Chapter 2
A Type System for Components

In this chapter we present the type system for the component model. We first give
a thorough explanation of the types we adopt and how the type system achieves
tracking of cog membership. Then, we introduce the subtyping relation; we present
the auxiliary functions and predicates that the type system relies on, and we conclude
with the typing rules.

2.1 Typing Features

In this section we give the intuition behind the types and the records used in the typing
rules, the latter being a new concept not adopted either in ABS or in its component
extension [77]. We explain also the meaning of the method signature and how the type
system addresses the problem of consistent rebindings and consistent synchronous
method calls.

Cog Names The goal of our type system is to statically check if rebindings and
synchronous method calls are performed locally to a cog. Since cogs and objects are
entities created at runtime, we cannot know statically their identity. The interesting,
and also difficult part, in designing the type systems is how to statically track cogs
identity and hence membership to a cog. We address this issue by using a linear type
system on names of cogs, which range over G, G', G”, in a way that abstracts the
runtime identity of cogs. The type system associates to every cog creation a unique
cog name, which makes it possible to check if two objects are in the same cog or not.

Precisely, we associate objects to their cogs using records r, having the form
G[f : T1, where G denotes the cog in which the object is located and [f : T] maps
any object’s fields in f to its type in 7. In fact, in order to correctly track cog
membership of each expression, we also need to keep information about the cog of
the object’s fields in a record. This is needed, for instance, when an object stored in

© Atlantis Press and the author(s) 2016 19
O. Dardha, Type Systems for Distributed Programs:

Components and Sessions, Atlantis Studies in Computing 7,

DOI 10.2991/978-94-6239-204-5_2

20 2 A Type System for Components

a field is accessed within the method body and then returned by the method; in this
case one needs a way to bind the cog of the accessed field to the cog of the returned
value.

Cog Sets In order to deal with linearity of cogs created, and to keep track of them
after their creation, our type system, besides the standard typing context I" (formally
defined in the next section) uses a set of cogs, ranged over by G, G’, G”, that keeps
track of the cogs created so far and uses the operator & to deal with the disjoint union
of sets, namely G W G’, where the empty set acts as the neutral element, namely
Gy P =0wGg=G. We will discuss the details in Sect.2.4.

Method Signature Let us now explain the method signature (G, r) used to annotate
a method header. The record r is used as the record of the object this during the
typing of the method, i.e., r is the binder for the cog of the object this in the scope of
the method body, as we will see in the typing rules in the following. The set of cog
names G is used to keep track of the fresh cogs that the method creates. In particular,
when we deal with recursive method calls, the set G gathers the fresh cogs of every
call, which is then returned to the main execution. Moreover, when it is not necessary
to keep track of cog information about an object, because the object is not going to
take part in any synchronous method call or any rebind operation, it is possible to
associate to this object the unknown record L. This special record does not keep any
information about the cog where the object or its fields are located, and it is to be
considered different from any other cog, thus to ensure the soundness of our type
system. Finally, notice that data types also may contain records; for instance, a list
of objects is typed with List(7T') where T is the type of the objects in the list and it
may include the records of the objects.

2.2 Subtyping Relation

There are two forms of subtyping: structural and nominal subtyping. In a language
where subtyping is nominal, A is a subtype of B if and only if it is declared to be
so, meaning if class (or interface) A extends (or implements) class (or interface)
B; these relations must be defined by the programmer and are based on the names
of classes and interfaces declared. In the latter, subtyping relation is established by
analysing the structure of a class, i.e., its fields and methods: class (or interface) A
is a subtype of class (or interface) B if and only if the fields and methods of A are
a superset of the fields and methods of B, and their types in A are subtypes of their
types in B. (Featherweight) Java uses nominal subtyping, languages like [44, 52, 81,
92] use structural subtyping. In [33] the authors integrate both nominal and structural
subtyping.

