
dim gFj = dim Fj = τj for all j, which proves that ϕgF ∈ Fτ (V ). To check that
ϕgF ∈ Fτ (g∗) we need to show that gFk ∩ Kg∗ = {0}. Assume g v ∈ Kg∗ , with
v ∈ Fk , and let us see that g v = 0. By assumption g∗g v = 0, which implies
(g g∗) g v = 0. Since the self-adjoint map g g∗ induces an automorphism on Rg, we
conclude that g v = 0.

The second statement follows from (2.17). �

Given g ∈ L (V ), the domain of its pull-back action on Fτ (V ) is

Definition 2.20 F−1τ (g) := {F ∈ Fτ (V ) : F1 + Rg = V }.
The pull-back of a flag F ∈ Fτ (g) by g is

ϕg−1F = g−1F := (g−1F1, . . . , g−1Fk).

Definition 2.21 If grτ⊥(g) > 1 the least expanding τ -flag is

vτ (g) := (vτ1
(g), . . . , vτk

(g)) ∈ Fτ (V ).

Proposition 2.13 If grτ (g) > 1 then vτ⊥(g) = vτ (g)⊥.

Proof Let {v1, . . . , vn} be a singular basis of g. Since this basis is orthonormal,

vn−k(g) = 〈vk+1, . . . , vn〉 = 〈v1, . . . , vk〉⊥ = vk(g)⊥.

Hence

vτ⊥(g) = (vn−τk
(g), . . . , vn−τ1

(g)) = (vτ1(g), . . . , vτk (g))⊥ = vτ (g)⊥. �

Proposition 2.14 Given g ∈ L (V ) such that grτ⊥(g) > 1, the pull-back induces a
map ϕg−1 : F−1τ (g) → F−1τ (g∗) such that ϕg−1vτ (g) = vτ (g

∗).
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Proof Given F ∈ F−1τ (g), we have Fj + Rg = V for all j = 1, . . . , k. Hence
dim g−1Fj = dim Fj = τj for all j, which proves that ϕg−1F ∈ Fτ (V ). To check that
ϕg−1F ∈ F−1τ (g∗) just notice that g−1F1 + Rg∗ ⊇ Kg + K⊥g = V .

The second statement follows from (2.18) and Proposition 2.13. �

Weend this section proving that the orthogonal complement involution conjugates
the push-forward actionbyg ∈ L (V )with the pull-back actionby the adjointmapg∗.

Proposition 2.15 Given g ∈ L (V ) such that grτ⊥(g) > 1, the action of ϕg−1 on
Fτ (V ) is conjugated to the action of ϕg∗ on Fτ⊥(V ) by the orthogonal complement
involution. More precisely, we have F−1τ (g) = Fτ⊥(g∗)⊥ and F−1τ (g∗) = Fτ⊥(g)⊥,
and the following diagram commutes

Fτ⊥(g∗)
ϕg∗−−−−→ Fτ⊥(g)

·⊥
⏐
⏐
�

⏐
⏐
�·⊥

F−1τ (g) −−−−→
ϕg−1

F−1τ (g∗)

.

Proof To see that F−1τ (g) = Fτ⊥(g∗)⊥, notice that the following equivalences hold:

F ∈ F−1τ (g) ⇔ F1 + Rg = V

⇔ F⊥1 ∩ Kg∗ = {0} ⇔ F⊥ ∈ Fτ⊥(g
∗).

Exchanging the roles of g and g∗ we obtain the relation F−1τ (g∗) = Fτ⊥(g)⊥.
Finally, notice that it is enough to prove the diagram’s commutativity at the Grass-

mannian level. For that use Proposition 2.3. �

2.2.3 Angles and Expansion

Throughout this section let p̂, q̂ ∈ P(V ), and p ∈ p̂, q ∈ q̂ denote representative
vectors. The projective distance δ(p̂, q̂) was defined by

δ(p̂, q̂) :=
√

1− 〈p, q〉2
‖p‖2‖q‖2 =

‖p ∧ q‖
‖p‖ ‖q‖ = sin ρ(p̂, q̂).

We also define the minimum distance between any two subspaces E, F ∈ Gr(V ),

δmin(E, F) := min
u∈E\{0},v∈F\{0} δ(û, v̂), (2.19)
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and the Hausdorff distance between subspaces E, F ∈ Grk(V ),

δH(E, F) := max

{

max
u∈E\{0} δmin(û, F), max

v∈F\{0} δmin(v̂, E)

}

.

Given a unit vector v ∈ V , ‖v‖ = 1, denote by πv, π
⊥
v : V → V the orthogonal

projections πv(x) := 〈v, x〉 v, respectively π⊥v (x) := x − 〈v, x〉 v.

Lemma 2.2 Given u, v ∈ V non-collinear with ‖u‖ = ‖v‖ = 1, denote by P the
plane spanned by u and v. Then

(a) πv − πu is a self-adjoint endomorphism,
(b) K(πv − πu) = P⊥,
(c) the restriction πv − πu : P → P is anti-conformal with similarity factor∣

∣sin∠(u, v)
∣
∣,

(d) ‖π⊥v − π⊥u ‖ = ‖πv − πu‖ = δ(û, v̂).

Proof Item (a) follows because orthogonal projections are self-adjoint operators.
Given w ∈ P⊥, we have πu(w) = πv(w) = 0, which implies w ∈ K(πu − πv).

Hence P⊥ ⊂ K(πu − πv). Since u and v are non-collinear, πu − πv has rank 2. Thus
K(πu − πv) = P⊥, which proves (b).

For (c) we may assume that V = R
2 and consider u = (u1, u2), v = (v1, v2), with

u2
1 + u2

2 = v21 + v22 = 1. The projections πu and πv are represented by the matrices

U =
(

u2
1 u1u2

u1u2 u2
2

)

and V =
(

v21 v1v2
v1v2 v22

)

w.r.t. the canonical basis. Hence πv − πu is given by

V − U =
(

v21 − u2
1 v1v2 − u1u2

v1v2 − u1u2 v22 − u2
2

)

=
(

β α

α −β

)

where α = v1v2−u1u2 and β = v21−u2
1 = −(v22−u2

2). This proves that the restriction
of πv − πu to the plane P is anti-conformal. The similarity factor of this map is

‖πv − πu‖ = ‖πv(u)− u‖ = ‖π⊥v (u)‖ = ∣∣sin∠(u, v)
∣
∣

Finally, since u− 〈v, u〉 v ⊥ v,

‖π⊥v − π⊥u ‖2 = ‖πv − πu‖2 = ‖π⊥v (u)‖2 = ‖u− 〈v, u〉 v‖2
= ‖u ∧ v‖2 = δ(û, v̂)2. �

Lemma 2.3 Let V be a Euclidean space of even dimension 2k and let E, F ∈ Grk(V )

be subspaces such that V = E⊕F. Then the linear map πE−πF admits an invariant
decomposition V = P1 ⊕ · · · ⊕ Pk into pairwise orthogonal planes Pj such that
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(1) each Pj is invariant under πE and πF,
(2) Pj = Ej ⊕ Fj, where Ej = E ∩ Pj, Fj = F ∩ Pj and dim Ej = dim Fj = 1,
(3) (πE − πF)|Pj : Pj → Pj is anti-conformal.

Proof Choose unit vectors u0 ∈ E and v0 ∈ F such that∠(u0, v0) = max{∠(u, v) : u
∈ E \ {0}, v ∈ F \ {0}}. Then the function f (x) = ‖u − v0‖2 defined over the unit
sphere in E attains its maximum value at u0. By the method of Lagrange multipliers,
πE(u0 − v0) is collinear with u0, which implies that πE(v0) is also collinear with
u0. Therefore πE(v0) = 〈u0, v0〉u0. By a similar argument, πF(u0) = 〈u0, v0〉v0. The
plane P spanned by the vectors u0 and v0 is invariant under both projections πE and
πF . Hence, by Lemma 2.2 the restriction πE − πF : P → P is anti-conformal. Now
the orthogonal complement P⊥ is also invariant under πE , πF and πE−πF . Defining
E0 = E ∩ P⊥ and F0 = F ∩ P⊥, we have P⊥ = E0 ⊕ F0 and πE − πF = πE0 − πF0

over P⊥, where πE0 and πF0 denote orthogonal projections on P⊥. The claim of this
lemma follows proceeding inductively with πE0 − πF0 . �

Definition 2.22 Given E, F ∈ Gr(V ), we denote by πF : V → V the orthogonal
projection onto F, and by πE,F : E → F the restriction of πF to E.

Proposition 2.16 Given E, F ∈ Grk(V ),

(a) δ(E, F) =
√
1− det+(πE,F)2 =

√
1− det+(πF,E)2,

(b) δH(E, F) = ‖πE,F⊥‖ = ‖πF,E⊥‖ = ‖πE − πF‖,
(c) δH(E, F) ≤ δ(E, F).

Proof Consider the unit k-vectors e = Ψ (E) and f = Ψ (F).
For (a) notice first that δ(E, F) = δ(e, f ) = √

1− 〈e, f 〉2. Since the exterior
power ∧kπF,E : ∧kF → ∧kE is also an orthogonal projection we have 〈e, f 〉 =
〈e,∧kπF,E(f )〉 = ‖∧kπF,E‖ = det+(πF,E).

Take an orthogonal reflexion g ∈ O(V ) such that g(F) = E and g(E) = F. We
have g−1(E⊥) = F⊥ and πE,F⊥ = g−1 ◦ πF,E⊥ ◦ g. Therefore ‖πE,F⊥‖ = ‖πF,E⊥‖.

We have δH(E, F) = ‖πE,F⊥‖ because for any unit vector u ∈ û, with û ∈ P(E),

‖πE,F⊥(u)‖ = min
v∈F\{0} δ(û, v̂).

To finish (b) we still have to prove that ‖πE − πF‖ = ‖πE,F⊥‖. Restricting our
attention to the subspace V0 = (E ∩ (E ∩ F)⊥)⊕ (F ∩ (E ∩ F)⊥), because πE − πF

vanishes on V⊥
0 we can assume that V = E⊕F. In particular dim V = 2k. Consider

the orthogonal invariant decomposition of Lemma 2.3. It is enough to check that the
relation ‖πE − πF‖ = ‖πE,F⊥‖ holds on each plane Pj. Therefore we may as well
assume that k = 1. Notice that over the subspace E we have πE−πF = πE,F⊥ . Since
the linear map πE − πF is anti-conformal, the norm ‖πE − πF‖ is attained along E,
which implies that ‖πE − πF‖ = ‖πE,F⊥‖. This proves item (b).

SinceπE,F is an orthogonal projection all its singular values are in the range [0, 1].
Hence, for any unit vector u ∈ E, ‖πE,F(u)‖ ≥ m(πE,F) ≥ det+(πE,F). Thus
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‖πE,F⊥(u)‖2 = 1− ‖πE,F(u)‖2 ≤ 1− det+(πE,F)2.

Item (c) follows taking the maximum over all unit vectors u ∈ E. �
The following complementary quantity to the distance δ(p̂, q̂) plays a special role

in the sequel.

Definition 2.23 The α-angle between p̂ and q̂ is defined to be

α(p̂, q̂) := |〈p, q〉|
‖p‖ ‖q‖ = cos ρ(p̂, q̂).

In order to give a geometric meaning to this angle we define the projective orthog-
onal hyperplane of p̂ ∈ P(V ) as

Σ(p̂) := {x̂ ∈ P(V ) : 〈x, p〉 = 0 for x ∈ x̂}.

The number α(p̂, q̂) is the sine of the minimum angle between p̂ and Σ(q̂). As in
Definition (2.19), given a subspace F ⊂ V we write

ρmin(p̂, F) := min
q∈F\{0} ρ(p̂, q̂).

Proposition 2.17 For any p̂, q̂ ∈ P(V ),

α(p̂, q̂) = sin ρmin(p̂,Σ(q̂)) = δmin(p̂,Σ(q̂)) (2.20)

α(p̂, q̂) = 0 ⇔ δ(p̂, q̂) = 1 ⇔ p ⊥ q. (2.21)

These concepts extend naturally to Grassmannians and flag manifolds.

Definition 2.24 Given E, F ∈ Grk(V ), we define the α-angle between them

α(E, F) = αk(E, F) := α(Ψ (E), Ψ (F)),

where Ψ : Grk(V ) → P(∧k V ) denotes the Plücker embedding (see Sect. 2.1.3).

Definition 2.25 We say that two k-subspaces E, F ∈ Grk(V ) are orthogonal, and
we write E ⊥ F, iff α(E, F) = 0.

The Grassmannian orthogonal hyperplane of F is defined as

Σ(F) := {E ∈ Grk(V ) : α(E, F) = 0}.

As before, the number α(E, F) equals the sine of the minimum angle between E
and Σ(F).

Proposition 2.18 For any E, F ∈ Grk(V ),

α(E, F) = sin ρmin(E,Σ(F)) = δmin(E,Σ(F)).
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Next we characterize the angle α(E, F). Consider the notation of Definition 2.22.

Proposition 2.19 Given E, F ∈ Grk(V ),

(a) α(E, F) = α(E⊥, F⊥),
(b) α(E, F) = det+(πE,F) = det+(πF,E),
(c) E ⊥ F iff there exists a pair (e, f ) of unit vectors such that e ∈ E ∩ F⊥ and

f ∈ F ∩ E⊥,
(d) α(E, F) ≤ ‖πE,F‖ =

√
1− δmin(E, F⊥)2.

