
Preface

The aim of this monograph is to present a general method of proving continuity
of the Lyapunov exponents (LE) of linear cocycles.

The method consists of an inductive procedure that establishes continuity of
relevant quantities for finite, larger and larger number of iterates of the system. This
leads to continuity of the limit quantities, the LE. The inductive procedure is based
upon a deterministic result on the composition of a long chain of linear maps called
the Avalanche Principle (AP). A geometric approach is used to derive a general
version of this principle.

The main assumption required by this method is the availability of appropriate
large deviation type (LDT) estimates for quantities related to the iterates of the base
and fiber dynamics associated with the linear cocycle. Crucial for our approach is
the uniformity in the data of these estimates.

We derive such LDT estimates for various models of random cocycles (over
Bernoulli and Markov systems) and quasi-periodic cocycles (defined by one or
multivariable torus translations). The random model, treated under an irreducibility
assumption, uses an existing functional analytic approach which we adapt so that it
provides the required uniformity of the estimates. The quasi-periodic model uses
harmonic analysis and it involves the study of (pluri) subharmonic functions.

This method has its origins in a paper of M. Goldstein and W. Schlag which
proves continuity of the Lyapunov exponent for the one-parameter family of
quasi-periodic Schrödinger cocycles, assuming a uniform lower bound on the
exponent. This is where the first version of the Avalanche Principle appeared, along
with the use and proof of the relevant LDT estimate.

The present work expands upon their approach in both depth and breadth.
Moreover, it reduces the general problem of proving continuity of the LE to one of
a different nature—proving LDT estimates. This may be treated independently and
by means specific to the underlying base dynamic of the the cocycle.

Our geometric approach to the AP also gives rise to a mechanism for studying
the most expanding singular direction of the composition of a long chain of linear
maps. This allows us to obtain a new proof of the Multiplicative Ergodic
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Theorem of Oseledets. Moreover, assuming the availability of the same LDT
estimates, this extension of the AP leads to continuity properties of the Oseledets
filtration and decomposition.

Most of the results presented in this research monograph are new. We assume
the reader to have a certain degree of familiarity with basic dynamical systems and
ergodic theory notions. The relevant concepts and definitions needed for the for-
mulation of the main results are introduced in Chap. 1. While each subsequent
chapter is to some extent self-contained and it may be read independently of the
rest, all the arguments in this work are based upon the results in Chaps. 2 and 3.
Besides the formulation and the proof of the AP, Chap. 2 contains Lipschitz esti-
mates on certain Grassmann geometrical quantities that are crucial in Chap. 4,
where we study the Oseledets filtration and decomposition and their continuity
properties. In Chap. 3 we establish the abstract continuity theorem (ACT) of the LE
and some other related technical results. In Chaps. 5 and 6, under appropriate
assumptions, we derive the relevant LDT estimates for random and respectively
quasi-periodic cocycles. The general results in Chaps. 3 and 4 are then applicable to
these models, and they imply continuity properties of the LE and of the Oseledets
filtration and decomposition for the corresponding spaces of cocycles.

Our work concludes in Chap. 7 with a list of related open problems, some of
which may be treated using the methods described in this monograph.
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