Chapter 2
Estimates on Grassmann Manifolds

Abstract The main result of this chapter, called the Avalanche Principle (AP),
relates the expansion of a long product of matrices with the product of expansions
of the individual matrices. This principle was introduced by M. Goldstein and
W. Schlag in the context of SL(2, C) matrices. Besides extending the AP to matrices
of arbitrary dimension and possibly non-invertible, the geometric approach we use
here provides a relation between the most expanding (singular) directions of such a
long product of matrices and the corresponding singular directions of the first and last
matrices in the product. The AP along with other estimates on the action of matrices
on Grassmann manifolds will play a fundamental role in the next chapters, when we
establish the continuity the LE and of the Oseledets decomposition.

2.1 Grassmann Geometry

Grassmann geometry is the geometric study of manifolds of linear subspaces of
an Euclidean space and of the action of linear groups (and algebras) on them. Its
foundations were laid in the masterpiece ‘Die lineale Ausdehnungslehre’ of Hermann
Grassmann, whose genius is still not fully understood, as explained in the survey [2].

2.1.1 Projective Spaces

The projective space is the simplest compact model to study the action of a linear
map. Given an n-dimensional Euclidean space V, consider the equivalence relation
defined on V \ {0} by u = v if and only if u = A v for some A # 0. Forv € V \ {0},
the set b := {Av: A € R\ {0}} is the equivalence class of the vector v relative to
this relation. The projective space of V is the quotient P(V) := {V : v € V \ {0}} of
V'\ {0} by this equivalence relation. It is a compact topological space when endowed
with the quotient topology.
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The unit sphere S(V) := {v € V : ||v| = 1} is a compact Riemannian manifold
of constant curvature 1 and diameter 7. The natural projection 7 : S(V) — P(V),
7 (v) = v, is a (double) covering map. Hence the projective space P(V') has a natural
smooth Riemannian structure for which the covering map 7 is a local isometry. Thus
P(V) is a compact Riemannian manifold with constant curvature 1 and diameter 5.

Given a linear map g € Z(V) define P(g) := {¥ € P(V) : gv # 0}. We refer
to the linear map ¢, : P(g) C P(V) — P(V), @,(¥) := fr(ﬁ), as the projective
action of g on P(V). If g is invertible then ¢, : P(V) — P(V) is a diffeomorphism
with inverse @1 : P(V) — P(V). Through these maps, the group GL(V), of all
linear automorphisms on V, acts transitively on the projective space P(V).

We will consider three different metrics on the projective space P(V). The Rie-
mannian distance, p, measures the length of an arc connecting two points on the
sphere. More precisely, given u, v € S(V),

o (i, V) == min{Z(u, v), Z(u, —v)}. 2.1

The second metric, d, corresponds to the Euclidean distance. More precisely, given
u,v e S(V),
d(it, v) == minfflu — v|, lu + v[l} 2.2

measures the smallest chord of the arcs between u and v and between u and —v. The
third metric, §, measures the sine of the arc between two points on the sphere. More
precisely, given u, v € S(V),

s o vl
T Tl vl

— sin(Z(u, v)). 2.3)

The fact that § is a metric on P(V') follows from the sine addition law, which implies
that sin(0 + 0’) < sin@ +sind’, forall 9,0’ € [0, Z].
These three distances are equivalent. For all iz, v € P(V),

8, v) =sinp(u,v) and d(i, v) = chord p (i, V). 2.4)

The inequalities
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— <sinf < chordd =2 sin(0/2) <6 VO
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imply that
2
—p@@, V) <8, v) <d@,v) < p, V). (2.5)
bid

Because of (2.4), these three metrics determine the same group of isometries on the
projective space.
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2.1.2 Exterior Algebra

Exterior Algebra was introduced by H. Grassmann in the ‘Ausdehnungslehre’. We
present here an informal description of some of its properties. See the book of
Stenberg [8] for a rigorous treatment of the subject.

Let V be a finite n-dimensional Euclidean space. Given k vectors vy, ..., v € V,
their kth exterior product is a formal skew-symmetric product v; A - -+ A vy, in the
sense that for any permutation o = (074, ..., 0%) € S,

Vo, Ao AV, = (= 1)@y A Ay,

These formal products are elements of an anti-commutative and associative graded
algebra (A, V, +, A), called the exterior algebra of V. Formal products vi A--- A vy
are called simple k-vectors of V. The kth exterior power of V, denoted by AV, is
the linear span of all simple k vectors of V. Elements of A,V are called k-vectors.
An easy consequence of this formal definition is that vi A --- A v = 0 if and

only if vy, ..., v are linearly dependent. Another simple consequence is that given
two bases {v, ..., v} and {wy, ..., wi} of the same k-dimensional linear subspace
of V, if for some real matrix A = (a;;) we have w; = Zf:l ajvjforalli=1,... k,
then '

Wi A Awp = (detA)vi A Avg.

More generally, two families {vi, ..., v} and {wy, ..., wi} of linearly independent
vectors span the same k-dimensional subspace if and only if for some real number
A#EO0, W A--- Awp = AVp A - A v Hence we identify the line spanned by a
simple k-vector v = v| A - -+ A v, i.e., the projective point ¥ € P(A; V) determined
by v, with the k-dimensional subspace spanned by the vectors {v, ..., v}, denoted
hereafter by (vi A -+ A v).

The subspaces AV induce the grading structure of the exterior algebra A,V , i.e.,
we have the direct sum decomposition A,V = @MV A V with (A V) A (A V) C
Arax'V for all 0 < k, k' < dim V. Geometrically, the exterior product operation
A AV X AV — Apqr'V corresponds to the algebraic sum of linear subspaces, in
the sense that given families {vy, ..., v} and {wy, ..., wy} of linearly independent
vectors such that {(vi A--- A v ) N {wi A+ Awp) =0, then

iA-AVEAWIA-AWE) =VIA- - AV) F+ (Wi A Awg).

Let A} be the setof all k-subsets I = {i, ..., i} C {1,...,n},withi; < --- <,
and order it lexicographically. Given a basis {ey, . .., e¢,} of V,define foreach € A7,
the kth exterior product e¢; = e;; A --- A ¢;,. Then the ordered family {e; : I € A}}
is a basis of A, V. In particular dim A,V = (Z)

The exterior algebra A,V inherits an Euclidean structure from V. More pre-

cisely, there is a unique inner product on A,V such that for any orthonormal basis
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{er,..., e} of V, the family {e; : I € A}, 0 < k < n} is an orthonormal basis of
the exterior algebra A, V.

Given vectors vy, ..., v € V letus call parallelepiped generated by these vectors
the set

k
POr,...ov) =D gy e[0 1] j=1,... .k
=1

Interestingly, the norm of the simple k-vector v; A- - - Avy is equal to the k-dimensional
volume of the parallelepiped generated by its factors v;. More precisely,

lvi Ao Avedl = Vol (P(vy, - .., Vi), (2.6)

where Vol stands for the k-dimensional Hausdorff measure. To explain this fact first

notice that if the vectors vy, ..., v are pairwise orthogonal then
lvi A Al Vi Vi
vl -~ lvell Vil [Ivell
because the vectors {v;/||v;ll: j =1, ..., k} are orthonormal. This shows that [[v; A
<« AVell = llvill - - - llve |l and establishes (2.6) in this case. In general we use the

Gram-Schmidt orthogonalization method, defining recursively

j—1

/o /.
vi=vi and v; =v; E

At each step, when we replace v; by v]/., both wedge products and k-volumes are
preserved. Hence vi A--- AV, = v A--- A v and

i A Al = VA Al = Il vl
= Vol (P(V), ... V})) = Vol (P(vi, ..., vi).

Formula (2.6) also implies that for any simple vectors ¢ = e; A --- A e, and
f=hn---nfsinV,
lle AfI=<llell IF1l- (2.7

Moreover, equality holds if and only if (e;,f;) = Oforalli = 1,...,r andj =
1,...,s.

A simple k-vector v; A --- A v of norm one is called a unit k-vector. From the
previous considerations the correspondence vi A -+ Avg = (Vi A .-+ A v} is one-
to-one, between the set of unit k-vectors in A, V and the set of oriented k-dimensional
linear subspaces of V. In particular, if V is an oriented Euclidean space then the 1-
dimensional space A,V has a canonical unit n-vector, denoted by w, and called the
volume element of A,V . In this case there is a unique operator, called the Hodge star
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operator, x : A,V — A,V defined by

VA (xw) = (v,w)w, forall v,we A,V.
The Hodge star operator maps AV isomorphically, and isometrically, onto A, V,

for all 0 < k < n. Geometrically it corresponds to the orthogonal complement
operation on linear subspaces, i.e., for any simple k-vector,

(1 A AVD) = (i A A
A dual product operation Vv : A,V x A,V — A,V can be defined by
vV w = x((xv) A (xw)), forall v,we A V.

This operation maps AxV X ApV to Agx—, V, and describes the intersection opera-
tion on linear subspaces, in the sense that given families {v;, ..., vy} and {wy, ..., wi}
of linearly independent vectors with {vi A --- Av) + (w1 A - - Awp) =V, then

(in-Av) VLA Aw)) = (i A Av) D {wr A Awgr).

The geometric meaning of the \V-operation reduces by duality to that of the sum
A-operation and the complement x-operation.

Any linear map g : V — V induces a linear map Azg : AV — AV, called the
kth exterior power of g, such that for all vy, ..., v, € V,

AW A AvE) =gV A A g(vg).
This construction is functorial in the sense that for all linear maps g, ¢’ : V. — V,
Aeddy =1iday, Ar(gog) =g ong  and  Ap g8 = (AT

where g* : V — V denotes the adjoint operator.

A clear consequence of these properties is that if g : V — V is an orthogonal
automorphism, i.e., g* o g = idy, then so is Arg : AV — ALV

Consider a matrix A € Mat(n, R). Given I, J € A}, we denote by A, the square
sub-matrix of A indexedin/ xJ.Ifalinearmap g : V — V isrepresented by A relative
toabasis {ey, ..., e,}, then the kth exterior power Arg : AV — AV isrepresented
by the matrix AtA = (det Ay )y, relative to the basis {e; : I € A}}. The matrix
AkA is called the kth exterior power of A. Obviously, matrix exterior powers satisfy
the same functorial properties as linear maps, i.e., for all A, A" € Mat(n, R),

Adn =Ty, AAA) = (AMA)(ARA) and AL AY = (AA)Y

where A* denotes the transpose matrix of A.



28 2 Estimates on Grassmann Manifolds

Letn =dimVand{e;: i = 1, ..., n} be an eigen-basis of a linear endomorphism
g: V — V with eigenvalues {X;: i = 1,...,n},i.e., ge; = Aje; foralli =1, ..., n.
Then the family {e;: I € A}} is an eigen-basis of Axg: A V — A,V with eigen-
values
A= )‘il)‘iz "')\‘ik’ I = {il, ey ik} (S AZ

In other words, (Arg)e; = Arer forall I € Aj.

2.1.3 Grassmann Manifolds

Grassmannians, like projective spaces, are compact Riemannian manifolds which
stage the action of linear maps. For each 0 < k < n, the Grassmannian Gry(V) is
the space of all k-dimensional linear subspaces of V. Notice that the projective space
P(V) and the Grassmannian Gr(V) are the same object if we identify each point
v € P(V) with the line (v) = {Av: A € R}. The full Grassmannian Gr(V) is the
union of all Grassmannians Gry (V) with 0 < k < n. Denote by .Z (V) the algebra of
linear endomorphisms on V, and consider the map 7 : Gr(V) — Z(V), E — ng,
that assigns the orthogonal projection mz onto E, to each subspace E € Gr(V). This
map is one-to-one, and we endow Gr(V') with the unique topology that makes the
map 7 : Gr(V) — 7 (Gr(V)) ahomeomorphsim. With it, Gr(V) becomes a compact
space, and each Grassmannian Gr (V) is a closed connected subspace of Gr(V).

The group GL(V) acts transitively on each Grassmannian. The action of GL(V)
on Gry (V) is given by - : GL(V) x Gry (V) — Grr(V), (g, E) +— g E. The special
orthogonal group SO(V), of orientation preserving orthogonal automorphisms, acts
transitively on Grassmannians too. All Grassmannians are compact homogeneous
spaces.

For each 0 < k < n, the Pliicker embedding is the map v : Gry(V) — P(ALV)
that to each subspace E in Gry (V) assigns the projective point v € P(A;V), where
v = vy A .-+ AW is any simple k-vector formed as exterior product of a basis
{vi, ..., v} of E. This map is one-to-one and equivariant, i.e., for all g € GL(V)
and E € Gr(V),

VQE) = @neV(E). (2.8)

We will consider the metrics p, d, § : Gri(V) x Gry (V) — [0, +00) defined for
any given E, F € Gri(V) by

P(E, F) = p(Y(E), ¥ (F)), (2.9)
d(E, F) :=d(y (E), ¥ (F)), (2.10)
S(E,F) :==8(Y(E), Y (F)). (2.11)

which assign diameter %, /2 and 1, respectively, to the manifold Gr; (V). These
distances are preserved by the action of orthogonal linear maps in SO(V).
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Given k, k' > 0 such that k + k" > n = dim V, the intersection of subspaces is
an operation N : Gry 4 (N) C Gry (V) x Gry (V) — Griqp—, (V) where:

Definition 2.1 The domain is defined by
Griw(N) :={(E,E') € Gry(V) x Grp(V) : E+E =V},

Similarly, given k, K’ > 0 such that k + k¥’ < n = dim V, the algebraic sum of
subspaces is operation + : Gry p (+) C Gri(V) x Grp (V) — Griyp—, (V) where:

Definition 2.2 The domain is defined by
Grpp(+) := {(E, E') € Gri(V) x Grp(V) : ENE" = {0}}.

The considerations in Sect.2.1.2 show that the Pliicker embedding satisfies the fol-
lowing relations:

Proposition 2.1 Given E € Gry(V), E' € Gry (V), consider unit vectors v € W (E)
andVv € W (E').

(a) If (E,E') € Gryp(N) then Y(ENE') = v v V.
(b) If (E,E') € Gryp(+) then W (E +E') = v A V.

A duality between sums and intersections stems from these facts.