Proof Given E, F ∈ Grk(V ), take orthonormal bases {u1, . . . , uk} and {v1, . . . , vk}
of E and F, respectively, and consider the associated unit k-vectors u = u1∧· · ·∧uk

and v = v1 ∧ · · · ∧ vk , so that u ∈ Ψ (E) and v ∈ Ψ (F).
Using the Hodge star operator we obtain unit vectors ∗u ∈ Ψ (E⊥) and ∗v ∈

Ψ (F⊥). Hence

α(E⊥, F⊥) = ∣∣〈∗u, ∗v〉∣∣ = ∣∣〈u, v〉∣∣ = α(E, F),

which proves (a). Also

α(E, F) := ∣∣〈 u1 ∧ · · · ∧ uk, v1 ∧ · · · ∧ vk 〉
∣
∣

= ∣∣det

⎛

⎜
⎜
⎜
⎝

〈u1, v1〉 〈u1, v2〉 . . . 〈u1, vk〉
〈u2, v1〉 〈u2, v2〉 . . . 〈u2, vk〉

...
...

. . .
...

〈uk, v1〉 〈uk, v2〉 . . . 〈uk, vk〉

⎞

⎟
⎟
⎟
⎠

∣
∣

= det+(πE,F).

For the second equality above write ui = wi +∑k
j=1〈ui, vj〉 vj with wi ∈ F⊥ and

use the anti-symmetry of the exterior product. For the third equality remark that the
matrix with entries 〈ui, vj〉 represents πE,F w.r.t. the given orthonormal bases. By
symmetry, α(E, F) = det+(πF,E). This proves (b).

From these relations, α(E, F) = 0 ⇔ K(πE,F) �= {0} ⇔ K(πF,E) �= {0}, which
explains (c).

Finally, because all singular values of πE,F are in [0, 1],

α(E, F) = det+(πE,F) ≤ ‖πE,F‖
= max

u∈E,‖u‖=1‖πE,F(u)‖

= max
u∈E,‖u‖=1

√
1− ‖πE,F⊥(u)‖2

=
√
1− δmin(E, F⊥)2,

which proves (d). �
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Next we extend α-angles to flags. Consider a signature τ of length k.

Definition 2.26 Given flags F, G ∈ Fτ (V ), define

α(F, G) = ατ (F, G) := min
1≤j≤k

α(Fj, Gj).

Definition 2.27 We say that two τ -flagsF, G ∈ Fτ (V ) are orthogonal, andwewrite
F ⊥ G, if Fj ⊥ Gj for some j = 1, . . . , k.

Comparing the two definitions, for all F, G ∈ Fτ (V )

ατ (F, G) = 0 ⇔ G ⊥ F.

Hence, the orthogonal flag hyperplane of F is defined as

Σ(F) := {G ∈ Fτ (V ) : α(G, F) = 0}.

As in the previous cases, the number ατ (F, G) equals the sine of the minimum
angle between F and Σ(G).

Proposition 2.20 For any F, G ∈ Fτ (V ),

α(E, F) = sin ρmin(F,Σ(G)) = δmin(F,Σ(G)).

Consider a sequence of linear maps g0, g1, . . . , gn−1 ∈ L (V ). The following
quantities, called expansion rifts, measure the break of expansion in the composition
gn−1 . . . g1 g0 of the maps gj.

Definition 2.28 The first expansion rift of the sequence above is the number

ρ(g0, g1, . . . , gn−1) := ‖gn−1 . . . g1g0‖
‖gn−1‖ . . . ‖g1‖‖g0‖ ∈ [1,+∞) .

Given 1 ≤ k ≤ dim V , the kth expansion rift is

ρk(g0, g1, . . . , gn−1) := ρ(∧kg0,∧kg1, . . . ,∧kgn−1) .

Given a signature τ = (τ1, . . . , τk), the τ -expansion rift is defined as

ρτ (g0, g1, . . . , gn−1) := min
1≤j≤k

ρτj (g0, g1, . . . , gn−1) .

The key concept of this section is that of angle between linear maps. The quantity
α(g, g′), for instance, is the sine of the angle betweenϕg(v(g)) = v(g∗) andΣ(v(g′)).
As we will see, this angle is a lower bound on the expansion rift of two linear maps
g and g′.
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Definition 2.29 Given g, g′ ∈ L (V ), we define

α(g, g′) := α(v(g∗), v(g′)) if g and g′ have a first gap ratio

αk(g, g′) := α(vk(g
∗), vk(g

′)) if g and g′ have a k gap ratio

ατ (g, g′) := α(vτ (g
∗), vτ (g

′)) if g and g′ have a τ gap pattern.

The following exotic operation is introduced to obtain an upper bound on the
expansion rift ρ(g, g′). Consider the algebraic operation a⊕ b := a+ b− a b on the
set [0, 1]. Clearly ([0, 1],⊕) is a commutative semigroup isomorphic to ([0, 1], ·). In
fact, the transformation Φ : ([0, 1],⊕) → ([0, 1], ·), Φ(x) := 1− x, is a semigroup
isomorphism. We summarize some properties of this operation.

Proposition 2.21 For any a, b, c ∈ [0, 1],
(1) 0⊕ a = a,
(2) 1⊕ a = 1,
(3) a⊕ b = (1− b) a+ b = (1− a) b+ a,
(4) a⊕ b < 1 ⇔ a < 1 and b < 1,
(5) a ≤ b ⇒ a⊕ c ≤ b⊕ c,
(6) b > 0 ⇒ (ab−1 ⊕ c) b ≤ a⊕ c,
(7) a c+ b

√
1− a2

√
1− c2 ≤ √a2 ⊕ b2.

Proof Items (1)–(6) are left as exercises. For the last item consider the function f :
[0, 1] → [0, 1] defined by f (c) := a c+ b

√
1− a2

√
1− c2. A simple computation

shows that

f ′(c) = a− b c
√
1− a2

√
1− c2

The derivative f ′ has a zero at c = a/
√

a⊕ b, and one can check that this zero is a
global maximum of f . Since f (a/

√
a⊕ b) = √a2 ⊕ b2, item (7) follows. �

Definition 2.30 Giveng, g′ ∈ L (V )with τ -gappatterns, the upper τ -angle between
g and g′ is defined to be

βτ (g, g′) :=
√
grτ (g)−2 ⊕ ατ (g, g′)2 ⊕ grτ (g′)−2.

We will write βk(g, g′) when τ = (k), and β(g, g′) when τ = (1).

The next proposition relates norm expansion by the linear map g, and distance
contraction by the projective map ϕg, with angles and gap ratios.

Proposition 2.22 Given g ∈ L (V ) with σ(g) < 1, a point ŵ ∈ P(V ) and a unit
vector w ∈ ŵ,

(a) α(ŵ, v(g)) ‖g‖ ≤ ‖g w‖ ≤ ‖g‖
√

α(ŵ, v(g))2 ⊕ σ(g)2,

(b) δ(ϕg(ŵ), v(g∗)) = δ(ϕg(ŵ), ϕg(v(g))) ≤ σ(g)

α(ŵ, v(g))
δ(ŵ, v(g)) .
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Proof Let us write α = α(ŵ, v(g)) and σ = σ(g). Take a unit vector v ∈ v(g) such
that ∠(v, w) is non obtuse. Then w = α v + u with u ⊥ v and ‖u‖ = √

1− α2.
Choosing a unit vector v∗ ∈ v(g∗), we have gw = α ‖g‖ v∗ + gu with gu ⊥ v∗ and
‖gu‖ ≤ √1− α2 s2(g) = √1− α2 σ ‖g‖. We define the number 0 ≤ κ ≤ σ so that
‖gu‖ = √1− α2 κ ‖g‖. Hence

α2 ‖g‖2 ≤ α2 ‖g‖2 + ‖gu‖2 = ‖gw‖2,

and also

‖gw‖2 = α2 ‖g‖2 + ‖gu‖2 = ‖g‖2 (α2 + (1− α2)κ2
)

= ‖g‖2 (α2 ⊕ κ2
) ≤ ‖g‖2 (α2 ⊕ σ 2

)
,

which proves (a).
Item (b) follows from

δ
(
ϕg(ŵ), v(g∗)

) = ‖g v ∧ gw‖
‖gv‖ ‖gw‖ =

‖g v ∧ gu‖
‖g‖ ‖gw‖ =

‖v∗ ∧ gu‖
‖gw‖

= ‖gu‖
‖gw‖ ≤

σ
√
1− α2 ‖g‖
α ‖g‖ = σ δ(ŵ, v(g))

α
. �

Next proposition relates the expansion rift ρ(g, g′)with the angle α(g, g′) and the
upper angle β(g, g′).

Proposition 2.23 Given g, g′ ∈ L (V ) with a (1)-gap pattern,

α(g, g′) ≤ ‖g′ g‖
‖g′‖ ‖g‖ ≤ β(g, g′)

Proof Letα := α(g, g′) = α(v(g∗), v(g′)) and take unit vectors v ∈ v(g), v∗ ∈ v(g∗)
and v′ ∈ v(g′) such that 〈v∗, v′〉 = α > 0 and g v = ‖g‖ v∗.

Since ϕg(v(g)) = v(g∗), w = g v
‖g v‖ is a unit vector in ŵ = v(g∗). Hence, applying

Proposition 2.22(a) to g′ and ŵ, we get

α(g, g′) ‖g′‖ = α(ŵ, v(g′)) ‖g′‖ ≤ ‖ g′ g v

‖g v‖‖ ≤
‖g′ g‖
‖g‖ ,

which proves the first inequality.
For the second inequality, consider any ŵ ∈ P(g) and a unit vector w ∈ ŵ such

that a := 〈w, v〉 = α(ŵ, v(g)) ≥ 0. Then w = a v + √1− a2 u, where u is a unit
vector orthogonal to v. It follows that g w = a ‖g‖ v∗ + √1− a2 g u with g u ⊥ v∗,
and ‖g u‖ = κ ‖g‖ for some 0 ≤ κ ≤ σ(g). Therefore

‖g w‖2
‖g‖2 = a2 + (1− a2) κ2 = a2 ⊕ κ2.



46 2 Estimates on Grassmann Manifolds

and
g w

‖g w‖ =
a√

a2 ⊕ κ2
v∗ +

√
1− a2

√
a2 ⊕ κ2

g u

‖g‖ .

The vector v′ can be written as v′ = α v∗ + w′ with w′ ⊥ v∗ and ‖w′‖ = √1− α2.
Set now b := α(ϕg(ŵ), v(g′)). Then

b = ∣∣〈 g w

‖g w‖ , v′〉∣∣ ≤ α a√
a2 ⊕ κ2

+
√
1− a2

√
a2 ⊕ κ2

∣
∣〈g u, v′〉∣∣
‖g‖

≤ α a√
a2 ⊕ κ2

+ κ
√
1− a2

√
a2 ⊕ κ2

∣
∣〈 g u

‖g u‖ , w′〉∣∣

≤ α a√
a2 ⊕ κ2

+ κ
√
1− a2

√
a2 ⊕ κ2

‖w′‖

= α a√
a2 ⊕ κ2

+ κ
√
1− a2

√
1− α2

√
a2 ⊕ κ2

≤
√

α2 ⊕ κ2

√
a2 ⊕ κ2

.

We use Lemma 2.21 (7) on the last inequality. Finally, by Proposition 2.22(a) applied
to g′ ∈ L (V ) and the unit vector gw/‖gw‖ ∈ ϕg(ŵ),

‖g′ g w‖ ≤ ‖g′‖
√

b2 ⊕ σ(g′)2 ‖g w‖
≤ ‖g′‖ ‖g‖

√
b2 ⊕ σ(g′)2

√
a2 ⊕ κ2

≤ ‖g′‖ ‖g‖
√

κ2 ⊕ α2 ⊕ σ(g′)2 ≤ β(g, g′) ‖g′‖ ‖g‖,

where on the two last inequalities use items (6) and (5) of Lemma 2.21. �

Corollary 2.1 Given g, g′ ∈ L (V ) with a (k)-gap pattern,

αk(g, g′) ≤ ‖∧k(g′ g)‖
‖∧kg′‖ ‖∧kg‖ ≤ βk(g, g′)

Proof Apply Proposition 2.23 to the composition (∧kg′) (∧kg). Notice that by Def-
inition 2.15, the Plücker embedding satisfies Ψ (vk(g)) = v(∧kg). Hence

αk(g, g′) = α(vk(g
∗), vk(g

′)) = ∣∣〈v(∧kg), v(∧kg′)〉∣∣ = α(∧kg,∧kg′). �

The next results show how close the bounds α(g, g′) and β(g, g′) are to each other
and to the rift ρ(g, g′).



2.2 Singular Value Geometry 47

Lemma 2.4 Given g, g′ ∈ L (V ) with (1)-gap patterns,

1 ≤ β(g, g′)
α(g, g′)

≤
√

1+ gr(g)−2 ⊕ gr(g′)−2

α(g, g′)2
.

Proof Just notice that

√
κ2 ⊕ α2 ⊕ (κ ′)2

α
≤
√

α2 + (κ2 ⊕ (κ ′)2)
α2

=
√

1+ κ2 ⊕ (κ ′)2

α2
. �

Proposition 2.24 Given g, g′ ∈ L (V ) with a (1)-gap pattern

α(g, g′) ≥ ρ(g, g′)

√

1− gr(g)−2 + gr(g′)−2

ρ(g, g′)2
.

Proof By Proposition 2.23

ρ(g, g′)2 ≤ β(g, g′)2 ≤ α(g, g′)2 + σ(g)2 + σ(g′)2,

which implies the claimed inequality.

�

These inequalities then imply the following more general fact.

Proposition 2.25 Given g0, g1, . . . , gn−1 ∈ L (V ), if for all 1 ≤ i ≤ n − 1 the
linear maps gi and g(i) = gi−1 . . . g0 have (1)-gap patterns, then

n−1∏

i=1
α(g(i), gi) ≤ ‖gn−1 . . . g1g0‖

‖gn−1‖ . . . ‖g1‖‖g0‖ ≤
n−1∏

i=1
β(g(i), gi)

Proof By definition g(n−1) = gn−1 . . . g1g0, and by convention g(0) = idV . Hence
‖gn−1 . . . g1g0‖ =∏n−1

i=0
‖g(i+1)‖
‖g(i)‖ . This implies that

‖gn−1 . . . g1g0‖
‖gn−1‖ . . . ‖g1‖ =

(
n−1∏

i=0

1

‖gi‖

) (
n−1∏

i=0

‖g(i+1)‖
‖g(i)‖

)

=
n−1∏

i=0

‖gi g(i)‖
‖gi‖ ‖g(i)‖ .

