Chapter 2
CMOS Transistor Reliability
and Variability Mechanisms

Due to aggressive scaling in device dimensions for improving speed and func-
tionality, CMOS transistors in the nanometer regime have resulted in major relia-
bility issues due to high electric field phenomenon. These include hot carrier
injection (HCI) [1, 2], gate oxide breakdown (BD) [3, 4], and negative bias tem-
perature instability (NBTI) [5, 6]. These reliability mechanisms cause the MOS
transistor parameter drifts; namely, threshold voltage shift and mobility degrada-
tion. A brief discussion on the MOS device reliability is described as follows.

2.1 Hot Electron Effect

When the electric field at the drain edge of the MOS transistor is very high,
avalanche breakdown may occur. Impact ionization in the drain depletion region
generates many energized electrons. These high energy carriers may damage
interfacial layer and create interface traps and oxide trapped charges [7] which
degrade device parameters such as an increase in threshold voltage. Figure 2.1
displays the drain current degradation versus drain-source voltage subjected to
different stress times. At given drain-source voltage Vpg and gate-source voltage
Vgs, the drain current decreases with stress time as shown in Fig. 2.1.

2.2 Gate Oxide Breakdown

High electric field across the gate insulator could induce time-dependent dielectric
breakdown. The formation of random defects and conduction path within the gate
dielectric increases the gate leakage and noise. For ultrathin gate oxide transistors
under constant gate voltage stress, the soft breakdown could be observed before
hard breakdown [8]. Compared with hard breakdown (HBD), SBD becomes more
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prevalent for thinner oxides and for oxide stress at relatively lower voltages. In
addition, hot carrier injection could trigger more SBD in addition to conventional
Fowler—Nordheim (FN) tunneling [9].

Figure 2.2 shows the normalized gate leakage current as a function of stress time
under constant voltage (CVS). The gate soft breakdown degrades the threshold
voltage and mobility of the MOSFET as observed by the current—voltage charac-
teristics [10].
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2.3 Negative Bias Temperature Instability

Negative bias temperature instability is related to a build up of positive charges
occurring at the Si/SiO; interface or in the oxide layer for p-channel transistors
under negative gate bias. The reaction—diffusion model [11] illustrates the holes in
the inversion layer of pMOSFETs reacting with the Si—H bonds at the SiO,/Si
interface. The hydrogen species diffuse away from the interface toward the
polysilicon gate. This causes the threshold voltage instability of pMOSFETs.
The NBTI effect is enhanced at higher temperatures. Note that NBTI is a degra-
dation of transistor performance for pMOSFETs, where positive bias temperature
instability (PBTI) transistor occurs for nMOSFETs with high-k dielectrics [12].

To investigate the oxide breakdown and hot electron effect on the nMOS tran-
sistors at various stress conditions, accelerated DC voltage stress is employed.
Figure 2.3 shows the drain current versus drain-source voltage and Fig. 2.4 dis-
plays the transconductance versus gate voltage of the 65 nm nMOS during 220 min
of hot electron stress at Vgs = 0.35 V and Vpg = 2.0 V. At high drain-source
voltage, hot carrier injection occurs because of high electric field and impact ion-
ization at the drain region of MOSFETs. Again, these high energy carriers may
introduce damage by creating interface traps and oxide trapped charges and can
cause degradation of device parameters such as an increase in threshold voltage and
a decrease in transconductance. At a given drain voltage, the drain current decreases
with stress time and at a given gate voltage, the transconductance decreases with
stress time due to hot electron degradation.

The 65 nm NMOS is also measured under gate oxide stress at Vgg = 2.9 V and
Vbs = 0 V. The results are shown in Fig. 2.5. After significant oxide stress effect
resulting from high gate voltage, the transconductance shifts down rapidly in the
initial 60 min as seen in Fig. 2.5. The off-state stress effect is evaluated in Fig. 2.6.
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Fig. 2.4 Transconductance
at different stress times (DC
stress at Vgs = 0.35 V ad
Vps =2.0 V)

Fig. 2.5 Transconductance
versus gate voltage (oxide
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The 65 nm nMOS was stressed at Vgs = 0 V ad Vpg = 2.8 V. High drain-source
voltage results in high electric field in the drain region, which may trigger hot
electron injection into the gate oxide to degrade the drain current. High drain-gate
voltage may also induce gate oxide breakdown close to the drain edge. As shown in
Fig. 2.6, the transconductance degrades quickly after only 30 min of off-state high
drain voltage stress. After 30 min of stressing, the transconductance collapses
possibly due to oxide hard breakdown accelerated by hot electron injection during

off-state.



2.4 Process Variability 7

Fig. 2.6 Transconductance 0.05 T T T T T T
at different stress times (DC | s " =
stress at Vgg = 0 V ad - "
Vbs = 2.8 V) 0.04 | L] b
. L 2 8
5 u 2
< 003} 2 "
©
e 2
8 "
Q9 0.02F }
3 2 [u fresh
S ® 5 mins of stress
2 i 2 A 15 mins of stress i
S 0.01 u 4 30 mins of stress
= 2
]
000 § % ‘ ® 6 ¢ ¢ 0 0 0 0 0 o 4
_0 01 L M L M L M L M L M L M L

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Gate Voltage (V)

2.4 Process Variability

Process variations were originally considered in die-to-die variations. For nanoscale
transistors, intra die variations are posing the major design challenge as technology
node scales. The intrinsic device parameter fluctuations that result from process
uncertainties have substantially affected the device characteristics. Process vari-
ability comes from random dopant fluctuation, line edge roughness, and poly gate
granularity [13, 14]. The threshold voltage fluctuation due to random doping profile
is approximated as [15]:

Wp
2g%12 X
a%/t.doping = W;gj{/ NA(x)(l - WD) dx (21)

where ¢ is electron charge, ., is the oxide capacitance, W is the channel width, L is
the channel length, &, is the oxide permittivity, and N, is the acceptor doping. With
shrinking of gate length, the deviation of threshold voltage is expected to be larger.

A computational effective device simulator [16] is used into demonstrate random
doping fluctuation effect on the MOSFET model parameter variation. A 22 nm
LDD NMOS transistor is constructed as an example to illustrate the threshold
voltage fluctuation. From Fig. 2.7, it is seen that the acceptor dopant causes positive
Vr fluctuation with peak value of 0.0045 V located around the center of the
channel. Due to the random doping fluctuation, the standard deviation (STD) of V,
for the 22 nm MOSFET is computed to be 0.031 V or its corresponding spread
(STD/Mean) of 6.9 %.
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Fig. 2.7 Sensitivity function distribution of V7 versus acceptor (© IEEE)

CMOS technology continues device scaling for high integration. However, as
feature sizes shrink and chip designers attempt to reduce supply voltage to meet
power targets in large multi-core systems, parameter variations are becoming a
serious problem. Parameter variations can be broadly classified into device varia-
tions incurred due to imperfections in the manufacturing process and environmental
variations and on-die temperature and supply voltage fluctuations. Smaller feature
size further makes CMOS circuits more vulnerable to process, supply voltage, and
temperature (PVT) variability. Large design margin is then needed to insure circuit
robustness against reliability issues. Using PVT and long-term reliability resilience
design is becoming an essential design requirement for the future technology nodes
and may reduce overdesign, while increasing yield and circuit robustness.
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