The subtyping relation < for our language is given in Fig.2.1; we adopt both
nominal and structural subtyping. Rule (S-DATA) states that data types are covariant
in their type parameters. Rule (S-TYPE) states that annotating classes and interfaces

2.2 Subtyping Relation 21

(S-Data) (S-TyPE)
Vi T;<T! L<L
D(TY < D(T') (L) < (L, 1)
(S-FIELDS) (S-PorTs)
S ¢ ports(L) f € ports(L)
(L,GIf :T;7:TDH <(L,GLf: T (L.GLf : T < (L,GLf : T3 f: T
. (S-CLaAss) o (S-REFL)
class C[(T x)] implements T { FIM} I,€I1
C<I T<T
(S-INTERFACE) (S-TrANS)
interface I extends I { port T xS} Liel T<T T<T”
I<I T<T"

Fig. 2.1 Subtyping relation

with records does not change the subtyping order. Rules (S-FIELDS) and (S-PORTS)
use structural subtyping on records. Fields, like methods, are what the object provides,
hence it is sound to forget about the existence of a field in an object. This is why
the rule (S-FIELDS) allows to remove fields from records. Ports on the other hand,
model the dependencies the objects have on their environment, hence it is sound
to consider that an object may have more dependencies than it actually has during
its execution. This is why the rule (S-PORTS) allows to add ports to records. So, in
case of fields, one object can be substituted by another one if the latter has at least
the same fields; on the contrary, in case of ports, one object can be substituted by
another one if the latter has at most the same ports. Notice that in the standard object-
oriented setting this rule would not be sound, since trying to access a non-existing
attribute would lead to a null pointer exception. Therefore, to support our vision of
port behaviour, we add a (REBIND-NONE) reduction rule to the component calculus
semantics which simply permits the rebind to succeed without modifications if the
port is not available. Rules (S-CLASS) and (S-INTERFACE) use nominal subtyping and
state that a class C (respectively, an interface I) is a subtype of an interface I; that it
implements (respectively, extends). Rules (S-REFL) and (S-TRANS) are standard and
state that our subtyping relation is a preorder.

2.3 Functions and Predicates

In this section we define the auxiliary functions and predicates that are used in
the typing rules. We start with the lookup functions params, ports, fields, ptype,
mtype, heads shown in Fig.2.2. These functions are similar and are inspired by the
corresponding ones in Featherweight Java [61]. For readability reasons, the lookup

22 2 A Type System for Components

class C (T x) [implements I|{ FI; M }

params(C) = T x

class C [(T” x”)] [implements I| { port T x;T" x'; M}

ports(C) = T x

interface I [extends I] { port T x; S }

ports(I) = T x

class C [(T"” x”)] [implements I_]{ port T x; T’ x'; M)
fields(C) =T x;T' x'

class C [(T” x”)] [implements I port T x; T’ x'; M)

ptype(p,C) = T

interface I [extends I] { port T x; S

ptype(p,I) = T

class C [(T x)] [implements I] { FI M }
[eritical] (G, 1) T m(T x){ s} € M

mtype(m,C) = (G,)T x) > T

interface I [extends I]{ port T x; S
[eritical] (G,r) T m(T x) € S

mtype(m, I) = (G,)T x) > T

class C (T x)] [implements I| { FIM} M =S {s}
heads(C) = S

interface I [extends I] { port T x; S

heads(I) =S

Fig. 2.2 Lookup functions

functions are written in italics, whether the auxiliary functions and predicates are
not. Function params returns the sequence of typed parameters of a class. Function
ports returns the sequence of typed ports. Instead, function fields returns all the
fields of the class it is defined on, namely the inner state and the ports too. Functions
ptype and mtype return the declared type of respectively the port and the method
they are applied to. Function heads returns the headers of the declared methods.

2.3 Functions and Predicates

tmatch(7, T) = id tmatch(r, r) = id tmatch(V,T) = [V > T]

Vi tmatch(7;, T)) = o Yi,j Cidom(o)) = O jldom(cry)

i

tmatch(D(T), D(T")) & U o

tmatch(r,1’) = o

tmatch((I, r), (I,1)) £ o

Vi tmatch(T;, T}) = o Vi, Cildom(o)) = T jldom(cy) o(G) € {G,G'}
tmatch(G[f = T1,G[f: T') 2 (G- G1{_J oy

pmatch(_,7) = 0 pmatch(x,7) = Q;x: T pmatch(null, (I,1)) = 0

[Co)=T—>T
tmatch(7”,T") = o Yi pmatch(p;, o (T;)) =T

pmatch(Co(p), T”) = |+| T

C<I dom(c’) Nndom(c) =0
fields(C) = (I,r) f;D(...) f’
(L G[f : co0’(1,1)]) € crec(G,C,0)

equals(G, G')
coloc(Gl[...],(C,G'[...])

