Chapter 2
Temporal Context-Aware Recommendation

Abstract Users’ behaviors in social media systems are generally influenced by
intrinsic interest as well as the temporal context (e.g., the public’s attention at that
time). In this chapter, we focus on analyzing user behaviors in social media systems
and designing a latent class statistical mixture model, named temporal context-aware
mixture model (TCAM), to account for the intentions and preferences behind user
behaviors. TCAM simultaneously models the topics related to users’ intrinsic inter-
ests and the topics related to temporal context, and then combines the influences
from the two factors to model user behaviors in a unified way. To further improve
the performance of TCAM, an item-weighting scheme is proposed to enable TCAM
to favor items that better represent topics related to user interests and topics related
to temporal context, respectively. Extensive experiments have been conducted to
evaluate the performance of TCAM on four real-world datasets crawled from differ-
ent social media sites. The experimental results demonstrate the superiority of the
TCAM models.

Keywords Dynamic user behavior - Temporal recommendation - Temporal context
modeling - Entropy filtering

2.1 Introduction

With the rising popularity of social media, a better understanding of users’ rating
behaviors' is of great importance for the design of many applications, such as per-
sonalized recommendation, information filtering, behavioral targeting, and compu-
tational advertising. Research efforts [12, 15] have been undertaken to model users’
interests to help them find interesting items by analyzing their historical behaviors.
However, existing work [12, 15, 17] simply assumes that users prefer items based
on their intrinsic interests, which may not be accurate in many social application
scenarios. For example, when choosing a book to read or a movie to watch, the users
are likely to prefer books/movies that interest them. In contrast, when selecting news

We use the term “rating behavior” to denote general user actions on items in social media systems,
such as rating and viewing.
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to read or users to follow in a social network (e.g., Twitter), it is most likely that users
will be attracted, respectively, by breaking news or famous users who are followed
by the general public [4, 10, 20]. Therefore, users’ rating behaviors on items may
not necessarily indicate users’ intrinsic interests. New models are desired to better
account for user behaviors in social medias to learn user preferences more precisely.

After investigating multiple social media systems, we observe that user rating
behaviors are generally influenced by two factors: the intrinsic interest of the user
and the attention of the general public. While the user’s intrinsic interest is relatively
stable, the attention of the general public changes from time to time; for example,
the hot topics on a microblogging site evolve over time. Hence, in our work, we refer
to the attention of the public during a particular time period as temporal context.

The two factors have different degrees of influence on user rating behaviors for
different types of social media platforms as a result of the different characteristics
(e.g., life cycles and updating rates) of various types of social media items. For
instance, news is a type of time-sensitive item with a short life cycle—few people
want to read outdated news; while the life cycle of movies is relatively longer, with
many classic old movies being highly ranked in the popularity list. For time-sensitive
social media items, users are more easily influenced by the temporal context, whereas
they tend to make decisions based on their intrinsic interests when choosing less
time-sensitive items such as books and movies.

To model user rating behaviors in social media systems, therefore, it is critical to
identify users’ intrinsic interests as well as the temporal context (i.e., the attention of
the general public during a particular time period). Moreover, it is essential to model
the influence degrees of the two factors in different social media systems.

To this end, we proposed TCAM to mimic user rating behaviors in a process of
decision making in [21, 22]. As shown in Fig.2.1, TCAM is a latent class statistical
mixture model that simultaneously models the topics [1, 8] related to users’ intrinsic
interests and the topics related to temporal context, and then combines the influences
from the user interest and the temporal context to model user behaviors in a unified
manner. Specifically, the model discovers (1) users’ personal interest distribution
over a set of latent topics; (2) the temporal context distribution over a set of latent
topics; (3) an item generative distribution for each latent topic; and (4) the mixing
weights that represent the influence probabilities of users’ personal interest and the
temporal context. It is worth mentioning that the set of latent topics used to model
user interest is different from the topics used to model the temporal context. The
former are called user-oriented topics and the latter are referred to as time-oriented
topics.

The generative process of user rating behaviors in TCAM is briefly illustrated as
follows. Suppose a user u selects an item v in a time interval . TCAM first tosses a
coin, based on the influence probabilities of the two factors, to decide whether this
behavior results from the influence of the user’s personal interest or the influence of
the temporal context. If it results from the influence of the user’s personal interest,
TCAM chooses a user-oriented topic for u based on the user’s intrinsic interest (with
a certain probability). The selected topic in turn generates an item v following on
from the topic’s item generative distribution. Otherwise, if the influence from the
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Fig. 2.1 An example of TCAM model [22] © 2015 Association for Computing Machinery, Inc.
Reprinted by permission

temporal context is sampled, TCAM chooses a time-oriented topic according to the
general public’s interest during #, which in turn generates an item v.

Similar to traditional topic models where popular words in a document corpus
are usually ranked high in each topic [3, 4], popular social media items tend to be
estimated as having high generation probability by TCAM, which impairs the quality
of the discovered user-oriented topics and time-oriented topics. User-oriented topics
are supposed to capture user intrinsic interests, but a popular item favored by many
users conveys less information about a user’s intrinsic interest than an item favored
by few users (i.e., a salient item) [23]. Similarly, a popular item constantly favored
by users cannot well represent a time-oriented topic because the public’s attentions
change over time. Hence, to improve the performance of TCAM, we devise an item-
weighting scheme to promote the importance of salient items and bursty items, which
enhances the quality of the underlying topics detected by TCAM.

