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Abstract. Firefly algorithm (FA) is a recently proposed swarm intelligence
optimization technique, which has shown good performance on many opti-
mization problems. In the standard FA and its most variants, a firefly moves to
other brighter fireflies. If the current firefly is brighter than another one, the
current one will not be conducted any search. In this paper, we propose a new
firefly algorithm (called NFA) to address this issue. In NFA, brighter fireflies
can move to other positions based on local search. To verify the performance of
NFA, thirteen classical benchmark functions are tested. Experimental results
show that our NFA outperforms the standard FA and two other modified FAs.
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1 Introduction

Firefly algorithm (FA) is a new swarm intelligence algorithm developed by Yang in
2010 [1]. It is inspired by the social behavior of fireflies based on the flashing and
attraction characteristics of fireflies. In the past five years, the research of FA has
attracted much attention. Different versions of FA has been designed to solve bench-
mark or real-world optimization problems [2–6].

To enhance the performance of FA, Farahani et al. [7] proposed a Gaussian dis-
tributed FA (GDFA). Computational results on five benchmark functions show that
GDFA outperforms PSO and the standard FA. Tilahun and Ong [8] modified the
random movement of the brighter firefly by generating random directions in order to
determine the best direction. If such a direction is not generated, it will remain its
current position. Moreover, the assignment of attractiveness is modified in such a way
that the effect of the objective function is magnified. Simulation results show that the
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modified FA performs better than the standard FA in finding the best solution with
smaller CPU time. Fister et al. [9] proposed a memetic FA (MFA) to solve combi-
natorial optimization problems. In MFA, the parameter a is dynamically adjusted, and
the parameter b is changed in the range [0.2, 1.0] based on the distance between two
fireflies. Additionally, the random part ae for the movement of the attraction is scaled
by the size of the search range. Experimental results show that the MFA is significantly
better than the standard FA. In our previous work [10], the MFA is used as the standard
FA and combined with other strategies. Gandomi et al. [11] introduced chaos into FA
to increase its global search ability for robust global optimization. Different chaotic
maps are utilized to tune the attractive movement of fireflies. Results show that the
chaotic FA (CFA) outperforms the standard FA. In [12], quaternion is used for the
representation of individuals in FA so as to enhance the performance of the firefly
algorithm and to avoid any stagnation. Yu et al. [13] designed a new FA with a wise
step strategy (WSSFA), which considers the information of firefly’s personal and the
global best positions. Results show that the modified algorithm outperforms the stan-
dard FA on twenty benchmark functions. In [14], a variable step size FA (VSSFA) is
proposed, where a dynamical method is used to update the parameter a. Computational
results show that WSSFA and VSSFA achieve better solutions than the standard FA on
a set of low-dimensional benchmark functions (D = 2). However, our experiments
demonstrate that both of them can hardly obtain reasonable solutions for some
high-dimensional problems (D = 30). Compared to WSSFA and VSSFA, MFA can
achieve promising solutions.

In the FA, the fitness function for a given problem is associated with the light
intensity. The brighter the firefly is, the better the firefly is. That means a brighter firefly
has a better fitness value. The search process of FA depends on the attractions between
fireflies. Based on these attractions, a firefly tends to move other brighter fireflies. If a
firefly is brighter than another one, the brighter firefly will not be conducted any search.
In this paper, we propose a new FA (called NFA) to avoid this case. When the current
firefly is brighter than another one, a local search operation is conducted on the current
one to provide more chances of finding more accurate solutions. It is noted that the
proposed NFA is implemented based on the MFA. Therefore, the NFA is a hybrid
algorithm by combining the MFA and the proposed local strategy. To verify the
performance of NFA, a set of well-known benchmark function with D = 30 are tested.
Experimental results show that NFA performs better than the standard FA, MFA, and
VSSFA.