Proposition 2.2 The orthogonal complement operation E — E* is a d-isometric
involution on Gr(V) which maps Gry p (+) to Gr,_i ,—r (M) and satisfies for all
(E,E) € Grip(+),

(E+EHY = (EH N (EN.

The composition semigroup .Z (V) has two partial actions on Grassmannians,
called the push-forward action and the pull-back action. Before introducing them, a
couple of facts are needed.

Definition 2.3 Given g € Z(V), we denote by Kg := {v € V : gv = 0} the kernel
of g, and by Rg := {gv: v € V} the range of g.

Lemma 2.1 Giveng € £ (V) and E € Gr(V),

1. if EN (Kg) = {0} then the linear map g|g : E — g(E) is an isomorphism, and
in particular dim g(E) = dim E.

2. ifE+ (Rg) =V then the linear map g*|g: : E- — g~ (E)* is an isomorphism,
and in particular dim g~'(E) = dimE.

Proof The first statement is obvious because if £ N (Kg) = {0} then K(g|g) = {0}. If
E+(Rg) = V then, since Kg* = (Rg)*, wehave E-N(Kg*) = EXN(R)L = (E+
Rg)* = {0}. Hence by 1, the linear map g*|z: : E* — g*(E?) is an isomorphism.
It is now enough to remark that g*(E b= g’1 (E)*. In fact, the inclusion g*(E bHc
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g '(E)* is clear. Since g*|E* is injective, dim g*(E1) = dim(E"'). On the other
hand, by the transversality condition, g~ (E) has dimension
dim g~ (E) = dim ((glkge+) ' (E NRg)) + dim(Kg)
= dim(E N Rg) + dim(Kg)
= dim(E) + dim(Rg) — n 4+ dim(Kg) = dim(E).

Hence both g*(E*) and g~ (E)* have dimension equal to dim(E"), and the equality
follows. O

Given g € Z(V) and k > 0 such that k + dim(Kg) < n = dim V, the push-
forward by g is the map ¢, : Gri(g) C Gr(V) — Gr(V), E +— gE, where:

Definition 2.4 The domain is defined by
Gri(g) :={E € Gri (V) : EN(Kg) = {0}}.

We warn the reader that the notation ¢, is used for both the projective and the
Grassmannian actions of g € Z (V).

Similarly, given k > 0 such that k + dim(Rg) > n = dim V, the pull-back by g
is the map @ -1 : Gri(g™") € Gri(V) — Gri(V), E — g~ 'E, where:

Definition 2.5 The domain is defined by
Gri(g™ ") :={E€Gr(V): E+ (Rg) =V}

From the proof of Proposition 2.1 we obtain a duality between push-forwards and
pull-backs which can be expressed as follows.

Proposition 2.3 Given g € £ (V) and k > 0 such that k +dim(Rg) > n = dim V,
we have Gry(g7") = Gr,_¢(g")* and for all E € Gry(g™"),
¢ 'B)yt =g (ED).

In Sect. 2.3 we derive a modulus of Lipschitz continuity, w.r.t. the metric 8, for
the sum and intersection operations.

2.1.4 Flag Manifolds

Let V be a finite n-dimensional Euclidean space. Any strictly increasing sequence of
linear subspaces Fy C F, C --- C Fy C V iscalled a flag in the Euclidean space V.
Formally, flags are denoted as lists F = (F1, ..., F}). The sequence t = (11, ..., Tt)
of dimensions 7; = dim Fj is called the signature of the flag F'. The integer k is called



2.1 Grassmann Geometry 31

the length of the flag F, and the length of the signature 7. Let F(V) be the set of all
flags in V, and define F; (V) to be the space of flags with a given signature 7. Two
special cases of flag spaces are the projective space P(V) = F;(V), when v = (1),
and the Grassmannian Gri (V) = F,(V), when T = (k).

The general linear group GL(V) acts naturally on (V). Given g € GL(V)
the action of g on J;(V) is given by the map ¢, : I (V) — T (V), g F =
(gF1, ..., gFi). The special orthogonal subgroup SO(V) C GL(V) acts transitively
on J; (V). Hence, all flag manifolds J; (V') are compact homogeneous spaces. Each
of them is a compact connected Riemannian manifold where the group SO(V) acts
by isometries. Since I (V) C Gry, (V) x Gr, (V) x -+ x Grg (V), the product
distances

p(F,F') = lmaxkp(Fj,Fj’) (2.12)
==

d.(F,F') = max d(F;, F)) (2.13)
1<j<k

8:(F,F) = max §(F;, F)) (2.14)
I<j<k ~ *

are equivalent to the Riemannian distance on 37 (V). With these metrics, the flag
manifold F,(V) has diameter Z, +/2 and 1, respectively. The group SO(V) acts
isometrically on F; (V) with respect to these distances.

Given a signature t = (ty, ..., %), if » = dim V, we define
€.
T i=Mn—T, ..., n—T1).
When t = (7, ..., %) we will write T+ = (¢j*, ..., 7{"), where le =1 — Tipi—i.

Definition 2.6 Givenaflag FF = (Fy, ..., Fy) € F;(V), its orthogonal complement
is the tt-flag F* := (F/, ..., F{).

The map -+ : F(V) — F(V) is an isometric involution on F(V), mapping F, (V)
onto F,1 (V). The involution character, (F1)* = F for all F € F(V), is clear. As
explained in Sect.2.1.2, the Hodge star operator x : A,V — A,V is an isom-
etry between these Euclidean spaces. By choice of metrics on the Grassmannians,
see (2.10), the Pliicker embeddings are isometries. Finally, the Pliicker embedding
conjugates the orthogonal complement map A Gr(V) = Gr,_i (V) with the
Hodge star operator. Hence for each 0 < k < n, the map -+ : Gr;(V) — Gr,_(V)
is an isometry. The analogous conclusion for flags follows from the definition of
distance d;.

Given g € .Z(V) and a signature t such that t; + dim(Kg) < n for all i, the
push-forward by g on flags is the map ¢, : F;(g) C F(V) — T (V), o F =
(gFy,...,gFy), where:

Definition 2.7 The domain of ¢, is defined by

Fe(g) :={F € Fo(V) : F,N(Kg) = {0}}.
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Similarly, given a signature t such that t; + dim(Rg) > n for all i, the pull-
back by g on flags is the map @, : T (g™ C F(V) = F(V), Q1 F =
(g’lFl, e, g’le), where:

Definition 2.8 The domain of ¢,-1 is defined by
Fe(g™) = {FeTu(V): Fi+Rg) =V}

The duality between duality between push-forwards and pull-backs is expressed
as follows.

Proposition 2.4 Given g € ZL(V), F. (g7 = F,1(g") " and for all F € F, (g7 "),

(9g1 F)t = g (FL).

2.2 Singular Value Geometry

Singular value geometry refers here to the geometry of the singular value decom-
position (SVD) of a linear endomorphism g : V — V on some Euclidean space V.
It also refers to some geometric properties of the action of g on Grassmannians and
flag manifolds related to the singular value decomposition of g.

2.2.1 Singular Value Decomposition

Let V be a Euclidean space of dimension 7.

Definition 2.9 Given g € .Z(V), the singular values of g are the square roots of the
eigenvalues of the quadratic form Q, : V — R, Q,(v) = |Ig v||Z = (gv, gv), i.e., the
eigenvalues of the positive semi-definite self-adjoint operator ,/g*g.

Given g € Z(V), let

51(8) = 52(8) = -+ = s4(g) =0,

denote the sorted singular values of g. The adjoint g* has the same singular values
as g because the operators /g*g and /g g* are conjugate.

The largest singular value, 5(g), is the square root of the maximum value of Q,
over the unit sphere, i.e., 51(g) = maxy,|=1llg v|l = ligll is the operator norm of g.
Likewise, the least singular value, s,(g), is the square root of the minimum value
of Q, over the unit sphere, i.e., 5,(g) = miny,=|lg v||. This number, also denoted
by m(g), is called the least expansion of g. If g is invertible then m(g) = |lg~'|~',
while otherwise m(g) = 0.
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Definition 2.10 The eigenvectors of the quadratic form Q,, i.e., of the positive semi-
definite self-adjoint operator /g*g, are called the singular vectors of g.

By the spectral theory of self-adjoint operators, for any g € .Z (V) there exists an
orthonormal basis consisting of singular vectors of g.

Proposition 2.5 Given g € £ (V), let v € V be such that g*gv = A>v with & > 0
and ||v|| = 1, i.e., v is a unit singular vector of g with singular value ). Then there
exists a unit vector w € V such that

(a) gv=2Aw,
(b) gg*w = A>w, i.e, wis a singular vector of g*.

Proof Let v € V be a unit singular vector of g. Then g*gv = A*v with A > 0
and A2 = (A%v,v) = (g*gv,v) = |lgv||>, which implies that A = ||gv]|. Since
(g8 (gv) = g(g*g) v =A2gv,if A # O then setting w = gv/|gv|| = A~ gv, we
have (g g*) w = A% w, which proves that w is a singular vector of g*. By definition
gv = Aw. When A = 0, take w to be any unit vector in Kg*. Notice that dim(Kg) =
dim(Kg*). In this case v and w are singular vectors of g and g*, respectively, such
thatgv =0 = Aw. (I

By the previous proposition, given g € £ (V) there exist two orthonormal sin-
gular vector basis of V, {vi(g), ..., v,(g)} and {v;(g¥), ..., v,(g*)} for g and g¥,
respectively, such that

gvi(g) =si(g)vj(g") forall 1 <j<n.

Denote by D, the diagonal matrix with diagonal entries s;j(g), 1 < j < n, seen as
an operator D, € .Z(R"). Define the linear maps U,, Uy : R" — V by U,(¢;) =
vi(g) and U,-(e;) = v;(g"), forall 1 < j < n, where the ¢; are the vectors of the
canonical basis in R". By construction U, and U, are isometries and the following
decomposition holds

known as the singular value decomposition (SVD) of g.

We say that g has a simple singular spectrum if its n singular values are all distinct.
When g has simple singular spectrum, the singular vectors v;(g) and v;(g*) above
are uniquely determined up to a sign, and in particular they determine well-defined
projective points v;(g), v;(g*) € P(V).

Definition 2.11 Given g € Z(V), we call singular basis of g any orthonormal
basis {v, ..., v,} of V formed by singular vectors of g ordered in such a way that
lgvill = si(g) foralli =1, ...,n.

Given g € Z(V), consider singular bases {v;, ..., v,} and {v], ..., v}} for g and
g%, respectively, such that

gV :sjvjf with s; = s;(g) forall 1 <j<n.
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Forany I = {iy, ..., ik} € A} we have

A Wiy A-e Av) = (Siy o 8i) (Vi A= AVE).

ik

Therefore, by the considerations at the end of Sect.2.1.2, the families of k-vectors
i =vin--Avy i T € Aand vy = viA-- AV T € Af} formtwo singular bases
for Arg and Arg*, respectively, while the products s; = s;, ...s; are the singular
values of both Arg and Ag™.

Proposition 2.6 Forany 1 <k <dimV, ||Awgl = s1(g) ... sc(9).

Proof The maximum product s; is attained when I = {1,...,k} € Aj. Hence
IAkgll =81 -- . sk O

The volume expansion factor of alinearmap g : V — V' between two Euclidean
spaces V and V'’ is defined by

det; (g) := /det(g*g).

This name is justified by the following fact.

Proposition 2.7 Given a linear map g: V — V' between Euclidean spaces, with
n =dim V, for any Borel set B C V,

Vol,(g(B)) = det (g) Vol,(B),

where Vol,, denotes the n-dimensional Hausdorff measure.

Proof Let {v|,...,v,} be any basis of V and consider the parallelipiped B =
P(vy, ..., v,). By Proposition 2.9 below and formula (2.6),

Vol,,(g(B)) = [[(gv) A= A (gv)ll = [(Au@ (i A== AVl
= [[Anglllvi A -+ - A vyl = dety () Vol,(B).

On the third step we have used the fact that A,V has dimension 1. O
Because of this property the volume expansion factor behaves multiplicatively.

Proposition 2.8 Given Euclidean spaces V, V' and V", if g : V — V' is an
isomorphism and g’ : V' — V" any linear map then

det; (g’ 0 g) = dety (g') det (g).

Proposition 2.9 Let V and V' be Euclidean spaces withn = dimV < dim V.
Then for any linear map g: V — V'

det, (g) = s51(8) ... 50.(8) = [IAngll-
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Proof The squares s? = s;(g)* (1 < i < n) are the eigenvalues of g*g. O
Next proposition provides a method to compute the volume expansion factor.
Proposition 2.10 Letg: V — V' be a linear map between Euclidean spaces. Given

orthonormal bases {v;: i =1,...,n} of Vand {v.: i =1, ..., n} of the range gV,

det, (g) = |det ((gv;, v})) |

iJ

Proof The matrix A € Mat(n, R) with entries a;; = (gv;, vj/-) represents the linear
map g in the given orthonormal bases. Consider the isometries U: R" — V and
U': R" — V'’ respectively defined by Ue; = v; and U'e; = v; foralli =1,...,n.
Then g = U'AU* and
det, (g)? = det(g*g) = det(UA*AU*)
= det(A*A) = det(4)”.

This proves that det (g) = ]detA‘. (I

2.2.2 Gaps and Most Expanding Directions

Consider a linear map g € .Z (V) and anumber 1 < k < dim V.

Definition 2.12 The kth gap ratio of g is defined to be

s;(8)

= >1
Sk+1(8)

gr (g)

We will also write gr(g) instead of gr;(g).

Definition 2.13 We say that g has a first singular gap when gr(g) > 1. More
generally, we say that g has a k singular gap when gr, (g) > 1.

In some occasions it is convenient to work with the inverse quantity, denoted by

or(g) = gr(@ ' < 1. (2.15)
Proposition 2.11 Forany 1 <k <dimV,

IAgll?
gr(g) = — o = o1 (Ar8)-
, I k=18l Ak :

Proof The first equality follows from Proposition 2.6. The two first singular values

of Arg are s1(Arg) = s1(8) ... sk—1(8)sk(g) and s2(Arg) = 51(8) - . - Sk—1(&)sr+1()-
Hence
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51(Arg) _ s51(2)
52(Ak8) skr1(8)

gri(Avg) = = g1 (8)- 0

Given g € Z(V), if gr(g) > 1 then the singular value s;(g) = ||g] is simple.

