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Abstract This paper has many, albeit mostly didactic objectives. It is an attempt
toward clarification of several concepts of continuum theory which can lead and have
led to confusion. In away the paper also creates a bridge between the lingo of the solid
mechanics and the fluid mechanics communities. More specifically, an attempt will
be made, first, to explain and to interpret the subtleties and the relations between the
so-called material and spatial description of continuum fields. Second, the concept of
time derivatives in material and spatial description will be investigated meticulously.
In particular, it will be explained why and how the so-called material and total time
derivatives differ and under which circumstances they turn out to be the same. To that
end, material and total time derivatives will be defined separately and evaluated in
context with local fields as well as during their use in integral formulations, i.e., when
applied to balance equations. As a special example the mass balance is considered
for closed as well as open bodies. In the same context the concept of a “moving
observation point” will be introduced leading to a generalization of the usual material
derivative. When the total time derivative is introduced the distinction between the
purelymathematical notion of a coordinate systemand the intrinsically physics-based
concept of a frame of reference will gain particular importance.
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1 Introduction

There are two fundamentally different approaches for describing the kinematics
of continua. One method of observing a structure’s motion is based on following
individual particles of the body as they move through space and time. It is used for
modeling solid matter with various rheological properties (elastic and nonelastic).
In the other method motion is described by focusing on a specific location of space
through which the structure moves as time passes on. It is mostly used in fluid and
gas mechanics as well as in granular media modeling. Following Malvern (1969),
we will call the first description material and the second one spatial.

In order to consider multiphase structures consisting of a solid and fluid phases
it is convenient to use the material description for the solid and a modification of
the spacial description for fluids. In this case it is very important to understand
how the concepts introduced in the different descriptions relate to each other. This
holds, in particular, for the time derivatives. The so-called total derivative in material
description and the material derivative in spatial description written in terms of a
partial derivative look very similar. Thus it is not surprising that it is a widespread
opinion that the total and the material derivatives are different names for the same
concept. But as it will be shown further down they are different concepts describing
a rate of change of a property of the material point and a rate of change of a property
at the space point. Consequently, one aim of the present paper is to give a definition
of the total derivative (as an analogue and generalization of the derivative used in the
material description), to give a definition of the material derivative (as an analogue
and generalization of the derivative used in the spatial description), to make a strict
distinction between these concepts, and to investigate the conditions for which they
coincide.

In summary, this paper is an attempt to clarify sometimes obscure and confusing
statements made in context with the material and spatial description and the associ-
ated time derivatives. In this sense it is of didactic value and we only claim to raise
awareness of the situation and to provide some comments regarding possible ways
out of die-hard conundrums.

2 Total and Material Derivatives in Material and Spatial
Descriptions—Literature Review

The main problem with the definition of a total time derivative is that the corre-
sponding operator appearing in the laws of continuum theory is not simply a purely
mathematical concept. Rather it contains an underlying, definitive physical meaning.
In order to clarify the problem we start with a purely mathematical definition. Let
g = g̃(u(t), v(t),w(t), t). The total derivative of g̃ with respect to t (the symbol of
the time variable, chosen as a reminder for later purpose) is:
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dg̃

dt
= ∂ g̃

∂u

du

dt
+ ∂ g̃

∂v

dv

dt
+ ∂ g̃

∂w

dw

dt
+ ∂ g̃

∂t
. (1)

Now let the arguments of the function depend on two independent variables, say u =
u∗(s, t), v = v∗(s, t), w = w∗(s, t). We can form partial derivatives of g = g∗(s, t)
with respect to one of its arguments with the other held constant. Thus in the case of
a function of several independent variables (here s and t) every derivative is a partial
one. The concept of a total derivative of a function of several independent variables
does not exist in mathematics.

Inmechanics of continua all quantities characterizing a stress–strain state are func-
tions of several independent variables—three spatial coordinates and time. There-
fore, introducing the concept of a total derivative with respect to time in a strictly
mathematical sense is impossible. An additional physics-based idea postulating what
spatial coordinates should be fixed and how to identify them is needed. We will get
back to that later.