ports(C) C ports(I) and Vp € ports(C). ptype(p, I) = ptype(p,C)
heads(I) C heads(C) and Ym € I. mtype(m, I) = mtype(m, C)

implements(C, I)

ports(I) C ports(I') and Vp € ports(I). ptype(p,1’) = ptype(p,I)
heads(1') C heads(I) and Ym € I'. mtype(m, I) = mtype(m, I')

extends(I, I’)

Fig. 2.3 Auxiliary functions and predicates

23

Except function fields which is defined only on classes, the rest of the lookup

functions is defined on both classes and interfaces.

The auxiliary functions and predicates are shown in Fig.2.3. Function tmatch
returns a substitution o of the formal parameters to the actual ones. It is defined
both on types and on records. The matching of a type T to itself, or of a record r
to itself, returns the identity substitution id; the matching of a type variable V to a

24 2 A Type System for Components

type T returns a substitution of vV to T'; the matching of data type D parametrized on
formal types 7 and on actual types 7’ returns the union of substitutions that corre-
spond to the matching of each type 7; with 77, in such a way that substitutions
coincide when applied to the same formal types, the latter being expressed by
Vi, j Oildom(s;) = O jldom(s;)> the matching of records follows the same idea as that
of data types. Finally, tmatch applied on types (I,), (I, r’) returns the same sub-
stitution obtained by matching r with r’. Function pmatch, performs matchings on
patterns and types by returning a typing context I'. In particular, pmatch returns
an empty set when the pattern is _ or null, or x : 7 when applied on a variable x
and a type T. Otherwise, if applied to a constructor expression Co(p) and a type
T" it returns the union of typing contexts corresponding to patterns in p. The pair
(I,Glo Wa'(f : (T, 1))]) is a member of crec(G, C, o) if class C implements inter-
face T and o’ and o are substitutions defined on disjoint sets of names. Predicate
coloc states the equality of two cog names. Predicates implements and extends check
when a class implements an interface and an interface extends another one. A class
C implements an interface I if the ports of C are at most the ones of I. Instead, for
methods, C may define at least the methods declared in T having the same signature.
The extends predicate states when an interface I properly extends another interface
T’ and is defined similarly to the implements predicate.

2.4 Typing Rules

A typing context I is a partial function and assigns types 7' to variables, a pair (C, r)
to this, and arrow types T — T’ to function symbols like Co or fun, namely:

=@ |x:7,T | this: (C,r),[| Co:T - T'.,T | fun:T - T',T

As usual dom(I") denotes the domain of the typing context I'. We define the com-
position of typing contexts, I' o I/, as follows: I" o I''(x) = I''(x) if x € dom(I"),
and T o I'"(x) = I'(x) otherwise. We say that a typing context I’ extends a typ-
ing context I', denoted with I' C I'” if dom(I") € dom(I'’) and I'(x) = I'’(x) for
all x € dom(T"). Typing judgements have the following forms, where a cogset G
indicates the set of new cogs created by the term being typed. I' - g : Bool for
guards; I" - e : T forpure expressions; I', G | z : T forexpressions with side effects;
I', G I s for statements; I' = M for method declarations; I' - C for class declara-
tions and I' - [for interface declarations.

Pure Expressions The typing rules for pure expressions are given in Fig. 2.4. Rule
(T-VAR/FIELD) states that a variable is of type the one assumed in the typing context.
Rule (T-FIELDR) assigns to x a type T and a record r fetched from the type of this.
Rule (T-FIELDBOT) assigns (7', L) to x, since x is not part of the record for this but is
afield of C. Rule (T-NULL) states that the value null is of type any interface I declared
in the CT (class table) and any record r. Rule (T-WILD) states that the wildcard _ is

2.4 Typing Rules 25

(T-Var/FIELD) (T-FiELDR)

I'x)=T x ¢ dom(T") I'(this) = (C,G[x : (T,r),...])