The remainder of this chapter is organized as follows. Section2.2 details the
TCAM. We deploy TCAM to temporal recommendation in Sect.2.3. We carry out
extensive experiments and report the experimental results in Sect. 2.4, and conclude
the chapter in Sect.2.5.
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2.2 User Rating Behavior Modeling

In this section, we first introduce relevant definitions and notations used throughout
this chapter. We then present the novel temporal context-aware mixture model for
modeling user rating behaviors in social media systems.

2.2.1 Notations and Definitions

The notations used in this chapter are summarized in Table2.1.

Definition 2.1 (User Rating) A user rating is a triple (i, ¢, v) that denotes a rating
behavior (e.g., purchasing, clicking and tagging) made by user u on item v during
time interval ¢.

Definition 2.2 (User Document) Given a user u, the user document, D,, is a set
of pairs {(v, )} representing the rating behaviors on items during different time
intervals made by u.

Definition 2.3 (Rating Cuboid) A rating cuboid C is an N x T x V cuboid, where
N is the number of users, T is the number of time intervals and V is the number of
items. A cell indexed by (u, ¢, v) stores the rating score that user u assigned to item
v during time interval ¢.

Table 2.1 Notations used in this model

Symbol | Description

u,t,v User u, time interval ¢, item v

N, T,V | Number of users, time intervals, and items

M, Number of items rated by user u

Au The mixing weight specific to user u

K Number of user-oriented topics

Ou.z Probability that user-oriented topic z is chosen by user u

0, Intrinsic interest of user u denoted by 6, = {6, ; i‘l

o8 Item proportions of user-oriented topic z, denoted by ¢, = {¢z,v}y:1
b2y Probability that item v is generated by user-oriented topic z

K> Number of time-oriented topics

6, The temporal context during time interval 7 denoted by 6; = {6; X}fil
9,’, . Probability that time-oriented topic x is generated by time interval ¢
o Item proportions of time-oriented topic x denoted by ¢/, = {d),’(’v}l/:l
#., Probability that item v is generated by time-oriented topic x
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User actions on items, such as tagging, downloading, purchasing, and clicking,
can be represented as a user rating. Either explicit feedback or implicit feedback
can be used to compute the value of rating score. For example, given a user u who
frequently uses a tag v during time interval ¢, the usage frequency can be used as the
rating score to reflect the user’s preference on the tag during that time period.

Definition 2.4 (Topic) Givenacollection of itemsI = {Vi},'V: |»atopic zisrepresented
by a topic model ¢,, which is a multinomial distribution over items ¢, = {P(v;|¢,)

Vv
or ¢z,v5}[=1'

To illustrate the semantic meaning of a topic, we choose top-k items that have the
highest probability under the topic, as shown in Fig. 2.2. In our work, we distinguish
between user-oriented topics ¢, and time-oriented topics ¢, although both of them
are represented by a multinomial distribution over items. User-oriented topics are
used to model user interest, which is assumed to be generally stable over time. In
contrast, time-oriented topics are used to model the temporal context (i.e., the public’s
attention during a particular time), which has a clear temporal feature. For example,
the popularity of the topics may increase or decrease over time and reach a peak
during a certain period of time, as shown in Fig.2.2.

Definition 2.5 (User Interest) Given a user u, her/his intrinsic interest, denoted as
6,, 1s a multinomial distribution over user-oriented topics.

Definition 2.6 (Temporal Context) Given a time interval ¢, the temporal context
during ¢, denoted as 6, is a multinomial distribution over time-oriented topics or
items.
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2.2.2 Temporal Context-Aware Mixture Model

Given a rating cuboid C which stores users’ rating histories, we aim to model user
rating behaviors by exploiting the information captured in C. Before presenting the
devised model, we first describe an example to illustrate the motivation of our design.

As mentioned before, users’ rating behaviors in social media systems are influ-
enced by not only intrinsic interest but also the temporal context. It is crucial to
distinguish between user-oriented topics and time-oriented topics, because the two
have very different characteristics. For example, Fig. 2.2 shows an example of a user-
oriented topic and a time-oriented topic detected by TCAM model from Delicious.
For demonstration, we present only the top eight tags that have the highest probabil-
ity under each topic. We can easily tell the difference between the two topics from
both their temporal distributions and the content descriptions. For the time-oriented
topic, the items (i.e., tags) are related to a certain event (e.g.,“Boston Marathon
bombings™). The popularity of the topic experiences a sharp increase during a par-
ticular time interval (e.g., in April 2013). For the user-oriented topic, the items are
about the user’s regular interest (e.g., “Pet Adoption”). The temporal distribution of
the topic does not show any spike-like fluctuation. Hence, our TCAM models the
user-oriented topics and the time-oriented topics simultaneously.

To consider the influence of the user intrinsic interest and the temporal context in
a unified manner, TCAM computes the likelihood that a user u# will rate an item v
during a time interval ¢ as follows.

PO|u,t,¥) = 1,P|6,) + (1 — A,)P(|6)) 2.1

where ¥ denotes the model parameter set, P(v|6,) is the probability that item v is
generated from ’s intrinsic interest, denoted as ,,, and P(v|6;) denotes the probability
that item v is generated from the temporal context during time interval ¢, i.e., 6,. The
parameter A, is the mixing weight which represents the influence probability of the
user interest. That is, user u is influenced by personal interest 6, with probability A,
and is influenced by the temporal context §; with probability 1 — A, for decision
making. It is worth mentioning that TCAM holds personalized mixing weights for
individual users, considering the differences between users in personalities (e.g.,
openness and agreeableness).

The user interest component 6, is modeled by a multinomial distribution over
user-oriented topics, and each item is generated from a user-oriented topic z. Thus,
P(v|6,) is computed as follows.

