Chapter 2
Introductory Concepts of Integral Equations
on Time Scales

A delta integral equation (or in short integral equation) is the equation in which the
unknown function ¢(x) appears inside a delta integral sign. The subject of integral
equations is one of the most useful mathematical tools in pure and applied mathemat-
ics. Many initial and boundary value problems associated with dynamic equations on
time scales can be transformed into problems of solving some approximate integral
equations.

Suppose that .7 is a time scale and let o, p and A denote the forward jump operator,
the backward jump operator and the delta differentiation operator, respectively,break
on 7. A standard type of integral equation in ¢(x) is of the following form

g(x)

$() = ux) + A /f | K@ womay, @.1)
X)

where f, g : J —— Z are the limits of integration, X is a constant parameter, and
K : 7 x J —— % is a known function of the variables x and y, u : 7 —— Zisa
known function. The function K (x, y) in (2.1) is called the kernel or the nucleus of
the integral equation. In (2.1) the unknown function ¢(x) appears the integral sign.
There are many other cases in which the unknown function ¢(x) appears inside and
outside the integral sign. The functions u(x) and K (x, y) are given in advance. Note
that the limits of integration f (x) and g (x) may be both constants, variables or mixed.
If the limits of integration are fixed, the Eq.(2.1) is called a generalized Fredholm
integral equation given in the form

b
P(x) = u(x) + A/ K(x, y)p(y) Ay, (2.2)

where a and b are constants. If at least one limit is variable, the equation is called a
generalized Volterra integral equation given in the form
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P(x) = u(x) + )\/ K(x,y)p(y)Ay. (2.3)

Example 1 Let F = 2%, Then the equation

() = sinhy(x, 1) + A /1 (x — V6O Ay,

where f € %, is an example for a generalized Volterra integral equation.

If the unknown function ¢(x) appears only under the integral sign of generalized
Fredholm or generalized Volterra equation, the integral equation is called a first kind
generalized Fredholm or generalized Volterra integral equation, respectively.

Example 2 Let 7 = % . The equation

2
coyr(x,0) = [ 604y,
1

where f € ), is a first kind generalized Fredholm integral equation.

If the unknown function ¢(x) appears both inside and outside the integral sign of
generalized Fredholm integral equation or generalized Volterra integral equation,
the integral equation is called a second kind generalized Fredholm or generalized
Volterra integral equation, respectively.

Example 3 Let F = 2% The equation

4
600 =x> — 142 /1 (x = Y)() Ay

is a second kind generalized Fredholm integral equation.

If in the Eq. (2.2) or (2.3) the function u(x) is identically zero, the resulting equation

b
600 = A / K(x,y)é() Ay

or

600 = A / K(r. y)() Ay

is called homogeneous generalized Fredholm or homogeneous generalized Volterra
integral equation, respectively. Any equation that includes both (delta-)integrals
and (delta-)derivatives of the unknown function ¢(x) is called delta-integro-delta-
differential equation (or in short integro-differential equation). The Fredholm integro-
differential equation is of the form
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b
6% () = u(x) + A / K(x, 1)6() Ay

However, the Volterra integro-differential equation is of the form

6% () = u(x) + A / K(x.y)6() Ay.

The equation

u(x):/x( —o(»A4y, 0<a<l,
0

is called generalized Abel’s integral equation. The equation

¢<x>—u(x)+/ Ay 0<asl

is called generalized weakly singular integral equation. If the unknown function
¢(x) inside the integral sign is one, the integral equation or the integro-differential
equation is called linear.

Example 4 Let J = % . The equation

3
x = /1 (x — 25)6() Ay

is a linear equation.

If the equation contains nonlinear function of the unknown function ¢(x), the integral
equation or the integro-differential equation is called nonlinear.

Example 5 Let Z = 2% Then

u() = 2 — /1 T = 92200 Ay

is a nonlinear equation.

The main objective of this text is to determine the unknown function ¢(x) that will
satisfy (2.1) using a number of solution techniques. We shall explain these methods
to find solutions of the unknown function.
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2.1 Reducing Double Integrals to Single Integrals

It will be seen later that we can convert initial value problems and other problems to
integral equations. It is useful to outline the formula that will reduce double integrals
to single integrals.

Theorem 1 Letf : T —— % be integrable and a € 7. Then

/X /XIf(t)AtAxl = /X(x—a(t))f(t)At for xe 7. (2.4)

Proof Using integration by parts, we have
/x /Mf(t)AtAxl = /X(x1 —a)? /XIf(t)AtAxl
~m-a [ roaf - [ (oo - arean
—a-a [ oa- [0o-arwa

=/ (x —o@)f () Ar.

Example 6 Let 7 = 2. Theno(t) =t+1,t € 7, and

X X X
/ / 2 At Ax, :/ (x — o ())> At
0 0 0

:/ (x —t — Di*At.
0

Example 7 Let T = 2% Then o(t) = 2t, t € 7, and

/)C /X] e (t, D AtAx; = /x(x —o(t)e(t, 1) At
1 1

=/ (x — 20)e,(t, 1) At.
1
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Example 8 Let 7 =3%.Theno(t) =t+3,t € Z,and
5 X1 X
/ / (sin, (7, 0) + ) AtAx; = / (x — o (1)) (sin, (1, 0) + £3) At
3 J3 3

= /X(x — 1 —3)(sin, (¢, 0) + °) At.
3

Exercise 1 Convert the following double integrals to single integrals.

// (> = DAtAxy, T = Z.
X1 [2
2. // Amxl,y—z”ﬂ

// (3t—2)AtAx1,y=2JV.
2 2

Answer

1. /X(x —t—1)(* — 1) At,
0

x 2 +1
2. —2t)—— At
/l(x )t4+1
X
3. / (x—1t—2)3t—2)At.
2

As aresult to (2.11) we can show the following corollary.

Corollary 1 Letf : T —— X be integrable and a € 7 . Then

/x /Xl (x — o ()f (1) AtAx, = /x(x — o) F ()AL for xe T
Proof By Theorem 1, we have
/a ) / Y = o) 0 ArAx = x / ’ / " 0 arax — / ! / Y of 6 AtAx
e / "— o) (A1 / "= oo ar

- /x(x —a()2f (1) At

Example 9 Let 7 =2%.Theno(t) =t+2,t € 7, and

/x /Xl(x—t—Z)(t3+1)AtAx1 :/x(x—t—Z)z(t3+l)At.
2J-2 -2
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Example 10 Let 7 = 4% Then o(r) = 4t,t € 7, and
X X1 X
/ / (x — 41) (> + 1) At Axy :/ (x — 40 (©* + 1) At.
16 J16 16
Example 11 Let 7 = A% Then o(t) = (vt + 1)*, t € 7. Then

X X X
/ / @ = (V1 + DHViArAx = / x — (V1 + DHViAr.
0o Jo 0
Exercise 2 Convert the following double integrals to single integrals.