It is now enough to apply Proposition 2.23 to each factor. �
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2.3 Lipschitz Estimates

In this section we will derive some inequalities describing quantities such as the
contracting behavior of a linear endomorphism on the projective space, the Lipschitz
dependence of a projective action on the acting linear endomorphism, the continuity
of most expanding directions as functions of a linear map, and the Lipschitz modu-
lus of continuity for sum and intersection operations on flag manifolds. Except for
Propositions 2.28 and 2.29, the content of this section will be only used in Chaps. 4
and 5.

2.3.1 Projective Action

Proposition 2.26 Given p, q ∈ V \ {0},

‖ p

‖p‖ −
q

‖q‖‖ ≤ max{ 1

‖p‖ ,
1

‖q‖} ‖p− q‖.

Proof Given to vectors u, v ∈ V with ‖u‖ ≥ ‖v‖ = 1 we have

‖ u

‖u‖ −
v

‖v‖‖ ≤ ‖u− v‖.

Assume for instance that ‖p‖ ≥ ‖q‖, so that

max{‖p‖−1, ‖q‖−1} = ‖q‖−1.

Applying the previous inequality with u = p
‖q‖ and v = q

‖q‖ , we get

‖ p

‖p‖ −
q

‖q‖‖ = ‖
u

‖u‖ −
v

‖v‖‖ ≤ ‖u− v‖ = ‖ p

‖q‖ −
q

‖q‖‖
= ‖q‖−1 ‖p− q‖ = max{‖p‖−1, ‖q‖−1} ‖p− q‖. �

Given a linear map g ∈ L (V ), the projective action of g is given by the map
ϕg : P(g) → P(g∗), ϕg(p̂) := ĝ p.

For any non collinear vectors p, q ∈ V with ‖p‖ = ‖q‖ = 1, define

vp(q) := q − 〈p, q〉 p

‖q − 〈p, q〉 p‖ .

This is the normalized unit vector of the orthogonal projection of q onto p⊥.

http://dx.doi.org/10.2991/978-94-6239-124-6_4
http://dx.doi.org/10.2991/978-94-6239-124-6_5
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Proposition 2.27 Given g ∈ L (V ), and points p̂ �= q̂ in P(V ),

δ(ϕg(p̂), ϕg(q̂))

δ(p̂, q̂)
= ‖gp ∧ gvp(q)‖

‖g p‖ ‖g q‖ .

Proof Let p ∈ p̂ and q ∈ q̂ be unit vectors such that θ = ∠(p, q) ∈ [0, π
2 ]. We can

write q = (cos θ) p+ (sin θ) vp(q). Hence

δ(p̂, q̂) = ‖p ∧ q‖ = (sin θ) ‖p ∧ vp(q)‖ = sin θ,

and

δ(ϕg(p̂), ϕg(q̂)) = ‖g p ∧ g q‖
‖g p‖ ‖g q‖ = (sin θ)

‖gp ∧ gvp(q)‖
‖g p‖ ‖g q‖ . �

Given a point p̂ ∈ P(V ), we identify the tangent to the projective space at p̂ as
Tp̂P(V ) = p⊥, for any representative p ∈ p̂.

Proposition 2.28 Given g ∈ L (V ), x̂ ∈ P(g), and a representative x ∈ x̂, the
derivative of the map ϕg : P(g) → P(g∗) at x̂ is given by

(Dϕg)x̂ v = g v − 〈 g x
‖g x‖ , g v〉 g x

‖g x‖
‖g x‖ = 1

‖g x‖ π⊥gx/‖gx‖(g v)

Proof The sphere S(V ) := {v ∈ V : ‖v‖ = 1} is a double covering space of
P(V ), whose covering map is the canonical projection π̂ : S(V ) → P(V ). With
the identification Tp̂P(V ) = p⊥, the derivative of π̂ , Dπ̂x : TxS(V ) → Tx̂P(V ),
is the identity linear map. The map ϕg lifts to the map defined on the sphere by
ϕ̃g(x) := g x

‖g x‖ . Hence we can identify the derivatives (Dϕg)x̂ and (Dϕ̃g)x. A simple
calculation leads to the explicit expression above for (Dϕ̃g)xv. �

We will use the following closed ball notation

B(d)(p̂, r) := {x̂ ∈ P(V ) : d(x̂, p̂) ≤ r},

where the superscript emphasizes the distance in matter. Given a projective map
f : X ⊂ P(V ) → P(V ), we denote by Lipd(f ) the least Lipschitz constant of f with
respect to the distance d. Next proposition refers to the projective metrics δ and ρ

defined in Sect. 2.1.1.

Proposition 2.29 Given 0 < κ < 1 and g ∈ L (V ) such that gr(g) ≥ κ−1,

(1) ϕg
(
B(δ)(v(g), r)

) ⊂ B(δ)(v(g∗), κ r/
√
1− r2), for any 0 < r < 1,

(2) ϕg
(
B(ρ)(v(g), a)

) ⊂ B(ρ)(v(g∗), κ tan a), for any 0 < a < π
2 ,

(3) Lipρ(ϕg|B(δ)(v(g),r)) ≤ κ r+√1−r2
1−r2 , for any 0 < r < 1.
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Proof Item (1) of this proposition follows from Proposition 2.22(b), because

δ(ŵ, v(g)) < r implies α(ŵ, v(g)) =
√
1− δ(ŵ, v(g))2 ≥

√
1− r2.

Item (2) reduces to (1), because we have δ(û, v̂) = sin ρ(û, v̂), which implies that
B(ρ)(v̂, a) = B(δ)(v̂, sin a).

To prove (3), take unit vectors v ∈ v(g) and v∗ ∈ v(g∗) such that g v = ‖g‖ v∗.
Because v is a g-most expanding vector, ‖π⊥v∗ ◦ g‖ = ‖g ◦ π⊥v ‖ ≤ s2(g) ≤ κ ‖g‖.
Given x̂ such that δ(x̂, v(g)) < r, and a unit vector x ∈ x̂, by Proposition 2.22(a)

‖g‖
‖gx‖ ≤

1

α(x̂, v(g))
≤ 1√

1− r2
.

Using item (b) of the same proposition we get

δ(ϕg(x̂), v(g
∗)) ≤ σ(g)

α(x̂, v(g))
δ(x̂, v(g)) ≤ κ r√

1− r2

By Proposition 2.28 we have

(Dϕg)x v = 1

‖gx‖ π⊥v∗ (g v)+ 1

‖gx‖
(
π⊥ϕ̃g(x) − π⊥v∗

)
(g v).

Thus, by Lemma 2.2(d),

‖(Dϕg)x‖ ≤ κ ‖g‖
‖gx‖ +

δ(ϕg(x̂), v(g∗)) ‖g‖
‖gx‖

≤ κ√
1− r2

+ κ r

1− r2
= κ (r +√1− r2)

1− r2
.

Since B(δ)(v(g), r) is a convex Riemannian disk, by the mean value theorem

ϕg|B(δ)(v(g),r) has Lipschitz constant ≤ κ (r+√1−r2)
1−r2 with respect to distance ρ. �

2.3.2 Operations on Flag Manifolds

As before let V be a finite n-dimensional Euclidean space. Recall that the Grassmann
manifold Grk(V ) identifies through the Plücker embedding with a submanifold of
P(∧k V ). Up to a sign,E ∈ Grk(V ) is identifiedwith the unit k-vector e = e1∧· · ·∧ek

associated to any orthonormal basis {e1, . . . , ek} of E. Recall that the Grassmann
distance (2.10) on Grk(V ) can be characterized by

d(E1, E2) := min{‖e1 − e2‖, ‖e1 + e2‖},

where ej is a unit k-vector of Ej, for j = 1, 2.
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Definition 2.31 Given E, F ∈ Gr(V ), we say that E and F are (∩) transversal if
E + F = V . Analogously, we say that E and F are (+) transversal if E ∩ F = {0}.

The following numbers quantify the transversality of two linear subspaces.

Definition 2.32 Given E ∈ Grr(V ) and F ∈ Grs(V ), consider a unit r-vector e of
E, a unit s-vector f of F, a unit (n− r)-vector e⊥ of E⊥ and a unit (n− s)-vector f ⊥
of F⊥. We define

θ+(E, F) := ‖e ∧ f ‖,
θ∩(E, F) := ‖e⊥ ∧ f ⊥‖.

Since the chosen unit vectors are unique up to a sign, these quantities arewell-defined.

Remark 2.1 If r + s > n then θ+(E, F) = 0. Similarly, if r + s < n then
θ∩(E, F) = 0.

Remark 2.2 Given E, F ∈ Gr(V ), θ∩(E, F) = θ+(E⊥, F⊥).

Next proposition establishes a Lispchitz modulus of continuity for the sum and
intersection operations on Grassmannians in terms of the previous quantities.

Proposition 2.30 Given r, s ∈ N and E, E′ ∈ Grr(V ), F, F ′ ∈ Grs(V ),

(1) d(E + F, E′ + F ′) ≤ max

{
1

θ+(E, F)
,

1

θ+(E′, F ′)

}

(d(E, E′)+ d(F, F ′)),

(2) d(E ∩ F, E′ ∩ F ′) ≤ max

{
1

θ∩(E, F)
,

1

θ∩(E′, F ′)

}

(d(E, E′)+ d(F, F ′)).

Proof (1) Consider unit r-vectors e and e′ representing the subspaces E and E′
respectively. Consider also unit s-vectors f and f ′ representing the subspaces F and
F ′ respectively. By Proposition 2.26

d(E + F, E′ + F ′) = ‖ e ∧ f

‖e ∧ f ‖ −
e′ ∧ f ′

‖e′ ∧ f ′‖‖
≤ K ‖e ∧ f − e′ ∧ f ′‖
≤ K (‖e ∧ (f − f ′)‖ + ‖(e− e′) ∧ f ′‖)
≤ K (‖e− e′‖ + ‖f − f ′‖)

where K = max{‖e ∧ f ‖−1, ‖e′ ∧ f ′‖−1} = max{θ+(E, F)−1,max{θ+(E′, F ′)−1}.
(2) reduces to (1) by duality (see Proposition 2.2). �

Next proposition gives an alternative characterization of the transversality mea-
surements θ+(E, F) and θ∩(E, F). Let, as before, πE : V → E denote the orthogonal
projection onto a subspace E ⊂ V , and define the restriction πE,F := πF |E : E → F.
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Proposition 2.31 Given E ∈ Grr(V ) and F ∈ Grs(V ),

(1) θ+(E, F) = det+(πE,F⊥) = det+(πF,E⊥).
(2) θ∩(E, F) = det+(πE⊥,F) = det+(πF⊥,E).

Proof Notice that E ∩ F = K(πE,F⊥) = K(πF,E⊥). If E ∩ F �= {0} then the three
terms in (1) vanish. Otherwise πE,F⊥ and πF,E⊥ are isomorphisms onto their ranges
R(πE,F⊥) = F⊥ ∩ (E + F) and R(πF,E⊥) = E⊥ ∩ (E + F). Take an orthonormal
basis {f1, . . . , fs, fs+1, . . . , fs+r, . . . , fn} such that {f1, . . . , fs} spans F and the family
of vectors {f1, . . . , fr, fs+1, . . . , fs+r} spans E + F. Consider the unit s-vector f =
f1 ∧ · · · ∧ fs of F, and a unit r-vector e = e1 ∧ · · · ∧ er of E. Hence {fs+1, . . . , fs+r}
is a basis of R(πE,F⊥) and

θ+(E, F) = ‖(e1 ∧ · · · ∧ er) ∧ (f1 ∧ · · · ∧ fs)‖
= ‖πE,F⊥(e1) ∧ · · · ∧ πE,F⊥(er) ∧ f1 ∧ · · · ∧ fs‖
= det+(πE,F⊥) ‖fs+1 ∧ · · · ∧ fs+r ∧ f1 ∧ · · · ∧ fs‖ = det+(πE,F⊥).

Reversing the roles of E and F, and because ‖e ∧ f ‖ is symmetric in e and f , we
obtain θ+(E, F) = det+(πF,E⊥), which proves (1).

By duality and Remark 2.2, item (2) reduces to (1). �

The measurement on the (∩) transversality admits the following lower bound in
terms of the angle in Definition 2.24.

Proposition 2.32 Given E ∈ Grr(V ) and F ∈ Grs(V ), if E + F = V then

θ∩(E, F) ≥ αr(E, E ∩ F + F⊥).

Proof Combining Lemmas 2.5 and 2.6 below we have

θ∩(E, F) ≥ θ∩(E, F ∩ (E ∩ F)⊥) = αr(E, (F ∩ (E ∩ F)⊥)⊥)

= αr(E, (E ∩ F)+ F⊥). �

Lemma 2.5 Given E ∈ Grr(V ), E′ ∈ Grr′(V ) and F ∈ Grs(V ) such that r + s ≥ n
and E ⊆ E′ then θ∩(E′, F) ≥ θ∩(E, F).

Proof Because E ⊂ E′, we have πF⊥,E = πE′,E ◦ πF⊥,E′ . Hence by Proposition 2.8

θ∩(E, F) = det+(πF⊥,E) = det+(ππE′ (F⊥),E) det+(πF⊥,E′)

≤ det+(πF⊥,E′) = θ∩(E′, F),

where det+(ππE′ (F⊥),E) ≤ 1 because ‖πE‖ ≤ 1. �

Lemma 2.6 Given E, E′ ∈ Grr(V ), θ∩(E′, E⊥) = αr(E
′, E).
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Proof Given orthonormal bases {v1, . . . , vr} of E, and {v′1, . . . , v′r} of E′,

θ∩(E′, E⊥) = det+(πE′,E)

= ∣∣〈∧rπE,E′(v1 ∧ · · · ∧ vr), v′1 ∧ · · · ∧ v′r〉
∣
∣

= ∣∣〈πE′(v1) ∧ · · · ∧ πE′(vr), v′1 ∧ · · · ∧ v′r〉
∣
∣

= ∣∣〈v1 ∧ · · · ∧ vr, v′1 ∧ · · · ∧ v′r〉
∣
∣ = αr(E, E′). �

Next proposition gives a modulus of lower semi-continuity for the transversality
measurement θ∩.