Definition 2.14 In this case we denote by v(g) € P(V) the associated singular
direction, and refer to it as the g-most expanding direction.

By definition we have
9;0(g) =0(g"). (2.16)

More generally, given 1 < k < dim V, we have:

Definition 2.15 If gr, (g) > 1 we define the g-most expanding k-subspace to be
0i(g) =¥ (B(Arg) s

where ¥ stands for the Pliicker embedding defined in Sect.2.1.3.

The subspace by (g) is the direct sum of all singular directions associated with the
singular values s1(g), ..., sx(g). We have

@0 (g) = Vi (g"). (2.17)

Analogously, let n = dim V and assume gr,_,(g) > 1.

Definition 2.16 We define the g-least expanding k-subspace as
0,(9) =0, 4(9)"

The subspace v, (g) is the direct sum of all singular directions associated with the

singular values s,,_+1(g), ..., s,(g). Again we have
00, (8) = 1, (g"). (2.18)
Lett = (71,..., %) beasignature with 1 <7 <--- < <dim V.

Definition 2.17 We define the t-gap ratio of g to be
gr.(g) := min gr.(g).
I<j<k — 7

When gr_(g) > 1 we say that g has a t-gap pattern.

Note that gr.(g) > 1 means that g has a 7; singular gap for 1 < j < k. Recall
that ¥, (V) denotes the space of all t-flags, i.e., flags F = (Fy, ..., F}) such that
dim(F;)) =t forj=1,...,k.
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Definition 2.18 If gr_(g) > 1 then the most expanding t-flag is

b:(8) = (05,(8), ..., by, (8) € F (V).
Given g € Z (V) the domain of its push-forward action on F; (V) is
Definition 2.19  JF:(g) :=={F € 5. (V) : Fix N K, = {0}}.
The push-forward of a flag F € J,(g) by g is

Y =gF = (gFy,...,8F).

Proposition 2.12 Given g € £ (V) such that gr_(g) > 1, the push-forward induces
amap @, 2 I (g) — T (g) such that 0. (g) = 0.(g").

Proof Given F € JF;(g), we have F; N K, = {0} for all j = 1,..., k. Hence
dim gF; = dim F; = t; for all j, which proves that ¢, F € JF(V). To check that
¢ € F(g") we need to show that gFy N Ky = {0}. Assume gv € K+, with
v € Fy, and let us see that gv = 0. By assumption g*gv = 0, which implies
(gg") gv = 0. Since the self-adjoint map g g* induces an automorphism on R,, we
conclude that gv = 0.

The second statement follows from (2.17). O

Given g € Z(V), the domain of its pull-back action on F; (V) is
Definition 2.20 F.'(g) ;== (F € 7, (V) : Fi +R, = V}.
The pull-back of a flag F € F;(g) by g is

1 F = g_lF = (g_lFl, ...,g_le).
Definition 2.21 If gr . (g) > 1 the least expanding t-flag is
0.(8) = (0,,(8), ..., 0,(8) € F (V).

Proposition 2.13 Ifgr (g) > 1 thenv, . (g) = b, (9)* .

Proof Let {vi, ..., v,} be a singular basis of g. Since this basis is orthonormal,
9, (&) = (it V) = (1, )T =Tk
Hence

0,0(8) = (0, (8), .-, 0, (8) = (0 (8),.... 0, ()" =0:(9)". O

Proposition 2.14 Given g € (V) such that gr_. (g) > 1, the pull-back induces a
map Qg1 : 3";1(g) — S‘;I(g*) such that g,10.(8) = 0,(g%).
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Proof Given F € F;'(g), we have F; + R, = V forall j = 1,...,k. Hence
dim g’le = dim F; = 7; for all j, which proves that -1 F € F; (V). To check that
@1 F € F-1(g*) just notice that g~ Fy + Ry 2 K, + K;- =V.

The second statement follows from (2.18) and Proposition 2.13. O

We end this section proving that the orthogonal complement involution conjugates
the push-forward actionby g € .2 (V') with the pull-back action by the adjoint map g*.

Proposition 2.15 Given g € Z(V) such that gr..(g) > 1, the action of g, on
F: (V) is conjugated to the action of g« on F;1(V) by the orthogonal complement
involution. More precisely, we have F7'(g) = F,1(g") and F-'(g*) = F.o(9)h,
and the following diagram commutes

Foi(g) — Foi(g)

.Ll LL

F () - F g

Proof To see that F'(g) = F,1(g*)*, notice that the following equivalences hold:

FeF (g9 & Fi+R,=V
& FiNKg=1{0} & Fred.(g".
Exchanging the roles of g and g* we obtain the relation 7! (g*) = F,1(g)*.

Finally, notice that it is enough to prove the diagram’s commutativity at the Grass-
mannian level. For that use Proposition 2.3. (]

2.2.3 Angles and Expansion

Throughout this section let p,g € P(V), and p € p, g € g denote representative
vectors. The projective distance 8 (p, g) was defined by

R (P, q9)? lpAgl . ..
§p.q) = |1——=—0" = =sinp(p, q).
Il llgll Pl gl

We also define the minimum distance between any two subspaces E, F' € Gr(V),

Omin(E, F) := i 8, v), 2.1
win(E.F) = min 8 0) (2.19)
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and the Hausdorff distance between subspaces E, F € Gr(V),
E,F) := (i, F n(, E)t.
Su(E, F) max ule%%ﬁ)] Smin (i1, F), v?}’a\'ﬁ)} Smin(V, E) ]

Given a unit vector v € V, ||v|| = 1, denote by m,, JTVL : V. — V the orthogonal
projections 1, (x) := (v, x) v, respectively nvl(x) =x — (v, x) .

Lemma 2.2 Given u,v € V non-collinear with ||\u| = ||v|| = 1, denote by P the
plane spanned by u and v. Then

(a) m, — m, is a self-adjoint endomorphism,

(b) K(nv —m,) = PJ_,

(c) the restriction m, — w, : P — P is anti-conformal with similarity factor
’sin Z(u, v)|,

(d) |l = mfll = Ny — mll = 8(i, 9).

Proof Item (a) follows because orthogonal projections are self-adjoint operators.
Given w € P, we have 7,(w) = m,(w) = 0, which implies w € K(mw, — m,).
Hence P+ ¢ K(r, — m,). Since u and v are non-collinear, r, — 7, has rank 2. Thus
K(m, — m,) = P+, which proves (b).
For (c) we may assume that V = R? and consider u = (uy, u2), v = (v, 2), with
u? +u5 = vi +v3 = 1. The projections 7, and 7, are represented by the matrices

2 2
uy Ui vy ViV,
U= S and V= 1 V12
Uiy Uy Viva2 vy

w.r.t. the canonical basis. Hence w, — m, is given by

VU= v%—u% vivo—uur (B «
T \viva—uuy V3 -3 “\a -8B

where « = vivo —ujup and g = v% — u% = — (v% — u%). This proves that the restriction

of m, — m, to the plane P is anti-conformal. The similarity factor of this map is
7wy = 7l = Il () — ull = ;- @) || = [sin Z(u, v)|

Finally, since u — (v, u)v L v,

1 12 2 1 2 2
s = 17 = Nl = ™ = Ny @7 = llu — (v, u) vl

= llu Av|* = 8@, 9)*. 0

Lemma 2.3 Let V be a Euclidean space of even dimension 2k andletE, F € Gri(V)
be subspaces suchthat V.= E @ F. Then the linear map ng — np admits an invariant
decomposition V.= P @ - - - ® Py into pairwise orthogonal planes P; such that
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(1) each P; is invariant under wg and r,
(2) Pj=E;®Fj whereE; =ENP;, F; =F NPjand dmE; = dim F; = 1,
(3) (g — 7p)l|p;: P; — Pjis anti-conformal.

Proof Choose unit vectors uy € E and vy € F such that Z(ug, vo) = max{Z(u,v): u
€ E\ {0},v € F\ {0}}. Then the function f(x) = |lu — vo||> defined over the unit
sphere in E attains its maximum value at . By the method of Lagrange multipliers,
g (ug — vp) 1s collinear with g, which implies that mg(vp) is also collinear with
ug. Therefore g (vo) = (uo, vo)uo. By a similar argument, wr(ug) = (uop, vo)vo. The
plane P spanned by the vectors ug and vy is invariant under both projections gz and
mr. Hence, by Lemma 2.2 the restriction 7 — wp : P — P is anti-conformal. Now
the orthogonal complement P1 is also invariant under 7, 7F and g — 7F. Defining
Ey=ENPtand Fy = F NP, we have P+ = Ey @ Fy and 7 — 7 = 75, — 7p,
over P, where 7g, and 7x, denote orthogonal projections on P. The claim of this
lemma follows proceeding inductively with g, — 7p,. |

Definition 2.22 Given E, F € Gr(V), we denote by nr : V — V the orthogonal
projection onto F, and by 7y  : E — F the restriction of 7y to E.

Proposition 2.16 Given E, F € Gr(V),

(@) S(E.F) = /1 —det, (rp.p)? = \/1 = det (rr )2,
(b) Su(E, F) =l | = I o = e — el
(c) u(E,F) <d8(E,F).

Proof Consider the unit k-vectors e = W (E) and f = W (F).

For (a) notice first that §(E, F) = 8(e,f) = /1 — (e, f)2. Since the exterior
power Aytp g @ ArF — ArE is also an orthogonal projection we have (e, f) =
(e, \mtr () = 1Ak ell = dety (otp E).

Take an orthogonal reflexion g € O(V) such that g(F) = E and g(E) = F. We
have g~ '(E+) = FL and 7rx p» = g7 ! o 7w v 0 g. Therefore || po || = ||7F gL -

We have 8y (E, F) = ||mg || because for any unit vector u € i, with it € P(E),

T w)| = min §(u, V).
7w Fe ()] in (u,v)
To finish (b) we still have to prove that |7z — 7p| = ||7g pL|. Restricting our

attention to the subspace Vo = (EN(EN )Y @ (FN(ENF)Y), because g — g
vanishes on V- we can assume that V = E @ F. In particular dim V = 2k. Consider
the orthogonal invariant decomposition of Lemma 2.3. It is enough to check that the
relation ||z — mp|| = ||mg Fo|l holds on each plane P;. Therefore we may as well
assume that k = 1. Notice that over the subspace E we have gy — 7y = 7g p1. Since
the linear map ny — 7y is anti-conformal, the norm ||7p — mg|| is attained along E,
which implies that ||7g — 7p|| = ||mg o ||. This proves item (b).

Since 7 r is an orthogonal projection all its singular values are in the range [0, 1].
Hence, for any unit vector u € E, ||mg r(u)|| > m(wg r) > dety (g r). Thus
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e pr @)|* = 1 = 7z r@)* < 1 = dety (zzr)*.

Item (c) follows taking the maximum over all unit vectors u € E. O

The following complementary quantity to the distance §(p, ¢) plays a special role
in the sequel.

Definition 2.23 The «-angle between p and ¢ is defined to be

_ Ml e

ap,q) = =
el gl

In order to give a geometric meaning to this angle we define the projective orthog-
onal hyperplane of p € P(V) as

YXp)=&elP(V): (x,p) =0 for x € x}.

The number «(p, g) is the sine of the minimum angle between p and X'(g). As in
Definition (2.19), given a subspace FF C V we write

w(P, F) := min p(p, Q).
Pmin (D, F) qul\r{lo}p(p, 9)
Proposition 2.17 For any p, g € P(V),

(P, §) = Sin Pmin (P, X(q)) = Smin (P, X(@)) (2.20)
ap,9) =0 & §(p,9)=1 & pLg. (2.21)

These concepts extend naturally to Grassmannians and flag manifolds.

Definition 2.24 Given E, F € Gr;(V), we define the «-angle between them
a(E, F) = a(E, F) = a(V(E), ¥ (F)),

where ¥ : Gry (V) — P(AV) denotes the Pliicker embedding (see Sect.2.1.3).

Definition 2.25 We say that two k-subspaces E, F € Gr (V) are orthogonal, and
we write E | F,iff a(E, F) = 0.

The Grassmannian orthogonal hyperplane of F is defined as
X(F):={E eGr(V): a(E, F) =0}

As before, the number o (E, F) equals the sine of the minimum angle between E
and X' (F).

Proposition 2.18 For any E, F € Gri(V),

a(E, F) = sin ppin(E, X (F)) = nin(E, X (F)).
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Next we characterize the angle «(E, F). Consider the notation of Definition 2.22.

Proposition 2.19 Given E, F € Gr(V),

(a) a(E,F) =a(E*", Fb),
(b) a(E, F) =dety (7wg r) = dety (7rr k),
(c) E L F iff there exists a pair (e, f) of unit vectors such that e € E N F+ and

feFNEY
(d) a(E,F) < |mprll =1 = 8min(E, F1)2.
Proof Given E, F € Gri(V), take orthonormal bases {u1, ..., u;} and {vy, ..., v}

of E and F, respectively, and consider the associated unit k-vectors u = u; A - - - A uy
andv=v; A---Av,sothatu € V(E)andv € ¥ (F).
Using the Hodge star operator we obtain unit vectors su € W(E') and *v €
¥ (F1). Hence
a(EY, FY) = |G, 50)| = |(u,v)] = a(E, F),
which proves (a). Also

o(E, F) ::|(u1/\~-~/\uk, v1A~-~/\vk)|

(ur, vi) (ur, va) - (U, vie)
(uz, v1) Uz, v2) ... (ua, vi)
=|det| . A |
(e v1) G va) . ()
= dety (g F).

For the second equality above write u; = w; + Zle (u;, v;) v; with w; € F+ and
use the anti-symmetry of the exterior product. For the third equality remark that the
matrix with entries (u;, v;) represents g W.r.t. the given orthonormal bases. By
symmetry, o (E, F) = det; (ry g). This proves (b).

From these relations, «(E, F) = 0 < K(mg p) # {0} & K(zpg) # {0}, which
explains (c).

Finally, because all singular values of 7z ¢ are in [0, 1],

a(E, F) = dety (mg.r) < ||7e.Fl

= max |mgr@)l
uek, ||ul|=1

= max m
uck, ||lul|=1 ” EVFL( )”
= 1 _(Smin(E, FJ_)Z’

which proves (d). ([l
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Next we extend «-angles to flags. Consider a signature t of length k.