X X1
1. // (x —t =P AtAxy, T =270 U {0},
0 0

X X
2. / / (x = 50> + 2t + 3)AtAxy, T =570 U{0}.
0 0

X1
/ (x—1t— DtAtAxy, T = N,
11

where for ¢ > 1 with ¢”*® U {0} we will denote in all places in this book the set

o L1 Lo
) — — ..., ,q,q9°,....
gk gkt

Answer

/ (x —t — 2)’F At,

/( —56)2(t* + 2t + 3) At,

0
X

(x —t — D’tAr.
1

2.2 Converting IVP to Generalized Volterra Integral
Equations

In this section we will convert an initial value problem (IVP) to an equivalent general-
ized Volterra integral equation and generalized Volterra integro-differential equation.
We will apply this process to a first order IVP

22 () 4+ a(x)z(x) = u(x) (2.5)

subject to the initial condition
z(x0) = 20, (2.6)
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where xo € 7,20 € Z,a,u € 6,4(.7), and to a second order IVP
722 (x) + a(0) 72 (x) + b(X)z(x) = u(x) Q2.7)
subject to the initial conditions
2(x0) = 20, 2°(x0) = 25 (2.8)

where xy € .7, zo,zOA €X,anda,b,uc €q.(7).
Firstly, we will consider the problem (2.5), (2.6). Let

P(x) = 22 (x). (2.9)
Now, using (2.6), we get
/ p(y) Ay = / () Ay
o
= z(x) — z(x0)
= z(x) — 20,
ie., .
z2(x) = 20 +/ d(y)Ay. (2.10)

Substituting (2.9) and (2.10) into (2.5) yields the following generalized Volterra
integral equation

o(x) + a(x) (ZO +/ ¢(y)Ay) = u(x).

The last equation can be written as standard generalized Volterra integral equation
in the following way

$(6) = u(x) — oa(x) — / a()6() Ay.

Xo

Example 12 Let = .4 . Consider populations with a fixed interval between gen-
erations or possibly a fixed interval between measurements. With xy we will denote
the initial population size and with x(#) we will denote the population size at time .
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Suppose the population changes only through births and deaths and suppose further
that the birth and death rates are constants b and d, respectively. Then

XA =b-dx@), teT, (2.11)
x(0) = xo (2.12)

determines the population size in each generation. We integrate the Eq.(2.11) from
0 to ¢, and using (2.12), we get the integral equation

x(t)=x0+(b—d)/x(s)As, te 7.
0

Example 13 (Verhulst difference equation) Let 7 = 4. The dynamic equation

(r = Ax(t) = x*(1)

A _
O =0

te 7, (2.13)

describes a population that die out completely in each generation and has birth rates
that saturate for large population sizes. Here A and r are positive constants. If we
suppose that x(0) = xo, then the Eq. (2.13) can be converted to a generalized Volterra

integral equation
t —_A 42
x(t) = xo +/ (r Jx(8) —x7(s) As.
0 A+ x(s)

Exercise 3 Let .7 = . Consider a simple electric circuit. The total charge Q(¢)
on the capacitor at t € 7 is given by the equation

Q4(1) = bQ(r), b = const.

Reduce it to an integral equation if Q(ty)) = Qy for some 7y € S and some real
constant Q.

Example 14 Let 7 = % . Let us consider the IVP
22 () + 2xz(x) =0, z(0) = 1.

Here
a(x) =2x, ulx)=0, zo=1.

Then we get the integral equation

Px) = —2x — 2x /0 o) Ay.

Example 15 Let 7 = .4 . Let us consider the IVP
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0 +xz) =x, () =1L

Here
xo=1, alx) =x?, ulx) =x, zo=1.

Then we obtain the following integral equation
P(x) =x —x* — / 2p(y) Ay.
1

Example 16 Let = 2%y {0}. Let us consider the [IVP
22(x) + e, (x, Dz(x) = sinh,(x, 1), z(0) = 1.

Here
x0=0, zo=1, alx) =-e(x,1). u(x)=sinh,(x, 1).

Then we get the following integral equation

6(x) = sinh,(x, 1) — ex(x, 1) — / Cen(r, 16 () Ay.
0

Exercise 4 Convert the following IVPs to integral equations.

1.
22@) + (2 +2x — Dzx) =3

2000=2, I=%2,

> 280 + ex(x, 0)z(x) = 3
20) =1, T =M,

> Z8(x) — cos(x, )z(x) = —x
2(000=0, 7 =2%U{0)}.

Answer

1. p(x) =3 —2(x2+2x— 1) — /x(x2 +2x — Do(y) Ay,
0

2. ¢(x) = 3x% — ex(x,0) — / ex(x, 0)p(y) Ay,
0

3. ¢(x) = —x+/ cos,(x, 1)p(y)Ay.
0
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Now we consider the problem (2.7), (2.8). Set
@) = o).

Then, using (2.8), we get

ZA(X)_ZA(XO)Z/ () Ay

or ¥
z4(x) =z§+/ d(y) Ay,
Xo
whereupon . o
2wzt = [ av+ [ [ omayan
X0 X0 X0
or

X X
2(x) = 20 + 2§ (x — x0) +/ / o) AyAxy.
X0 X0
Hence, applying Theorem 1, we find
X
2w =20+ -0+ [ (= 30604y
X0
Substituting (2.14), (2.15) and (2.16) in (2.7), we get

o) +a) (s + [ 60) 2y)

+b) (20 + 0 = x0) + [1(x = (DS AY) = u(x)

or
B(x) = u(x) — a(x)zg' — b(x)z9 — b(x)z§ (x — x0)

—a() [ dMAy = b(x) [, (x = a () () Ay,

ie.,

rX

(2.14)

2.15)

(2.16)

P(x) = ux) — a(x)z§' — b(x)zo — b(x)z§ (x —x0) — / [a(x) + b)) (x — c ()] d() Ay. (2.17)

X0

Example 17 Let 7 = 2% Consider the IVP
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2
22 () + X222 (x) +xz(x) = x — 1,
(=1, 41 =2.

Here
o(x) =2x, akx)=x%, b(x)=x, ulx)=x-—1,

w=1, =2 x=L1
Then, using (2.17), we get the following integral equation

p(x) =x—1—2x* —x — 2x(x — 1) —/x [¥* +x(x =20 ] () Ay
1

=4’ +2x—1— 2/lx(x2 — xy)(y) Ay.
Example 18 Let = 2% . Consider the IVP
2 () +xz4 (x) — 2%z (x) = x,
z2(0) =0, z4(0) =1.

Here
c(x)=x+2, akx)=x, bkx)=—x> ukx) =x,

70 =0, Z@:l, xo = 0.
Then, using (2.17), we get the following integral equation
o(x) =x—x+x —/ [x—xz(x—y—Z)](b(y)Ay
0
== [ 42 sa et 2no0)ay
0

Example 19 Let 7 = A;’. Consider the IVP
2% (x) = 2e,(x, 0)z(x) = sinh,(x, 0),
2(0) =0, z%(0) = 1.

Here
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o) = (Wx+ 13 akx)=0, bx)=—2e(x,0), u(x)=sinh,(x,0),
720=0, z@:l, xo = 0.

Then, using (2.17), we get the following integral equation

$(x) = sinh,(x, 0) + 2xe,(x, 0) + 2 / ex(x,0) [x — (¥ + D] o) Ay.
0

Exercise 5 Convert the following IVPs to integral equations.

) () — x4 () =0,
20) =0, z20) =0, T =.4.
2. i
2@+ AW 4z =1,
2(0)=0, z20)=1, T =2"%U{0},
3.
2 (1) + ec(x, DZA(x) = 0,
(=1, 2 =2, T=.L.
Answer

1. o) = /0 26 Ay,
2. () = —x — /0 (14 x — 2)6() Ay,

X

3. 600 = —2ex(x, 1) — /1 ex(x. D) Ay.

2.3 Converting Generalized Volterra Integral
Equations to IVP

A method for solving generalized Volterra integral and Volterra integro-differential
equation converts these equations to equivalent initial value problems. This method is
achieved by differentiating both sides of generalized Volterra equations with respect
to x as many times as we need to get rid of the integral sign and obtain a differential
equation. The conversion of generalized Volterra equations requires to use Leibnitz
rule for differentiating the integral at the right hand side. The initial conditions are
obtained by substituting x = a into u(x) and its derivatives. For instance, after we
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differentiate (2.3) with respect to x we get

¢4 (x) = u®(x) + A / K2(x, y)¢(y) Ay + AK (0(x), ) (x) (2.18)
and substituting x = a in (2.3) we find

P(a) = u(a).