I'tx:T 'ex:(T,r)

(T-FieLoBor)
x ¢ dom(T') T x € fields(C) (T-NutL) (T-W1p)
I'(this) = (C,G[x : T]) xéx interface I[---]{ --- } e CT
I'kx:(T,1) I'rnull: (I,r) I'r_:T
(T-ConsExp) (T-FunExp)
I'Co)=T->T I'fun) =T - T’
tmatch(7,T)=c Tre:T’ tmatch(7,T)=o Tre:T’
I'+ Co(e) : o(T") I' + fun(e) : o(T")
(T-Cask) (T-BraNcH)

I're:T I'ep: T (T-Sus)
Frp=e,:T>T I o pmatch(p,T) F e, : T’ 're:T T<T
I'rcasee{p=e,}: T’ F'rp=e,:T>T IF're:T'

(T-FurGuarp) (T-CriticGUARD) (T-ConsGuaRrD)
't x: Fu(T) I'rx: (L) I'+ g :Bool I'+ g, : Bool
I'+ x?:Bool '+ ||x]| : Bool '+ g1 A gr:Bool

Fig. 2.4 Typing rules for the functional level

of any type T. Rule (T-CONSEXP) states that the application of the constructor Co
to a list of expressions e is of type o (T") whenever the constructor is of a functional
type T — T’ and the expressions are of type 7"; where the auxiliary function tmatch
applied on the formal types T and the actual ones T returns the substitution o. Rule
(T-FUNEXP) is similar to the previous one for constructor expressions, namely, the
application of the function fun to a list of expressions e is of type o (T”) whenever
the function is of a functional type T — 7’ and the expressions are of type T’,
and again tmatch is applied to obtain o. Rule (T-CASE) states that if all branches in
P = e, are well typed with the same type, then the case expression is also well typed
with the return type of the branches. Rule (T-BRANCH) states that a branch p = ¢,
is well typed with an arrow type T — T’ if the pattern p is well typed with 7" and
the expression e, is well typed with type T’ in the composition of I" with typing
assertions for the pattern obtained by the function pmatch, previously defined. Rule
(T-SuB) is the standard subsumption rule, which uses the subtyping relation defined
in Sect.2.2.

Guard Expressions The typing rules for guard expressions are given at the bottom
of Fig.2.4. Rule (T-FUTGUARD) states that if a variable x has type Fut(7'), the guard
x? has type Bool. Rule (T-CRITICGUARD) states that ||x|| has type Bool if x is an
object, namely having type (I, r). Rule (T-CONJGUARD) states that if each g; has
type Bool fori = 1, 2 then the conjunction g; A g; has also type Bool.

26 2 A Type System for Components

(T-Exp) (T-Ger)
I're:T I'te: Fut(T)
IOre:T I,0+get(e): T

(T-NEw)
I'(this) = (C',G[...])
params(C) =T x IF're: T tmatch(7,T") = o T € crec(G,C,0)

I'tnewC(e): T

(T-NewCoq)
params(C) = Tx IF're: T tmatch(T,T") = o T € crec(G,C, o)

I, {o(G)} - newcogC(e): T

(T-SCaLL) .
miype(m, I) = (G, o)(T x) > T
I'ke: o)) I'te:o(T) coloc(o(r), I'(this))

I,o(G)F em(e) : o(T)

(T-ACALL)
miypem, I) = (G.01)T x) > T Tre:(I,o@) Tre:od)

I, (@) + e!lm(e) : Fut{o(T))