Proposition 2.33 Given E, E0 ∈ Grr(V ) and F, F0 ∈ Grs(V ),

θ∩(E, F) ≥ θ∩(E0, F0)− d(E, E0)− d(F, F0).

Proof Consider unit vectors e ∈ Ψ (E⊥), f ∈ Ψ (F⊥), e0 ∈ Ψ (E⊥0 ) and f0 ∈ Ψ (F⊥0 ),
chosen so that

d(E, E0) = d(E⊥, E⊥0 ) = ‖e− e0‖,
d(F, F0) = d(F⊥, F⊥0 ) = ‖f − f0‖.

Hence

θ∩(E, F) = ‖e ∧ f ‖ ≥ ‖e0 ∧ f0‖ − ‖e ∧ f − e0 ∧ f0‖
≥ θ∩(E0, F0)− ‖e ∧ (f − f0)‖ − ‖(e− e0) ∧ f0‖
≥ θ∩(E0, F0)− ‖f − f0‖ − ‖e− e0‖
≥ θ∩(E0, F0)− d(F, F0)− d(E, E0). �

Next proposition refines inequality (2.7).

Proposition 2.34 Given E, F ∈ Grk(V ), and families of vectors {u1, . . . , uk} ⊂ E
and {uk+1, . . . , uk+i} ⊂ F⊥ with 1 ≤ i ≤ m − k,

(a) ‖u1 ∧ · · · ∧ uk ∧ uk+1 ∧ · · · ∧ uk+i‖ ≤ ‖u1 ∧ · · · ∧ uk‖ ‖uk+1 ∧ · · · ∧ uk+i‖,
(b) ‖u1∧· · ·∧uk∧uk+1∧· · ·∧uk+i‖ ≥ α(E, F) ‖u1∧· · ·∧uk‖ ‖uk+1∧· · ·∧uk+i‖.
Proof Since πF⊥,E⊥ is an orthogonal projection, all its singular values are in [0, 1].
Thus, because det+(πF⊥,E⊥) is the product of all singular values, whilem(∧i πF⊥,E⊥)

is the product of the i smallest singular values, we have

det+(πF⊥,E⊥) ≤ m(∧i πF⊥,E⊥) ≤ ‖∧i πF⊥,E⊥‖ = 1.
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Hence

‖u1 ∧ · · · ∧ uk ∧ uk+1 ∧ · · · ∧ uk+i‖ = ‖u1 ∧ · · · ∧ uk ∧ πF⊥,E⊥ (uk+1) ∧ · · · ∧ πF⊥,E⊥ (uk+i)‖
= ‖u1 ∧ . . . uk‖ ‖πF⊥,E⊥ (uk+1) ∧ · · · ∧ πF⊥,E⊥ (uk+i)‖
≤ ‖∧i πF⊥,E⊥‖ ‖u1 ∧ · · · ∧ uk‖ ‖uk+1 ∧ · · · ∧ uk+i‖
= ‖u1 ∧ · · · ∧ uk‖ ‖uk+1 ∧ · · · ∧ uk+i‖,

which proves (a). By Proposition 2.19 we have

α(E, F) = α(F⊥, E⊥) = det+(πF⊥,E⊥) ≤ m(∧i(πF⊥,E⊥)).

Thus

‖u1 ∧ · · · ∧ uk ∧ uk+1 ∧ · · · ∧ uk+i‖ = ‖u1 ∧ · · · ∧ uk ∧ πF⊥,E⊥ (uk+1) ∧ · · · ∧ πF⊥,E⊥ (uk+i)‖
= ‖u1 ∧ . . . uk‖ ‖πF⊥,E⊥ (uk+1) ∧ · · · ∧ πF⊥,E⊥ (uk+i)‖
≥ m(∧i πF⊥,E⊥ ) ‖u1 ∧ · · · ∧ uk‖ ‖uk+1 ∧ · · · ∧ uk+i‖
≥ α(E, F) ‖u1 ∧ · · · ∧ uk‖ ‖uk+1 ∧ · · · ∧ uk+i‖,

which proves (b). �

The angle α is a Lipschitz continuous function.

Proposition 2.35 Given u, u′, v, v′ ∈ P(V ),

∣
∣α(u, v)− α(u′, v′)

∣
∣ ≤ d(u, u′)+ d(v, v′).

Proof Exercise. �

The intersection of complementary flags satisfying the appropriate transversality
conditions determines a decomposition of the Euclidean space V .We end this section
defining by this operation and proving a modulus of continuity for it.

Consider a signature τ = (τ1, . . . , τk) of length k with τk < dim V . We make the
convention that τ0 = 0 and τk+1 = dim V .

Definition 2.33 A τ -decomposition is a family of linear subspaces E· = {Ei}1≤i≤k+1
in Gr(V ) such that V = ⊕k+1

i=1 Ei and dim Ei = τi − τi−1 for all 1 ≤ i ≤ k + 1.

Let Dτ (V ) denote the space of all τ -decompositions, which we endow with the
following metric

dτ (E·, E′·) = max
1≤i≤k+1

dτi−τi−1(Ei, E′i),

where dτi−τi−1 stands for the distance (2.10) in Grτi−τi−1(V ).
Given two flags F ∈ Fτ (V ) and F ′ ∈ Fτ⊥(V ), we will define a decomposition,

denoted by F �F ′, formed out by intersecting the components of these flags. For that
we introduce the following measurement.
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Definition 2.34 Given two flags F ∈ Fτ (V ) and F ′ ∈ Fτ⊥(V ), let

θ�(F, F ′) := min
1≤i≤k

θ∩(Fi, F ′k−i+1).

Notice that dim Fi = τi and dim F ′k−i+1 = τ⊥k−i+1 = dim V−τi, i.e., the subspaces
Fi and F ′k−i+1 have complementary dimensions. We will refer to this quantity as the
transversality measurement between the flags F and F ′.

In the next proposition we complete F and F ′ to full flags of length k + 1 setting
Fk+1 = F ′k+1 = V . Set also τ0 = 0 and τk+1 = dim V .

Proposition 2.36 If θ�(F, F ′) > 0 then the following is a direct sum decomposition
in the space Dτ (V ),

V =
k+1⊕

i=1
Fi ∩ F ′k−i+2,

with dim(Fi ∩ F ′k−i+2) = τi − τi−1 for all 1 ≤ i ≤ k + 1.

Proof Since the subspaces Fi and F ′k−i+1 have complementary dimensions, the rela-
tion θ∩(Fi, F ′k−i+1) > 0 implies that

V = Fi ⊕ F ′k−i+1. (2.22)

By Lemma 2.5, θ∩(Fi, F ′k−i+2) ≥ θ∩(Fi, F ′k−i+1) > 0. Therefore Fi + F ′k−i+2 = V
and

dim(Fi ∩ F ′k−i+2) = τi + τ⊥k−i+2 − dim V

= τi + (dim V − τi−1)− dim V = τi − τi−1.

We prove by finite induction in i = 1, . . . , k + 1 that

Fi =
⊕

j≤i

Fj ∩ F ′k−j+2. (2.23)

Since Fk+1 = V the proposition follows from this relation at i = k + 1.
For i = 1, (2.23) reduces to F1 = F1 ∩ V . The induction step follows from

Fi+1 = Fi ⊕
(
Fi+1 ∩ F ′k−i+1

)
.

Since the following dimensions add up

dim Fi+1 = τi+1 = τi + (τi+1 − τi)

= dim Fi + dim(Fi+1 ∩ F ′k−i+1),
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it is enough to see that

Fi ∩
(
Fi+1 ∩ F ′k−i+1

) = Fi ∩ F ′k−i+1 = {0},

which holds because of (2.22). �

Hence, by the previous proposition we can define:

Definition 2.35 Given flags F ∈ Fτ (V ) and F ′ ∈ Fτ⊥(V ) such that θ�(F, F ′) > 0
we define F � F ′ := {Fi ∩ F ′k−i+2}1≤i≤k+1 and call it the intersection decomposition
of the flags F and F ′.

Next proposition provides a modulus of lower semi-continuity for the transver-
sality measurement θ�.

Proposition 2.37 Given F, F0 ∈ Fτ (V ) and F ′, F ′0 ∈ Fτ⊥(V ),

θ�(F, F ′) ≥ θ�(F0, F ′0)− dτ (F, F0)− dτ⊥(F
′, F ′0).

Proof Apply Proposition 2.33 at each subspace of the τ -decompositions. �

The modulus of continuity for the intersection map � : Fτ (V ) × Fτ⊥(V ) →
Dτ (V ) is established below.

Proposition 2.38 Given flags F1, F2 ∈ Fτ (V ) and F ′1, F ′2 ∈ Fτ⊥(V ),

dτ (F1 �F ′1, F2 �F ′2) ≤ max

{
1

θ�(F1, F ′1)
,

1

θ�(F2, F ′2)

}

(dτ (F1, F2)+ dτ⊥(F
′
1, F ′2)).

Proof Apply Proposition 2.30 at each subspace of the τ -decompositions. �

Given two linear maps g0, g1 ∈ L (V )with τ -gap ratios such that ατ (g0, g1) > 0,
they determine a τ -decomposition of V as intersection of the image byϕg0 of themost
expanding τ -flag for g0 with the least expanding τ⊥-flag for g1 (see Definitions 2.18
and 2.21). The corresponding intersection transversality measurement is bounded
from below by the angle ατ (g0, g1).

Proposition 2.39 Given g0, g1 ∈ L (V ), if grτ (g0) > 1 and grτ (g1) > 1 then

θ�(vτ⊥(g1), vτ (g
∗
0)) ≥ ατ (g0, g1).

In particular, if ατ (g0, g1) > 0 then the flags vτ (g∗0) and vτ⊥(g1) determine the
decomposition vτ (g∗0) � vτ⊥(g1) ∈ Dτ (V ).

Proof Let n = dim V . Consider the flags F = vτ (g∗0) and F ′ = vτ⊥(g1). We
have Fi = vτi(g

∗
0) and Fk−i+1 = vτ⊥k−i+1

(g1) = vn−τi
(g1) = vτi(g1)

⊥. Hence by
Lemma 2.6,
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θ∩(Fi, F ′k−i+1) = θ∩(vτi(g
∗
0), vτi(g1)

⊥) = ατi(vτi(g
∗
0), vτi(g1)) = ατi(g0, g1),

and taking the minimum, θ�(F, F ′) ≥ ατ (g0, g1). �

2.3.3 Dependence on the Linear Map

We establish a modulus of Lipschitz continuity for the most expanding direction of
a linear endomorphism with a first singular gap. For any 0 < κ < 1, consider the
set Lκ := {g ∈ L (V ) : gr(g) ≥ 1

κ
}. We denote by v : Lκ → P(V ) the map that

assigns the g-most expanding direction to each g ∈ Lκ .
The relative distance between linear maps g, g′ ∈ L (V ) \ {0} is defined as

drel(g, g′) := ‖g− g′‖
max{‖g‖, ‖g′‖} .

Notice that this relative distance is not a metric. It does not satisfy the triangle
inequality. We introduce it just to lighten the notation.

Proposition 2.40 The map v : Lκ → P(V ) is locally Lipschitz.
More precisely, given 0 < κ < 1 there exists ε0 = ε0(κ) > 0, which increases as

κ decreases, such that for any g1, g2 ∈ Lκ satisfying drel(g1, g2) ≤ ε0,

d(v(g1), v(g2)) ≤ 16

1− κ2
drel(g1, g2).

Proof Let g ∈ Lκ and λ > 0. The singular values (resp. singular vectors) of g are
the eigenvalues (resp. eigenvectors) of

√
g∗ g. Hence sj(λ g) = λ sj(g), for all j. We

also have v(λg) = v(g) and gr(λ g) = gr(g).
Consider the subspace Lκ(1) := {g ∈ Lκ : ‖g‖ = 1}. The projection g �→

g/‖g‖ takes Lκ toLκ(1). It also satisfies v(g/‖g‖) = v(g) and

‖ g1
‖g1‖ −

g2
‖g2‖‖ ≤ 2 drel(g1, g2).

Hence we can focus our attention on the restricted map v : Lκ(1)→ P(V ).
Let L +

κ (1) denote the subspace of g ∈ Lκ(1) such that g = g∗ ≥ 0, i.e., g is
positive semi-definite.

Given g ∈ Lκ(1), we have ‖g∗ g‖ = 1 = ‖g‖, gr(g∗g) = gr(g)2 and v(g∗g) =
v(g). Also, for all g1, g2 ∈ Lκ(1),

‖g∗1 g1 − g∗2 g2‖ ≤ ‖g∗1‖ ‖g1 − g2‖ + ‖g∗1 − g∗2‖ ‖g2‖
= (‖g∗1‖ + ‖g2‖) ‖g1 − g2‖ ≤ 2 ‖g1 − g2‖.