If there is an integral sign in (2.18), then we differentiate it with respect to x and so
on.

Example 20 Let 7 = % . Consider the equation
o =5+ [ o014y 2.19)
0

We have
cx)=x+1, xe 7,

and
)=o) +x=x+14+x=2x+1.

Hence, differentiating (2.19) with respect to x, we get

oA (x) = (N + p(x)

=2x+ 1+ o(x).

Substituting x = 0 in (2.19), we find ¢(0) = 0.
In this way, we get the following IVP

P2 (x) — p(x) = 2x + 1
»(0) =0.

Example 21 Let 7 = 2% Consider the equation
o) =5+ [ = nomay. (220)
1

We have

o(x) =2x, xe€ 7,
(x3)A = 0’2()6) + xo(x) +x?
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= 4x* + 2x% + 2
= 7x2,

x—ye=1

We differentiate with respect to x the Eq. (2.20) and we get
X A
¢4 () = ()4 + ( / (x — y>¢(y>Ay)
1
=7 + /1 ¢ Ay + (0 () = 1)H(x)
= Tx* + xé(x) +/ P(y) Ay,
1

ie.,

620 = T + x0(x) + / () Ay. 221)
1

Now we differentiate (2.21) with respect to x and we find

X A
™ () = (T2 + (p(0)> + ( /1 ¢<y>Ay)

=7(0(x) +x) + ¢(x) + ()™ () + P(x)
= 21x 4 26(x) + 2x¢* (x)

or
6™ (x) — 262 (x) — 26(x) = 21x.

We put x = 1 in (2.20) and we get ¢(1) = 1.
‘We substitute x = 1 in (2.21) and we find

(1) =7+ ¢(1) = 8.

In this way we go to the following IVP

I P2 (x) — 2x2 (x) — 26(x) = 21x,
p() =1, ¢2(1)=8.

Example 22 Let 7 = 3% . Consider the equation

P(x) = ex(x, 1) +/l (x4 2y)¢(y) Ay. (2.22)
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Here
cx)=x+3, xe 7.

Then, differentiating (2.22) with respect to x, we get

X A
620 = edx, 1) + ( /1 (c+ 2y>¢(y)Ay)
— veu(x, 1) + / "6 Ay + (@) + 206()
1
— xex(r, 1) + G + 300 + / T o)Ay,
1

i.e.,

¢*(x) = xe,(x, 1) + 3(x + Dop(x) +/ o(y)Ay. (2.23)
1

Now we differentiate (2.23) with respect to x and we find

X A
Y (1) = (e (x, 1) +3((x + D)) + ( / <z><y)Ay)
1

= e.(x, 1) + o()xex(x, 1) + 3¢(x) + 3(0(x) + D™ (x) + ¢(x)
= (2 4 3x + Dey(x, 1) 4+ 40(x) + 3(x + 4)¢” (x),

i.e.,
¢ (1) = 3(x + DA (1) — 4d(x) = (& + 3x + Dey(x, 1).

We put x = 11in (2.22) and we find ¢(1) = ¢;(1, 1) = 1.
We substitute x = 1 in (2.23) and we get

¢ (D) = e1(1,1) +6¢(1) = Te (1,1) = 7.
In this way we get the following IVP

I Y (X) = 3(x + DA (x) — 46(x) = (¥ 4 3x + De,(x, 1),
p(h =1, ¢*(1)=7.

Exercise 6 Convert the following generalized Volterra integral equations to IVPs.
L g =2~ 1 +/ oM Ay, T = A,

0
2. ¢(x) =x+3 +x/ o) Ay, T = 3",

1

360 =20+ /0 (= 6M) Ay, T = N,
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Answer
- ¢ () — Px) = dx + 2,
[wm=—L
2.
¢4 (x) — 9xd? (x) — 4(x) =0,
| ¢(1) =4, ¢*(1) =13,
3.

¢ () = B+ 2y () — T5LH(0) =0,
3(0) =0, ¢(0) =2.

Example 23 Let 7 = 2% Consider the generalized Volterra integro-differential
equation

600 = 6A() +x + /1 (x + 1)d() Ay. (224)

We have o(x) =2x, x € .
Then we differentiate with respect to x the Eq. (2.24) and we get

¢ (x) = ¢* () + 1 Jr/1 P Ay + (0(x) +x)(x)

= % () £ 3x600) + 14 /1 6() Ay.

ie.,

¢ (x) = 6% () + 3xp(x) + 1 + / P Ay. (2.25)
1
Now we differentiate (2.25) with respect to x and we find
67 (1) = 6% () + 36(x) + 30 (1) (x) + $(x)

= ¢%"(x) + 49(x) + 6x6% (x)

or
¢ () — 62 (%) + 6307 (x) + 49 (x) = 0.
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We put x = 1in (2.24) and we get

p(1) = ¢*(1) + 1.
Now we substitute x = 1 in (2.25) and we find

(1) = o2 (1) +36(1) + 1
=Y (1) +3¢2(1) +3+1

= ¢ (1) + 302 (1) + 4

or s
A (1) +262(1) +4 =0.

In this way we go to the following problem
¢ () = 9% (1) + 6x0” (1) + 49 (x) = 0,
A1) —p(H)+1=0, ¢2(1)+2¢2(1)+4=0.

Example 24 Let 7 = 3.4. Consider the generalized Volterra integro-differential
equation

o) =000+ [ 04 2.26)
1
Then, differentiating (2.26) with respect to x, we get

() = ¢ (1) + ¥ (x)

or

¢ (x) — A (x) + 22o(x) = 0.
We put x = 1 in (2.26) and we find
o(1) = ¢?(1).
Therefore we obtain the following problem
() — 2 () + X2 (x) = 0
¢(1) = ¢A(1).
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Example 25 Let T = 5% U {0}. Consider the generalized Volterra integro-differe-
ntial equation

% (x) = p(x) —x /O P(y) Ay. (2.27)

Here o(x) = 5x, x € 7. Then, differentiating (2.27) with respect to x, we get
A? A !
o7 (x) = ¢~ (%) —/ d(y) Ay — o (x)p(x)
0

— i) — /0 6() Ay — 5x6.(x).

ie.,
6% (1) — 6200 + /0 () Ay + 5x6(6) = 0. (2.28)
Hence, . .
% () = ¢% (X) + P(x) + 5¢(x) + 50(x) ¢ (x) =0
or

¢ (x) — ™ (x) + 25x¢2 (x) + 66(x) = 0.
We substitute x = 0 in (2.27) and (2.28) and we obtain
3(0) = ¢*(0) = ¢*(0).
Consequently we get the following problem
[ A (1) — ¢4 (x) + 25162 (x) + 66(x) = 0

$(0) = ¢2(0) = ¢*(0).

Exercise 7 Convert the following generalized Volterra integro-differential equations
to IVPs.

L 6% = o) + 22+ / sinh, (v, Do) Ay, T = .
1

2. 640 = 60 +2° + / (x +v)e, (s Do) Ay, T =25,
1

3. p(x) = ¢2(x) +x* —/ 2x+y)p(y)Ay, T =2%.
0
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Answer

1. .
o4 (x) — ¢ (x) — sinh, (x, Do(x) =2x + 1,
oY (1) = (1) + 1,

2.