Fig. 2.5 Typing rules for expressions with side effects

Expressions with Side Effects The typing rules for expressions with side effects are
given in Fig.2.5. As already stated at the beginning of the section, these typing rules
are different wrt the typing rules for pure expressions, as they keep track of the new
cogs created. Rule (T-EXP) is a weakening rule which asserts that a pure expression
e is well typed in a typing context I and an empty set of cogs, if it is well typed in
I'". Rule (T-GET) states that get(e) is of type T, if expression e is of type Fut(T).
Rule (T-NEW) assigns type T to the object new C(e) if the actual parameters have
types compatible with the formal ones, by applying function tmatch; the new object
and this have the same cog C and the type T belongs to the crec(G, C, o) predicate,
which means that T is of the form (I, G[f : 0(T, r)]) and implements(C, I) and
o is obtained by the function tmatch. Rule (T-NEWCOG) is similar to the previous
one, except for the creation of a new cog G where the new object is placed, and
hence the group of object this is not checked. Rules (T-SCALL) and (T-ACALL) type
synchronous and asynchronous method calls, respectively. Both rules use function
mtype to obtain the method signature i.e., (G, r)(T x) — T. The group record r,
the parameters types and the return type of the method are the formal ones. In order
to obtain the actual ones, we use the substitution o that maps formal cog names
to actual cog names. The callee e has type (I, o(r)) and the actual parameters e
have types o (T'). Finally, the invocations are typed respectively in the substitution
o(T) and Fut(o (T)), with T being the formal return type. Rule (T-SCALL) checks

2.4 Typing Rules 27

(T-Skip) (T-SusPEND) (T-DEcL) (T-Comp)
Fx)=T [,GiF s IG+ s
I, 0 + skip I',0 + suspend ILOrT x ILGIWG, + 5158
(T-AssIGNFIELDR)

(T-AssioN) x ¢ dom(I") Ir,gvrz:T
I'x)=T rgrz:T I'(this) = (C,G[x: T,...])
IGrx=z IGrx=z

(T-AssiGNFIELDBOT)
x ¢ dom(I") T x € fields(C) (T-AwArIT)
I'(this) = (C,G[x : T]) ILGrz:T Xéx I'+ g :Bool
LGrx=z T,0 + await g
(T-Conb) (T-WHILE)
I'Fe:Bool G+ s L,GoF s I'+e:Bool IOrs
I,G, WG, + if e then s, else s, I,0+ whilee{s}
(T-REBIND)
(T-RETURN) T x € ports(I) I're:(I,r)
I're: T I'(destiny) = Fut(T') I,gvrz:T coloc(r, I'(this))
I,0+ return e I,Grrebind e.x =z

(T-ReBiNDBoT)
['(this) = (C,G[x : T])
T x € ports(I) X¢x I're:(I,r) r,gvrz:T coloc(r, I'(this))

I,G+rebind e.x = 7

Fig. 2.6 Typing rules for statements

whether the group of this and the group of the callee coincide, by using the auxiliary
function coloc, whether this check is not performed in rule (T-ACALL).

Statements The typing rules for statements are given in Fig. 2.6. Rules (T-SKIP) and
(T-SUSPEND) state that skip and suspend are always well typed. Rule (T-DECL) states
that 7" x is well typed if variable x is of type T in I'. Rule (T-CoMP) states that, if s
and s, are well typed in the same typing context and, like in linear type systems, they
use distinct sets of cogs, then their composition is well typed and uses the disjoint
union W of the corresponding cogsets. Rule (T-ASSIGN) states the well typedness of
the assignment x = z if both x and z have the same type T and the set of cogs is the
one corresponding to z. Rule (T-ASSIGNFIELDR) and rule (T-ASSIGNFIELDBOT) deal
with the assignment x = z when field x is not present in dom(I") and they follow the
same idea as rules (T-FIELDR) and (T-FIELDBOT), respectively. The main difference
in the premises of rule (T-ASSIGNFIELDR) and rule (T-ASSIGNFIELDBOT) is the fact
that in the former rule x is in the record of this, whether in the latter rule x is not
in the record of this but it is a field of the class of this. Rule (T-AWAIT) asserts that
await g is well typed whenever the guard g has type Bool. Rules (T-COND) and

28 2 A Type System for Components

(T-METHOD)
I,x: o(T),destiny : Fut(o(T)), this : (C,o(r)),c(G) + s

T+ [critical] (G,r) T m(T x){ s }inC

(T-Crass)
VI € I. implements(C, I) ILx:T+MinC
M

}

I+ class C (T x) implements I { FI

(T-INTERFACE)
VI’ € I. extends(I,I’)