K,
P|6,) = Z Pv|¢,)P(z]6.) (2.2)

z=1

As for the temporal context component 6/, it is modeled as a multinomial distri-
bution over a set of latent time-oriented topics, and each item is generated from a
time-oriented topic x. Then, P(v|6)) is formulated as follows:
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K>
P(V|9t/) = ZP(V|¢;)P(X|9,/) (2.3)

x=1

As an illustrative example in Fig. 2.1, the user is influenced by personal interest
and the temporal context with probabilities 0.64 and 0.36, respectively. Four user-
oriented topics and three time-oriented topics are also shown, respectively, where
the weights representing the user’s interest distribution over the user-oriented topics
as well as the temporal context distribution over the time-oriented topics are labeled
in the corresponding edges. We can see that user-oriented topic Ul dominates the
user’s interest, and time-oriented topic T1 attracts most attentions from the general
public at time ¢. The probabilities of topics’ generating items are also labeled in the
corresponding edges. For example, the weight b on the edge linking topic Ul and
item v2 represents the probability of Ul generating item v2.

Figure 2.3 illustrates the generative process of TCAM with a graphical model.
The structure of TCAM is similar to the PLSA model, but TCAM has additional
machinery to handle the mixing weight A,,. In particular, a latent random variable s,
associated with each item, is adopted as a switch to determine whether the item is
generated according to the temporal context 6, or the user’s interest 6. s is sampled
from a user-specific Bernoulli distribution with the mean 1,,. N indicates the number
of users; K is the number of user-oriented topics; K, is the number of time-oriented
topics; T is the number of time slices and M, is the number of items rated by u. The
generative process of TCAM is summarized as follows.

Fig. 2.3 The graphical

representation of TCAM [22] @
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For each item v rated by u at time slice ¢:

1. Sample s from Bernoulli(i,)
2. Ifs=1

a. Sample user-oriented topic z from Multinomial(6,,)
b. Sample item v from Multinomial(¢,)
c. Repeat the above two steps C[u, ¢, v] times

3. Otherwise

a. Sample time-oriented topic x from Multinomial(0,)
b. Sample item v from Multinomial(¢,)
c. Repeat the above two steps C[u, ¢, v] times

2.2.3 Model Inference

Given a rating cuboid C, the learning procedure of our model is to estimate the
unknown model parameter set ¥ = {6, ¢, 0’, ¢’, 1}. The log-likelihood is derived

as follows:
N T V

LWIC) = D> "> Clu.t,v]log P(v|u, 1, ¥), (2.4)

u=1 t=1 v=1

where P(v|u, t, &) is defined in Eq. (2.1).

The goal of parameter estimation is to maximize the log-likelihood in Eq. (2.4). As
this equation cannot be solved directly by applying maximum likelihood estimation
(MLE), we apply an EM approach instead. In the expectation (E) step of the EM
approach, we introduce P(s|u, t, v; @) which is the posterior probability of choosing
personal interest 6, (i.e., s = 1) or temporal context 6, (i.e., s = 0), respectively,
given user rating behavior (u, ¢, v) and the current estimations of the parameters v,
In the maximization (M) step, parameters are updated by maximizing the expected
complete data log-likelihood Q(¥) based on the posterior probability computed in
the E-step.

In the E-step, P(s|u,t,v; @) is updated according to Bayes formulas as in
Eq.(2.5).
shP16,) + (1 —s5)(1 — A2 )P(v|6))

P ,t, ;&; = s
(sl £, v; ) W PO10,) + (1= 1) P(VIE))

(2.5)

where P(v|6,) and P(v|6;) are defined as in Eqgs.(2.2) and (2.3), respectively. To
obtain the updated parameters P(z|6,) and P(v|¢,), the posterior probability P(z|s =
1, u, t,v; ¥) is computed as:

P(v|¢:)P(z]6.)

PEls=1ut,v;¥) = —¢ .
2oL PO|é)P(Z'16,)

(2.6)
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Based onAP(z|s =1,u,t,v; fl/\) and P(s = l|u,t, v; @), we introduce the notation
P(z|u, t, v; &) as follows:

PGlu,t,v; W) =P(zls = 1,u,t,v; W)P(s = |u, t,v; ¥). (2.7)

To obtain the updated parameters P(x|67) and P(v|¢.), we update the posterior
probability P(x|s = 0, u, t, v; ¥) as follows:
Pv]¢)P(x16))

Px|ls=0,u,t,v; l?/\) =% p ~.
D POIGL)P(16))

2.8)

Based on P(x|s =0, u, t, v; ':I/\) and P(s = O|u, t, v; ':l/\), we introduce the notation
P(x|u, t, v; &) as follows:

P(xlu,t,v; W) = P(x|s = 0, u, t, v; W)P(s = Olu, £, v; ¥). (2.9)

With simple derivations [8], we obtain the expectation of complete data log-
likelihood for TCAM:

N V T K
QW) =" > > Clu, 1, vI{P(s = lu, 1, v; ¥) D" P(els = 1, u, 1, v; &) log[uP(v|$) P(zI6,)]
u=1v=1 t=1 z=1
K>
+P(s=0lu,t,v; ¥) D" P(xls = 0,u,t,v; W) log [(1 = h)POV|$)P(x]6)]}.

x=1

(2.10)

In the M-step, we find the estimation ¥ that maximizes the expectation of
the complete data log-likelihood Q(¥) with the constraints ZXZI Pvig,) =1,

SV POIe) =1,38, P(zl6,) =1 and 32, P(x|6)) = 1, using the following
updating formulas.