58 2 Estimates on Grassmann Manifolds

Hence, the mapping g �→ g∗ g takes Lκ(1) to L +
κ2 (1) and has Lispschitz constant

2. Therefore, it is enough to prove that the restricted map v : L +
κ2 (1) → P(V ) has

(locally) Lipschitz constant 4 (1− κ2)−1.
Let δ0 be a small positive number and take 0 < ε0 � δ0

4 . The size of δ0 will be
fixed throughout the rest of the proof according to necessity. Take h1, h2 ∈ L +

κ2 (1)
such that ‖h1 − h2‖ < ε0 and set p̂0 := v(h1). By Proposition 2.29 we have

ϕh1

(
B(p̂0, δ0)

) ⊂ B

⎛

⎝p̂0,
κ2δ0

√
1− δ20

⎞

⎠ ⊂ B(p̂0, δ0),

where all balls refer to the projective sine-metric δ defined in (2.3). The second
inclusion holds if δ0 is chosen small enough. Take any p̂ ∈ B(p̂0, δ0) and choose unit
vectors p ∈ p̂ and p0 ∈ p̂0 such that 〈p, p0〉 > 0. Then p = 〈p, p0〉 p0 + w, with
w ∈ p⊥0 , h1(p0) = p0 and h1(w) ∈ p⊥0 . Hence

‖h1(p)‖ = ‖〈p, p0〉 p0 + h1(w)‖ ≥ 〈p, p0〉
=
√
1− ‖p ∧ p0‖2 ≥

√
1− δ20 ≥ 1/2,

and again, assuming δ0 is small,

‖h2(p)‖ ≥ ‖h1(p)‖ − ‖h1 − h2‖ ≥
√
1− δ20 − ε0 ≥ 1/2.

Thus, by Lemma 2.9 below, for all p̂ ∈ B(p̂0, δ0),

d(ϕh1(p̂), ϕh2(p̂)) ≤ 2 ‖h1 − h2‖.

Choosing ε0 small enough, κ2 δ0√
1−δ20

+ 2 ε0 < δ0. This implies that

ϕh2

(
B(p̂0, δ0)

) ⊂ B(p̂0, δ0).

By Proposition 2.29 we know that T1 = ϕh1 |B(p̂0,δ0) has Lispchitz constant κ ′ =
κ2 δ0+

√
1−δ20

1−δ20
≈ κ2, and assuming δ0 is small enoughwehave 1

1−κ ′ ≤ 2
1−κ2 . Notice that

although the Lispchitz constant in this proposition refers to the Riemannian metric
ρ, since the ratio Lipδ(T1)/Lipρ(T1) approaches 1 as δ0 tends to 0, we can assume
that Lipδ(T1) ≤ κ ′. Thus, by Lemma 2.7 below applied to T1 and T2 = ϕh2 |B(p̂0,δ0),
we have d(T1, T2) ≤ 2 ‖h1 − h2‖ and

d(v(h1), v(h2)) ≤ 1

1− κ ′
d(T1, T2) ≤ 4

1− κ2
‖h1 − h2‖. �
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Lemma 2.7 Let (X, d) be a complete metric space, T1 : X → X a Lipschitz con-
traction with Lip(T1) < κ < 1, x∗1 = T1(x∗1) a fixed point, and T2 : X → X any
other map with a fixed point x∗2 = T2(x∗2). Then

d(x∗1, x∗2) ≤
1

1− κ
d(T1, T2),

where d(T1, T2) := supx∈X d(T1(x), T2(x)).

Proof

d(x∗1, x∗2) = d(T1(x
∗
1), T2(x

∗
2))

≤ d(T1(x
∗
1), T1(x

∗
2))+ d(T1(x

∗
2), T2(x

∗
2))

≤ κ d(x∗1, x∗2)+ d(T1, T2),

which implies that

d(x∗1, x∗2) ≤
1

1− κ
d(T1, T2). �

Lemma 2.8 Given g1, g2 ∈ L (V ), for any 1 ≤ i ≤ dim V ,

‖∧ig1 − ∧ig2‖ ≤ i max{1, ‖g1‖, ‖g2‖}i−1 ‖g1 − g2‖.

Proof Given any unit i-vector v1 ∧ · · · ∧ vi ∈ ∧iV , determined by an orthonormal
family of vectors {v1, . . . , vi},

‖(∧ig1)(v1 ∧ · · · ∧ vi)− (∧ig2)(v1 ∧ · · · ∧ vi)‖
= ‖(g1v1) ∧ · · · ∧ (g1vi)− (g2v1) ∧ · · · ∧ (g2vi)‖

≤
i∑

j=1
‖(g1v1) ∧ · · · ∧ (g1vj−1) ∧ (g1vj − g2vj) ∧ (g2vj+1) ∧ · · · ∧ (g2vi)‖

≤
i∑

j=1
‖g1‖j−1 ‖g2‖i−j ‖g1vj − g2vj‖

≤ i max{1, ‖g1‖, ‖g2‖}i−1 ‖g1 − g2‖. �

Given a dimension 1 ≤ l ≤ dim V and 0 < κ < 1, consider the set

Ll,κ := {g ∈ L (V ) : grl(g) ≥ κ−1},
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and define

Cl(g1, g2) := l max{1, ‖g1‖, ‖g2‖}l−1
max{‖∧lg1‖, ‖∧lg2‖} .

Corollary 2.2 The map v : Ll,κ → Grl(V ) is locally Lipschitz.
More precisely, given0 < κ < 1 there exists ε0 > 0 such that for any g1, g2 ∈ Ll,κ

such that ‖g1 − g2‖ ≤ ε0 Cl(g1, g2)−1, we have

d(vl(g1), vl(g2)) ≤ 16

1− κ2
Cl(g1, g2) ‖g1 − g2‖.

Proof By Lemma 2.8, drel(∧lg1,∧lg2) ≤ Cl(g1, g2) ‖g1 − g2‖. Apply Proposi-
tion 2.40 to the linear maps ∧lgj : ∧lV → ∧lV , j = 1, 2. �

Given g ∈ L (V ) having k and k+ r gap ratios, if a subspace E ∈ Grk(V ) is close
to the g most expanding subspace vk(g) then the restriction g|E⊥ has an r-gap ratio
and the most expanding r-dimensional subspace of g|E⊥ is close to the intersection
of vk+r(g) with E⊥. Next proposition expresses this fact in a quantitative way.

Proposition 2.41 Given 0 < κ < 1
2 and integers 1 ≤ k < k + r ≤ dim V , there

exists δ0 > 0 such that for all g ∈ L (V ) and E ∈ Grk(V ), if

(a) σk(g) < κ and σk+r(g) < κ,
(b) δ(E, vk(g)) < δ0

then

(1) σr(g|E⊥) ≤ 2κ,

(2) δ
(
vr(g|E⊥), vk+r(g) ∩ E⊥

) ≤ 20r

1− 4κ2
δ(E, vk(g)).

Proof Consider the compact space

Kr = {h ∈ L (V ) : ‖h‖ ≤ 1 and σr(h) ≤ κ}.

By uniform continuity of σr onKr there exists δ0 > 0 such that for all h ∈ L (V ) if
there exists h0 ∈ Kr with ‖h− h0‖ < δ0 then σr(h) ≤ 2κ.

Recall that πF denotes the orthogonal projection onto a linear subspace F ⊂ V .
Given g ∈ L (V ) such that (a) holds, consider the map h = g

‖g‖ ◦πvk(g)⊥ . We have
h ∈ Kr because σr(h) = σr(g ◦ πvk(g)⊥) = σk+r(g) < κ.

Given E ∈ Grk(V ) such that (b) holds, we define hE = g
‖g‖ ◦ πE⊥ . Then by items

(b) and (c) of Proposition 2.16

‖h− hE‖ ≤ ‖πvk(g)⊥ − πE⊥‖ ≤ δ(vk(g)⊥, E⊥) = δ(E, vk(g)) < δ0,

which implies that σr(g|E⊥) = σr(hE) ≤ 2κ, and hence proves (1).
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To prove item (2) we use the triangle inequality

δ(vr(g|E⊥), vk+r(g) ∩ E⊥) ≤ δ(vr(hE), vr(h))

+ δ(vr(h), vk+r(g) ∩ vk(g)⊥)

+ δ(vk+r(g) ∩ vk(g)⊥, vk+r(g) ∩ E⊥)

≤
(

16 r

1− 4κ2
+ 0+ 2

)

δ(E, vk(g))

≤ 20r

1− 4κ2
δ(E, vk(g)).

By Corollary 2.2, with Cr(hE, h) = r, we get a bound on δ(vr(hE), vr(h)). The
second distance is zero because vr(h) = vk+r(g) ∩ vk(g)⊥. Finally we use item (2)
of Proposition 2.30 to derive a bound on the third distance. Notice that although
the conclusion of Proposition 2.30 is stated in terms of the distance d, the ratio
between the metrics d and δ is very close to 1 when δ0 is small. Finally notice that
vk(g) ⊂ vk+r(g) implies θ∩(vk+r(g), vk(g)⊥) = 1. �

Lemma 2.9 Given g1, g2 ∈ L (V ), p̂ ∈ P(g1) ∩ P(g2) and any unit vector p ∈ p̂,

d(ϕg1(p̂), ϕg2(p̂)) ≤ max{ 1

‖g1 p‖ ,
1

‖g2 p‖} ‖g1 − g2‖.

Proof Applying Proposition 2.26 to the non-zero vectors g1 p and g2 p, we get

d(ϕg1(p̂), ϕg2(p̂)) ≤ ‖ g1 p

‖g1 p‖ −
g2 p

‖g2 p‖‖
≤ max{‖g1 p‖−1, ‖g2 p‖−1} ‖g1 p− g2 p‖
≤ max{‖g1 p‖−1, ‖g2 p‖−1} ‖g1 − g2‖. �

The final four lemmas of this section apply to invertible linear maps in GL(V ).
They express the continuity of the map g �→ ϕg with values in the space of Lipschitz
or Hölder continuous maps on the projective space. These facts will be needed in
Chap.5.

Lemma 2.10 Given g1, g2 ∈ GL(V ), and p̂ �= q̂ in P(V ),

∣
∣δ(ϕg1(p̂), ϕg1(q̂))

δ(p̂, q̂)
− δ(ϕg2(p̂), ϕg2(q̂))

δ(p̂, q̂)

∣
∣ ≤ C(g1, g2) ‖g1 − g2‖,

where C(g1, g2) := (‖g−11 ‖2 + ‖g2‖2 ‖g−11 ‖2 ‖g−12 ‖2) (‖g1‖ + ‖g2‖).

http://dx.doi.org/10.2991/978-94-6239-124-6_5
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Proof Given p ∈ p̂ and q ∈ q̂, by Proposition 2.27

∣
∣δ(ϕg1(p̂), ϕg1(q̂))

δ(p̂, q̂)
− δ(ϕg2(p̂), ϕg2(q̂))

δ(p̂, q̂)

∣
∣ = ∣∣‖g1p ∧ g1vp(q)‖

‖g1p‖‖g1q‖ − ‖g2p ∧ g2vp(q)‖
‖g2p‖‖g2q‖

∣
∣

≤ ‖g1p ∧ g1vp(q)− g2p ∧ g2vp(q)‖
‖g1p‖‖g1q‖

+ ∣
∣ 1

‖g1p‖‖g1q‖ −
1

‖g2p‖‖g2q‖
∣
∣ ‖g2p ∧ g2vp(q)‖

≤ ‖g−11 ‖2 ‖g1p ∧ (g1vp(q)− g2vp(q))‖ + ‖g−11 ‖2 ‖(g1p− g2p) ∧ g2vp(q)‖
+ ‖g−11 ‖2 ‖g−12 ‖2 (‖g1p‖ ∣∣‖g1q‖ − ‖g2q‖∣∣+ ‖g2q‖ ∣∣‖g1p‖ − ‖g2p‖∣∣) ‖g2‖2
≤ ‖g−11 ‖2 (‖g1‖ + ‖g2‖) ‖g1 − g2‖
+ ‖g2‖2 ‖g−11 ‖2 ‖g−12 ‖2 (‖g1‖ + ‖g2‖) ‖g1 − g2‖
= (‖g−11 ‖2 + ‖g2‖2 ‖g−11 ‖2 ‖g−12 ‖2) (‖g1‖ + ‖g2‖) ‖g1 − g2‖. �

Lemma 2.11 Given g ∈ GL(V ) and p̂ �= q̂ in P(V ),

1

‖g‖2 ‖g−1‖2 ≤
δ(ϕg(p̂), ϕg(q̂))

δ(p̂, q̂)
≤ ‖g‖2 ‖g−1‖2.

Proof Given p̂ �= q̂ in P(V ) consider unit vectors p ∈ p̂, q ∈ q̂ and set v = vp(q). We
have ‖p‖ = ‖q‖ = ‖v‖ = 1 and 〈p, v〉 = 0. This last relation implies ‖p ∧ v‖ = 1.
Hence

‖gp ∧ gv‖ = ‖(∧2g)(p ∧ v)‖ ≥ ‖(∧2g)−1‖−1 ≥ ‖g−1‖−2.

Analogously
‖gp ∧ gv‖ = ‖(∧2g)(p ∧ v)‖ ≤ ‖∧2g‖ ≤ ‖g‖2.

We also have
‖g−1‖−2 ≤ ‖g p‖ ‖g q‖ ≤ ‖g‖2.

To finish the proof combine these inequalities with Proposition 2.27. �

Given g ∈ GL(V ), we define

�(g) := max{log‖g‖, log‖g−1‖}. (2.24)

Lemma 2.12 For every g ∈ GL(V ) and p̂ �= q̂ in P(V ),

−4 �(g) ≤ log

[
δ(ϕg(p̂), ϕg(q̂))

δ(p̂, q̂)

]

≤ 4 �(g).

Proof It follows from Lemma 2.11.
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Lemma 2.13 Given g1, g2 ∈ GL(V ), 0 < α ≤ 1 and p̂ �= q̂ in P(V ),

∣
∣
(

δ(ϕg1(p̂), ϕg1(q̂))

δ(p̂, q̂)

)α

−
(

δ(ϕg2(p̂), ϕg2(q̂))

δ(p̂, q̂)

)α∣
∣ ≤ C1(g1, g2) ‖g1 − g2‖,

where C1(g1, g2) = α max{‖g1‖ ‖g−11 ‖, ‖g2‖ ‖g−12 ‖}2(1−α) C(g1, g2), and C(g1, g2)
stands for the constant in Lemma 2.10.