Definition 2.26 Given flags F, G € F;(V), define

o(F,G) = a;(F. G) := min a(F;, G).

Definition 2.27 We say that two t-flags F, G € F; (V) are orthogonal, and we write
F 1 G,ifF; L Gjforsomej=1,... k.

Comparing the two definitions, for all F, G € F; (V)
a(F,G)=0 & GLF.
Hence, the orthogonal flag hyperplane of F is defined as
2(F)={Ge T (V) : a(G,F) =0}

As in the previous cases, the number «, (F, G) equals the sine of the minimum
angle between F and X' (G).

Proposition 2.20 Forany F,G € F.(V),
a(E, F) = sin ppin(F, 2(G)) = dmin(F, 2(G)).

Consider a sequence of linear maps go, g1, ---,8&n—1 € Z(V). The following
quantities, called expansion rifts, measure the break of expansion in the composition

8n—1---&1 8o of the maps g;.

Definition 2.28 The first expansion rift of the sequence above is the number

lgn—1---818oll
080 81s -+ -+ &n1) i= - €1, +00).
lgn—1ll-- - llg1ll1goll

Given | < k < dim V, the kth expansion rift is
Pi(805 815+ -+ » 8n—1) = P(Ak&0s Ak&Ls -+ - s Ak&n—1) -
Given a signature T = (t1y, ..., Tt), the T-expansion rift is defined as

P (805 815 -+ -+ n—1) = Min pr(80, &15 -+ &n—1) -
1<j<k

The key concept of this section is that of angle between linear maps. The quantity
a(g, g'), forinstance, is the sine of the angle between ¢, (b(g)) = v(g*) and X' (v(g)).
As we will see, this angle is a lower bound on the expansion rift of two linear maps
gand g'.
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Definition 2.29 Given g, ¢’ € £ (V), we define

a(g, g) = a(v(g"),v(g)) if ¢ and g have a first gap ratio
o (g, &) = a(vr(g"). br(g)) if g and g havea k gap ratio
a.(g, g) = a(b.(g%),0.(g")) if ¢ and g havea T gap pattern.

The following exotic operation is introduced to obtain an upper bound on the
expansion rift p(g, g’). Consider the algebraic operation a ® b := a+ b — a b on the
set [0, 1]. Clearly ([0, 1], @) is a commutative semigroup isomorphic to ([0, 1], -). In
fact, the transformation @ : ([0, 1], &) — ([0, 1], ), @ (x) := 1 — x, is a semigroup
isomorphism. We summarize some properties of this operation.

Proposition 2.21 For any a, b, c € [0, 1],

(1) 0O®a=a,

(2) 1®a=1,

(3) adb=0-ba+b=(1—-a)b+a,
(4) a®db<1 & a<landb < 1,

(5) a<b = a®c<b&ec,

(6) b>0 = (@b '@®c)b<adc,

(7) ac+ b1 —a®J1—c2<a? b

Proof Ttems (1)—(6) are left as exercises. For the last item consider the function f :
[0, 1] — [0, 1] defined by f(¢) := ac+b~/1 —a* +/1 — 2. A simple computation

shows that
o) be1—a?
O)=a— ———
V1 —=¢2
The derivative f” has a zero at ¢ = a/+/a ® b, and one can check that this zero is a
global maximum of f. Since f(a//a ® b) = va* @ b2, item (7) follows. O

Definition 2.30 Giveng, g’ € .Z (V) with t-gap patterns, the upper t-angle between
g and g’ is defined to be

Belg.§) = \Jer ()2 @ ar(g. )2 @ gr, (g) 2.

We will write B (g, ¢') when t = (k), and B(g, g’) when t = (1).

The next proposition relates norm expansion by the linear map g, and distance
contraction by the projective map ¢,, with angles and gap ratios.

Proposition 2.22 Given g € £ (V) with o (g) < 1, a point w € P(V) and a unit
vector w € w,
(@) a(,5(9) llgl < lgwl < ligll Ve, 5(g)* ® o (g)2,

R o © .. _
(b) 8(pg(), B(g")) = 8(ps(W), 9, (B(2))) < a(j—ég)) 50, 5(g)) .
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Proof Let us write « = (W, b(g)) and 0 = o (g). Take a unit vector v € b(g) such
that Z(v, w) is non obtuse. Then w = av + u with u L v and |ju| = /1 — o2
Choosing a unit vector v* € b(g*), we have gw = « | g|| v* + gu with gu 1 v* and
llgull < V1 —a?s:(g) =1 —a?o |g|l. We define the number 0 < xk < o so that
llgull = /1 — a?« ||g||. Hence

o? llgl® < & ligh* + llgull® = llgwl?,

and also

lgwll* = o® lIgl* + llgull* = lIgll* (e + (1 — a®)k?)
= lgl* (&* @) < llgl* (& ® 0?),

which proves (a).
Item (b) follows from

5 (9 (7). 5(5™)) = lgvngwl _ ligvagull _ V" A gull
lgvil lgwll — ligl llgwll lgwll
_ llsull _ o1 - o’ llgll o 80b,b(g))
IIgWII algll B o '

Next proposition relates the expansion rift p(g, g’) with the angle (g, g’) and the
upper angle (g, g).
Proposition 2.23 Given g, g’ € (V) with a (1)-gap pattern,

lggll
(8. 8) = Jogp = P&

Proof Leta := a(g, ¢g) = a(o(g*), v(g)) and take unit vectors v € b(g), v* € v(g*)
and V' € v(g’) such that (v*,v') =« > 0 and gv = | g| v*.

Since @, (v(g)) = v(g*), w = Ilng is a unit vector in w = b(g*). Hence, applying
Proposition 2.22(a) to g’ and w, we get

IIg gll
|| I| gl

which proves the first inequality.

For the second inequality, consider any w € P(g) and a unit vector w € w such
that a := (w,v) = a(Ww,0(g)) > 0. Then w = av + +/1 — a? u, where u is a unit
vector orthogonal to v. It follows that gw = a ||g|| v + /1 — a? gu with gu L v*,
and ||gull = « ||g|| for some 0 < k < o (g). Therefore

llg wil*

TIE =a2+(1—a2)lc2=a269/c2.
8
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and

gw a . Nl—d gu

= vy SR
lgwl a2 @ «? Va2 @« gl

The vector V' can be written as v = o v* + w' withw’ L v* and ||[w/'|| = v/1 — 2.
Set now b := a(p,(W), v(g’)). Then

b:i gw ,v’|< aa Vi—a |(gu,v/)|
g wll T VaRokr JaRoxr gl
__ @a N Kk N1—a? | gu ’
TV eKk?r Va2 dk? lgul
c_aa L edTo@
T Va2 ok? Va2 ®«?
aa kNl —a?J1—a2 Ja?2@k?
~Veer | Jeee | Jeoe
We use Lemma 2.21 (7) on the last inequality. Finally, by Proposition 2.22(a) applied
to g’ € £ (V) and the unit vector gw/||gwll € ¢ (W),

g gwll < g1 vVb* @ o (g)? llgwl
<1l gl VB> @0 (g)?Va & k2

<lg'lliglvVe* @ a*®o(g) = B(g, &) 88l

where on the two last inequalities use items (6) and (5) of Lemma 2.21. O

w’)|

Corollary 2.1 Given g, g’ € £ (V) with a (k)-gap pattern,

oz g) < : I k(g @Il 2)

=< B(g,
Akg I IAkgll

Proof Apply Proposition 2.23 to the composition (Axg") (Arg). Notice that by Def-
inition 2.15, the Pliicker embedding satisfies ¥ (v, (g)) = v(Ag). Hence

(g, &) = a(0r(g"), Bk (g)) = [(0(Ag), B( i) | = a(mvg, Arg). O

The next results show how close the bounds (g, ¢’) and 8(g, g) are to each other
and to the rift p(g, g').
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Lemma 2.4 Given g, g € £(V) with (1)-gap patterns,

<ﬁ®gxﬂ%+g@4@g@r{
T oag.g) T (g 8)?

Proof Just notice that

V2@ a2 @ (k)? S\/a2+(xzea(/<’)2) :\/1+K2€9(K/)2.

a a? a?
Proposition 2.24 Given g, g’ € £ (V) with a (1)-gap pattern
/ gr(e)—* +gr(g)?
a(g,g)zp(g,g’)\/l— >
r(g. &)
Proof By Proposition 2.23
p(g g < Bg g <@g +0@’ +o@), 0

which implies the claimed inequality.

These inequalities then imply the following more general fact.

Proposition 2.25 Given go, g1,...,8i-1 € ZL(V), ifforall 1 <i < n—1 the
linear maps g; and g = gi_\ . .. go have (1)-gap patterns, then

n—1
10) lgn—1-..8180ll 0]
a(g"”, gi) = =118 &)
il} T lgnatll - g llligoll H l
Proof By definition g~V = g,_;...g1g0, and by convention g = idy. Hence
g1 - g1goll = TTj=y 7L, This implies that

-1 1 .
llgn-1--- 180l _ "l—[ 1 'i—lllg(’“)ll
BT A N

—H:M(W

lg:ll llg@1”

It is now enough to apply Proposition 2.23 to each factor. (]
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2.3 Lipschitz Estimates

In this section we will derive some inequalities describing quantities such as the
contracting behavior of a linear endomorphism on the projective space, the Lipschitz
dependence of a projective action on the acting linear endomorphism, the continuity
of most expanding directions as functions of a linear map, and the Lipschitz modu-
lus of continuity for sum and intersection operations on flag manifolds. Except for
Propositions 2.28 and 2.29, the content of this section will be only used in Chaps. 4
and 5.

2.3.1 Projective Action

Proposition 2.26 Givenp,q € V \ {0},

14 q
[ ———l=m {— }IIP qll.
Ipll liqll el ligll
Proof Given to vectors u, v € V with |ju| > ||v|| = 1 we have
u v
||— - —|| < llu—vl.

Assume for instance that ||p]| > ||¢]|, so that

max{[pll", lgl~"} = llqll~".

Applying the previous inequality with u = H i andv = H . we get
p q p q
[ =l =l ==l =< llu—vl=Il———l
el liqll lJull VIl gl lqll
= llgl =" lp = gl = max{lpll =", gl ="} Ip — qll. U

Given a linear map g € .Z(V), the projective action of g is given by the map
g : P(g) = P(g"). 9 (p) := &P

For any non collinear vectors p, g € V with ||p|| = ||g|| = 1, define
99— .qp
v(q) i= ————————.
llg — (p. q)pl

This is the normalized unit vector of the orthogonal projection of ¢ onto p™.
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Proposition 2.27 Given g € Z(V), and points p # g in P(V),

8(pe(D), 95(@) _ ligp A gvp(@)l

8P, q) lgpllllg 4l

Proof Letp € p and ¢ € g be unit vectors such that 6 = Z(p, ¢) € [0, Z]. We can
write ¢ = (cos0) p + (sin0) v,(g). Hence

5(.q) = llp Agqll = (sin ) [p Avy(@)|| = sin6,
and

llgp A gqll . llgp A gvp(@)l
- = = (sinf) —————.

8(ps (D), 95(@)) = =
PP e = T Tl lgplligl

O

Given a point p € P(V), we identify the tangent to the projective space at p as
T;P(V) = p*, for any representative p € p.

Proposition 2.28 Given g € £ (V), x € P(g), and a representative x € X, the

derivative of the map ¢, : P(g) — P(g*) at X is given by
_ (- 8X 88X

8V~ (x> 8V il _

D) v = =
o llg x| llg x|

i
Tex/lgxll (8 V)

Proof The sphere S(V) := {v € V: |v| = 1} is a double covering space of
P(V), whose covering map is the canonical projection 7 : S(V) — P(V). With
the identification T;P(V) = pt, the derivative of 7, D, : T.S(V) — T:P(V),
is the identity linear map. The map ¢, lifts to the map defined on the sphere by
Po(x) == ﬁ. Hence we can identify the derivatives (Dg,); and (D@,),. A simple
calculation leads to the explicit expression above for (D@,)v. O

We will use the following closed ball notation
BD(p,r) = (& e P(V) : d(X.p) <},

where the superscript emphasizes the distance in matter. Given a projective map
f:X CP(V) = P(V), we denote by Lip,(f) the least Lipschitz constant of f with
respect to the distance d. Next proposition refers to the projective metrics § and p
defined in Sect.2.1.1.

Proposition 2.29 Given 0 < k < 1 and g € £ (V) such that gr(g) > k',

(1) @, (B(‘S)(E(g), r)) C BO(w(g"), kr/v1—r2), forany0 < r < 1,
(2) g (B(")(B(g), a)) C B®(v(g*), k tana), forany0 < a < Z,

(3) Lip, (@glpoio.n) <k 5T

,forany 0 <r < 1.
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Proof Item (1) of this proposition follows from Proposition 2.22(b), because

5(W.B(g)) < r implies a(.B(g) =v/1— 800, 0(g)? = VI —r2.

Item (2) reduces to (1), because we have 8 (i, V) = sin p (i1, ), which implies that
B %, a) = B® (9, sina).

To prove (3), take unit vectors v € v(g) and v* € b(g*) such that gv = | g v*.
Because v is a g-most expanding vector, ||7TVJ; og|ll =lgo nj-|| < s52(8) <« lgll-
Given x such that § (%, v(g)) < r, and a unit vector x € X, by Proposition 2.22(a)

el _ 1 _ 1
lexl = (B ~ VT-r2

Using item (b) of the same proposition we get

o =k o(g) .= Kr
3(pg(x),0(g") < 2G5@) 3(x,0(g) < Wi

By Proposition 2.28 we have

1
(Dge)v = T 7 (gv) + (o = 7it) (g0).

llgxl| llgx||
Thus, by Lemma 2.2(d),

kgl 8(pg(x), 0(g*) llgll
llgx|l llgxl|

K Kr k(r++/1—7r?)

vl—r2+1—r2_ 1 —r?