P2 (x) — ¢ (x) — 6xen, (2x, 1A (x) — (4 4 6xD)e, (x, Dp(x) = 21x,

P2 =)+ 1, ¢¥ (1) = ¢2(1) +36(1) +7,

A4 (x) — 2" (x) — Bx + 10)¢2 (x) — 5¢p(x) = —12x% — 48x — 56,

B(0) = ¢2(0), $2(0) = ¢**(0) — 4(0) + 8.

2.4 Converting BVP to Generalized Fredholm Integral
Equation

In this section we will represent a method for converting boundary value problems
to generalized Fredholm integral equation. This method is similar to the method for
converting of [VP to generalized Volterra integral equation. Here boundary conditions
will be used instead of initial conditions. In this case we will determine another initial
condition that is not given in the problem.

We consider the following boundary value problem

ZAZ (x) —|—f(x)z(x) =g(x), xp<x<x, Xp,X € 7, (2.29)
z(x0) =20, z(x1) =21. (2.30)

We set ,
P(x) =z (x). 2.31)

Integrating both sides of (2.31) from x( to x we obtain

/X A (At = /x P(t) At

2% (1) — 2% (x) =/ (1) At,

or
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or

22(x) = 2%(x0) + / o) At.

We integrate the last equation from x to x and we find

/ZA(V)Ay=/ ZA(Xo)Aer/ /2¢(I)AIAXz

2(x) — z(x0) = z° (x0) (x — Xo) +/ / 2 d(t) AtAxy,

or

or

X X2
2w =20+ D+ [ [ owaan,
X0 X0
Applying Theorem 1 we find
X
2(x) = 20 + 2% (x0) (x — x0) +/ (x —o()Ar. (2.32)

Xo

We substitute x = x; in the last equation and using that z(x;) = z; we go to

21 = 20 + 2% (%0) (x1 — Xo) +/ (x1 — o (1)) (1) At

or

A (x0) (1 — %0) = 21 — 20 — / (1 — 00D AL,

or
21— 20 1 H

2% (x0) = - (x; — a(0)p(1) At.
X1 — Xo X1 — X0 Jx

We substitute the last expression in (2.32) and we find

21 — 20 xX—xo [
z2(x) =20 + ——(x — x0) —
X1 — Xo X1 —Xo Jx,

(1 — o ())(r) At

+/x(x —o(0)o() At.

X0



2.4 Converting BVP to Generalized Fredholm Integral Equation 97

The last expression and (2.31) we put in (2.29). Then

60 +1 W + T ()5 =) = () / (61 — 0 (D)D) Al

b / (x — o (D)D) AL = g(x)

or
d(x) = g(x) —f(x)zp — f(X)(x — X0) +f(x) / (x; — o)) At
—f ) / (x— ()N AD)
X0
= g() — f(¥)z0 — f(x)(x —x0) +f(x) / (1 — o)1) At
oD AL— () / (x — 0 (D)) At
= g(0) — ()2 — 2 — e =0
+ / "o (xl AR pata a(t)) B(0) At
X0 X1 — X0 X1 — X0
— o(1)é(1) At
= g() — f(¥)z0 — f(x)(x —x0)
+ / "o (— (1= 0% _ x-x a(z)) $() At
X0 X1 — X0 X1 — X0
— X1
T il / (x1 — 0 (1)) At,
X1 — X0 Jx
i.e.,

d(x) = g(x) — f(X)z0 — f

+ / T (— =% x- );‘Oa(t)) $(1) At

X1 — Xo X1 —

— £ () (x — x0)
-~
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+f ) / (x1 = o)D) Ar.
X1 — X0 Jx

Let

o) (-2 - 20 ) for =1 sx

K(x, 1) =

fO@ —o);=¢ for x<t=<x

and _
h(x) = g(x) = f(®)z0 — ii _i:)f(X)(x —Xo) for Xo<x<ux.

Consequently we obtain the following generalized Fredholm integral equation

b(x) = h(x) + / K, o) At. (2.33)

Xo

Example 26 Let 7 = %3. Consider the following BVP
(@) +x%00) =x, 0<x<8,
z2(0) =0, z(8) =2.
Here
o) =Wi+1)7 1e€7, f)=x g =x xel08],
x=0, x1=8, z0=0, z1=2.

From here we obtain
hx) = x — 2x°.

Substituting this in (2.33) gives the following generalized Fredholm integral equation

8
$0) = x - %f + / K(x, (D) AL,
0

where
— X =8) Wi+ 1) for 0<1=<x
K(x, 1) =
§x3(8—(3/f+1)3) for x<t<8.
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Example 27 Let 7 = 4”% U {0}. Consider the following BVP

22 (%) + cosh, (x, Dz(x) =x, 1 <x < 16,

z(1) =0, z(16) = 3.

Here
ocx)=4x, xe€.7, f(x)=cosh,(x,1), gx)=ux,

x=1 x1=16, z0=0, z3=-3.

Hence, we find |
h(x) =x+ 15 cosh, (x, I)(x — 1).

Substituting this in (2.33) gives the following generalized Fredholm integral equation

16

ox) =x + % cosh,(x, D(x — 1) + K(x, 1)o(t) At,
1

where

—% cosh,(x, (16 —x)(1 —4t) for 1 <x<t
K(x,t) =
%(x — 1)(4 —t)cosh,(x, 1) for t <x <16.
Example 28 Let 7 = 3./4;. Consider the following BVP
2 () 4 ex(x, Dz(x) =x2, 0 <x <6,

z(0) =1, z(6) =1.

Here
cx)=x+3, xe.7, f(x)=elx,1), gkx) =x>

x=0, x1=6, zo=2z=1.

Then
h(x) = x* — ex(x, 1).

Substituting this in (2.33) we get

6
Sx) = x> — ex(r, 1) + / K(x, () At,
0



100 2 Introductory Concepts of Integral Equations on Time Scales

where
—éex(x, Dx—6)(t+3) for 0<t<ux
K(x, 1) =
te.(x, Dx(3—1) for x<1<6.

Exercise 8 Convert the following BVPs to generalized Fredholm integral equations.

1.

) —z)=x% 0<x<2,

2000=z22)=0, T=2,

2.
2 +2z(0) =x, 1<x<5,
z2(D=0, zB =1, T=4,
3. .
2 —2x+ Dz =1, 0<x<9,
20)=0, zH =1, T ="
Answer
1. h(x) =2,

1=+ 1) for 0<x<t
K(x,t) =
—3x(1—=1) for 1<x<2,

2. hix) = %(x—i— 1),

—lt(x=5) for 1<x<t
K(x,t) =
=@ -1 for t<x<5,

1
3. h(x) =1+ §x(2x—|— 1),

Tx+ D —NWI+D? for 0<x<t
K(x,t) =
—5x@x+ 1) (9- Wi+ 1)?) for x<t=<09.
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We next consider the following boundary value problem for the Eq.(2.29) with

boundary conditions
2x) =22, 2%(0) =z

(2.34)

Again we set A () = @(x). Integrating both sides of (2.31) from x, to x we get

X
Bw =00+ [ omar
Xo
We put x = x; in the last expression and we find

2% (n) = 2% (x) +/ lcb(t)At

or

23 = 7% (x0) +/ | o) At,

whereupon

74 (%) = 73 —/ lqS(z)At.

We substitute the last expression in (2.35) and we obtain

A =z — / (At + / S AL,

which we integrate from x to x; and we get

/ ZA(I)At:/ (z3—/]¢(t)At) Ay+/ /qu(t)Azsz,
200 — 200) = (zg— / | ¢(I)At) (x — x0) + / / "6 At Axa,

Z(x) =2 + <Z3 —/ ] ¢(I)At) (x — xp) +/ / 2 o) At Ax,.