Proof Setting Δ1 := δ(ϕg1 p̂,ϕg1 q̂)

δ(p̂,q̂)
and Δ2 := δ(ϕg2 p̂,ϕg2 q̂)

δ(p̂,q̂)
, from Lemmas 2.10 and 2.11

we get

∣
∣Δα

1 −Δα
2

∣
∣ ≤ α max{Δα−1

1 ,Δα−1
2 } ∣∣Δ1 −Δ2

∣
∣

≤ α max{‖g1‖ ‖g−11 ‖, ‖g2‖ ‖g−12 ‖}2(1−α)
∣
∣Δ1 −Δ2

∣
∣

≤ α max{‖g1‖ ‖g−11 ‖, ‖g2‖ ‖g−12 ‖}2(1−α) C(g1, g2) ‖g1 − g2‖. �

2.4 Avalanche Principle

Consider a long chain of n linear maps g0 : V0 → V1, g1 : V1 → V2, etc.,
between Euclidean spaces Vi of the same dimension m. The AP relates the expan-
sion ‖gn−1 . . . g1 g0‖ of the composition gn−1 . . . g1 g0 with the product of the indi-
vidual expansions ‖gn−1‖ . . . ‖g1‖ ‖g0‖. Given two quantities Mn and Nn depend-
ing on a large number n ∈ N, we say in rough terms that they are ε-asymptotic,
and write Mn

ε Nn, when e−n ε ≤ Mn/Nn ≤ en ε. In general it is not true that
‖gn−1 . . . g1 g0‖ ε ‖gn−1‖ . . . ‖g1‖ ‖g0‖ for some small ε > 0, unless some atypi-
cally sharp alignment of the singular directions of the linearmaps gj occurs. Given the
chain of linear maps g0, g1, . . . , gn−1, its rift ρ(g0, . . . , gn−1) := ‖gn−1 ... g0‖

‖gn−1‖ ... ‖g0‖ ∈ [0, 1]
measures the break of expansion in the composition gn−1 . . . g1 g0. The AP says that
given any such chain g0, g1, . . . , gn−1, where the gap ratio of eachmap gj is large, and
the rift of any pair of consecutive maps is never too small, the rift of the composition
behaves multiplicatively, in the sense that for some small number ε > 0,

ρ(g0, g1, . . . , gn−1)
ε ρ(g0, g1) ρ(g1, g2) . . . ρ(gn−2, gn−1),

or, equivalently,
‖gn−1 . . . g1 g0‖ ‖g1‖ . . . ‖gn−2‖

‖g1 g0‖ . . . ‖gn−1 gn−2‖
ε 1.

The AP was introduced by Goldstein and Schlag [6, Proposition 2.2] as a tech-
nique to obtain Höder continuity of the integrated density of states for quasi-periodic
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Schrödinger cocycles. In its original version, the AP applies to chains of unimodular
matrices in SL(2, C), and the length of the chain is assumed to be less than some
lower bound on the norms of the matrices. Note that for unimodular matrices, the
gap ratio and the norm are two equivalent measurements. Still in this unimodular
setting, for matrices in SL(2, R), Bourgain and Jitomirskaya [4, Lemma 5] relaxed
the constraint on the length of the chain of matrices, and later Bourgain [3, Lemma
2.6] removed it, at the cost of slightly weakening the conclusion of the AP.

Later, Schlag [7, Lemma 1] generalized theAP to invertiblematrices inGL(m, C).
Recently, C. Sadel has shared with the authors an earlier draft of [1], containing his
version of the AP for GL(m, C) matrices. Both of these higher dimensional APs
assume some bound on the length of the chains of matrices. A higher dimensional
APwithout this assumptionwas proven by the authors [5, Theorem 3.1] for invertible
real matrices.

We present here a more general AP, which holds for (possibly non-invertible)
matrices in Mat(m, R). As a by-product of the geometric approach used in the proof,
we also obtain a quantitative control on the most expanding directions of the matrix
product, something essential in the proof of the continuity of the Oseledets decom-
position.

2.4.1 Contractive Shadowing

Hereweprove a shadowing lemma saying that under someconditions, a loose pseudo-
orbit of a chain of contracting maps is shadowed by a true orbit of the mapping
sequence. In particular, a closed pseudo-orbit is shadowed by a periodic orbit of the
mapping chain.

Given a metric space (X, d), denote the closed ε-ball around x ∈ X by

B(x, ε) := {z ∈ X : d(z, x) ≤ ε}.

Given an open set X0 ⊂ X, define

X0(ε) := {x ∈ X0 : d(x, ∂X0) ≥ ε},

where ∂X0 denotes the topological boundary of X0 in (X, d).

Lemma 2.14 (shadowing lemma) Consider ε > 0 and 0 < δ < κ < 1 such that
δ/(1− κ) < ε < 1/2.

Given a family {(Xj, dj)}0≤j≤n of compact metric spaces with diameter 1, a chain
of continuous mappings {gj : X0

j → Xj+1}0≤j≤n−1 defined on open sets X0
j ⊂ Xj, and

a sequence of points xj ∈ Xj, assume that for every 0 ≤ j ≤ n− 1:
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(a) xj ∈ X0
j and d(xj, ∂X0

j ) = 1,
(b) gj has Lipschitz constant ≤ κ on X0

j (ε),
(c) gj(xj) ∈ X0

j+1(2 ε),
(d) gj(X0

j (ε)) ⊂ B(gj(xj), δ).

Then, setting g(n) := gn−1 ◦ · · · ◦ g1 ◦ g0, the following hold:

(1) the composition g(n) is defined on B(x0, ε) and Lip(g(n)|B(x0,ε)) ≤ κn,
(2) d( gn−1(xn−1), g(n)(x0) ) ≤ δ

1−κ
,

(3) if x0 = gn−1(xn−1) then g(n)(B(x0, ε)) ⊂ B(x0, ε) and there is a point x∗ ∈
B(x0, ε) such that g(n)(x∗) = x∗ and d (x0, x∗) ≤ δ

(1−κ)(1−κn)
.

Proof The proof’s inductive scheme is better understood with the help of Fig. 2.1
(see also Fig. 2.2), where we set zi

j := (gj−1 ◦ · · · ◦ gi+1 ◦ gi)(xi) for i ≤ j ≤ n, with
the convention that this composition is the identity when i = j. Of course we have
to prove that all points zi

j are well-defined.
The boxed expressions represent upper bounds on the distance between the points

respectively above and below the box. The ith row represents the orbit of xi ∈ Xi by
the chain of mappings {gj}j≥i. All points in the jth column belong to the space Xj.

To explain the last upper bound at the bottom of each column, first notice that
zi

i = xi. By (a), z
i−1
i = gi−1(xi−1) is well-defined, and by (c), zi−1

i ∈ X0
i (2 ε) ⊂ X0

i (ε).
Likewise zi−2

i−1 ∈ X0
i−1(ε), and zi−2

i = gi−1(gi−2(xi−2)) is well-defined. Then by (d)
we have

d(zi−1
i , zi−2

i ) = d(gi−1(xi−1), gi−1(gi−2(xi−2))) ≤ δ. (2.25)

X0 X1 X2 X3 . . . Xn−1 Xn

z00
g0−→ z01

g1−→ z02
g2−→ z03

g3−→ . . .
gn−2−→ z0n−1

gn−1−→ z0n

δ κ δ κn−3δ κn−2δ
z11

g1−→ z12
g2−→ z13

g3−→ . . .
gn−2−→ z1n−1

gn−1−→ z1n

δ κn−4δ κn−3δ
z22

g2−→ z23
g3−→ . . .

gn−2−→ z2n−1
gn−1−→ z2n

κn−5δ κn−4δ
z33

g3−→ . . .
gn−2−→ z3n−1

gn−1−→ z3n
. . .

...
...

zn−2
n−2

gn−2−→ zn−2
n−1

gn−1−→ zn−2
n

δ
zn−1
n−1

gn−1−→ zn−1
n

znn

Fig. 2.1 Family of orbits for the chain of mappings {gj : X0
j → Xj+1}j
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Fig. 2.2 Shadowing property for a chain of contractive mappings

All other bounds are obtained applying (b) inductively. More precisely, we prove by
induction in the column index j that

(i) all points zi
j in the jth column are well-defined and belong to X0

j (ε),
(ii) distances between consecutive points in the column j are bounded by the expres-

sions in Fig. 2.1, i.e., for all 1 ≤ i ≤ j − 1,

d(zi−1
j , zi

j) ≤ κ j−i−1 δ. (2.26)

The initial inductive steps, j = 0, 1, 2, follow from (a), (c) and (2.25). Assume
now that the points zi

j in jth column satisfy (i) and (ii). Then their images zi
j+1 = gj(zi

j)

are well-defined. By (b) we have for all 1 ≤ i ≤ j − 1,

d(zi−1
j+1, zi

j+1) = d(gj(z
i−1
j ), gj(z

i
j)) ≤ κ d(zi−1

j , zi
j) ≤ κ j−i δ.

Together with (2.25) this proves (ii) for the column j + 1. To prove (i) consider any
1 ≤ i ≤ j. By (c) and the triangle inequality,

d(zi
j+1, ∂X0

j+1) ≥ d(zj
j+1, ∂X0

j+1)− d(zi
j+1, zj

j+1)

≥ d(gj(xj), ∂X0
j+1)−

j∑

l=i+1
d(zl−1

j+1, zl
j+1)

≥ 2 ε −
j∑

l=i+1
κ j−l δ ≥ 2 ε − δ

1− κ
≥ ε.

This proves (i) for the column j + 1, and concludes the induction.
Conclusion (1) follows from (b) and the following claim, to be proved by induction

in i.
For every i = 0, 1, . . . , n−1, g(i)(B(x0, ε)) ⊂ X0

i (ε), where g(i) = gi−1 ◦ · · · ◦g0.
Consider first the case i = 0. Given x ∈ B(x0, ε),

d(x, ∂X0
0 ) ≥ d(x0, ∂X0

0 )− d(x, x0) ≥ 1− ε > ε.

This implies that d(g0(x), g0(x0)) ≤ κ d(x, x0). Thus
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d(g0(x), ∂X0
1 ) ≥ d(g0(x0), ∂X0

1 )− d(g0(x0), g0(x)) ≥ 2 ε − d(g0(x0), g0(x))

≥ 2 ε − κ d(x0, x) ≥ 2 ε − κ ε > ε

which proves that g0(B(x0, ε)) ⊂ X0
1 (ε).

Assume now that for every l ≤ i − 1,

(gl ◦ · · · ◦ g0)(B(x0, ε)) ⊂ X0
l+1(ε).

By (b), g(i) acts as a κ i contraction on B(x0, ε) and g(i)(B(x0, ε)) ⊂ X0
i (ε). Thus for

every x ∈ B(x0, ε),

d(g(i+1)(x), ∂X0
i+1) ≥ d(gi(xi), ∂X0

i+1)− d(gi(xi), g(i+1)(x))

≥ 2 ε − d(z0i+1, zi
i+1)− d(z0i+1, g(i+1)(x))

≥ 2 ε −
i−1∑

l=0
d(zl

i+1, zl+1
i+1)− d(g(i+1)(x0), g(i+1)(x))

≥ 2 ε − (δ + κ δ + · · · + κ i−1 δ)− κ i d(x0, x)

≥ 2 ε − (δ + κ δ + · · · + κ i−1 δ)− κ i ε

≥ 2 ε − (1− κ) ε (1+ κ + · · · + κ i−1)− κ i ε = ε

which proves that g(i+1)(B(x0, ε)) ⊂ X0
i+1(ε), and establishes the claim above.

Thus g(n) is well-defined on B(x0, ε), and, because of assumption (b), g(n) is a κn

Lipschitz contraction on this ball. This proves (1).
Item (2) follows by (2.26). In fact

d(gn−1(xn−1), g(n)(x0)) = d(zn−1
n , z0n) ≤

n−1∑

l=1
d(zl

n, zl−1
n ) ≤

n−1∑

l=1
κn−l−1 δ ≤ δ

1− κ
.

Finally we prove (3). Assume x0 = gn−1(xn−1).
It is enough to see that g(n)(B(x0, ε)) ⊂ B(x0, ε), because by (1) g(n) acts as a

κn-contraction in the closed ball B(x0, ε). The conclusion on the existence of a fixed
point, as well as the proximity bound, follow from the classical fixed point theorem
for Lipschitz contractions.

Given x ∈ B(x0, ε), we know from the previous calculation that

d(x0, g(n)(x0)) < δ + κ δ + · · · + κn−2 δ.
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Hence

d(g(n)(x), x0) ≤ d(g(n)(x), g(n)(x0))+ d(g(n)(x0), x0)

≤ κn−1 d(x, x0)+ δ + κ δ + · · · + κn−2 δ

≤ δ + κ δ + · · · + κn−2 δ + κn−1 ε

≤ (1− κ) ε (1+ κ + · · · + κn−2)+ κn−1 ε

= (1− κ) ε
1− κn−1

1− κ
+ κn−1 ε = ε.

Thus g(n)(x) ∈ B(x0, ε), which proves that g(n)(B(x0, ε)) ⊂ B(x0, ε). �

2.4.2 Statement and Proof of the AP

In the statement and proof of theAPwewill use the notation introduced in Sect. 2.2.3.
Given a chain of linearmappings {gj : Vj → Vj+1}0≤j≤n−1 we denote the composition
of the first i maps by g(i) := gi−1 . . . g1 g0. Throughout this chapter, a � b will stand
for a ≤ C b for some absolute constant C.

Theorem 2.1 (Avalanche Principle) There exists a constant c > 0 such that given
0 < ε < 1, 0 < κ ≤ c ε2 and a chain of linear mappings {gj : Vj → Vj+1}0≤j≤n−1
between Euclidean spaces Vj, if

(a) σ(gi) ≤ κ , for 0 ≤ i ≤ n− 1, and
(b) α(gi−1, gi) ≥ ε, for 1 ≤ i ≤ n− 1,

then

(1) d(v(g(n)), v(g0)) � κ ε−1 ,

(2) d(v(g(n)∗), v(g∗n−1)) � κ ε−1 ,

(3) σ(g(n)) � κ
(

κ (4+2 ε)

ε2

)n−1
,

(4)
∣
∣log‖g(n)‖ +

n−2∑

i=1
log‖gi‖ −

n−1∑

i=1
log‖gi gi−1‖

∣
∣ � n

κ

ε2
.