[(D@g)ll =

IA

Since B®(b(g), r) is a convex Riemannian disk, by the mean value theorem

®g1B6) (5(g),r) has Lipschitz constant < ’((’L— ;{’2) with respect to distance p. ]

2.3.2 Operations on Flag Manifolds

As before let V be a finite n-dimensional Euclidean space. Recall that the Grassmann
manifold Gry (V) identifies through the Pliicker embedding with a submanifold of
P(ArV).Uptoasign, E € Gri (V) isidentified with the unit k-vectore = ey A- - - Aey
associated to any orthonormal basis {ey, ..., e} of E. Recall that the Grassmann
distance (2.10) on Gr (V) can be characterized by

d(Ey, Ey) := min{|le; — ez], [le1 + 2]},

where ¢; is a unit k-vector of Ej, forj =1, 2.
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Definition 2.31 Given E, F € Gr(V), we say that E and F are (N) transversal if
E + F = V. Analogously, we say that E and F' are (+) transversal if EN F = {0}.

The following numbers quantify the transversality of two linear subspaces.

Definition 2.32 Given E € Gr,(V) and F € Grg(V), consider a unit r-vector e of
E, a unit s-vector f of F, a unit (n — r)-vector e~ of E* and a unit (n — s)-vector f
of F+. We define

0, (E, F):=llenfl,

On(E, F) := |le" Af*.

Since the chosen unit vectors are unique up to a sign, these quantities are well-defined.

Remark 2.1 If r + s > n then 6,(E,F) = 0. Similarly, if » + s < n then
O~(E,F)=0.

Remark 2.2 Given E, F € Gr(V), 0n(E, F) = 0, (EL, F1).

Next proposition establishes a Lispchitz modulus of continuity for the sum and
intersection operations on Grassmannians in terms of the previous quantities.

Proposition 2.30 Givenr,s €e Nand E,E' € Gr,(V), F,F' € Gry(V),
1 1
9+(E7 F) ' 6+(E/7 F/)

1
] (d(E,E") +d(F,F)).

(1) d(E+F,E +F') < max [ ] (d(E,E") +d(F, F)),

(2) d(ENF,E'NF') < max ,
On(E,F) On(E', F")

Proof (1) Consider unit r-vectors e and ¢ representing the subspaces E and E’
respectively. Consider also unit s-vectors f and f” representing the subspaces F and
F' respectively. By Proposition 2.26

, , enf enf
d(E+F,E+F)= —
( /=1 leAflllle" Af |
<Klenf—enfl
<K(lenF=fH+Ilie—e)Af

<K (le=¢l+1lf £

where K = max{[le Af||7", |l Af||7"} = max{6,(E, F)~', max{6,(E’, F)~'}.
(2) reduces to (1) by duality (see Proposition 2.2). O

Next proposition gives an alternative characterization of the transversality mea-
surements 0 (E, F) and O~ (E, F). Let, as before, rg : V — E denote the orthogonal
projection onto a subspace E C V, and define the restriction ng p := wplg : E — F.
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Proposition 2.31 Given E € Gr,(V) and F € Gry(V),
(]) 6+(E,F) Zdet+(7TE,FJ_) :det_‘_(ﬂF’EL).
(2) On(E,F) = dety (ng: p) = dety (7FL ).

Proof Notice that E N F = K(mg pr) = K(wpgr). If ENF # {0} then the three
terms in (1) vanish. Otherwise 7z g1 and 7y g1 are isomorphisms onto their ranges
R(mgpr) = FE N (E + F) and R(wrp 1) = E* N (E + F). Take an orthonormal
basis {fi, ..., fss fsx1s - -« s fstrs - - - » fu} such that {fi, ..., f;} spans F and the family
of vectors {f1,...,fr,fs+1s .-, fs+r} sSpans E 4+ F. Consider the unit s-vector f =
fi Ao Afyof F,and a unit r-vector e = e; A --- A e, of E. Hence {fi11, ..., fi+r}
is a basis of R(mg 1) and

OL(E,F)=|l(es A= ANe ) AL A-- ASI
= lmg prler) A Amppi(e) Afi A ASll
=dety (g, p) Ifsr1 Ao Afsr Ai A AS5l = dety (mg pe).
Reversing the roles of E and F, and because |le A f] is symmetric in e and f, we
obtain 6 (E, F) = det, (rp g1), which proves (1).
By duality and Remark 2.2, item (2) reduces to (1). U

The measurement on the (N) transversality admits the following lower bound in
terms of the angle in Definition 2.24.

Proposition 2.32 Given E € Gr,. (V) and F € Gry(V), if E+ F =V then
On(E,F) > a,(E,ENF + FY).
Proof Combining Lemmas 2.5 and 2.6 below we have
On(E,F) > 0n(E,FN(ENF)*) = a,(E, FN(ENF)"))

=o,(E,(ENF)+ FbY. O

Lemma 2.5 Given E € Gr.(V), E' € Gr.(V) and F € Grg(V) such thatr +s > n
and E C E' then O~(E', F) > 0~(E, F).

Proof Because E C E’, we have np. p = mp g o wp1L g Hence by Proposition 2.8

On(E, F) = dety (pL ) = dety (7n,, 7ty ) dety (TFL £)
E det"‘(jTFL,E’) = GQ(E/5 F)y

where det, (774, (1), r) < 1 because |7l < 1. O

Lemma 2.6 Given E,E' € Gr,(V), 6~(E', EY) = o, (E, E).
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Proof Given orthonormal bases {vi, ..., v,} of E, and {V{, ..., v.} of E',

On(E'\ET) = dety (g k)
= (A TEE (I A AV VLA AV

= [(Te ) A AT ) v A A

| A AV VA AV = 0 (ELE). O

Next proposition gives a modulus of lower semi-continuity for the transversality
measurement 6n.

Proposition 2.33 Given E, Ey € Gr,(V) and F, Fy € Grg(V),
Gﬂ(EvF) > QH(EO»FO) - d(E7E0) - d(F7F0)

Proof Consider unit vectors e € ¥ (EL), f € W(F*), e € W(Ey) and fy € ¥ (Fy),
chosen so that

d(E, Eo) = d(E*, Ey) = |le — e,

d(F,Fo) =d(F",Fy) = |If = ful.

Hence

On(E, F) = lle Afll = lleo Afoll — lle Af —eo Afoll
> On(Eo, Fo) — lle A (f — fo)ll — [[(e — eo) A Jfoll
> 0n(Eo, Fo) — IIf — foll — lle — eoll
> On(Eo, Fo) — d(F, Fy) — d(E, Ey). U

Next proposition refines inequality (2.7).

Proposition 2.34 Given E, F € Gri(V), and families of vectors {uy, ..., ur} C E
and{uk+1,...,uk+,~} CFJ‘ withl <i<m-—k,

(@) lluy A= ANug Atgpr A== ANl < llug A A gy A -+ A gyl
(b) Nlug A ANug ANugpr A ANl = o (E, F) lug A= Auge || tgger A - A

Proof Since mp. g1 is an orthogonal projection, all its singular values are in [0, 1].
Thus, because det (L g1) is the product of all singular values, while m(A; wpL g1)
is the product of the i smallest singular values, we have

dety (mpr g1) < m(A;jtpe pr) < IAimpr gl = 1.
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Hence

lug A A A A Ayl = lun A A g Astpr pr(gs) A Astps g (g |l
= llug Aol lwpr gL (1) A -+ ATtps pr (U ||
S Mnimpr gl lun A ANl lgeen A= A gl

= llur A Auge]| gt A - A st
which proves (a). By Proposition 2.19 we have

a(E,F) = a(F*, EY) = det, (mpr p1) < m(A(pe p1)).

Thus

ey Ao Aug A 127735 VANCIEIVAN uk+,~\| =lug A Aug A JTFL,EL(M](+|) VANRERIVAN JTFL,EL(M](+[)”
= llur Aol lpe (U 1) Ao ATTpL g () |l
> m(A; e p) lun A Al g A - A g |
> a(E, F) lur A A uge ligepr Ao A gl

which proves (b). [l

The angle « is a Lipschitz continuous function.

Proposition 2.35 Given u,u',v,v € P(V),
’oc(u, V) —a(, v/)| <du,u)+dW,V).
Proof Exercise. O

The intersection of complementary flags satisfying the appropriate transversality
conditions determines a decomposition of the Euclidean space V. We end this section
defining by this operation and proving a modulus of continuity for it.

Consider a signature T = (71, ..., ;) of length k with 7, < dim V. We make the
convention that tp = 0 and 134} = dim V.

Definition 2.33 A t-decomposition is a family of linear subspaces E. = {E;}|<j<k+1
in Gr(V) such that V = @/} E; and dimE; = 7, — 7, forall 1 <i <k + L.

Let D, (V) denote the space of all T-decompositions, which we endow with the
following metric

d‘c (Ea E/) = 121333_1 dTi—‘L'[—l (Eiv El/)a

where d;,_,, , stands for the distance (2.10) in Gr,,_,, (V).

Given two flags F € F,(V) and F’ € F,.(V), we will define a decomposition,
denoted by F M F’, formed out by intersecting the components of these flags. For that
we introduce the following measurement.
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Definition 2.34 Given two flags F € (V) and F' € F,.(V), let

On(F, F') := min On(F;, Fi_;, ).
1<i<k

Notice that dim F; = 1; and dim F,/HJrl = Tk{m = dim V —1;, i.e., the subspaces
Fiand F;_, , have complementary dimensions. We will refer to this quantity as the
transversality measurement between the flags F and F’.

In the next proposition we complete F and F’ to full flags of length k + 1 setting

Fyy1 = F, = V.Setalso 7o = 0 and 7| = dim V.

Proposition 2.36 [f0-(F, F') > 0 then the following is a direct sum decomposition

in the space D, (V),
k+1

V= @Fi NFi_iyas
i=1

withdim(F; NFy_; ,) =t — 1y foralll <i<k+1

Proof Since the subspaces F; and F_;, | have complementary dimensions, the rela-
tion O (F;, F_, ;) > 0 implies that
V=F®&F_,,. (2.22)
By Lemma 2.5, On(Fi, F;_; ) = On(F;, F;_;,,) > 0. Therefore F; + F;_, , =V
and
dim(F; N F,_;.5) = T+ T — dim V
=7+ dmV —1_)) —dimV =1, — 1,_;.

We prove by finite inductionini =1, ..., k + 1 that
F; = @ FiNF, i, (2.23)
jei

Since Fy4+; = V the proposition follows from this relation ati = k + 1.
Fori =1, (2.23) reduces to F; = F; N V. The induction step follows from

Fipn=F; & (Fi+1 ﬂF/Q,[H) .
Since the following dimensions add up

dimFH_] =Tiyr1 =T + (Ti+] - Ti)
= dim F,' + dim(F,-_H N F]/(_i+1)7
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it is enough to see that

FiN(Fi NF_iyy) = FiNF,_i = {0},
which holds because of (2.22). O

Hence, by the previous proposition we can define:

Definition 2.35 Given flags F € F,(V) and F’ € F,.(V) such that 6(F, F') > 0
we define F 11 F' := {F; N F;_,; ,}1<i<x+1 and call it the intersection decomposition
of the flags F and F".

Next proposition provides a modulus of lower semi-continuity for the transver-
sality measurement 6.

Proposition 2.37 Given F, Fy € (V) and F', Fj € .. (V),
On(F, F') = 0n(Fo, F) — di(F, Fo) — dr (F', Fp).
Proof Apply Proposition 2.33 at each subspace of the r-decompositions. (]

The modulus of continuity for the intersection map M : F. (V) x F,o(V) —
D, (V) is established below.

Proposition 2.38 Given flugs Fi, F, € 3.(V) and F{, F, € F,.(V),

1
9I_\(F‘17I;'i)7 el_l(anFé)

d,(F\NF], F,NF}) < max [ ] (d.(F\, Fy) +d,. (F|, F})).

Proof Apply Proposition 2.30 at each subspace of the t-decompositions. (I

Given two linear maps g, g1 € -Z (V) with t-gap ratios such that &, (go, g1) > 0,
they determine a T-decomposition of V' as intersection of the image by ¢,, of the most
expanding t-flag for g; with the least expanding t+-flag for g (see Definitions 2.18
and 2.21). The corresponding intersection transversality measurement is bounded
from below by the angle o (g0, g1)-

Proposition 2.39 Given go, g1 € Z(V), if gr,(go) > 1 and gr, (g1) > 1 then

O (v, (g1), b:(gp)) = (Lo, g1)-

In particular, if a;(go, g1) > O then the flags v, (g}) and v,.(g1) determine the
decomposition v, (g3) Mv,1(g1) € D (V).

Proof Let n = dim V. Consider the flags F = b,(g}) and F' = p,.(g1). We
have F; = b;(g5) and Fr_js1 = 0,2 (81) = v, . (81) = br(g1)". Hence by
Lemma 2.6,
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On(Fi, Fi_ip1) = 0n(04,(85), 05, (g1) 1) = o, (05,(85), 07,(81)) = (g0, 81,

and taking the minimum, 6(F, F') > a.(go, &1)- O

2.3.3 Dependence on the Linear Map

We establish a modulus of Lipschitz continuity for the most expanding direction of
a linear endomorphism with a first singular gap. For any 0 < k < 1, consider the
set £, ={ge LWV): gr(g) > %}. We denote by v : %, — P(V) the map that
assigns the g-most expanding direction to each g € .Z,.

The relative distance between linear maps g, g’ € Z(V) \ {0} is defined as

g — &'l

drai(g, ) = —
h max{l|gll, lg"ll}

Notice that this relative distance is not a metric. It does not satisfy the triangle
inequality. We introduce it just to lighten the notation.

Proposition 2.40 The map v : £, — P(V) is locally Lipschitz.
More precisely, given 0 < k < 1 there exists g = €y(k) > 0, which increases as
Kk decreases, such that for any g, g» € L, satisfying dre1(g1, g2) < &,

_ _ 16
d(v(g1), v(g2)) < -2 dre1 (g1, &2)-

Proof Let g € £, and A > 0. The singular values (resp. singular vectors) of g are
the eigenvalues (resp. eigenvectors) of \/g* g. Hence s;(A g) = A s;(g), for all j. We
also have b(Lg) = v(g) and gr(A g) = gr(g).

Consider the subspace .Z, (1) := {g € % : |igll = 1}. The projection g >
g/llgll takes Z, to %, (1). It also satisfies v(g/||gl]) = v(g) and

81 82

lgull Mgl

| <2drei(gr, &2)-

Hence we can focus our attention on the restricted map v : %, (1) — P(V).