0 + interface I extends I { port 7 x;S }

Fig. 2.7 Typing rules for declarations

(T-WHILE) are quite standard, except for the presence of the linear set of cog names:
the typing of the conditional statement follows the same principle as the composition
of statements in rule (T-CoMP); the typing of the loop uses instead an empty set of
cogs. Rule (T-RETURN) asserts that return e is well typed if expression e has type
T whether the variable destiny has type Fut (7). Finally, rule (T-REBIND) types the
statement rebind e.x = z by checking that: (i) x is a port of the right type, (ii) z has
the same type as the port, and (iii) the object stored in e and the current one this are
in the same cog, by using the predicate coloc(r, I'(this)). Rule (T-REBINDBOT) is
similar but it deals with the case when x is not present in the record of this, namely
it is assigned to L.

Declarations The typing rules for declarations of methods, classes and interfaces
are presented in Fig.2.7. Rule (T-METHOD) states that method m is well typed in
class C if the method’s body s is well typed in a typing context augmented with
the method’s typed parameters; destiny being of type Fut (o (7)) and this being of
type (C, o (r)). A substitution o is used to obtain the actual values starting from the
formal ones. Rule (T-CLASS) states that a class C is well typed when it implements
all the interfaces T and all its methods are well typed. Finally, rule (T-INTERFACE)
states that an interface I is well typed if it extends all interfaces in T.

Remark The typing rule for assignment requires the group of the variable and the
group of the expression being assigned to be the same. This restriction applies to
rule for rebinding, as well. To see why this is needed let us consider a sequence of
two asynchronous method invocations x!m(); x!n(), both called on the same object
and both modifying the same field. Say m does this.f = z; and n does this.f = z,.
Because of asynchronicity, there is no way to know the order in which the updates will
take place at runtime. A similar example may be produced for the case of rebinding.
Working statically, we can either force the two expressions z; and z; to have the
same group as f, or keep track of all the different possibilities, thus the type system
must assume for an expression a set of possible objects it can reduce to. In this work
we adopt the former solution, we let the exploration of the latter as a future work.

2.4 Typing Rules 29

(T-ReBIND)
I'(this) = (Controller,G[...]) (Server,r) s € ports(Client)
Vi=2,..,n T'Frc;:(Client,Gl...,s: (Server,r)])
IO+ s2: (Server,r) coloc(G[. .., s : (Server,)], ['(this))

ViI,0 + rebind c;.s = s2

Fig. 2.8 Typing the workflow example

We plan to relax this restriction following a similar idea to the one proposed in [51],
where a set of groups can be associated to a variable instead of just only one group.

Example Revisited We now recall the example of the workflow given in Figs. 1.10
and 1.11. We show how the type system works on this example: by applying the typing
rule for rebind we have the derivation in Fig. 2.8 for any clients from c; to c,. Let
us now try to typecheck client c;. If we try to typecheck the rebinding operation, we
would have the following typing judgement in the premise of (T-REBIND):

[(this) = (Controller,G[...]) T,¥F cy:(Client,G[...,s: (Server,)]

Butthen, the predicate coloc(G'[. . ., s : (Server, r)], ['(this)) is false, since equals
(G, @) is false. Then, one cannot apply the typing rule (T-REBIND), by thus not
typechecking rebind c;.s = s2, exactly as we wanted.

2.5 Typing Rules for Runtime Configurations

In this section we present the typing rules for runtime configurations, introduced in
Sect. 1.2. In order to prove the subject reduction property, typing rules for runtime
configurations are needed and are presented in Fig.2.9.

Runtime typing judgements are of the form A, G -z N meaning that the config-
uration N is well typed in the typing context A by using a set G of new cogs. The
(runtime) typing context A is an extension of the (compile time) typing context I"
with runtime information about objects, futures and cogs and is formally defined as
follows:

A= | T,A]o:(C,r),A| £:Fut(T),A | c:G, A

Anobjectidentifier o is given type (C, r) where C is the class the object is instantiating
and r is the group record containing group information about the object itself and the
object’s fields. A future value £ is assigned type future Fut(7) and a cog identifier
c is assigned a cog name G.