Remark 2.3 (On the assumptions) Assumption (a) says that the (first) gap ratio of
each gj is large, gr(gj) ≥ κ−1. Given (a), by Propositions 2.23 and 2.24, assumption
(b) is equivalent to a condition on the rift, ρ(gj−1, gj) � ε for all j = 1, . . . , n− 1.

Remark 2.4 (On the conclusions) Conclusions (1) and (2) say that the most expand-
ing direction v(g(n)) of the product g(n), and its image ϕg(n)v(g(n)), are respectively
κ/ε-close to the most expanding direction v(g0) of g0, and to the image ϕgn−1v(gn−1)
of the most expanding direction of gn−1. Conclusion (3) says that the composition
map g(n) has a large gap ratio. Finally, conclusion (4) is equivalent to
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e−n C κ ε−2 ≤ ‖gn−1 . . . g1 g0‖ ‖g1‖ . . . ‖gn−2‖
‖g1 g0‖ . . . ‖gn−1 gn−2‖ ≤ en C κ ε−2 ,

for some universal constantC > 0. These inequalities describe the asymptotic almost
multiplicative behavior of the rifts

ρ(g0, g1, . . . , gn−1)
C κ/ε2 ρ(g0, g1) ρ(g1, g2) . . . ρ(gn−2, gn−1).

Proof The strategy of the proof is to look at the contracting action of linear mappings
gj on the projective space.

For each j = 0, 1, . . . , n consider the compact metric space Xj = P(Vj) with the
normalized Riemannian distance, d(û, v̂) = 2

π
ρ(û, v̂). The reader should be warned

of the notational similarity between this projectivemetric and the one defined in (2.2).
We do not refer to themetric (2.2) in this proof. However, the distance in the statement
of the AP can be understood as any of the four equivalent projective distances δ, d,
ρ or d. For 0 ≤ j < n define

X0
j := {v̂ ∈ Xj : α(v̂, v(gj)) > 0},

Y 0
j := {v̂ ∈ Xj : α(v̂, v(g∗j−1)) > 0}.

The domain of the projective map ϕgj : P(gj) ⊂ Xj → Xj+1 clearly contains the
open set X0

j . Analogously, the domain of ϕg∗j−1 : P(g∗j ) ⊂ Xj → Xj−1 contains Y 0
j .

We will apply Lemma 2.14 to chains of projective maps formed by the mappings
ϕgj : X0

j → Xj+1 and their adjoints ϕg∗j−1 : Y 0
j → Xj−1.

Take positive numbers ε and κ such that 0 < κ � ε2, let r := √
1− ε2/4, and

define the following input parameters for the application of Lemma 2.14,

εsh := 1

π
arcsin ε,

κsh := κ
r +√1− r2

1− r2
 4 κ

ε2
,

δsh := κ r√
1− r2

 2 κ

ε
.

A simple calculation shows that there exists 0 < c < 1 such that for any 0 < ε < 1
and 0 < κ ≤ c ε2, the pre-conditions 0 < δsh < κsh < 1 and δsh

1−κsh
< εsh < 1/2 of

the shadowing lemma are satisfied.
Define xj = v(gj) and x∗j = v(g∗j−1). This lemma is going to be applied to the

following chains of maps and sequences of points

(A) ϕg0 , . . . , ϕgn−1 , ϕg∗n−1 , . . . , ϕg∗0 , x0, . . . , xn−1, x∗n, . . . , x∗1,

(B) ϕg∗n−1 , . . . , ϕg∗0 , ϕg0 , . . . , ϕgn−1 , x∗n, . . . , x∗1, x0, . . . , xn−1,
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from which we will infer the conclusions (1) and (2). Let us check now that assump-
tions (a)–(d) of Lemma 2.14 hold in both cases (A) and (B).

By definition ∂X0
j := {v̂ ∈ Xj : α(v̂, xj) = 0 } = { v̂ ∈ Xj : v̂ ⊥ xj}. Hence,

if v̂ ∈ ∂X0
j then d(xj, v̂) = 1, which proves that d(xj, ∂X0

j ) = 1. Analogously,
∂Y 0

j = {v̂ ∈ Xj : v̂ ⊥ x∗j } and d(x∗j , ∂Y 0
j ) = 1. Therefore assumption (a) holds.

By definition of X0
j (ε),

v̂ ∈ X0
j (ε) ⇔ d(v̂, ∂X0

j ) ≥ ε ⇔ ρ(v̂, ∂X0
j ) ≥ π

2
ε

⇔ δ(v̂, ∂X0
j ) = α(v̂, xj) ≥ sin

(π

2
ε
)

⇔ δ(v̂, xj) ≤ cos
(π

2
ε
)

.

Similarly, by definition of Y 0
j (ε),

v̂ ∈ Y 0
j (ε) ⇔ δ(v̂, x∗j ) ≤ cos

(π

2
ε
)

.

Thus, because

cos
(π

2
εsh

)
= cos

(
1

2
arcsin ε

)

≤
√

1− ε2

4
= r,

we have X0
j (εsh) ⊂ B(δ)(xj, r) and Y 0

j (εsh) ⊂ B(δ)(x∗j , r), and assumption (b) holds
by Proposition 2.29 (3).

By the gap assumption,

α(ϕgj (xj), xj+1) = α(v(g∗j ), v(gj+1)) = α(gj, gj+1) ≥ ε.

Therefore

d(ϕgj (xj), ∂X0
j+1) =

2

π
arcsin δ(ϕgj (xj), ∂X0

j+1) =
2

π
arcsin α(ϕgj (xj), xj+1)

≥ 2

π
arcsin ε = 2 εsh.

Similarly, by the gap assumption,

α(ϕg∗j−1(x
∗
j ), x∗j−1) = α(v(gj−1), v(g∗j−1)) = α(g∗j+1, g∗j ) = α(gj, gj+1) ≥ ε,

and in the same way we infer that

d(ϕg∗j−1(x
∗
j ), ∂Y 0

j−1) ≥
2

π
arcsin ε = 2 εsh.
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This proves that (c) of the shadowing lemma holds. Notice that in both cases (A) and
(B), the assumption (c) holds trivially for the middle points, because ϕgn−1(xn−1) =
x∗n ∈ Y 0

n (2 εsh) and ϕg∗0 (x
∗
1) = x0 ∈ X0

0 (2 εsh).
It was proved above that X0

j (εsh) ⊂ B(δ)(xj, r) and Y 0
j (εsh) ⊂ B(δ)(x∗j , r). By (2.5)

we have d(û, v̂) ≤ δ(û, v̂). Thus by Proposition 2.29 (1),

ϕgj (X
0
j (εsh)) ⊂ B(δ)(x∗j , δsh) ⊂ B(d)(x∗j , δsh) with x∗j = ϕgj (xj),

and analogously,

ϕg∗j−1(Y
0
j (εsh)) ⊂ B(δ)(xj−1, δsh) ⊂ B(d)(xj−1, δsh) with xj−1 = ϕg∗j−1(x

∗
j ).

Hence, (d) of Lemma 2.14 holds.
Therefore, because ϕg∗0 (x

∗
1) = x0 and ϕgn−1(xn−1) = x∗n , conclusion (3) of

Lemma 2.14 holds for both chains (A) and (B). The projective points v(g(n))

and v(g(n)∗) are the unique fixed points of the chains of mappings (A) and (B),
respectively. Hence, by the shadowing lemma both distances d(x0, v(g(n))) and
d(x∗n, v(g(n)∗)) are bounded above by

δsh

(1− κsh) (1− κ2n
sh )

 δsh  κ

ε
.

This proves conclusions (1) and (2) of the AP.
From Proposition 2.28 we infer that for any g ∈ L (V ),

‖(Dϕg)v(g)‖ = s2(g)

‖g‖ = σ(g).

Hence, by conclusion (1) of the shadowing lemma

σ(g(n)) = ‖(Dϕg(n) )v(g(n))‖ ≤ Lip(ϕg(n) |B(v(g0),εsh))

≤ (κsh)
n ≤

(
κ (4+ 2 ε)

ε2

)n

.

On the other hand, by (1) the distance from v(g(n)) to v(g0) is of order κ ε−1 � ε

and
Lip(ϕg0 |B(v(g0),κ ε−1)) � ‖(Dϕg0)v(g0)‖ = σ(g0) ≤ κ.

Therefore

σ(g(n)) � κ (κsh)
n−1 ≤ κ

(
κ (4+ 2 ε)

ε2

)n−1
,

which proves conclusion (3) of the AP.
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Before proving (4), notice that applying (3) to the chain of linearmaps g0, . . . , gi−1
we get that g(i) := gi−1 . . . g0 has a first gap ratio for all i = 1, . . . , n.

We claim that ∣
∣α(g(i), gi)− α(gi−1, gi)

∣
∣ � κ ε−1. (2.27)

By (2) of the AP, applied to the chain of linear maps g0, . . . , gi−1,

d(v(g(i)∗), v(g∗i−1)) ≤
δsh

(1− κsh)(1− κ2i
sh)

� κ ε−1.

Hence, by Proposition 2.35

∣
∣α(g(i), gi)− α(gi−1, gi)

∣
∣ = ∣∣α(v(g(i)∗), v(gi))− α(v(g∗i−1), v(gi))

∣
∣

≤ d(v(g(i)∗), v(g∗i−1)) � κ ε−1.

For any i, the logarithm of any ratio between the four factors α(g(i), gi), β(g(i), gi),
α(gi−1, gi) and β(gi−1, gi) is of order κ ε−2. In fact, by (2.27)

∣
∣log

α(g(i), gi)

α(gi−1, gi)

∣
∣ � 1

ε

∣
∣α(g(i), gi)− α(gi−1, gi)

∣
∣ ≤ κ ε−2.

By hypothesis (a), σ(gi) ≤ κ . From conclusion (3) we also have σ(g(i)) < κ ,
provided we make the constant c small enough. Hence by Lemma 2.4,

∣
∣log

β(gi−1, gi)

α(gi−1, gi)

∣
∣ � κ2

ε2
and

∣
∣log

β(g(i), gi)

α(g(i), gi)

∣
∣ � κ2

ε2
.

Since κ2ε−2 � κ ε−2, the logarithms of the other ratios between the factors above
are all � κ ε−2. Thus, for some universal constant C > 0, each of these ratios is
inside the interval [e−C κ ε−2 , eC κ ε−2 ].

Finally, applyingProposition2.25 to the riftsρ(g0, . . . , gn−1),ρ(g0, g1),ρ(g1, g2),
etc., we have

e−n C κ ε−2 ≤
n−1∏

i=1

α(g(i), gi)

β(gi−1, gi)
≤ ρ(g0, . . . , gn−1)
∏n−1

i=1 ρ(gi−1, gi)
≤

n−1∏

i=1

β(g(i), gi)

α(gi−1, gi)
≤ en C κ ε−2 ,

which by Remark 2.4 is equivalent to (4). �

Next proposition is a practical reformulation of the Avalanche Principle.
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Proposition 2.42 There exists c > 0 such that given 0 < ε < 1, 0 < κ ≤ c ε2 and
g0, g1, . . . , gn−1 ∈ Mat(m, R), if

(gaps) gr(gi) >
1

κ
for all 0 ≤ i ≤ n− 1

(angles)
‖gi gi−1‖
‖gi‖ ‖gi−1‖ > ε for all 1 ≤ i ≤ n− 1

then

max
{

d(v(g(n)∗), v(g∗n−1)), d(v(g(n)), v(g0))
}

� κ ε−1
∣
∣
∣
∣
∣
log‖g(n)‖ +

n−2∑

i=1
log‖gi‖ −

n−1∑

i=1
log‖gigi−1‖

∣
∣
∣
∣
∣
� n

κ

ε2
.

Proof Consider the constant c > 0 in Theorem 2.1, let c′ := c (1−2 c2) and assume
0 < κ ≤ c′ ε2.

Assumption (gaps) here is equivalent to assumption (a) of Theorem 2.1. By Propo-
sition 2.24, the assumption (angles) here implies

α(gi−1, gi) ≥ ρ(gi−1, gi)

√

1− 2 κ2

ρ(gi−1, gi)2

≥ ε

√

1− 2 κ2

ε2
≥ ε

√
1− 2 c2 ε2 =: ε′,

Since 0 < κ ≤ c′ ε2, and c′ ε2 ≤ c (1−2 c2 ε2) ε2 = c (ε′)2 we have 0 < κ ≤ c (ε′)2.
Thus, because ε  ε′, this proposition follows from conclusions (1), (2) and (4) of
Theorem 2.1. �

2.4.3 Consequences of the AP

Given a chain of linear maps {gj : Vj → Vj+1}0≤j≤n−1 between Euclidean spaces Vj,
and integers 0 ≤ i < j ≤ n we define

g(j,i) := gj−1 ◦ · · · ◦ gi+1 ◦ gi.

With this notation the following relation holds for 0 ≤ i < k < j ≤ n,

g(j,i) = g(j,k) ◦ g(k,i).

Next proposition states, in a quantified way, that the most expanding directions
v(gn,i)) ∈ P(Vi) are almost invariant under the adjoints of the chain mappings.
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Proposition 2.43 Under the assumptions of Theorem 2.1, where 0 < κ � ε2,

d(ϕg∗i v(g
(n,i+1)), v(g(n,i))) � κ

ε
(
κ (4+ 2 ε)

ε2
)n−i.