Let £ (1) denote the subspace of g € %, (1) such that g = g* > 0, i.e., g is
positive semi-definite.

Given g € Z, (1), we have ||g* gl = 1 = ||gll, gr(g*g) = gr(¢)” and v(g*g) =
0(g). Also, for all g1, g, € Z.(1),

ligi g1 — &2 820l < llgill ligr — g2l + llg} — &3l llg2l
= (lgill + lig21) lligr — g2l = 2llg1 — gall-
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Hence, the mapping g +— g* g takes %, (1) to .,Sfj:g(l) and has Lispschitz constant
2. Therefore, it is enough to prove that the restricted map v : 92”,( T(1) — P(V) has
(locally) Lipschitz constant 4 (1 — P

Let §p be a small positive number and take 0 < gy <K %0. The size of 5, will be
fixed throughout the rest of the proof according to necessity. Take Ay, hy € Z; (1)
such that ||k — hy|| < & and set po := v(h). By Proposition 2.29 we have

2
%
J1—82

where all balls refer to the projective sine-metric § defined in (2.3). The second
inclusion holds if §; is chosen small enough. Take any p € B(py, 8) and choose unit
vectors p € p and pg € pg such that (p, po) > 0. Then p = (p, po) po + w, with
we pé, hi(po) = po and hy(w) € pé. Hence

o (B(Po. 80)) C B | po. C B(po, do),

Il @) = 1P, po) po + W)l = (p. po)

=V1—llpApoll> = /1 -8 =1/2,
and again, assuming § is small,
@) = @) — hy — hall = /1 — 8§ — &0 = 1/2.
Thus, by Lemma 2.9 below, for all p € B(pg, &o),

d(@n, (D), o, (P)) = 2 |lhy — hol.

Choosing &y small enough, — o 4 2 &y < 8p. This implies that

W
@i, (B(Po, 80)) C B(po, 80).

By Proposition 2.29 we know that T\ = ¢, |p,,s5,) has Lispchitz constant k' =

2 50+V1 8 ~

although the Lispchitz constant in this proposition refers to the Rlemanman metric
p, since the ratio Lips(7;)/Lip p(Tl) approaches 1 as § tends to 0, we can assume
that Lips(71) < «’. Thus, by Lemma 2.7 below applied to T} and T = ¢y, |B(po.80)
we have d(Ty, T>) < 2 ||hy — hy|| and

~ k2, and assuming & is small enough we have % < ——.Notice that

_ _ 1 4
d(v(hi), v(hy)) < T— o d(T,T>) = —a Iy — hal. 0
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Lemma 2.7 Let (X, d) be a complete metric space, T) : X — X a Lipschitz con-

traction with Lip(Ty) < k < 1, x{ = T1(x}) a fixed point, and T, : X — X any
other map with a fixed point x5 = T»(x}). Then

1
d('xT? x;) S P d(Tl ) T2)9
1 —«
where d(T, T») := sup,cx d(T1(x), T>(x)).
Proof

d(xy, x3) = d(Ti(x)), T>(x3))
<d(T\(x]), T1(x3)) + d(T1(x3), T2(x3))
<k dx},x3) +d(Ty, T»),

which implies that
1
dxy, x3) < md(Tl,Tz)- 0

Lemma 2.8 Given g1, g, € Z(V), forany 1 <i <dimV,

Inigr — Aigall < i max{L, [lgill, llg21} " llgr — g2l

Proof Given any unit i-vector v; A --- A v; € A;V, determined by an orthonormal
family of vectors {vy, ..., vi},

(AigDWE A AV) — (Ng2) (i A= AV
= [[(gvi) A A(gvi) — (g2v) A+ A (gav)ll

i
< Z”(glvl) A A1Y—1) A (g1Vy — &2vi) A (gavir) A+ A (gav) |l
=1

i
L
< E gl llg2ll"™ lig1v; — 2wl
j=1

<imax{L, lgill, g1} llg1 — gl O

Given adimension 1 </ <dimV and 0 < k < 1, consider the set

Lei={ge ZWV) : gr(e) >},
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and define -1
I max{1, llgill, llg2l1}"~

max{ || Agill, Agll}

Ci(g1, &) =

Corollary 2.2 The map v : £, — Gr;(V) is locally Lipschitz.
More precisely, given0 < k < 1there exists ey > O suchthatforany g\, g» € L.
such that || g1 — 21| < g0 Ci(g1, g2)~", we have

d(v;(g1), v:1(g2)) <

[ Ci(g1,82) g1 — &2l
—K
Proof By Lemma 2.8, di(Aig1, Aig2) < Ci(g1, 82) llg1 — g21l. Apply Proposi-
tion 2.40 to the linear maps A;gj : A}V — AV, j=1,2. U

Given g € .Z(V) having k and k + r gap ratios, if a subspace E € Gr (V) is close
to the g most expanding subspace b (g) then the restriction g|z1 has an r-gap ratio
and the most expanding r-dimensional subspace of g|g. is close to the intersection
of by, (g) with E*. Next proposition expresses this fact in a quantitative way.

Proposition 2.41 Given 0 < » < % and integers 1 < k < k+r < dimV, there
exists 8o > 0 such that for all g € £ (V) and E € Gry(V), if

(a) or(g) < xand oy, (g) < 7,
(b) S8(E,v(g) < do

then
(1) o-(glgr) <25,
_ _ N 20r _
(2) 8(0,(glp), Drar (@ NET) < m(S(E 0(8)).

Proof Consider the compact space
Hr={heZV): |hl =1 and o,(h) < 5}.

By uniform continuity of o, on %, there exists 8y > 0 such that for all h € £ (V) if
there exists hy € 7, with ||h — hy|| < 8y then o,.(h) < 2 .

Recall that 7 denotes the orthogonal projection onto a linear subspace F C V.

Given g € .Z (V) such that (a) holds, consider the map 1 = II§_H 0T, (g) - We have
h € J, because 0,(h) = 0,(g 0 Ty, (g)1) = Ok4,(8) < .

Given E € Gri(V) such that (b) holds, we define hg = @ o mgL. Then by items
(b) and (c) of Proposition 2.16

I — hgll < |75, — 76 || < 8(k(9)h, EY) = 8(E, 0x(g)) < b,

which implies that o, (g|g1) = o0, (hg) < 2 5, and hence proves (1).
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To prove item (2) we use the triangle inequality

8(0,(glgL), Dy (9) NEY) < 8(0,(he), 0,(h))
+ 8(0,(h), Dpsr(8) N TL(D )
+ 8 (0ksr () NOL()T, Tpsr(9) NED)

< (197 4 012) sEwue)
=\1-42 ks

<25 ()

R EVPZRe

By Corollary 2.2, with C,(hg,h) = r, we get a bound on 8(b,(hg), v,(h)). The
second distance is zero because b, (h) = vy4,(g) N bx(g)*. Finally we use item (2)
of Proposition 2.30 to derive a bound on the third distance. Notice that although
the conclusion of Proposition 2.30 is stated in terms of the distance d, the ratio
between the metrics d and § is very close to 1 when §y is small. Finally notice that

0(g) C 4, (g) implies 6 (Vk+,(8), Dx(g)") = 1. U

Lemma 2.9 Given g, g € Z(V), p € P(g1) NP(g») and any unit vector p € p,

1
—} g1 — &l

d(pe, (D), g, (P)) < max{——,
§ & lgipl’ lgpl

Proof Applying Proposition 2.26 to the non-zero vectors g; p and g, p, we get

n n 81P 82p
d(@e, (D), 95, (D)) < |—— — ——||
lgipll  llg2pll
< max{llgipl™", llg2pI '} g1 p — g2 P
<max{llgipl ™", llg2pll '} g1 — g21I. 0

The final four lemmas of this section apply to invertible linear maps in GL(V).
They express the continuity of the map g — ¢, with values in the space of Lipschitz
or Holder continuous maps on the projective space. These facts will be needed in
Chap. 5.

Lemma 2.10 Given g, g € GL(V), and p # ¢ in P(V),

| 8(0g (D), 05,(@) 89, (P); 9, (D)

— — < C(g1,82) llgr — &I,
5(p, q) 5(p, ) | :

where C(g1, ¢2) == (g7 17 + g2 l* g 17 gz ' 17) (llgall + llgal-
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Proof Given p € p and ¢ € g, by Proposition 2.27

|5(<ﬂg,(ﬁ), 90 (@) 3(pe, (D), <pg2(@))| .y lg1p A g1vp@Il lg2p A g2vp (@)l |
5, q) 5@, q) lgiplligigll lg2pllllg24ll
- lgip A g1vp(q) — g20 A g2vp (@l
N lgipllilgigll
1
+ | | g2p A g2vp (@)l

lgiplligigll  llg2pllllg24ll
< ller' 1% llgip A (g1vp(@) — gavp(@)l + llg 1 1(g1p — gap) A g2vp(@) I

+ lgr 1P 185 ' 11P lgipll |grgll — lg2qll| + llg2qll gl — lg2pll]) l1g211?
< llgr 1% Algall + lig21) llgr — gall

+ lg2l* g 17 ez ' 117 lgall + llg21) llgr — g2l
= (g, "IP + llg2l® gy "1 llga 17 Cligall + Ngall) lgr — gall. O

Lemma 2.11 Given g € GL(V) and p # q in P(V),

1 8(ps(D), 94(q)) _
< T < el lg I
lgll* llg="1l 5, q)
Proof Givenp # ginP(V) consider unit vectors p € p, g € g andsetv = v,(g). We
have ||p|l = llgll = |lvll = 1 and (p, v) = 0. This last relation implies ||p A v|| = 1.
Hence
llgp A gvll = 1(A2) (@ AW = l(A2) ™ 71 = llg ™12
Analogously
llgp A gvll = (A2) (P AW < lIA2gll < ligl>.
We also have
lg™"17% < ligpll g gll < lgl*.
To finish the proof combine these inequalities with Proposition 2.27. (I
Given g € GL(V), we define
£(g) := max{log|g|l. logllg~" [} (2.24)

Lemma 2.12 For every g € GL(V) and p # g in P(V),

(05 (P), 95())

—4L(g) = log[ 55.4) } =4L(g).

Proof Tt follows from Lemma 2.11.
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Lemma 2.13 Given g;,g, € GL(V),0 <a <landp # ginP(V),

3 p), 1 q “ 3 2 D), 2 q “
|(—(¢g'§; o (“’))) - (—(‘”g ;’(’; o (q”) | < Citgr g0 g1 — ol

where Ci(g1, &2) = « max{lgill llg; "I, g2l g5 112~ C(g1, g2), and C(g1, g2)
stands for the constant in Lemma 2.10.

Proof Setting A := W and A, = %, from Lemmas 2.10 and 2.11
we get

|AY — A%] < o max{AT™!, AT} A — A
<amax{lgill gy Il g2l gy 127 [ Ay — 4,
<o max{llgill gy Il g2l lg> ' 127 Clg1, g2) llg1 — g2ll. O

2.4 Avalanche Principle

Consider a long chain of n linear maps g : Vo — Vi, g1 : Vi — W, etc,,
between Euclidean spaces V; of the same dimension m. The AP relates the expan-
sion ||g,—1 ... &1 &oll of the composition g,—; ... g1 go with the product of the indi-
vidual expansions ||g,—1ll ... llg1ll llgoll. Given two quantities M,, and N, depend-
ing on a large number n € N, we say in rough terms that they are e-asymptotic,
and write M, < N,, when e™"* < M,/N, < €"°. In general it is not true that
lgn—1 ... &1 &oll < llgn—1ll --. llg1ll llgoll for some small ¢ > 0, unless some atypi-
cally sharp alignment of the singular directions of the linear maps g; occurs. Given the
chain of linear maps go, g1, . . ., gn_1, 18 7ift p(g0, . . ., &u_1) := m e [0, 1]
measures the break of expansion in the composition g,—; ... g1 go. The AP says that
given any such chain g, g1, . .., g,—1, where the gap ratio of each map g; is large, and
the rift of any pair of consecutive maps is never too small, the rift of the composition
behaves multiplicatively, in the sense that for some small number ¢ > 0,

0(80: 81 - s u1) = (80, 1) P81, 82) - P(Zu_2s 1),

or, equivalently,
lgn—1-.. 818l g1l ... lIgn—2ll ¢

= 1.
g1 &oll - - - 118n—1 gn—2ll

The AP was introduced by Goldstein and Schlag [6, Proposition 2.2] as a tech-
nique to obtain Hoder continuity of the integrated density of states for quasi-periodic
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Schrodinger cocycles. In its original version, the AP applies to chains of unimodular
matrices in SL(2, C), and the length of the chain is assumed to be less than some
lower bound on the norms of the matrices. Note that for unimodular matrices, the
gap ratio and the norm are two equivalent measurements. Still in this unimodular
setting, for matrices in SL(2, R), Bourgain and Jitomirskaya [4, Lemma 5] relaxed
the constraint on the length of the chain of matrices, and later Bourgain [3, Lemma
2.6] removed it, at the cost of slightly weakening the conclusion of the AP.

Later, Schlag [7, Lemma 1] generalized the AP to invertible matrices in GL(m, C).
Recently, C. Sadel has shared with the authors an earlier draft of [1], containing his
version of the AP for GL(m, C) matrices. Both of these higher dimensional APs
assume some bound on the length of the chains of matrices. A higher dimensional
AP without this assumption was proven by the authors [5, Theorem 3.1] for invertible
real matrices.

We present here a more general AP, which holds for (possibly non-invertible)
matrices in Mat(m, R). As a by-product of the geometric approach used in the proof,
we also obtain a quantitative control on the most expanding directions of the matrix
product, something essential in the proof of the continuity of the Oseledets decom-
position.

2.4.1 Contractive Shadowing

Here we prove a shadowing lemma saying that under some conditions, aloose pseudo-
orbit of a chain of contracting maps is shadowed by a true orbit of the mapping
sequence. In particular, a closed pseudo-orbit is shadowed by a periodic orbit of the
mapping chain.