SV ST Clu, 1, vIP(lu, £, v; @)

P(z]6,) = — (2.11)
S S S Clu, t, 1P u, 1, v; @)
POlb.) = ZzT:I Zﬁ/:, Clu, t,vIP(z|u, t, v; ¥) 2.12)
) ZX:] ZtT:l 25:1 Clu, t,VIP(zlu, t,v'; W)
PO,y = S SN Clu, t, vIP(x|u, t, v; ¥) )13
'x| I) - K> VvV N , . o~ ( . )
Zx’:l Zv:l Zu:l C[M, f, V]P(x |u7 t,v; q/)
T N o~
C 9 l’ P 9 l’ ; w
P(v|gy) = izt 2z Ol 1 VPGl 1 vi ) (2.14)

Z\‘;:] ZlT:] ZLVZI C[u’ t! V/]P(.x|u, ts V/; @)
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With an initial random guess of ¥ , we alternately apply the E-step and
M-step until a termination condition is met. To adapt to different users, we esti-
mate the parameter ), in M-step, instead of picking a fixed A value for all users. This
personalized treatment can automatically adapt the model parameter estimation for
various users. Specifically, A, is estimated as follows.

XL S Clu t vIP(s = u 1, v; @)

=7 v 1 =
Zf:l szl Z_y:() C[u5 ta V]P(S|M, ta Vs l‘II)

(2.15)

2.2.4 Discussion About TCAM

A number of relevant issues of the proposed TCAM model are discussed in this
subsection.

Hyperparameter setting. In our model, we still have four hyperparameters to
tune manually, including the number of user-oriented topics K, the number of time-
oriented topics K, the number of time slices 7 and the number of EM iterations.
K and K; are the desired numbers of user-oriented topics and time-oriented topics,
respectively, which need to be tuned empirically. T is the number of time slices used in
our model to generate time-oriented topics, which provides users with the flexibility
to adjust the granularity/length of the time slice. The larger T is, the more fine-grained
time slices are. Regarding the number of EM iterations, we observe that convergence
can be achieved in a few iterations (e.g., 50) because the model inference procedure
using the EM approach is fast. The time cost of each iteration is O(NK;V + TK,V),
which is very similar to the time cost required for PLSA implementation [8]. It
is worth mentioning that EM algorithms can be easily expressed in MapReduce
[6, 18], so the inference procedure of TCAM can be naturally decomposed for parallel
processing, which is scalable to large-scale datasets.

Guidance with Dirichlet Priors. Prior knowledge can be integrated into TCAM
models to guide the topic discovery process. For example, in the MovieLens dataset,
we can introduce prior knowledge and guide the user-oriented topics so that they
are related to the genres of movies, such as action and comedy. Another example
is the Digg dataset, where we can integrate prior knowledge to guide the time-
oriented topics so that they are aligned with breaking events. Specifically, we define
a conjugate prior (i.e., Dirichlet prior) on each multinomial topic distribution. Let
us denote the Dirichlet prior 8, for user-oriented topic z and B, for time-oriented
topic x. B,(v) and B.(v) can be interpreted as the corresponding pseudo counts for
item v when we estimate the topic distributions P(v|¢.) and P(v|¢.), respectively.
With these conjugate priors, we can use the maximum a posteriori (MAP) estimator
for parameter estimation, which can be computed using the same EM algorithm
except that we should replace the Egs. (2.12) and (2.14) with the following formulas,
respectively:
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>, 3 Clu, t, vIPGlu, 1, v; ) + B.()
ZV’ Zt Zu (C[M, t, V/]P(Z|M1 f, V/; @) + ﬁZ(V/)) ’

P(vig:) =

>, 3, Clu, t, vIP(xlu, 1, v; &) + B, (v)

P(|p.) = > S (Clu, t, VIP(xlu, 1,V W) + Bo(v)

Advantages of TCAM. The advantages of the TCAM model are summarized as
follows. (1) We unify the influences from the user interest and the temporal con-
text to model user rating behaviors. (2) We distinguish between user-oriented topics
and time-oriented topics. Two different types of latent topics are proposed to model
user interest and the temporal context, respectively. By taking away the influence of
the temporal context, user-oriented topics can capture user intrinsic interests more
precisely. Likewise, without the influence of user interests, time-oriented topics can
better reflect the temporal context because the noise induced by a wide variety of
user interests could contaminate the time-oriented topics. (3) TCAM can generate
interpretable individual user profiles that can be presented alongside item recom-
mendations to allow users to understand the rationale behind the recommendations.
We will show sample user profiles in Sect.2.4.6.

2.2.5 Item-Weighting for TCAM

In this section, we propose an item-weighting scheme to improve TCAM’s per-
formance. Similarly to traditional topic models, TCAM assumes that all items are
equally important in computing generation probabilities. As a result, popular items
with more ratings tend to be estimated with high generation probability and ranked
in top positions in each topic, which impairs the quality of both the user-oriented
topics and the time-oriented topics.

For user-oriented topics, popular items are not good indicators of user intrinsic
interests. A popular item rated by many users conveys less information about a user’s
interest than an item rated by few users. For time-oriented topics, it is expected that
items representing the public’s attention at a given time should be highly ranked, such
as items with bursty temporal distributions, since bursts of items are generally trig-
gered by breaking news or events that attract the public’s attention. Unfortunately,
bursty items are most likely to be overwhelmed by long-standing popular items.
Figure 2.4 shows the temporal frequency of the top six tags of a sample time-oriented
topic discovered from Delicious. It can be observed that the topic concerns swine
flu. The temporal distributions of three bursty tags, “flu,” “mexico,” and “swineflu”,
undergo sharp spikes. Although the trends of the three tags do not always synchro-
nize, they each go through a drastic increase and reach a peak in July 2009. The
bursts in these curves are triggered by a real-world event, i.e., the swine flu outbreak
in Mexico. The other three tags, “news,” “health,” and “death”, maintain high fre-
quency throughout the year. However, they convey little information about the event.
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Although they are relevant to the event, they are also related to many other topics.
Hence, it is desirable to rank bursty items higher than popular item when representing
time-oriented topics.