The rest paper is organized as follows. In Sect. 2, the standard FA is briefly
introduced. In Sect. 3, the proposed NFA is described. Experimental results are pre-
sented in Sect. 4. Finally, the work is concluded in Sect. 5.

2 Firefly Algorithm

As mentioned before, the FA mimics the behavior of the social behavior of the flashing
characteristics of fireflies. To simply the behavior of fireflies and construct the search
mode of FA, three rules are used as follows [1]:
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• All fireflies are unisex so that one firefly is attracted to other fireflies regardless of
their sex;

• Attractiveness is proportional to their brightness. For any two fireflies, the less
bright one is attracted by the brighter one. The attractiveness is proportional to the
brightness and they both decrease as their distance increases. If no one is brighter
than a particular firefly, it moves randomly;

• The brightness or light intensity of a firefly is affected or determined by the land-
scape of the objective function to be optimized. For a minimization problem, the
brightness can be proportional to the objective function. It means that the brighter
firefly has smaller objective function value.

As light intensity and thus attractiveness decreases as the distance from the source
increases, the variations of light intensity and attractiveness should be monotonically
decreasing functions. This can be approximated by the following Eq. [1]:

IðrÞ ¼ I0e
�cr2 : ð1Þ

where I is the light intensity, I0 is the original light intensity, and c is the light
absorption coefficient. The attractiveness of a firefly is proportional to the light
intensity. The attractiveness b of a firefly can be defined by [1]:

bðrÞ ¼ b0e
�cr2 : ð2Þ

where b0 is a constant and presents the attractiveness at r = 0. The distance between rij
between any two fireflies i and j can be calculated by [1]:

rij ¼ Xi � Xj

�� �� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD
d¼1

ðxid � xjdÞ2
vuut : ð3Þ

where D is the dimensional size of the given problem.
Based on the above definitions, the movement of this attraction is defined by [1]:

xidðtþ 1Þ ¼ xidðtÞþ b0e
�cr2ij xjdðtÞ � xidðtÞ
� �þ aeidðtÞ: ð4Þ

where xid and xjd is the dth dimension of firefly i and j, respectively, a is a random value
with the range of [0,1], eid is a Gaussian random number for the dth dimension, and
t indicates the index of generation.

3 Proposed Approach

Recently, some new FA variants were proposed to enhance the performance of FA.
However, these algorithms only work well on some low-dimensional problems. For
high-dimensional problems (such as D = 30), they can hardly find reasonable solutions.
In [9], Fister et al. designed a memetic FA (MFA) by introducing multiple strategies.
Experimental results show that MFA performs well when D = 30.
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In MFA, a new updating search equation is defined as follows [9].

xidðtþ 1Þ ¼ xidðtÞ 1� bð Þþ xjdðtÞbþ a r � 0:5ð Þ: ð5Þ

a ¼ a
1

9000

� �1
t

up� lowð Þ: ð6Þ

b ¼ bmin þ b0 � bminð Þe�cr2ij : ð7Þ

where a is the generation index, r is a random number between 0 and 1, and bmin is a
constant value. In [9], b0 and bmin are set to 1.0 and 0.2, respectively. The initial a is set
to 0.2. In the proposed NFA, we use the MFA as the basic algorithm. Then, we embed
a local search strategy into the MFA.

Algorithm 1: The Proposed NFA
1: Begin
2:     Randomly initialize all fireflies in the swarm;
3:     while FEs <= MaxFEs do
4:         for i=1 to N do
5:            for j=1 to i do
6:               if firefly j is better than firefly i then
7:                  Generate a new firefly according to Eq. (5);
8:                  Evaluate the new solution; 
9:              end if
10:             else
11:                 Conduct the local search according to Eq. (8);
12:             end else
13:          end for
14:       end for
15: end while
16: End

In the standard FA and its most variants, a firefly can move to other brighter fireflies
based on the attraction operations. However, if the current firefly is brighter than
another one, the current one will not be conducted any search. To avoid this case, we
design a new solution updating model. When the above case occurs, a local search is
conducted on the brighter firefly as follows.