Rules (T-WEAK1), (T-WEAK2) and (T-WEAK3) state respectively that when an
expression is of type 7 in some typing context I', then it has the same type in A,
which is an extension of I'; and whenever a statement s or a declaration DI is well

http://dx.doi.org/10.2991/978-94-6239-204-5_1
http://dx.doi.org/10.2991/978-94-6239-204-5_1
http://dx.doi.org/10.2991/978-94-6239-204-5_1

30 2 A Type System for Components

(T-Weak1) (T-WEAK2) (T-WEAK3) (T-StaTE)
ILGvrz: T I,G+Fs I,G+ DI Ax)=T (T-Conr)
rcA rcA FcA Argv:T A(f) = Fu(T)

A,gl—RZ:T A,gl—RS A,gl—RDl A,@FRTXV A,(D"Rcont(f)

(T-Futurel) (T-ProcEss-QUEUE)
A(f) = Fu(T) (T-Future2) ANGrr O
Argv:T A(f) = Fut(T) AG v O
A, 0 kg fur(£,v) A, 0 kg fur(f, 1) ANGYWG g QUQ
(T-PrOCESS) _ (T-ConriG)
A0 Fr Txv A Grr N (T-Cog)
A,R:T,gl—k N A,gl FRN, A(C)ZG
AGrr{TXV|s)} AGYG g NN A, {G} g cog(c,0,)
(T-OBJECT)
A©) = (CGIf T A©=6_
(T-Emp1y) (T-IpLE) fie_ldsiC) =Tf A f :_T,g FrT fv
A f:T,G rg Kiaie Af:T,G rr Q

AODrge A, 0+ idle A,GWG Fgob(o,T f v, cog c;0, Kigies O)

(T-Invoc)
mtype(m,C) = (G,x)(T x) > T A(0) = (C,o(r))

A(f) = Fut(o(T)) Arrv:o(T)
A, 0(G) v+ invoc(o, £,m,v)

Fig. 2.9 Typing rules for runtime configurations

typedin I, thenitis also well-typed in A, which is an extension of I". Rule (T-STATE)
asserts that the substitution of variable x with value v is well typed when x and v
have the same type 7. Rule (T-CONT) asserts that the statement cont(£f), which is
a new statement added to the runtime syntax, is well typed whenever f is a future.
Rule (T-FUTUREL) states that the configuration fut(£, v) is well typed if the future
f has type Fut(T) where T is the type of v. Instead, rule (T-FUTURE2) states that
fut(£, L) is well typed whenever £ is a future. Rule (T-PROCESS- QUEUE) states that
the union of two queues is well typed if both queues are well typed and the set of cogs
is obtained as a disjoint union of the two sets of cogs corresponding to each queue.
Rule (T-PROCESS) states that a task or a process is well typed if its local variables
X are well typed and statement s is well typed in a typing context augmented with
typing information about the local variables and the set of cogs G. Rule (T-CONFIG)
states that the composition N N’ of two configurations is well typed whenever N
and N’ are well typed using disjoint sets of cog names. Rule (T-COG) asserts that a
group configuration cog(c, o) is well typed if c is declared to be associated to G in
A. Rules (T-EMPTY) and (T-IDLE) are straightforward. Rule (T-OBJECT) states that
an object is well typed whenever: (i) the declared record of o is the same as the one
associated to c; (ii) its fields are well typed and (iii) its running process and process

2.5 Typing Rules for Runtime Configurations 31

queue are well typed. Finally, (T-INVOC) states that invoc(o, £, m, v) is well typed
under substitution o when: (i) callee o is assigned type (C, o (r)); (ii) future f is of
type Fut (o (7)) and (iii) values v are typed accordingly by applying substitution o,

namely o (T).

2 Springer
http://www.springer.com/978-94-6239-203-8

Type Systems for Distributed Programs: Components
and Sessions

Dardha, .

2016, XX, 192 p. 69 illus., 4 illus. in color., Hardcowver
ISEN: 978-94-6239-203-8

A product of Atlantis Press

	2 A Type System for Components
	2.1 Typing Features
	2.2 Subtyping Relation
	2.3 Functions and Predicates
	2.4 Typing Rules
	2.5 Typing Rules for Runtime Configurations