Given a metric space (X, d), denote the closed ¢-ball around x € X by

Bx,e) :={zeX: d(z,x) <¢g}.
Given an open set X° C X, define
X%e) = {x e X": d(x, 0X°) > ¢},
where 9X° denotes the topological boundary of X° in (X, d).
Lemma 2.14 (shadowing lemma) Consider ¢ > 0 and 0 < § < k < 1 such that
8/(1 —k) <e < 1/2.
Given a family {(X;, dj)}o<j<n of compact metric spaces with diameter 1, a chain

of continuous mappings {g; : XJQ — X1 1}o<j<n—1 defined on open sets X/Q C Xj, and
a sequence of points x; € Xj, assume that for every 0 <j <n — 1:
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(a) xj € XJQ and d(xj, 8on) =1,

(b) g; has Lipschitz constant < k on on(e),
(c) gi(x;) € XH(ZS)

(d) g(X)(e)) C B(g;(x), ).

Then, setting g™ := g, 1 0--- 0 gj o go, the following hold:

(1) the composition g™ is deﬁned on B(xg, ) and Lip(g"™ |p(x,.e)) < k",
(2) d(gn-1Gn-1), g™ (x0)) < 72,
(3) if xo = gn_1(xu—1) then g™ (B(xg,€)) C B(xy, ) and there is a point x* €

B(xy, &) such that g (x*) = x* and d (xy, x*) < MSW

Proof The proof’s inductive scheme is better understood with the help of Fig.2.1
(see also Fig.2.2), where we set z; ‘= (gj—10---0giy108)(x;) fori <j < n, with
the convention that this composition is the identity when i = j. Of course we have
to prove that all points z; are well-defined.

The boxed express1ons represent upper bounds on the distance between the points
respectively above and below the box. The ith row represents the orbit of x; € X; by
the chain of mappings {g;};~;. All points in the jth column belong to the space X;.

To explain the last upper bound at the bottom of each column, first notice that
z = x;.. By (a),z 1= gi1(x;,1) is well-defined, and by (c), z‘ Le X0(2 g) C Xo(e)
Likewise 272 € X% (¢), and 272 = g;_1(gi_2(xi_2)) is well-defined. Then by (d)
we have

i—1 _i-2
d(z; .z ") = d(gi—1(xi—1), gi—1(gi—2(xi=2))) < 6. (2.25)
Xo X Xo X3 Xn1 X,
80 81 82 83 &n—2 8
2 e T S 4 o .
1 81 1 82 1 83 8n—2 1 &n 1
B G n—1 Zn
n—45 ‘ n 35 ‘
2 & 2 83 8n—2 2 8n—1 2
L T 43 n—1 Zn
n 55 ‘an45 ‘
83 8n—2 8n—1
a = .= 2, = 2
n—2 8n-2 n—2  8n—1 n—2
o2 77 Y1 T
n—1  8n—1 n—1
Zn-1 s
n
ZH

Fig. 2.1 Family of orbits for the chain of mappings {g; : X]Q — Xji1})
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Fig. 2.2 Shadowing property for a chain of contractive mappings

All other bounds are obtained applying (b) inductively. More precisely, we prove by
induction in the column index j that

(i) all points z]’f in the jth column are well-defined and belong to X}’(e),
(ii) distances between consecutive points in the column j are bounded by the expres-
sions in Fig.2.1,1i.e., forall 1 <i <j—1,

diz™' z) <« (2.26)

7

The initial inductive steps, j = 0, 1, 2, follow from (a), (c) and (2.25). Assume
now that the points zj’ in jth column satisfy (i) and (ii). Then their images Zjl =& (z})
are well-defined. By (b) we have forall 1 <i <j—1,

d(z1.5) = d(gi(@ ). (@) <k d@ ' z) <8,

Together with (2.25) this proves (ii) for the column j + 1. To prove (i) consider any
1 <i <j.By (c) and the triangle inequality,

d(Z;+1’ BXJOH) z d(Z/+1, +1) - d(ZI:Jrl’ Z1]‘A+1)

> d(g (), X}, p) — Z (212
I=i+1

> €.

J
>2¢ — ZKFISZZS—

1 —«
I=i+1

This proves (i) for the column j + 1, and concludes the induction.
Conclusion (1) follows from (b) and the following claim, to be proved by induction
in i.
Foreveryi=0,1,...,n—1,8"(B(xo, ¢)) C X" (¢), where g = g;_j0---0go.
Consider first the case i = 0. Given x € B(xy, €),

d(x, 0X3) = d(xo, Xy) —d(x,x0) > 1 — & > &.

This implies that d(go(x), go(x0)) < k d(x, xo). Thus
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d(go(x), X)) > d(go(x0), 3X}) — d(go(x0), go(x)) > 2 & — d(go(xo), go(x))
>2e—kdxg,x) >2e—ke>¢

which proves that go(B(xo, €)) C X?(&).
Assume now that for every / <i—1,

(g10-080)(Bxo, £) C X}, (e).

By (b), g” acts as a k'’ contraction on B(xo, ) and g (B(xo, €)) C X?(¢). Thus for
every x € B(xo, ),

A8V (x), X7, 1) = d(gi(x), 0X7) — d(gi(x)), gV (x))
> 2e — d(Z?_H , Z;:-H) - d(Z?_H s g(i+l)(x))

i—1
> 26— > d(gy, 7D — @ (x0), gV ()
=0

>26— B 4+k8+-+c718) —«d(x, x)
>2e— (B +kd+---+x7'8) —kle
>2e—(1—k)e(l+k+-+kH—kie=¢

which proves that gV (B(x, £)) C X%, , (¢), and establishes the claim above.
Thus g™ is well-defined on B(xo, ), and, because of assumption (b), g™ is a k"
Lipschitz contraction on this ball. This proves (1).
Item (2) follows by (2.26). In fact

1)
11—«

n—l n—1
d(gn1(0n-1), 8" (x0) =d(zy " 2 < D d@h. ) < D ke <
=1 I=1

Finally we prove (3). Assume xyp = g,—1 (X,—1)-

It is enough to see that g™ (B(xo, &)) C B(xo, €), because by (1) g™ acts as a
k"-contraction in the closed ball B(x, ). The conclusion on the existence of a fixed
point, as well as the proximity bound, follow from the classical fixed point theorem
for Lipschitz contractions.

Given x € B(x, €), we know from the previous calculation that

d(x0, 8" (x0)) <8 +Kk8+---+x"28.
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Hence

d(g™ (x), x0) < d(g™ (x), ™ (x0)) + d (2™ (x0), x0)
<" Vdx,x)) +8+Kk8+---+Kk"28
58+K5+"'+K"_25+K”_15
<(-k)e(l+k+-+&"2)+x" e

_ n—1
=(l-k)e——+«""e=¢.
1 —«

Thus g™ (x) € B(xo, &), which proves that g™ (B(xo, €)) C B(xo, €). O

2.4.2 Statement and Proof of the AP

In the statement and proof of the AP we will use the notation introduced in Sect. 2.2.3.
Given a chain of linear mappings {g; : V; — Vj;1}o<j<n—1 We denote the composition
of the first i maps by g := g;_; ... g1 go. Throughout this chapter, a < b will stand
for a < C b for some absolute constant C.

Theorem 2.1 (Avalanche Principle) There exists a constant ¢ > 0 such that given
0<e<1, 0<« <ce?anda chain of linear mappings {gi : Vi = VisiJogjzn—t
between Euclidean spaces V;, if

(a) o(g) <k, for0<i<n-—1,and
(b) a(gi_1,8) >¢€, forl <i<n-—1,

then

(1) d(v(g™),v(g0)) Ske™",
(2) d(®(g"™*),0(g; ) Ske',

n—1
(3) o(g") S (422)"

n—2 n—1
K
(4) [logllg® Il + > logllgill — > logligi gial] S n .

i=1 i=1

Remark 2.3 (On the assumptions) Assumption (a) says that the (first) gap ratio of
each g; is large, gr(g;) > «~!. Given (a), by Propositions 2.23 and 2.24, assumption
(b) is equivalent to a condition on the rift, p(g;_1, gj) 2 eforallj=1,...,n—1.

Remark 2.4 (On the conclusions) Conclusions (1) and (2) say that the most expand-
ing direction b(g™) of the product g™, and its image ¢, b(g™), are respectively
K /e-close to the most expanding direction b(go) of go, and to the image ¢,, ,b(g,—1)
of the most expanding direction of g,_;. Conclusion (3) says that the composition
map g™ has a large gap ratio. Finally, conclusion (4) is equivalent to
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pnCre _ N8t - g1 gollllgill .- - Ngnall _ ncie
o b
ligr&oll - llgn—1 &n—2ll

for some universal constant C > 0. These inequalities describe the asymptotic almost
multiplicative behavior of the rifts

Ci/e?
p(g()’gla"'agn—l) = p(gO»gl)p(glag2) ~--p(gn—2»gn—l)-

Proof The strategy of the proof is to look at the contracting action of linear mappings
g; on the projective space.

Foreachj = 0,1, ..., n consider the compact metric space X; = P(V;) with the
normalized Riemannian distance, d(i1, V) = % p (i1, v). The reader should be warned
of the notational similarity between this projective metric and the one defined in (2.2).
We do not refer to the metric (2.2) in this proof. However, the distance in the statement
of the AP can be understood as any of the four equivalent projective distances 8, d,
pord. For 0 <j < ndefine

X) =10 eX;: a(d,0(g)) >0},
Y= eX: ai®v(g)) >0}

The domain of the projective map ¢, : P(g;)) C X; — Xji1 clearly contains the
open set X Analogously, the domain of ¢,: | : P(¢f) C X; — Xj_; contains Y}
We will apply Lemma 2.14 to chains of projective maps formed by the mappings
g, X' = Xji1 and their adjoints gg: ¥} — X1

Take positive numbers & and « such that 0 < x < &%, let r := /1 — &2/4, and
define the following input parameters for the application of Lemma 2.14,

1 .
& = — arcsineg,
T

A simple calculation shows that there exists 0 < ¢ < 1 such thatforany 0 < ¢ < 1
and 0 < k < c¢?, the pre-conditions 0 < 8¢, < Ky < 1 and lfj‘;h < & < 1/2 of
the shadowing lemma are satisfied.

Define x; = v(g;) and x; = v(g}_,). This lemma is going to be applied to the
following chains of maps and sequences of points

* *
(A) Ggps v s Pguys Pgt_isvvns Pgts XOs o vvs Xne1r Xpys oo o5 X]

* k
(B) Qg sy gty Ogps e s Gguis Xy o ey X5 X0s + o+ s Xn—1,s
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from which we will infer the conclusions (1) and (2). Let us check now that assump-
tions (a)—(d) of Lemma 2.14 hold in both cases (A) and (B).

By definition 8XJQ = eX:alx) =0} ={VeX: VL x} Hence,
if v e BXjO then d(x;, §) = 1, which proves that d(x;, BXJQ) = 1. Analogously,
BYjO ={beX;: v L x}and d(x], 8Yj0) = 1. Therefore assumption (a) holds.

By definition of X} (e),

b
— &
2

~ 0 ~ . s
& 809, 0X") = a (b, x)) = sin (5 5)

beX(e) & d@, X)) > & p(, 0X)) >

. T
& 6(v,x;) < cos (E s) .
Similarly, by definition of on (e),
5 0 . T
Vey; (&) & S(V,xj) < cos (58)

Thus, because

T 1 . g2
cos (— esh) =cos| = arcsineg ) <,/1— — =r,
2 2 4

we have XJQ (esn) C B® (x;, r) and on (esn) C B® (x7, r), and assumption (b) holds
by Proposition 2.29 (3).
By the gap assumption,
a(@g (7). Xj1) = (0(g}), (gj+1)) = (g, gj+1) = €.
Therefore
0 2 . 0 2 .
d(pg (), 90X\ y) = - arcsin 8 (¢, (%)), 8Xj+1) == arcsin o (@ (X)), Xj41)
> — arcsine = 2 &g,.
b4
Similarly, by the gap assumption,
(g (), xEy) = a®(g-1). 0(gf ) = (gl 8) = (g, gi41) = &.

and in the same way we infer that

2
d(ey: l(xj’."), 8Yj°_1) > — arcsing = 2 &y.
- T
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This proves that (c¢) of the shadowing lemma holds. Notice that in both cases (A) and
(B), the assumption (c) holds trivially for the middle points, because ¢, , (x,—1) =
xhe Y,?(2 &sn) and @gx (x7) = xo € X8(2 Esh)-

It was proved above that X (esn) C B® (x;, r) and Y (eq) € B® (x}, ). By (2.5)
we have d(it, ¥) < §(i, V). Thus by Proposition 2.29 (1),

g, (X} (e)) C BO(x}, ) C BV (x7, 8n) with x = g (x;),
and analogously,
. (Y° B®(x 1.8 BDx .8 ith x| = Q.+ *
(ﬂg,,l( j (&sh)) C (-xjfl9 sh) C (-x]f]’ sh) Wit Xj—1 ‘ng,l(x])'

Hence, (d) of Lemma 2.14 holds.

Therefore, because @g:(x) = xo and ¢, (x,-1) = x;, conclusion (3) of
Lemma 2.14 holds for both chains (A) and (B). The projective points b(g™)
and v(g"™*) are the unique fixed points of the chains of mappings (A) and (B),
respectively. Hence, by the shadowing lemma both distances d(xo, v(g")) and
d(x*, b(g"™*)) are bounded above by

8sh
(1 —resn) (1 — k3!

8 K
= O0gh X —.
) e

This proves conclusions (1) and (2) of the AP.
From Proposition 2.28 we infer that for any g € £ (V),

5 _
lgll

Hence, by conclusion (1) of the shadowing lemma

(Dee)uepll = o (g).

0 (8"™) = [[(Dgn )55 | < Lip(@g0 B (g0).0r))
R k(4 +2¢)\"
S (Ksh) S ( —2 ) .

&

On the other hand, by (1) the distance from v(g™) to b(go) is of order k ™! « &
and

Lip(@g 8@y ) S 1DPg)5(00) | = 0(80) < k.

Therefore

Kk @+2e)\""
g2 ’

o (™) Sk (k)" <k (

which proves conclusion (3) of the AP.
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Before proving (4), notice that applying (3) to the chain of linear maps go, . . ., gi—1
we get that g := g;_; ... go has a first gap ratio foralli = 1, ..., n.