Proof Consider κ , ε, κsh and εsh as in Theorem 2.1. From the proof of item (3) of the
AP, applied to the chain of mappings g∗n−1, . . . , g∗i , we conclude that the composition
g(n,i) = g∗i ◦ · · · ◦g∗n−1 is a (κsh)

n−i-Lipschitz contraction on the ball B(v(g∗n−1), εsh).
On the other hand, by (2) of the AP we have d( v(g(n,i+1)∗, v(g∗n−1) ) � κ ε−1 and
d( v(g∗n−1), v(g(n,i)∗ ) � κ ε−1. Since κ ε−1 � ε  εsh, both projective points
v(g(n,i)∗) and v(g(n,i+1)∗) belong to the ball B(v(g∗n−1), εsh). Thus,

d(ϕg∗i v(g
(n,i+1)), v(g(n,i)))

= d( ϕg∗i ◦ ϕg(n,i+1)∗ v(g(n,i+1)∗), ϕg(n,i)∗ v(g(n,i)∗) )

= d( ϕg(n,i)∗ v(g(n,i+1)∗), ϕg(n,i)∗ v(g(n,i)∗) )

≤ (κsh)
n−i d( v(g(n,i+1)∗, v(g(n,i)∗ )

≤ (
κ (4+ 2 ε)

ε2
)n−i

(
d( v(g(n,i+1)∗, v(g∗n−1) )+ d( v(g∗n−1), v(g

(n,i)∗ )
)

� 2 κ

ε
(
κ (4+ 2 ε)

ε2
)n−i.

which proves the proposition. �

Most expanding directions and norms of products of chains matrices under an
application of the AP admit the following modulus of continuity.

Proposition 2.44 Let c > 0 be the universal constant in Theorem 2.1. Given num-
bers 0 < ε < 1 and 0 < κ < c ε2, and given two chains of matrices g0, . . . , gn−1
and g′0, . . . , g′n−1 in Mat(m, R), both satisfying the assumptions of the AP for the
given parameters κ and ε, if drel(gi, g′i) < δ for all i = 0, 1, . . . , n− 1, then

(a) d( v(gn−1 . . . g0), v(g′n−1 . . . g′0) ) � κ
ε
+ 8 δ,

(b)
∣
∣log

‖gn−1 . . . g0‖
‖g′n−1 . . . g′0‖

∣
∣ � n

(
κ

ε2
+ δ

ε

)

.

Proof Item (a) follows from conclusion (1) of Theorem 2.1, and Proposition 2.40,

d( v(gn−1 . . . g0), v(g
′
n−1 . . . g′0) ) ≤ d( v(gn−1 . . . g0), v(g0) )

+ d(v(g0), v(g
′
0))+ d( v(g′0), v(g′n−1 . . . g′0) )

� 2
κ

ε
+ 16 δ

1− κ2 �
κ

ε
+ 8 δ.
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Assuming ‖gi‖ ≥ ‖g′i‖, we have

‖gi‖
‖g′i‖

≤ 1+ ‖gi − g′i‖
‖g′i‖

≤ 1+ ‖gi‖
‖g′i‖

drel(gi, g′i) ≤ 1+ δ
‖gi‖
‖g′i‖

which implies
‖gi‖
‖g′i‖

≤ 1

1− δ
.

Because the case ‖gi‖ ≤ ‖g′i‖ is analogous, we conclude that
∣
∣log

‖gi‖
‖g′i‖

∣
∣ ≤ log

(
1

1− δ

)

≤ δ

1− δ
 δ.

Since the two chains of matrices satisfy the assumptions of the AP we have

‖gi gi−1‖
‖gi‖ ‖gi−1‖ ≥ α(gi−1, gi) ≥ ε and

‖g′i g′i−1‖
‖g′i‖ ‖g′i−1‖

≥ α(g′i−1, g′i) ≥ ε.

A simple calculation gives

drel( gi gi−1, g′i g′i−1 ) ≤ ‖gi‖‖gi−1‖
‖gigi−1‖ max

{

1,
‖g′i‖
‖gi‖

}

drel(gi, g′i)

+ ‖g
′
i‖‖g′i−1‖
‖g′ig′i−1‖

max

{

1,
‖gi−1‖
‖g′i−1‖

}

drel(gi−1, g′i−1)

≤ 2

(1− δ)2

δ

ε
 δ

ε
.

Therefore, arguing as above,

∣
∣log

‖gi gi−1‖
‖g′i g′i−1‖

∣
∣ � δ

ε
.

Hence, by conclusion (4) of the AP we have

∣
∣log

‖gn−1 . . . g0‖
‖g′n−1 . . . g′0‖

∣
∣ ≤ ∣∣log ‖gn−1 . . . g0‖ ‖g1‖ . . . ‖gn−2‖

‖g1 g0‖ . . . ‖gn−1 gn−2‖
∣
∣

+ ∣∣log ‖g′1 g′0‖ . . . ‖g′n−1 g′n−2‖
‖g′n−1 . . . g′0‖ ‖g′1‖ . . . ‖g′n−2‖

∣
∣

+
n−2∑

i=1

∣
∣log

‖g′i‖
‖gi‖

∣
∣+

n−1∑

i=1

∣
∣log

‖gi gi−1‖
‖g′i g′i−1‖

∣
∣
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� 2 n
κ

ε2
+ (n− 2) δ + (n− 1)

δ

ε

� n

(
κ

ε2
+ δ

ε

)

,

which proves (b). �

The next proposition is a flag version of the AP.
Let τ = (τ1, . . . , τk) be a signature with 0 < τ1 < τ2 < · · · < τk < m.
We call τ -block product any of the functions πτ,j : Mat(m, R) → R,

πτ,j(g) := sτj−1+1(g) . . . sτj (g), 1 ≤ j ≤ k,

where by convention τ0 = 0. A τ -singular value product, abbreviated τ -s.v.p., is any
product of distinct τ -block products. By definition, τ -block products are τ -singular
value products. Other examples of τ -singular value products are the functions

pτj (g) = s1(g) . . . sτj (g) = ‖∧τj g‖.

Note that for every 1 ≤ j ≤ k we have:

πτ,j(g) = pτj (g)

pτj−1(g)
,

and
pτj (g) = πτ,1(g) . . . πτ,j(g).

Proposition 2.45 (Flag AP) Let c > 0 be the universal constant in Theorem 2.1.
Given numbers 0 < ε < 1, 0 < κ ≤ c ε2 and a chain of matrices gj ∈ Mat(m, R),
with j = 0, 1, . . . , n− 1, if

(a) στ (gi) ≤ κ , for 0 ≤ i ≤ n− 1, and
(b) ατ (gi−1, gi) ≥ ε, for 1 ≤ i ≤ n− 1,

then

(1) d(vτ (g(n)∗), vτ (g∗n−1)) � κ ε−1
(2) d(vτ (g(n)), vτ (g0)) � κ ε−1

(3) στ (g(n)) ≤
(

κ (4+2 ε)

ε2

)n

(4) for any τ -s.v.p. function π ,

∣
∣logπ(g(n))+

n−2∑

i=1
logπ(gi)−

n−1∑

i=1
logπ(gi gi−1)

∣
∣ � n

κ

ε2
.

Proof For each j = 1, . . . , k, consider the chain of matrices ∧τj g0,∧τj g1, . . . ,∧τj

gn−1. Assumptions (a) and (b) here imply the corresponding assumptions of
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Theorem 2.1 for all these chains of exterior power matrices. Hence, by (1) of the AP

d(vτj (g
(n)∗), vτj (g

∗
n−1)) = d(Ψ (vτj (g

(n)∗)), Ψ (vτj (g
∗
n−1)))

= d(v(∧τj g
(n)∗), v(∧τj g

∗
n−1)) � κ ε−1.

Thus, taking the maximum in j we get d(vτ (g(n)∗), vτ (g∗n−1)) � κ ε−1, which proves
(1). Conclusion (2) follows in the same way.

Similarly, from (3) of Theorem 2.1, we infer the corresponding conclusion here

στ (g
(n)) = max

1≤j≤k
στj (g

(n)) = max
1≤j≤k

σ(∧τj g
(n)) ≤

(
κ (4+ 2 ε)

ε2

)n

.

Let us now prove (4).
For the τ -s.v.p. π(g) = pτ,j(g) = ‖∧τj g‖ conclusion (4) is a consequence of the

corresponding conclusion of Theorem 2.1.
For the τ -block product π = πτ,j, since

logπ(g) = log‖∧τj g‖ − log‖∧τj−1g‖,

conclusion (4) follows again from Theorem 2.1 (4).
Finally, since any τ -s.v.p. is a finite product of τ -block products we can reduce

(4) to the previous case. �

We finish this section with a version of the AP for complex matrices.
The singular values of a complex matrix g ∈ Mat(m, C) are defined to be the

eigenvalues of the positive semi-definite hermitianmatrixg∗ g,whereg∗ stands for the
transjugate of g, i.e., the conjugate transpose of g. Similarly, the singular vectors of g
are defined as the eigenvectors of g∗ g. The sorted singular values of g ∈ Mat(m, C)

are denoted by s1(g) ≥ s2(g) ≥ · · · ≥ sm(g). The top singular value of g coincides
with its norm, s1(g) = ‖g‖.

The (first) gap ratio of g is the quotient σ(g) := s2(g)/s1(g) ≤ 1. We say that
g ∈ Mat(m, C) has a (first) gap ratio when σ(g) < 1.When this happens the complex
eigenspace

{v ∈ C
m : g∗ g v = ‖g‖ v} = {v ∈ C

m : ‖g v‖ = ‖g‖ ‖v‖}

has complex dimension one and determines a point in P(Cm), denoted by v(g) and
referred to as the g-most expanding direction.

Given points v̂, û ∈ P(Cm), we set

α(v̂, û) :=
∣
∣〈v, u〉∣∣
‖v‖ ‖u‖ where v ∈ v̂, u ∈ û. (2.28)
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Given g, g′ ∈ Mat(m, C), both with (first) gap ratios, we define the angle between
g and g′ to be

α(g, g′) := α(v(g∗), v(g′)).

With these definitions, the real version of theAP leads in a straightforwardmanner
to a slightly weaker complex version, stated and proved below. However, adapting
the original proof to the complex case, replacing each real concept by its complex
analog, would lead to the same stronger estimates as in Theorem 2.1.

Proposition 2.46 (ComplexAP)Let c > 0 be the universal constant in Theorem 2.1.
Given numbers 0 < ε < 1, 0 < κ ≤ c ε4 and a chain of matrices gj ∈ Mat(m, C),
with j = 0, 1, . . . , n− 1, if

(a) σ(gi) ≤ κ , for 0 ≤ i ≤ n− 1, and
(b) α(gi−1, gi) ≥ ε, for 1 ≤ i ≤ n− 1,

then

(1) d(v(g(n)∗), v(g∗n−1)) � κ ε−2
(2) d(v(g(n)), v(g0)) � κ ε−2

(3) σ(g(n)) ≤
(

κ (4+2 ε2)

ε4

)n

(4)
∣
∣log‖g(n)‖ +

n−2∑

i=1
log‖gi‖ −

n−1∑

i=1
log‖gi gi−1‖

∣
∣ � n

κ

ε4
.

Proof Make the identification C
m ≡ R

2m, and given g ∈ Mat(m, C
m) denote by

gR ∈ Mat(2m, R) the matrix representing the linear operator g : R2m → R
2m in the

canonical basis.
We make explicit the relationship between gap ratios and angles of the complex

matrices and g, g′ ∈ Mat(m, C), and the gap ratios and angles of their real analogues
gR and (g′)R.

Given g ∈ Mat(m, C), for each eigenvalue λ of g, the matrix gR has a correspond-
ing pair of eigenvalues λ, λ. Since g �→ gR is a C∗-algebra homomorphism, we have
(g∗ g)R = (gR)∗ (gR). Therefore, for all i = 1, . . . , m, si(g) = s2i−1(gR) = s2i(gR).
In particular, considering the signature τ = (2),

σ(2)(g
R) = s3(gR)

s1(gR)
= s2(g)

s1(g)
= σ(g). (2.29)

The g-most expanding direction v(g) ∈ P(Cm) is a complex line which we can
identify with the real 2-plane v(2)(gR). This identification, v(g) ≡ v(2)(gR), comes
from a natural isometric embedding P(Cm) ↪→ Gr2(R2m).

Consider two points v̂, û ∈ P(Cm) and take unit vectors v ∈ v̂ and u ∈ û. Denote
by U, V ⊂ C

m the complex lines spanned by these vectors, which are planes in
Gr2(R2m). Consider the complex orthogonal projection onto the complex line V ,
πu,v : U → V , defined by πu,v(x) := 〈x, v〉 v. By (2.28) we have α(v̂, û) = ‖πu,v‖.
On the other hand, since the adjoints π∗u,v : V → U of πu,v both as a complex and as
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a real linear maps coincide, it follows that πu,v = πU,V is the restriction to U of the
(real) orthogonal projection onto the 2-plane V . Thus, by Proposition 2.19(b),

α2(U, V ) =
√
det R(π∗u,vπu,v) = det C(π∗u,vπu,v) = ‖πu,v‖2 = α(v̂, û)2.

In particular,

α(2)(g
R, (g′)R) = α(2)(v((g

R)∗), v((g′)R)) = α(v(g∗), v(g′))2 = α(g, g′)2. (2.30)

Take κ, ε > 0 such that κ < c ε4, 0 < ε < 1, and consider a chain of matrices
gj ∈ Mat(m, C), j = 0, 1, . . . , n − 1 satisfying the assumptions (a) and (b) of the
complex AP. By (2.29) and (2.30), the assumptions (a) and (b) of Proposition 2.45
hold for the chain of real matrices gR

j ∈ Mat(2m, R), j = 0, 1, . . . , n − 1, with
parameters κ and ε2, and with τ = (2). Therefore conclusions (1)–(4) of the complex
AP follow from the corresponding conclusions of Proposition 2.45. In conclusion
(4) we use the (2)-singular value product π(g) := ‖g‖2 = ‖∧2gR‖. �
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