Applying Theorem 1 we get

or

or

2(x) =2+ (Z3 - /x1 qb(t)At) (x — xo) + /x(x — o)) At.

We substitute (2.31) and (2.36) in (2.29) and we find

(2.35)

(2.36)
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) +2f ) +£0) (2 = [ 60 Ar) @ = x0)

H @) [o (x— o) Ar = g(x)

or
H) = 8 — 2f () — 256 — XY (@) + () (x — x0) / o)At
e / :<x — o6 A
= () — 2 () — 5 — W ) + £ — o) / b At
PG — o) / oA - £ / :<x — o )61 At
= g(x) — z2of (%) — z3(x — x0)f (x)
+ / (F)(x = x0) — F@)(x — 7(0) (1) A
A — o) / o ar
— () — 2f () — 13 — ) () + / :f(X)(—xo o060 A
+ / " f@ 0 - xdn A
Let

hi(x) = g(x) — 22f (x) — z3(x — x0)f (x),
fX)(=xo+0@) for xo<t=<x
Ki(x,1) =
f)(x —xp) for x <t =<x.

Then we get the following generalized Fredholm integral equation

o(x) = hi(x) +/ | Ki(x, )¢(1) At. (2.37)
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Example 29 Let 7 = A;*. Consider the following BVP
zAz(x) + x2z(x) = cos,(x, 1) + sinh,(x,2), 0 <x < 81,

2(0) =0, z4@81)=1.

Here
ox)=(Wx+ 1D xeT,
f() =" g(x) = cosy(x, 1) + sinh,(x, 2),
x0=0, x;=81, =0, zz=1.

Then

hy(x) = —x> + cos,(x, 1) + sinh, (x, 2).

Substituting this in (2.37) gives the following generalized Fredholm integral equation

81
B(x) = —x* 4 cos,(x, 1) + sinh,(x, 2) +/ Ki(x, )o(t) At,
0

where
xz(f/f—i— H* for 0<t<x
K1 ()C, [) =
x3 for x <t <8l.
Example 30 Let 7 = 37 U {0}. Consider the BVP
20+ 2x =32 =x2-1, 0<x<?27,

2000 =1, z4()=-3.

Here
o(x)=3x, x€ 7,
fx)=2x—-3, g) =x2—1,
x0=0, xy=1, =1, zz3=-3.
Then

hi(x) = g(x) — zof (x) — z3(x — x0)f (x)
=x—1—(2x—3) — (=3)x(2x — 3)
=x>—1—2x+3+6x*—9x
=7x* —1lx+2.
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Substituting this is (2.37) gives the following generalized Fredholm integral equation

27
d(x) =Tx* — 11x+2 +/ K\ (x, o) At,
0

where
32x —3)t for 0<t<x

Ki(x, 1) =
2x% — 3x for x <t <27.
Example 31 Let & = 2% . Consider the BVP

A —xAx) =1+x, —2<x<6,

2(=2)=0, z4(6) =1.

Here
cx)=x4+2, xe.7,
f)=—x, gl)=1+ux,
Xo=-2, x1=6, =0, zz=1.
Then

hi(x) = g(x) — 22f (x) — z3(x — x0)f (x)
=14+x—(x+2)(—x)
=1 +x+x>+2

=x>+3x+ 1.

Substituting this in (2.37) gives the following generalized Fredholm integral equation

6
d(x) =x>+3x+ 1+ / K\ (x, 1)p(t) At,
-2

where
—x(t+4) for —2<t<x

Kl(x,t)=
—x2 —2x for x <t <6.
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Exercise 9 Convert the following BVPs to generalized Fredholm integral equations.

1.
722 (x) + sinxz(x) = cosx, 0 <x <4,

2000=0, 24 =3, T=2,

> ZAz(x)—Sz(x)=x2+1, -1 <x<4,
(=H=1, zH=0, T=2,

3.
AW+ a0 =1, 1 <x <27,
(=0, 2Q7) =1, T =3%

Answer

1. hy(x) = cosx — 3xsinx,

Ki(x, 1) = [)(C[S;;)lc) ii(grx ){Ogrtogi,t <x,
2. hi(x) = x>+ 4,

o[ & 221
3. () = )‘2);—?;2

2.5 Converting Generalized Fredholm Integral
Equation to BYP

In the previous sections, we have represented a technique to convert Volterra integral
equations to equivalent initial value problems. In a similar manner, we will represent
a technique that converts Fredholm integral equations to equivalent boundary value
problems.
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We first consider the generalized Fredholm integral equation
o0 =g+ [ Ko 238)
Xo

where

f)x —x)(o(@) —x0) for xo <t =<x
K(x, 1) =
FX)x1 —o@)(x —xo) for x <t =<x.
The Eq. (2.38) we can rewrite in the following form

P) = g) + [ F)(x1 — ) (0 (1) — x0) (1) At
(2.39)
+ [ f O = o (D)) (x = x0)p(1) At

For simplicity reason, we may assume that ' (x) = a, where a is a constant. Then
(2.39) takes the form

P(x) = g(x) +alx — x)/ (o(t) = x0)p(1) At + a(x —xo)/ 1()61 — o)1) At.

(2.40)
We differentiate (2.40) with respect to x and we get

P (x) =g%(x) —a / (o(t) — x0)p(t) At
+a(x; — o()((x) — x0)P(x) +a / (1 — (1)) At

—a(o(x) — xp)(x; — o (x)p(x)

— %) —a / (0(t) — x0)$(1) Al +a / (x1 — 0 (D)D) AL

0

Again we differentiate with respect to x and we find

¢* () = %' (%) — a(a(x) — x0)d(x) — alx — 7 (x)) ()

= g% () — alx; — x0) (),

i.e.,
o () + alx) — x0)p(x) = g2 (v). (2.41)
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By substituting x = xp and x = x; in (2.40) we find that

P(xo) = g(xo) and P(x1) = gx1). (2.42)
Combining (2.41) and (2.42) gives the following boundary value problem

Y (0) + a(x; — x0)p(x) = g2 (x), X0 < x < xi,
(2.43)

d(xo) = gxo), @(x1) = glxy).

Example 32 Let 7 = 2% U {0}. We consider the following generalized Fredholm
integral equation

4
b(x) =2x +3 +/ K(x, (1) At,
0

where
2t(4 —x) for 0<t<ux

K, 1) =
2x(2 —1t) for x <t <4

Here o(x) =2x, x€ .7, a=1, gx) =2x+3. Then g(x) =2, gAz(x) =0.
Hence, using (2.43), we get the following BVP

PN (x) +40(x) =0, 0<x <4,
»(0) =3, ¢4 =11

Example 33 Let T = ,/1{,3 U {0}. Consider the following generalized Fredholm
integral equation

27
d(x) = x* +2x + / K(x, 1)p(t) At,
0

where
227 —x)(Jt+ 13 for 0<t<x
K(x, 1) =
227 — (V1 + 13 for x<t<27.
Here

o) = (x+13, xeT,

a=2, gx)=x>4+2x, x=0, x5 =27.
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Then

g = o) +x+2
=Wx+1)7’+x+2
= x4+ 3V 3+ 1 +x+2

= 2x + 3V 4+ 3% + 3,

3525—VF+3335—&§
o(x) —x ox) —x
3 o) — VD)o@ + %)
(V700 = D02 (0) + Jx/a @) +a?)
+3 Vo) —Jx
(Vo) = VD)2 (@) + Ja/o@) + Vo)
EPSE GOh fha
Vo2 (x) + Jxdo@) + Va2
3 X+ T4+ Jx+1
(WX + D2+ Yx(x+ 1) + Va2
=2+6 ik
Va4 2%+ 1+ VA% 4 Yx VAP
Vx+1
302 4+ 393+ 1

¢ =243

=246

Also,
g(0) =0, g(27) =1783.