To address the challenge posed by the popular items, we propose an item-
weighting scheme to reduce the importance of popular items while promoting weights
for salient, but infrequent, and bursty items in computing generation probability.
From the viewpoint of information theory [5], the entropy of an item v is defined as
follows:

E@W) = —)_ P(ulv)log P(ulv).

Suppose that the item v is preferred by users with equal probability P(u|v) = ﬁ,
the maximum entropy is,
E®W) =logN().

Generally, the entropy of an item tends to be proportional to its frequency/
popularity N(v). Hence, in the following analysis, we use the maximum entropy
to approximate the exact entropy to simplify the calculation.

To allow salient items to be ranked higher in use-oriented topics, the weights of
items should be inversely proportional to the entropy, as discussed above. Hence, we
propose a concept called inverse user frequency to measure the ability of items to
represent salient information. Let N be the total number of users in the entire dataset;
the inverse user frequency (IUF) for the item v is defined as follows:

iuf(v) =logN — log N(v) = log ]%, (2.16)
v

which is similar to the inverse document frequency for a term in text mining.
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To take into account the bursty information of items, we propose to compute the
bursty degree of an item v using the following equation:

N() N
B0 ===N0)

(2.17)

where N, (v) represents the popularity of item v at time slice ¢, i.e., the number of
users who rate item v at time slice ¢, N; is the number of active users at time slice ¢,
N (v) is the overall popularity of v across all time slices, and N is the total number of
users in the dataset.

Combining the inverse user frequency and the bursty degree of items, we assign
weight to the item v as follows.

w,t) = iuf (v) x B(v, t) (2.18)

Integrating the weights of items defined in Eq. (2.18), we obtain the weighted user-
time item cuboid C from the original C as follows:

Clu, t,v] = Clu, t, vViw(v, 7). (2.19)

It should be noted that the item-weighting scheme makes TCAM no longer cor-
respond to a well-defined probabilistic generative process since the values stored in
the cuboid C are no longer integers, but it actually improves the empirical perfor-
mance of TCAM in the tasks of both temporal recommendation and topic discovery
by inserting IUF and bursty weights as heuristic factors into the model inference
procedures, as shown in the experiment section. From the perspective of information
theory, an item with lower entropy conveys more information about a user’s intrinsic
interests, and the one with higher bursty degree is more capable of representing the
temporal context at some specific time. The TCAM model enhanced by IUF and
bursty weights incorporate these observations and intuitions.

2.3 Temporal Recommendation

The conventional top-k recommendation task can be stated as follows: given a user,
the recommender system should recommend a small number, say k, of items from
all the available items. Note that the conventional top-k recommendation task does
not consider the temporal information. However, in reality, user rating behaviors,
influenced by both user interests and the temporal context, are dynamic. For example,
user u rating item v in time interval ¢ does not mean that u still favors v in time interval
t + 1. Besides, each item has its own lifespan, especially for time-sensitive items such
as news. Itis undesirable to recommend outdated news. Hence, an ideal recommender
system is expected to have the ability to recommend the right item v to user u in the
right time interval ¢, rather than in other time intervals. In this chapter, we propose
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the task of temporal top-k recommendation as follows: given a query g = (u, 1),
i.e., a querying user # with a time interval ¢, the recommender model recommends k
items which match u’s interests and the temporal context at .

Below, we will present how to deploy TCAM to facilitate temporal recommen-
dations. Once we have inferred model parameters of TCAM, such as user interest
0, temporal context 6’, user-oriented topics ¢, time-oriented topics ¢’ and mixing
weights A, given a query ¢ = (u, t), a ranking score S(u, t, v) for each item v can
be computed according to Eq.(2.21), and then the top-k items with highest rank-
ing score will be returned. Specifically, when receiving a query g = (u, t), a new
multinomial distribution for the query, ¥, is first constructed by combining 6, and
0’,. More specifically, we expand the user interest and temporal context spaces to
be of the same dimension. For example, if there are K; user-oriented topics and
K> time-oriented topics, the expanded topic space will have K = K; + K, topics.
The expanded user interest distribution is defined as 5,4 =<46,,0,---,0 >, where
we set 0 on the time-oriented topics. Similarly, we define the expanded temporal
context distribution to be 9~,’ =<0,...,0,0/ >. The new distribution is defined as
vy = AL,@, + (1 — )Lu)gf’ . Correspondingly, we renumber the time-oriented topic x
and change its range from [1,...,K>] to [K; 4+ 1, ..., K]. Then, we use ¢z, to
denote the weight of item v on dimension 7 that corresponds to user-oriented topic z
or time-oriented topic x, which depends on the value of Z, as shown in Eq. (2.20).

¢.v Z<KI1
Yiy = (2.20)
¢, %> Kl
K
S t.v) =D Dgzpzy (2.21)
Z=1

2.4 Experiments

In this section, we experimentally evaluate the performance of our proposed models.