x�idðtÞ ¼ BestdðtÞþ xidðtÞ � xkdðtÞð Þ 2r � 1ð Þ: ð8Þ

where r is a random number within [0, 1], Best is the global best solution found so far,
and Xk is a randomly selected solution from the current population (i ≠ j). If X�

i is better
than Xi, then replace Xi with X�

i ; otherwise keep the Xi.
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The main steps of the proposed NFA are presented in Algorithm 1, where N is the
population size, and FEs is the number of fitness evaluations, and Max_FEs is the
maximum number of fitness evaluations.

4 Experimental Results

4.1 Test Functions

In order to verify the performance of the proposed NFA, there are thirteen classical
benchmark functions used in the following experiments [15, 16]. According to their
properties, they are divided into two groups: unimodal functions (f1-f7) and multimodal
functions (f8-f13). All test functions are minimization problems. In this paper, we only
consider the problems with D = 30. The mathematical descriptions of these functions
are listed as follows.

(1) Sphere

f1 xð Þ ¼
XD

i¼1
x2i

where xi 2 [−100, 100], and the global optimum is 0.

(2) Schwefel 2.22

f2ðxÞ ¼
XD

i¼1
jxij þ

YD

i¼1
xi

where xi 2 [−10, 10], and the global optimum is 0.

(3) Schwefel 1.2

f3ðxÞ ¼
XD

i¼1

Xi

j¼1
xj

� 	2
where xi 2 [−100, 100], and the global optimum is 0.

(4) Schwefel 2.21

f4ðxÞ ¼ maxi jxij; 1� i�Dð Þ

where xi 2 [−100, 100], and the global optimum is 0.

(5) Rosenbrock

f5 xð Þ ¼
XD�1

i¼1
100 x2i � xiþ 1
� �2 þ xi � 1ð Þ2

h i
where xi 2 [−30, 30], and the global optimum is 0.
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(6) Step

f6ðxÞ ¼
XD

i¼1
xi þ 0:5b cð Þ2

where xi 2 [−100, 100], and the global optimum is 0.

(7) Quartic with noise

f7ðxÞ ¼
XD

i¼1
ix4i þ rand½0; 1Þ

where xi 2 [−1.28, 1.28], and the global optimum is 0.

(8) Schwefel 2.26

f8ðxÞ ¼
XD

i¼1
�xi sin

ffiffiffiffiffiffi
jxij

p� 	
where xi 2 [−500, 500], and the global optimum is −12569.5.

(9) Rastrigin

f9ðxÞ ¼
XD

i¼1
½x2i � 10 cosð2pxiÞþ 10�

where xi 2 [−5.12, 5.12], and the global optimum is 0.

(10) Ackley

f10ðxÞ ¼ �20 � exp �0:2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D

XD

i¼1
x2i

r !
� exp

1
D

XD

i¼1
cos 2pxið Þ

� �
þ 20þ e

where xi 2 [−32, 32], and the global optimum is 0.

(11) Griewank

f11ðxÞ ¼ 1
4000

XD

i¼1
x2i �

YD

i¼1
cos

xiffiffi
i

p
� �

þ 1

where xi 2 [−600, 600], and the global optimum is 0.

(12) Penalized 1

f12ðxÞ ¼ 0:1fsin2ð3px1Þþ
XD�1

i¼1
ðxi � 1Þ2½1þ sin2ð3pxiþ 1Þ�

þ ðxD � 1Þ2½1þ sin2ð2pxDÞ�gþ
XD

i¼1
uðxi; 10; 100; 4Þ

where xi 2 [−50, 50], and the global optimum is 0.
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(13) Penalized 2

f13ðxÞ ¼ p
D
f10 sin2ð3py1Þþ

XD�1

i¼1
ðyi � 1Þ2½1þ sin2ð3pyiþ 1Þ�

þ ðyD � 1Þ2½1þ sin2ð2pxDÞ�gþ
XD

i¼1
uðxi; 5; 100; 4Þ

where xi 2 [−50, 50], and the global optimum is 0.