Hence, using (2.43), we get the following boundary value problem

2 Ix+1
¢Auy+ywu)=2+6§ﬁ%§;? 0 <x <27,

?(0) =0, ¢Q27) =783.
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Example 34 Let .7 = 37" Consider the following generalized Fredholm integral
equation

9
dx) = x> =232 + / K(x, 1)p(t) At,
1

where
O—x)3t—1) for 1 <t<x
K(x,t) =
O-3nx—1) for x<t<09.
Here
a=1, ox)=3x, xe€ 7,
xo=1, x; =09, g(x)=x3—2x2.
Then

g2 (%) = o2 (x) + x0(x) +x* — 2(x + o (x))
= 9x? 4 3x% + x* — 8
= 13x* — 8x,
¢ (x) = 13(c(x) +x) — 8
=52x -8,
g()y=—1, g =567.
Hence, using (2.43), we get the following boundary value problem

Y (x) +8p(x) =52x—8, 1 <x<09,

o(1) =—1, ¢(9) =567.
Exercise 10 Convert the following generalized Fredholm integral equations to
BVPs.
1.
10
o =x-2+ [ K@wnowar,
0
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where
(10 —=x)(t+1) for 0<t<x
K(x,t) =
O —tx for x <t<10,
T =%,
2. 5
dx) = x> + / K(x, 1)o(t) At,
—1
where
2 —x)(t+2) for —1<t=<x
K(x, 1) =
20 -0x+1) for x<t=<2,
T =%,
3. .
() =2+ / K(x, D60 Ar,
1
where
@A4—-x)2t—1) for 1 <t<x
K(x, 1) =
20— (x—1) for x<t<4,
T =2,
Answer
1.
‘ ' (x) + 106(x) =0, 0 <x < 10,
»(0) = =2, ¢(10) =38,
2. ,
P (X) +60(x) =2, —1<x<2,
o(=1) =1, ¢22) =4,
3.

[ d)Az(x) +3p(x) =21x, 1 <x <4,
o) =1, ¢4) =64

Next we consider the following generalized Fredholm integral equation

o(x) = g(x) +/ K(x, t)o(t) At, (2.44)
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where
f&)(=xo + () for xo<t=<x
K(x,t) =
S (x —x0) for x <t =<x.

The Eq.(2.44) we can rewrite in the following form

X1

o(x) =g(x)+/ K(x, t)(b(t)At—i—/ K(x, )o(r) At

X0 X

=g +/ FO)(=x0 + o) p(t) At

4 / FO (= x0)b(n) Al

For simplicity reasons, we may assume that f(x) = b, where b is a real constant.
Then the Eq. (2.44) takes the form

ox) = g(x) + b/ (=x0 + (@) p(t) At + b/ (x —x0) (1) At. (2.45)

We differentiate the last equation with respect to x and we find
X1
¢2(0) = g7 (1) + b(=x0 + T (0))P(x) + b / P(1) At

—b(o(x) — x0)p(x)

— i) +b / (A,

ie.,

X1
P2 (x) =g%(x)+ b / (1) At. (2.46)
X
We differentiate with respect to x the Eq. (2.46) and we find

oY () = g% (1) — bo(x)

or
™ () 4+ bp(x) = g% (x). (2.47)

We substitute x = xg and x = x; in (2.45) and (2.46), respectively. We find

P(xo) = g(xg), ¢ (x1) = g% (x1). (2.48)
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Combining (2.47) and (2.48) we get the following boundary value problem
$* () + bp(x) = g¥' (), X <x <x,

(2.49)
P(xo) = g(x0), P*(x1) = g (x1).

Example 35 Let 7 = % . Consider the generalized Fredholm integral equation

4
d(x) = x* +3x° +3x + / K(x, )o(t) At,
0

where
_Jt+1 for 0<x<t
K(x’l)_[x for x<tr<4
Here
U(-x):x+1, xey, b:], xOZOv x1:4’
g(x) = x* 4 3x% + 3x.
Then

g2 (1) = o’ (x) + x0?(x) + o (x) + X° +3(0(x) +x) +3
=@+ D +xe+ D>+ 20+ D+ +30+1+x) +3
=437+ x4+ 1+ + 22 +x+ 25+ 47
+x°+6x+6
= 4% +6x7 + 10x 4 7,
g% () = 407 () + x0(x) + %) + 6(c(x) +x) + 10
=4+ D> +4x(x+ D +42+6(x+14+x) +10
=4x> + 8x + 4+ 4x° +4x +4x* + 12x + 16
= 12x% + 24x + 20,

g(0) =0, g%(4)=399.
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Hence and (2.49) we get the following BVP

A2 (xX) + d(x) = 1232 + 24x +20, 0 <x < 4,

#(0) =0, ¢4(4) =399.

Example 36 Let 7 = 2% U {0}. Consider the following generalized Fredholm inte-
gral equation

4
d(x) =x> —Tx* 4+ 2x + / K(x, 1)¢(t) At,
0

where
4t for 0<x <t
K(x,t) =
2x for x <t <4.
Here
o(x)=2x, x€7, x=0, x1=4, b=2,
glx) = X3 —7x% 4+ 2x.
Then

gA(x) = 0’2()6) + xo(x) + X2 — T(ox)+x)+2
=4x> 2 4 x* —21x +2
=7x* = 21x + 2,
AZ
g° x)=T(ckx)+x) —21
=21x — 21,

g(0) =0. g% =30.
Hence, using (2.49), we get the following BVP
P () +2¢(x) =21x —21, 0 <x <4,

$(0) =0, ¢*(4) = 30.
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Example 37 Let . = 4% . Consider the following generalized Fredholm integral
equation
8
K(x, 1)¢(1) At,
4

¢(x)=2x3—x2+4x+2+/

where
—t—8 for —4<t<x
K(x,t) =
—x—4 for x <t<8.
Here
cx)=x+4, xe€7, xo=—-4, x1=8, b=-1,
g(x) =2x% — x> +4x 4+ 2.
Then

g4 =20 () + xa(x) + %) = (0 (x) +x) + 4
=2((x+ 4>+ x(x+4) +xH) —(x+4+x) +4
=2(x* 4+ 8x + 16 + x% + 4x 4+ x?) — 2x
= 2(3x% + 12x 4 16) — 2x
= 6x% + 24x + 32 — 2x
= 6x7 + 22x + 32,
g% (¥) = 6(a(x) +x) + 22
=6(x+4+x)+22
= 6(2x +4) +22

= 12x +24 +22

12x + 46,

g(—4) = —158, g4(8) = 592.
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Hence, using (2.49), we get the following BVP

¢ (x) — p(x) = 12x + 46, —4 <x <8,

P(—4) = —158, ¢*(8) = 592.

Exercise 11 Convert the following generalized Fredholm integral equations to
BVPs.