We claim that
@)

la(g?, gi) — a(gi1. 80| S ke (2.27)

By (2) of the AP, applied to the chain of linear maps go, ..., gi—1,

- 85h -1
), 0(gi ) < ~ Ske
YT (1 = k) — k3

d(@(g™*

Hence, by Proposition 2.35

(2, 8) — a(gi1, )] = @), B(g)) — ¢ ((g]-)), 52|
<d@(E"),v(gr ) Ske .

For any i, the logarithm of any ratio between the four factors a(g®, g), 8(g?, g),
a(gi_1, g) and B(gi_1, &) is of order x 2. In fact, by (2.27)

a(g?, g)
a(gi-1, &)

2

@ g) —a(gi1, g)| < ke

1
|log | < = |e(e
&

By hypothesis (a), o(g;) < k. From conclusion (3) we also have U(g(i)) < K,

provided we make the constant ¢ small enough. Hence by Lemma 2.4,

llo B(gi-1, &

2 (i) . 2
)|§fc2 and |logﬂ(g ,g,)|< K
a(gi-1,8i) €

a(gD, g)' ~ e’
Since k2e7% « Kk 72, the logarithms of the other ratios between the factors above
are all < « &2, Thus, for some universal constant C > 0, each of these ratios is
inside the interval [e=C*¢ 7, eCx e,

Finally, applying Proposition 2.25 to the rifts p(go, - - - , &1—1)> £ (g0, £1), (g1, &2),
etc., we have

n—

1 i n—1 .
nexe? a(g?, g) - p(gol,...,gnfl) - B, g) < gnCxe
i B 8) T ITE, plgicns g oy @(8i-15 80

e

b

which by Remark 2.4 is equivalent to (4). (|

Next proposition is a practical reformulation of the Avalanche Principle.
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Proposition 2.42 There exists ¢ > 0 such that given 0 < & < 1,0 < k < c&” and

805815 ---58n—1 € Mat(m, R), lf‘
1 .
(gaps) gr(gi) > — forall 0<i<n-—1
K
(angles) MNgigimill > ¢ forall 1<i<n—1
lgill llgi-1ll
then

max { d(0(g"*), 0(gi_1)), d(©(g™),v(go)) } Swe!

n—2 n—1
logllg™ | + D logllgill — > logllgigi—1

i=1 i=1

K
<n-—.
o2

Proof Consider the constant ¢ > 0in Theorem 2.1, let¢’ := ¢ (1 —2 ¢?) and assume
0<k <c &
Assumption (gaps) here is equivalent to assumption (a) of Theorem 2.1. By Propo-

sition 2.24, the assumption (angles) here implies

2k?

==
p(gi-1, &)

242
28,/1—%28\/1—262822:8’,
e

Since0 < k < c’ &2, andc’ €2 < c(1-2c*e?) e? = c(¢")> wehave 0 < k < ¢ (¢')%.
Thus, because ¢ = ¢&’, this proposition follows from conclusions (1), (2) and (4) of
Theorem 2.1. O

a(gi-1, g&) = p(gi-1- &)

2.4.3 Consequences of the AP

Given a chain of linear maps {g; : V; — Vj1}o<j<n—1 between Euclidean spaces V;,
and integers 0 < i < j < n we define

g(j,i) 1=gj_ 10" 0&iy10&i.

With this notation the following relation holds for 0 <i < k <j <n,

gD = gUh) o gk

Next proposition states, in a quantified way, that the most expanding directions
b(g"?) e P(V;) are almost invariant under the adjoints of the chain mappings.
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Proposition 2.43 Under the assumptions of Theorem 2.1, where 0 < k < €2,

Kk k(4 +2¢)

d(gg 0(g™™), 0(g"") < 7 )"

g2

Proof Consider k, ¢, kg, and &g, as in Theorem 2.1. From the proof of item (3) of the
AP, applied to the chain of mappings g;_,, . .., g, we conclude that the composition
gD =gfo--- og* | isa(kg)"'-Lipschitz contraction on the ball B(v(g*_,), ).
On the other hand, by (2) of the AP we have d(b(g"™ %, b(g*_|)) < ke~ ! and
d(v(g:_ ), 0(g""*) < kel Since k™! « & < &g, both projective points
v(g"™"*) and (g™ 1*) belong to the ball B(v(g*_,), &s). Thus,

d(gy: ﬁ(g(n,m))’ E(g(”*i)))
= d( @y 0 @yt Bty g S )
= d(@gon 08" F%), @gunnn D(g"%))
< ()" d(B(g™ D%, B(g™D*)

442 . _ . _ _ _ .
< Oy (a0, g ) + (), 5 ")

<2_/<(/<(4+2s)

~

)n—i.

&2
which proves the proposition. ([

Most expanding directions and norms of products of chains matrices under an
application of the AP admit the following modulus of continuity.

Proposition 2.44 Let ¢ > 0 be the universal constant in Theorem 2.1. Given num-

bers 0 < & < 1l and 0 < k < c&?, and given two chains of matrices g, . . ., gn—1
and g, ..., g,_, in Mat(m, R), both satisfying the assumptions of the AP for the
given parameters k and &, if de (g, g;) <d8foralli=0,1,...,n—1, then

(a) d(o(gn-1 ... 80), 0(g,_; --- &) S 5 +86,
el - K 1)
(b) |10g ”g 1 gO” | 5 n (_ + _).

g1 - &l g2 ¢

Proof Ttem (a) follows from conclusion (1) of Theorem 2.1, and Proposition 2.40,

d(0(gn—1---80), 0(gy_1 --- 80)) <d(0(gn—1 --- g0). 1(g0))
+ d(6(g0), B(gh) + d(T(gh), Ty --- 8))
166
1 — k2

<254 << 4+8s.
& &



2.4 Avalanche Principle

Assuming | g;[| > [Ig;[l, we have

gl lgi — gl llg:ll , llgill
= <14+ —= <1+ ——dulgig) <1+$6
lg; I llgl il ™ llgl
which implies
lell _ 1
leill — 1%

Because the case ||g;|| < ||g;|| is analogous, we conclude that

llg:ll 1 )
] 1 _— < — =
|g|’|| B\1T=s) 1=

Since the two chains of matrices satisfy the assumptions of the AP we have

/ /
lgigi—1ll (g1, g) > ¢ and llg: giyll

> > (g, 8) > ¢
lgill llgi- 1|| lgill llg;_ 1|I -

A simple calculation gives

lgillllgi—1ll { Il
= max {1

s } drel(gis g;)
llgigi-1ll llgll

dre1 (8 i1, & 8i—1) <

lgilllig: i [ ||gl-1||}
o max 1 nS dr (81, 81p)
lgigi lgizgll )
2 8 4

< — - = —.
T (1=8re ¢
Therefore, arguing as above,

| llgi gi1ll ’ < é
lgigill' ™ e

Hence, by conclusion (4) of the AP we have

llgn—1 --- goll lgn-1 --- gollllg1ll --- llgn—-2ll
[log =22 < [lo |
llgn_y --- &oll llg1 goll - - l1gn—1 &n—-2ll
+ |log llg) goll --- g1 &nsll |
lg,_1 --- &l Ilg’lll Mgl

n—2
1<l llgi 8ol
+ 2 flog ||g-|||+Z| ez
i=1 !

lgi gyl

75
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5
St =28+ (—1)°
& &

5
Sn(%+—),
& &

which proves (b). U

The next proposition is a flag version of the AP.
Lett = (71,..., %) beasignature withO < 1) <, < --- < T < m.
We call t-block product any of the functions r; ; : Mat(m, R) — R,

nr,j(g) = S‘E_;71+1 (g) ... S‘L’,-(g)7 1 E.] < kv
where by convention 7y = 0. A t-singular value product, abbreviated t-s.v.p., is any

product of distinct T-block products. By definition, t-block products are t-singular
value products. Other examples of t-singular value products are the functions

Py (8) = 51(8) - .. 55,(8) = N8Il
Note that for every 1 <j < k we have:

P (8)
pT/—l (g) '

7Tﬂ:,j(g) =

and
(&) = m1(8) - .. 7 ;(8).

Proposition 2.45 (Flag AP) Let ¢ > 0 be the universal constant in Theorem 2.1.
Given numbers 0 < ¢ < 1,0 < k < c&? and a chain of matrices g; € Mat(m, R),
withj=0,1,...,n—1,if

(a) o.(gi) <k, for0<i<n-—1,and
(b) ar(gi-1,8) = ¢, forl <i<n-—1,
then
(1) d@:(8""). be(g;_) Ske™!
(2) d(®:(8"™).b:(g0)) Sce!
n
(3) or(g™) = (4522)
(4) for any t-s.v.p. function w,

n—2 n—1
K
|log 7 (g™) + Zl:logﬂ(gi) - Z}log m(gigi-)| Sn ok
= =
Proof For each j = 1, ..., k, consider the chain of matrices A;go, Ag &1, -5 Ay

gn—1. Assumptions (a) and (b) here imply the corresponding assumptions of
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Theorem 2.1 for all these chains of exterior power matrices. Hence, by (1) of the AP
d(07,(8"), Uy (g_1)) = d (¥ (07,(8™). ¥ (05 (85_1))

= d®O(A8™") . 0(Aygr_ ) Swe

Thus, taking the maximum in j we get d (v, (g™*), v, (g% ) Ske™!
(1). Conclusion (2) follows in the same way.

Similarly, from (3) of Theorem 2.1, we infer the corresponding conclusion here

, which proves

n
00 (g") = max oy (¢") = max 0/(Ag") < (Ltz‘g)) .
l<j<k l<j<k €
Let us now prove (4).
For the t-s.v.p. w(g) = p-j(g) = lIAgll conclusion (4) is a consequence of the
corresponding conclusion of Theorem 2.1.
For the t-block product 7 = 7., since

log 7(g) = log|Aqgll — log|lAr_ gl

conclusion (4) follows again from Theorem 2.1 (4).
Finally, since any t-s.v.p. is a finite product of 7-block products we can reduce
(4) to the previous case. [l

We finish this section with a version of the AP for complex matrices.

The singular values of a complex matrix g € Mat(m, C) are defined to be the
eigenvalues of the positive semi-definite hermitian matrix g* g, where g* stands for the
transjugate of g, i.e., the conjugate transpose of g. Similarly, the singular vectors of g
are defined as the eigenvectors of g* g. The sorted singular values of g € Mat(m, C)
are denoted by s1(g) > s2(g) > --- > s5,,(g). The top singular value of g coincides
with its norm, s;(g) = ||g||-

The (first) gap ratio of g is the quotient o (g) := s2(g)/s1(g) < 1. We say that
g € Mat(m, C) has a (first) gap ratio when o (g) < 1. When this happens the complex
eigenspace

reC”: grgv=Iglvi={eC": ligvl=lglllvi}

has complex dimension one and determines a point in P(C"), denoted by b(g) and
referred to as the g-most expanding direction.
Given points v, iz € P(C™), we set

where v eV, ucu. (2.28)
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Given g, g’ € Mat(m, C), both with (first) gap ratios, we define the angle between
gand g’ to be
a(g, &) = a(v(g"), v(g)).

With these definitions, the real version of the AP leads in a straightforward manner
to a slightly weaker complex version, stated and proved below. However, adapting
the original proof to the complex case, replacing each real concept by its complex
analog, would lead to the same stronger estimates as in Theorem 2.1.

Proposition 2.46 (Complex AP) Let ¢ > 0 be the universal constant in Theorem 2. 1.
Given numbers 0 < ¢ < 1,0 < k < ce* and a chain of matrices g; € Mat(m, C),
withj=0,1,...,n—1,if

(a) o(gi) <k, for0<i<n-—1,and
(b) a(gi-1,8) >¢, forl <i<n-—1,

then

(1) d(®(g™*),0(g; 1) Sre?
(2) d@®(g™).v(g0)) Ske™?
(3) o(g™) = (£422)

n—1

n—2
K
(4 [loglig™ 1l + > logligill = >_logllg: gi1ll| < 7 -

i=1 i=1

Proof Make the identification C" = R?>”, and given g € Mat(m, C™) denote by
g® € Mat(2m, R) the matrix representing the linear operator g : R?” — R?" in the
canonical basis.

We make explicit the relationship between gap ratios and angles of the complex
matrices and g, g’ € Mat(m, C), and the gap ratios and angles of their real analogues
g™ and (g"*.

Given g € Mat(m, C), for each eigenvalue X of g, the matrix g]R has a correspond-
ing pair of eigenvalues A, A. Since g > g® is a C*-algebra homomorphism, we have
(g* 9)F = (g®)* (g®). Therefore, forall i = 1, ..., m, si(g) = s2i-1(g%) = 52:(g%).
In particular, considering the signature t = (2),

53(g%) _ 52(8) _
s518%)  si(9)

oo™ = o(g). (2.29)

The g-most expanding direction v(g) € P(C™) is a complex line which we can
identify with the real 2-plane vy, (g®). This identification, b(g) = b2 (g®), comes
from a natural isometric embedding P(C") < Gr,(R>™).

Consider two points v, i € P(C™) and take unit vectors v € ¥ and u € &. Denote
by U,V C C™ the complex lines spanned by these vectors, which are planes in
Gr,(R*™). Consider the complex orthogonal projection onto the complex line V,
7,y U — V, defined by 7, (x) := (x, v) v. By (2.28) we have a (¥, &) = |7, ||.
On the other hand, since the adjoints 7" : V — U of r,,, both as a complex and as

uv "
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a real linear maps coincide, it follows that m, , = 7y y is the restriction to U of the
(real) orthogonal projection onto the 2-plane V. Thus, by Proposition 2.19(b),

(U, V) =, /detp(ry,m,,) = detc(r) muy) = T l® = a®, )

In particular,
am) (g%, (@)% = ap (g%, 8((gH)™) = a(v(g"), v(g))? = alg, g)*. (2.30)

Take «, & > O such that k < c&*, 0 < & < 1, and consider a chain of matrices
g € Mat(m,C),j = 0,1,...,n — 1 satisfying the assumptions (a) and (b) of the
complex AP. By (2.29) and (2.30), the assumptions (a) and (b) of Proposition 2.45
hold for the chain of real matrices ij € Mat(2m,R),j = 0,1,...,n — 1, with
parameters « and &2, and with T = (2). Therefore conclusions (1)—(4) of the complex
AP follow from the corresponding conclusions of Proposition 2.45. In conclusion
(4) we use the (2)-singular value product 7 (g) := ||g||*> = | A28%]. O
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