2.4.1 Datasets

Our experiments are conducted on four real datasets: Digg, MovieLens, Douban
Movie, and Delicious. The basic statistics of the four datasets are shown in Table 2.2.
Only the implicit feedback data can be available in Digg and Delicious datasets,
so we compute the cell value C[u, ¢, v] for these two datasets according to the fre-
quency/number of the interaction between user u# and item v at time ¢. For Douban
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Table 2.2 Basic statistics of the four datasets
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Digg MovieLens Douban movie Delicious
# of users 139,409 71,567 33,561 201,663
# of items 3,553 10,681 87,081 2,828,304
# of ratings 3,018,197 10,000,054 5,257,665 36,966,661
time span(year) | 2009-2010 1998-2009 2005-2010 2008-2009

Movie and MovieLens datasets, the explicit feedback information is available. Hence,
the user-time item rating cuboid C can be directly derived from users’ star ratings.

e Digg. Digg is a popular social news aggregator, which allows users to vote news
stories up or down, called digging or burying, respectively. The Digg dataset used in
our experiment is Digg2009 [9], a publicly available dataset containing 3,018,197
votes on 3553 popular stories cast by 139,409 distinct users. This dataset also
records the friendship network of these Digg users. Although this dataset contains
only the IDs of news stories (the titles and the contents of stories are excluded), it
is sufficient to evaluate the effectiveness of user behavior modeling in our work.

e Douban Movie. Douban? is the largest movie review website in China. In total,
we crawled 33,561 unique users and 87,081 unique movies with 5,257,665 movie
ratings.

e MovieLens. MovieLens is a publicly available movie dataset from the web-based
recommender system MovieLens. The dataset contains 10M ratings on a scale
from 1 to 5 made by 71567 users on 10681 movies. We selected users who had
rated at least 20 movies.

e Delicious. Delicious is a collaborative tagging system where users can upload and
tag web pages. We collected 201,663 users and their tagging behaviors during
the period Feb. 2008-Dec. 2009. The dataset contains 2,828,304 tags. Topics on
technology and electronics account for about half of all web pages. Most of the
other web pages are about breaking news with strong temporal features.

Note that the Douban Movie and Delicious datasets are collected by ourselves,
and we make them publicly available.?

2.4.2 Comparisons

The temporal context-aware mixture model (TCAM) was outlined in Sect.2.2.
TCAM can be enhanced by the item-weighting scheme, which leads to a weighted
TCAM, called WTCAM. We compare them with four categories of competitor
approaches.

Zhttp:/douban.com.
3http://net.pku.edu.cn/daim/hongzhi.yin/.
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e User-Topic Model (UT). We implemented a user-topic model following the pre-
vious works [12, 15]. This model is similar to the classic author-topic model
(AT model) [14] which assumes that topics are generated according to user inter-
ests. A user document D, is regarded as a sample of the following mixture model:

P(v|u; ) = AP (v|0p) + (1 — Ap) ZP(ZIGM)P(VI@),

where v is an item (or word) in user document D,, P(z|6,) is the probability of
user u choosing the zth topic ¢,. 05 is a background model and Ap is the mixing
weight for it. The purpose of using a background model 65 is to make the topics
learned from the dataset more discriminative; since g gives high probabilities
to nondiscriminative and noninformative items or words, we expect such items or
words to be accounted for by 6 and thus the topic models to be more discriminative.
In a nutshell, the background model 65 is used to capture common items or words.

e Time-Topic Model (TT). Following previous works [11, 16], we implemented a
time-topic model. This model considers only the temporal information and ignores
user interests. TT assumes that topics are generated by the temporal context, and
that user behaviors are influenced by the temporal context. The probabilistic for-
mula of the time-topic model is presented as follows:

P(|t; &) = AP (l0p) + (1 — A5) D P(xIG)P(V]$)),

where P(x|6;) is the probability of the general public choosing xth topic during
time period ¢, and 65 is a background model that plays the same role with the one
in the above UT model.

e BPRMF. This is a state-of-the-art matrix factorization model for item ranking
that is optimized using BPR [13]. This model outperforms most of the existing
recommender models in the task of top-k item recommendation. We used the
BPRMF implementation provided by MyMediaL.ite, a free software recommender
system library [7].

e BPTF. This is a state-of-the-art recommender model for rating prediction that uses
a probabilistic tensor factorization technique by introducing additional factors for
time [19]. This model outperforms most of the existing recommender models that
consider time information.

2.4.3 Evaluation Methodology

To make the evaluation process fair and reproducible, we adopt the methodological
description framework proposed in [2] to describe our evaluation conditions. We
will present our evaluation conditions by answering the following methodological
questions:
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. What base set is used to perform the training-test building?

. What rating order is used to assign ratings to the training and test sets?
. How many ratings comprise the training and test sets?

. Which items are considered as target items?

. Which items are considered as relevant items for each user?

DN AW -

Base set condition. The base set conditions state whether the splitting procedure
of training and test sets is based on the whole set of ratings C, or on each of the sub-
datasets of C independently. We adopt the user-centered base set condition where
we perform the splitting independently on each user’s ratings, ensuring that all users
will have ratings in both the training and test sets.

Rating order and size conditions. We adopt the time-dependent rating order
condition. Specifically, for each user u, his/her ratings S(u) are ranked according to
their rated timestamps. We use the 80-th percentile as the cut-off point so that ratings
before this point will be used for training and the rest are for testing, i.e., S(u) is
divided into the training set S”*" (1) and test set S"*' ().

Target item condition. To simulate a real-world setting, we require each tested
recommender system to rank all the items except the target user’s training items. In
other words, given a target user u, each tested recommender system has to find top-k
items from all available items except those in the set $7" (u).