1. ¢>(x)=x+10+/

4
K@, 0o(t)At, T = Z, where
2

t+3 for —2<t<x
K, 1) =
x+2 for x <t <4,

6
2. p(x) =x+1 +/ K(x,1)p(1)At, T = 2%, where
0

—2(t+2) for 0<t<x
Kx, 1=
—2x for x<t<6,

4
3. ¢(x) = x>+ 3x +/ K(x, o) At, T = 27 U {0}, where
0

2t for 0<t<x

K, 1) =
x for x <t <4
Answer
1.
V) +d(x) =0, —2<x<4,
p(=2) =8, ¢4 =1,
2. .
¢ (x) —2¢(x) =6x+ 12, 0<x <6,
$(0) =1, ¢*(6) = 148,
3.

YD)+ o) =3, 0<x<4,

$(0) =0, ¢4 =15.
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2.6 Solutions of Generalized Integral Equations
and Generalized Integro-Differential Equations

Definition 1 A solution of a generalized integral equation or generalized integro-
differential equation is a function ¢(x) that satisfies the given equation. In other
words, the solution ¢(x) must satisfy both sides of the examined equation.

Definition 2 The solution is called exact if it can be represented in a closed form,
such as a polynomial, exponential function, trigonometric function or the combina-
tion of two or more of these elementary functions.

The following examples will be examined to explain the meaning of a solution.

Example 38 Some examples of exact solutions are as follows:
o(x) = x> +x + " + cosx,
d(x) = x — 2ex(x, 3),
¢(x) = 1 4 cosh,(x, 1) + cosx.

Example 39 Let 7 = % . Consider the equation
P(x) =x>+4x+4— / P(t) At.
-1

We will prove that ¢(x) = 2x + 3 is its solution. Indeed,

/X ¢(t)At:/x(2t+3)At
—1 —1
zz/xtAt+3/xAt
—1 —1
—2/x l(tZ)A—l At+3(x+1)
=7, 2 *

:/ (ﬂ)AAt—/ At +3x+3
-1 -1

=x>—1—(x+1)+3x+3
=x>—1—-x—1+4+3x+3

=x>+2x+1.
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Hence,
x2—|—4x—|—4—/ dOAt =x>+4x +4— (x> +2x+ 1)
-1
=2x+3

= P(x).

Example 40 Let 7 = 2% . Consider the equation

1 1 x
o(x) = x — X —=x>4x+1 —x/ tp(t) At.
2 3 0

We will prove that ¢(x) = x + 1 is its solution. Indeed, we have that o(x) = x + 2

and
/t¢(t)At=/ t(t+ 1)At
0 0
:/(r2+t)At
0
1 54 24, 2 1 o
= —(r — (r - —(r —1) At
/0<3() (%) +3+2()
=/((t)A ~(H* — )At
= /(t)AAt /(t)AAt——/ At
1
:—x3——x2——x.
3 2 3
Hence,
1 1 1 *
3x4 2x3 — gxz +x+1 —x/o to(t) At
1 1 1 1 1 1
=§x4—§x3—§x2—|—x+l—x(§x3—§x2—§x)

1 1 1 1 1 1
=§X4 - §X3 — §x2+x+ 1-— §x4+ §x3+ 5}6'2
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Example 41 Let 7 = 2% _ Consider the integral equation
L, 4 *
o(x) = —gx +x+ 3 + (x — Dex(x, 1) + o(t) At.
1

We will prove that ¢(x) = e, (x, 1) 4 x is its solution. Really, we have that o (x) = 2x
and

/x o(t) At = /X(te,(t, 1) +1)At
1 1

/te,(t, 1)At+/ tAt
1 1

=x 1 x
+= / At
=1 3 1

t=x
=

e (t, 1)

1,
=ex, 1) —e(1,1)+ §t

=1
= é,(X, + X .

Hence,

1, 4 x
— =X +x+§+(x—1)ex(x, 1)+/ o(t) At
1

3
N T T N0 | REPIYAS | SO IS | PRLIC R
= 3x X 3 X e, (x, e (x, e (1, 3)c 3
=xey(x, 1) +x
= ¢(x).

Exercise 12 Show that the given function is a solution of the corresponding gener-
alized Volterra integral equation.

L o) =x, T =2Z,
P(x) = —1x6 +x° — ix“ +x% + ix +x/x 1 p(r) At
5 3 15 0 ’
2. o) =x+2, T =%,

b0 = —av— Lo de  Liog 1>/xr¢<r>m
X) = —gx = e a4 e X ; ,
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3. o) =2x+ 2+ 1, T = M2,
Hx) = x> +2x+2/x+ 1+ x/ (1) At.
1
Example 42 Let = 2. Consider the equation
4
d(x) = x* — 4x + x/ (1) At.
0

We will prove that ¢(x) = x? — 2x is its solution. Indeed, we have that o(x) = x + 1
and

4 4
x2—4x+x/ ¢(t)At=x2—4x+x/ (1> — 20) At
0 0

:x2—4x+x/4 1(r3)4—1(r2)A+1—2 l(tz)A—l At
o \3 2 6 2 2

=x% —4x +x/4 (1(9)4 — l(ﬂ)ﬂ + L ) + 1) At
o \3 2 6

Tosa 304, 7
—(r i U — ) At
3() 2()+6

1 =4 3 =4 77 t=4
2 3 2
=x*—4 | —=t —t
* x+x(3 =0 2 t=0+6 t=0)
2 _4x+ o4 24+14
=x"—4dx+x|{— — —
3 3
_ .2
=x"—4x+2x
=x*—2x

= o).
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Example 43 Let 7 = 3% _ Consider the equation
e ?
to(t) At.
00 = 77 [ 1000
We will prove that ¢(x) = x? is its solution. Really, we have that o(x) = 3x and
1 ? 1 ?
—xz/ 1h(1) At = —x2/ 2 At
164/, 164

A
_ A
Tea™ 40/(” !

2 4’
6560

t=1

:x2

= ¢(x).

Example 44 Let 7 = Jl{)z U {0}. Consider the equation

d(x) = 12x/x +6x — 2 + —x / o) At.

We will prove that
B(x) = 6x% + 12x/x + 6x — 2

is its solution. Really, we have that o(x) = (v/x + 1)? and
3 4
12x/x 4+ 6x — 2 + —x2/ (1) At
32 Jo
= 12x/x+6x—2+ —x / (6x + 12x/x + 6x — 2) Ax
= 12x/x +6x—2

3 4
+ 3—2x2/ (203x% + 6xy/x + Tx +4/x + 1) — 42x + 2/x + 1)) Ax
0
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3 4
N / (269 — 46)%) Ax

0

x=4

3
:12Xﬁ+6x—2+3—2(2x3

x=0
3 2
= 12x/x+6x — 2+ R (128 — 64)

= 12x/x + 6x — 2 + 6x2

= ¢(x).

Exercise 13 Show that the given function is a solution of the corresponding gener-
alized Fredholm integral equation.
1. o) =x*+2x+1, T =2,
2
() =x> —dx + 1+ x/ P(1) At,

)
2. ¢x)=x—4, T =3%,

6

Px) = 16x — 4 +x/ o(t) At,
0

3. o) =x—1, T =2"0{0},

4
o(x) = —lx —1 —i—x/ o(t) At.
3 0

2.7 Advanced Practical Exercises

Problem 1 Convert the following multiple integrals to single integrals.

// ex(t, N AtAx,, T =3Z.

/ / eor (t, 1) AtAx,, T = 30U {0).
0 JO

X X1
3. / / sinh, (¢, 2) AtAxy, T = 2% U {0}.
0 0
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Answer
1. / (x —t—=3)ep(t, 1) At,
0
2. / (x = 30)e;on(t, 1) At,
0
3. / (x — 2¢) sinh,(t, 2) At.
0
Problem 2 Convert the following multiple integrals to single integrals.
X X1
1. / / () —Dt*AtAxy, T = X,
Ox 0)(1
2. / / (x1 — 3De(t, 1) AtAxy, T =37 U {0},
0 Jo
X X1
3. / / (x; — 2¢) sinh, (¢, 2)AtAxy, T = 2%,
2 J2
Answer
1. / (x — 0)*r* At,
0
X
2. / (x — 30)2e,(t, 1) At,
0
3. / (x — 20)* sinh, (¢, 2) At.
2

Problem 3 Convert the following IVPs to integral equations.