4.2 Involved Algorithms and Parameter Settings

In this section, the proposed NFA is compared with the standard FA and two other FA
variants. The involved algorithms are listed as follows:

• The Standard FA.
• Memetic FA (MFA) [9].
• Variable step size FA (VSSFA) [14].
• The proposed NFA.

The parameter settings of the above four algorithms are listed as follows. To have a
fair comparison, all algorithms use the same Max_FEs and N as the termination con-
dition, and the Max_FEs and N are set to 5.0E + 05 and 20, respectively. For the
standard FA and VSSFA, a ¼ 0:2, b0 ¼ 1; and c ¼ 1 are used [14]. For MFA and
NFA, b0 ¼ 1:0, bmin ¼ 0:2, a ¼ 0:2, and c ¼ 1 are used. For each test function, each
algorithm is run 30 times and the mean best fitness values are reported.

4.3 Results

Table 1 presents the computational results of FA, VSSFA, MFA, and NFA on the test
set, where “Mean” indicates the mean best fitness values. As shown, both FA and

Table 1. Results achieved by FA, VSSFA, MFA, and NFA on the test suite.

Functions FA VSSFA MFA NFA
Mean Mean Mean Mean

f1 6.67E + 04 5.84E + 04 1.56E − 05 6.59E − 09
f2 5.19E + 02 1.13E + 02 1.85E − 03 3.21E − 05
f3 2.43E + 05 1.16E + 05 5.89E − 05 7.29E − 07
f4 8.35E + 01 8.18E + 01 1.73E − 03 2.29E − 04
f5 2.69E + 08 2.16E + 08 2.29E + 01 1.57E − 03
f6 7.69E + 04 5.48E + 04 0.00E + 00 0.00E + 00
f7 5.16E + 01 4.43E + 01 1.30E − 01 7.68E − 04
f8 −1563.4 −1854.6 −7634.35 −7160.3
f9 3.33E + 02 3.12E + 02 6.47E + 01 4.97E + 01
f10 2.03E + 01 2.03E + 01 4.23E − 04 1.68E − 05
f11 6.54E + 02 5.47E + 02 9.86E − 03 7.39E − 03
f12 7.16E + 08 3.99E + 08 5.04E − 08 3.43E − 11
f13 1.31E + 09 8.12E + 08 6.06E − 07 5.02E − 10
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Fig. 1. The search processes of FA, VSSFA, MFA, and NFA on four selected functions.
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VSSFA could hardly achieve reasonable solutions on all test functions. Even on simple
unimodal function Sphere (f1), they still cannot converge to promising solutions.
Compared to FA and VSSFA, MFA and NFA obtains much better solutions on all test
functions. NFA outperforms MFA on 11 functions, while MFA only performs better
than MFA on f8. Both of them can find the global optimum on f6.

Figure 1 lists the search processes of FA, VSSFA, MFA, and NFA on four selected
functions. As seen, NFA shows the fastest convergence speed among all four algo-
rithm. FA and VSSFA cannot improve the fitness value during the whole search
process.

5 Conclusion

In this paper, we propose a new firefly algorithm (NFA) to improve the performance of
the standard FA. Unlike the standard FA and its most modifications, the NFA defines a
new operation for brighter fireflies. When a firefly is brighter than another one, the
brighter firefly will be conducted on a local search. This is helpful to enhance the local
search and improve the accuracy of solutions. Moreover, the NFA employs the
modifications of MFA. By the hybridization of MFA and the proposed local search,
NFA achieves much better results than the standard FA, VSSFA, and MFA on the
majority of test functions. The proposed local search can be embedded in other FAs.
This will be investigated in the future work.
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