Relevant item condition. Relevant item conditions select the items to be inter-
preted as relevant for the target user. The notion of relevance is central for information
retrieval metrics applied to evaluate top-k recommendations. We adopt the fest-based
relevant items condition in which the set of relevant items for target user u is formed
by the items in u’s test set S (u).

The above condition combination is also called “uc_td_prop” for short. We repeat
our experiments on four different social media datasets for increasing the general-
ization of the evaluation results, and we use a hold-out procedure on each dataset.

To make the experimental results comparable and reproducible, we use multiple
well-known metrics to measure the ranked results. Similar to evaluations in informa-
tionretrieval, we first use Precision @k to assess the quality of the top-k recommended

items as follows:
. #relavances
Precision@k = B

where #relavances is the number of relevant items in the top-k recommended items.
We also consider NDCG, a widely used metric for a ranked list. NDCG @k is
defined as:

1 oo

IDCG * “ log(i + 1)’

NDCG@k =

where r; is 1 if the item at position i is a “relevant” item and O otherwise. IDCG is
chosen for the purpose of normalization so that the perfect ranking has an NDCG
value of 1. Considering that some users may have a large number of items in the test
data while some have just a few, we also adopt the F'1 score as our metric.
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2.4.4 Recommendation Effectiveness

2 Temporal Context-Aware Recommendation

Tables 2.3, 2.4, 2.5 and 2.6 report the performance of the proposed models and other
competitors in terms of Precision@k, NDCG@k and F1@k on Digg, MovieLens,
Douban Movie and Delicious datasets, respectively. From the reported results, we
observe that:

1. Our proposed models TCAM and W-TCAM consistently outperform other com-
petitors such as UT, TT, BPRMF and BPTF on all four datasets. This observation
shows that recommendation accuracy, especially temporal recommendation accu-

Table 2.3 Temporal recommendation accuracy on digg dataset

Methods Precision NDCG F1 Score
P@1 P@5 |P@10 |[N@1 |N@5 |N@10 |Fl@l |F1@5 |F1@10
uT 0.091 |0.086 |0.084 |0.093 |0.091 |0.088 |0.007 |0.028 |0.044
TT 0.182 |0.149 |0.126 |0.178 |0.148 |0.139 |0.017 |0.041 |0.071
BPRMF 0.048 |0.045 |0.040 |0.048 |0.040 |0.037 |0.002 |0.015 |0.022
BPTF 0.194 |0.166 |0.152 |0.195 |0.176 |0.165 |0.017 |0.050 |0.080
TCAM 0.237 10210 |0.179 |0.234 |0.203 |0.188 |0.017 |0.056 |0.093
W-TCAM |0.258 |0.220 |0.201 | 0.252 |0.224 |0.208 |0.019 |0.063 |0.098
Table 2.4 Temporal Recommendation Accuracy on MovieLens Dataset
Methods Precision NDCG F1 Score
P@1 P@5 |P@10 |[N@1 |N@5 |N@10 |Fl@l |F1@5 |F1@10
uT 0343 |0252 |0211 |0338 |0.257 |0.234 |0.036 |0.099 |0.136
TT 0.260 [0.193 |0.168 |0.248 |0.198 |0.186 |0.024 |0.070 |0.093
BPRMF 0.342 10239 [0.192 |0.303 [0.229 |0.195 |0.034 |0.084 |0.119
BPTF 0.383 |0.270 |0.224 |0365 |0.290 |0.261 |0.035 |0.103 |0.141
TCAM 0.385 |0.304 |0.259 |0.406 [0.325 |0.286 |0.037 |0.115 |0.155
W-TCAM |0.401 |0.324 |0.264 |0.427 0350 |0.313 |0.040 |0.123 |0.165
Table 2.5 Temporal Recommendation Accuracy on Douban Movie Dataset
Methods Precision NDCG F1 Score
P@l |P@5 |P@10 |[N@l |N@5 |N@l0 |Fl@l |Fl1@5 |F1@l0
uT 0.141 |0.104 |0.087 |0.139 |0.106 [0.097 |0.015 |0.041 |0.056
TT 0.105 |0.078 |0.068 |0.101 |0.080 |0.075 |0.010 |0.028 |0.038
BPRMF 0.138 |0.101 |0.085 |0.136 |0.103 |0.094 |0.015 |0.040 |0.055
BPTF 0.158 |0.111 |0.092 |0.151 |0.119 |0.108 |0.015 |0.043 |0.058
TCAM 0.168 |0.133 |0.113 |0.177 |0.142 |0.125 |0.016 |0.050 |0.068
W-TCAM |0.175 |0.141 |0.115 |0.186 |0.153 |0.137 |0.018 |0.054 |0.072




2.4 Experiments 35

Table 2.6 Temporal Recommendation Accuracy on Delicious Dataset

Methods Precision NDCG F1 Score
P@l P@5 P@10 |N@1 N@5 |N@I10 Fl@l |Fl@5 |Fl@10

UT 0.086 [0.076 |0.073 |0.082 |0.081 |0.078 |0.006 |0.025 |0.039
TT 0.104 |0.085 |0.072 |0.102 |0.085 |0.080 [0.010 |0.024 |0.041
BPRMF 0.065 [0.059 |0.051 |0.064 |0.062 |0.060 |0.005 [0.019 |0.030
BPTF 0.111 [0.095 |0.087 |0.112 |0.101 |0.095 |0.010 [0.029 |0.046
TCAM 0.136 |0.120 |0.103 |0.134 |0.116 |0.108 [0.010 |0.032 |0.053
W-TCAM |0.148 |0.126 |0.113 |0.144 |0.128 |0.119 |0.011 |0.036 |0.056

racy, can be improved by simultaneously considering both user intrinsic interests
and the temporal context.