' A0 — Sz = -1
z2(000=0, =2,
> A0 — (222 + Dz(x) =2
O =1, T =,
> ) —z) = —1
z2) =10, T =.4.
Answer
L o) = —x+/0x§1;¢(ymy,

2. dx) =2x+ 1+ / 2y + Dé(y) Ay,
0
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3. 6() =12 —x+ / d(y) Ay.
2

Problem 4 Convert the following IVPs to integral equations.

1.
[ 22 (x) — sin, (x, 0)z(x) = 1,

20)=0, z2(0)=1, T =22,

* () + 224 () + 2(x) = 0,
[z(l): I, 2H)=2, T=2,
3.
20+ 220 4 2(x) = e, (x, 2),
L(O) =1, A0)=2 T =M
Answer

L o) = %xz + /0 Sin, (3, 0)(x —2 = )6 Ay.

2 600 = <3+ dx= [ (+x= 30004,

3. 0(0) =3x+1— /Ox(x — Mo Ay + /Ox(x —y— Dey(y,2)Ay.

Problem 5 Convert the following generalized Volterra integral equations to IVPs.
L 600 = sinn,(x.2) + [ (1= 26018y, 7 = 2.

2 @) = a+ /1 omay. 7 = A7,

3. 0 =x2—2x+2+/ x+ )6 Ay, T =47,
1

Answer
1.
[ ¢ (x) — (1 — 2x)p(x) = x cosh,(x, 2),
»(2) =0,
2.

[ PA(x) — X2 (x) = 2x + 3Vx2 + 3Yx + 2,
o(1) =2,
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[ ¢4 (x) — 20662 (x) — 6p(x) = 5,
o) =1, ¢*(1) =8,

Problem 6 Convert the following generalized Volterra integro-differential equa-
tions to IVPs.

1. ¢(x) =¢A(x)+/0 yo Ay, T = N,
2. A = () + 2 + / 604y, T = A2,
0

X

3. ¢ (x) = d(x) +x° — 2x +/ xp( Ay, 7 =3%U{0}.
0

Answer
" 62" (x) — 64(6) + x(x) = 0,
[ $(0) = $4(0),
2.
PN (x) — ¢A () — p(x) = 20+ 2J/x + 1,
[ $4(0) = 6(0),
3.

[ 4 (x) — ¢ (x) — 9 (x) — deb(x) = 52,
$2(0) = (0), ¢ (0) = ¢ (0) — 2.

Problem 7 Convert the following BVPs to generalized Fredholm integral equations.

1.
‘ZAZ(X) +zx)=1, 0<x<9,

2(00=z29=0, 7=2,

'zAz(x)—i—xz(x) =1, 1<x<1l6,

2(1) =z(16) =0, T = A,

'ZAz(x)+xzz(x) =1—-x, 1<x<38,

() =0, z@8 =1, 7 =24
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Answer
1. h(x) =1,
—5(x =9 +1) for 0<r=<x
K(x, 1) =
5@8—1) for x<t=<9,
2. h(x) =1,

—%x(x—l6)(t+2\/lt) for 1<t<x
K(x,t) =
Ex(e— D5 —1=21) for x<1<16,

3. h(x) = —(x = 1) (;x2 + 1) ,

—lx=8)x}(=1+21) for 1<t1<x
K(x,t) =
I(x— D@ —1) for x<t<8.
Problem 8 Convert the following BVPs to generalized Fredholm integral equations.
1. ,
2@ — Bx+7Nz(x) =1+cosx, 0<x<4,

2000=0, 2@ =1, T =2,

> ) -z =1, —1<x<09,
2(=1)=7z49 =0, 7=2,
3.
) Fazx) =x2+2x, 1 <x <27,
(=0, 22N =1, T =3",
Answer

1. hi(x) = 1 + cosx + 3x> + 7x,

—Bx+7N@E+1) for 0<t<x
Ki(x,t) =
—x@Bx+7) for x <t <4,
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2. hiy(x) =1,
—t—2 for —1<t<x
Ki(x, 1) =
—x—1 for x<t<9,
3. hi(x) = 3x,
x(—143t) for 1 <t<x
K](X,I)Z

x(x—1) for x<t<27.

Problem 9 Convert the following generalized Fredholm integral equations to BVPs
1.
4
d(x) =x>+2x+4+ / K(x, 1)p(t) At,
0

where
34—x)@t+1) for 0<t<ux
K(x, 1) =
3x(3—1t) for x <t <4,
T =%,
2. )
d(x) = x> —3x2 +/ K(x, 1)p(t) At,
—1
where
22 —x)(t+2) for —1<t<x
K, t) =
2l —t(x+1) for x <t <2,
T =%,
3. R
H(x) = x* +x +/ K (x, (1) At,
0
where

3t(3—x) for 0<t<x
K, 1) =
3x(1 —¢t) for x <t <3,

T =3%U{0).
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Answer
1. ,

o2 (1) + 12¢(x) =2

P(0) =4, ¢4) =28,
2. )

‘ A (X) + 6p(x) = 6x
p(—1) = —4, ¢(2) = —4,

3.

% (x) + 3 (x) = 520x>

$(0) =0, ¢@3) =284

Problem 10 Convert the following generalized Fredholm integral equations to
BVPs.

8
1. ¢(x) =x*—10x+5 +/ K(x, o) At, T = %, where
0

t+1 for 0<t<x
K(x, 1) =

x+2 for x <t<8§,

8
2. px) =x*+ / K(x,0)p(t)At, T = 2%, where
2

t+4 for —2<t<x
K, t) =
x+2 for x <t<8§,

4
3. ¢(x) =x° +/ K(x, D) At, T = ;> U {0}, where
0

2Wt+1)? for 0<t<x
K(x, 1) =

2x for x <t <4.
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Answer
1. ,
Y +o(x) =2, 0<x <S8,
p(0) =35, ¢2@®) =1,
2. )
Y () + p(x) = 12x> +48x + 56, —2<x <38,
d(=2) =16, ¢ (8) = 2952,
3.

6V W) + 200 =2+ 2, 0<x<4,

$0) =0, ¢4 =13

Problem 11 Show that the given function is a solution of corresponding generalized
Volterra integral equation.

1. o(x) =x*, T =%,

1 1 1 1 1 *
H(x) = —gxé + sz + 8x4 - Zx3 + 357 +x? +x/0 (* + Do) At,

2. ¢(x) =x*+sinx, T =%,

5 4

7
o(x) = —% + % + Ex— (x — l)sinx—i—(x2 — x) cosx + x?

+2xcosl —xsinl —i—x/ (t— Do(r) At,
-1
3. () =x, T =3M,
‘l X
H(x) = —Ex(x3 —14) +x / to(t) At.
1

Problem 12 Show that the given function is a solution of the corresponding gener-
alized Fredholm integral equation.

1. o) =x4+x, T =2,

3
d(x) =x° —23x + Zx/ (1) At,
0
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2. px) =x>+2x—4, T =22,
5
¢(x)=x2—13x—4+x/ (1) At,
0
3.6 =2x+2Vx+ 1, T =,

4
d(x) =2x+1+ %\/}/ (1) At.
0
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