2. BPTF performs better than other competitor methods such as BPRMF, UT and TT
because it also exploits the temporal context information when recommending
items, but our proposed TCAM and W-TCAM consistently outperform BPTF.
This may be because BPTF is designed for rating prediction rather than the top-
k recommendation. It relies on high quality explicit feedback data (e.g., users’
explicit star rating for items), however, which is not always available [13]. In
contrast, our proposed TCAM and W-TCAM are suitable for both explicit and
implicit user feedback data.

3. W-TCAM achieves higher temporal recommendation accuracy than TCAM,
which demonstrates the benefits gained by the item-weighting scheme.

4. Comparing UT and TT, we find that UT performs better than TT on the MovieLens
and Douban Movie datasets, while TT beats UT on the Digg dataset. This may
be because news is a type of time-sensitive item while movies are not so time-
sensitive and have longer life-span.

2.4.5 Temporal Context Influence Study

This section studies the influence degrees of users’ personal interests and the temporal
context on users’ decision making. The user interest influence probability A, and the
temporal context influence probability 1 — A, are learnt automatically in the TCAM
model. We are interested in how significantly the temporal context influences the
user’s decisions on different social media platforms.

Since different people have different mixing weights, we plot the distributions of
both the personal interest and the temporal context influence probabilities across all
users. The results on the MovieLens data set are shown in Fig. 2.5, where Fig.2.5a
plots the cumulative distribution of personal interest influence probabilities, and
Fig.2.5b shows the temporal context influence probabilities. It is observed that, in
general, people’s personal interest influence is significantly higher than the influence
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Fig. 2.5 Temporal context influence result (MovieLens). a Personal interest influence. b Temporal
context influence

of the temporal context. For example, Fig. 2.5a shows that the personal interest influ-
ence probability of more than 76 % of users is higher than the 0.82. This observation
indicates that most movies consumed by users are selected in accordance with their
interests and tastes.

Figure 2.6a, b show, respectively, the personal interest influence probabilities and
temporal context influence probabilities learnt from the Digg data. As shown in
Fig.2.6a, the personal interest influence probability is smaller than the temporal
context influence probability. For example, the temporal context influence probability
of more than 70 % of users is higher than 0.5. The implication of this finding is that
people are mainly influenced by the temporal context when choosing news to read.
By comparing the analysis results obtained from the two datasets, we observe that the
temporal context influence on users’ choice of news to read is much more significant
than it is on the selection of movies to watch. This is probably because news is a
time-sensitive item that is driven by offline social events, while movies are not so
time-sensitive.

(a)? (b) 1
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x = Personal Interest Influence Probability x = Temporal Context Influence Probability

Fig.2.6 Temporal context influence result (Digg). a Personal interest influence. b Temporal context
influence
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2.4.6 User Profile Analysis

Both the user interests and temporal context, as well as their influences on users’
decision making, can be learnt by our TCAM model to build user profiles. This
section first analyzes two sample user profiles to enable a better interpretation of
user rating behaviors. Figure2.7 shows the profiles of user 102 and user 384 learnt
by TCAM from the Digg dataset. As shown in the figure, users 102 and 384 are
influenced by the temporal context with influence probability values 0.88 and 0.76,
respectively. We also show top-4 user-oriented topics with highest probabilities in
0,. The weights on the edges indicate users’ preferences for the topics. Note that
we only choose top-4 user-oriented topics for demonstration, thus the sum of the
weights on the edges is not equal to 1. There is only one overlapping user-oriented
topic for users 102 and 384, and the dominating user-oriented topics for them are
different (i.e., U1 vs. U8).

We also show two sample temporal context profiles for time slices 6 and 7 in
Fig.2.8. We present the top-4 time-oriented topics with highest probabilities in each
0,. The weights on the edges indicate the preference degrees of the general public for
the chosen four time-oriented topics. We choose two temporal context profiles learnt
by TCAM from Digg dataset for demonstration. By comparing the two adjacent
temporal context profiles, we observe that the general public’s preferences for time-
oriented topics evolve over time. While the two adjacent time slices share the time-
oriented topics 7’1 and 716, the general public focus more on topic T'1 at time slice
6 and show more interest in topic 76 at time slice 7.

Self Interest 0.1
Influence,

Users:

Temporal Context
Influence

Temporal Context
User Topic
Weights:

0.801

alalalaf

User-Oriented Topics

Fig. 2.7 Sample user profiles and temporal context influence learnt by TCAM
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Fig. 2.8 Sample temporal context profiles

Time-Oriented Topics

2.5 Summary

In this chapter, we focused on the problem of user behavior modeling in social media
systems and its applications in temporal recommendation. Based on the intuition and
observations that users’ rating behaviors are influenced by two factors: user intrinsic
interests as an internal factor, and the temporal context (i.e., the public’s attention
during a time period) as an external factor, we proposed a temporal context-aware
mixture model (TCAM) that explicitly introduces two types of latent topics to model
user interests and temporal context, respectively. An item-weighting scheme was
developed to enhance the TCAM models by exploiting the frequency distribution
and temporal distribution information of items. To demonstrate the applicability of
TCAM, we deployed this model to facilitate temporal recommendation. We con-
ducted extensive experiments on four large-scale real social media datasets, and the
results and analysis demonstrated the superiority of our TCAM model over existing
methods in the task of temporal recommendation, which verified our motivation. We
also explored other applications for our TCAM model beyond time-aware recom-
mendation, such as user profiling and temporal context modeling in an illustrative
way in the experiment section.
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