Within the framework of material description the so-called material points are
identified by their position, R, in an arbitrary chosen reference configuration. The
reference configuration is usually chosen to be fixed in the frame of reference. The
total derivative of a vector field, ψ(R, t), is then defined as a partial derivative with
respect to t with R held constant, see Dmitrienco (2009):

dψ

dt
= ∂ψ

∂t

∣
∣
∣
∣
R=const

. (2)

Note that in some cases it makes sense to exclude a rigid body motion from our
considerations (e.g., if we are only interested in the (local) deformation, i.e., the
displacement, u, of the matter of an object, it does not make sense to look at its total
motion. Hence, we “take out” the rotation when considering the deformation of a
spinning shaft, or the translative/rotative motion of a flying aircraft when bending of
its wing becomes an issue, etc.). If a coordinate system comoving with the body is
used then the reference position vector depends on time and the definition (2) has to
be modified since R = R̂(t).

In a number of books on solid mechanics and nonlinear elasticity the derivative
(2) is called material, substitutional, or individual (see, e.g., Ogden 2003; Asaro and
Lubarda 2006) and the concept of a total derivative is not introduced. In other books
the definition (2) is not given explicitly. Rather the material derivative is defined as
a rate of change of a variable, ψ , whose arguments are the current position vector of
a material particle (the so-called motion), r(R, t), and time, t . Then, by virtue of the
chain rule of calculus:

ψ̇ ≡ Dψ

Dt
= ∂ψ

∂t

∣
∣
∣
∣
r=const

+ v · ∇ψ, ∇ = ∂

∂ r
, v = ∂ r(R, t)

∂t

∣
∣
∣
∣
R=const

. (3)

In these books the definition of the total derivative is either not given at all or it is
said that the material derivative coincides with the total one (Milne-Thomson 1960;
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Lojtsanskij 1950; Durst 1992). It is interesting to note that in Petrila and Trif (2005),
p. 7, the derivative (2) is called “a local or material derivative,” while in the case of
(3) it “is designed to be the total or spatial or substantive derivative or the derivative
following the motion.” Truesdell (1972), p. 104, writes more cautiously:

The dot operator as defined by (3) is called the substantial derivative. [...] We have already
agreed to use the dot to denote the time derivative in the substantial and referential descrip-
tions, and the definition (3) has been framed so as to render the two usages consistent with
each other.

The symbol of the total derivative appears also in balance equations as a general-
ization of the theorem on differentiation of an integral with respect to a parameter, see
Truesdell (1972). Widely used in continuummechanics is a volume-related transport
theorem of the form:

d

dt

∫

V (t)
ψ dV =

∫

V (t)

(
Dψ

Dt
+ (ψ∇) · v

)

dV, (4)

which contains symbols of the material and of the total derivatives, D/Dt and d/dt ,
respectively (Adler 1992; Ogden 2003; Asaro and Lubarda 2006; Gurtin 1981). Note
that integration over the volume in (4) does not exclude a dependence of the result
of integration from a position vector, since in the case of a nonuniform distribution
of the field ψ across the medium varying from subvolume to subvolume, the result
depends on the position of a subvolume within the medium. Thus the left part of (4)
can be the total derivative of a function of several independent variables, namely time
and the location of the subvolume. This might be one reason why Truesdell (1972),
p. 105, says:

More generally, if Ψ denotes a tensor field of any order,

d

dt

∫

P
Ψ dM = d

dt

∫

X (P,t)
ρΨ dV =

∫

X (P,t)
ρΨ̇ dV (5)

and Ψ̇ is to be calculated by an appropriate rule of the type (3). (The central expression,
which involves an undefined operation d/dt , is to be regarded only as a suggestive way of
writing the left-hand expression.) The commutation formula (5) is used so often in continuum
mechanics that it is taken for granted without special reference.

At the same time many authors point out that the transport theorem is used for
the calculation of the material derivative over a material volume, i.e., a volume that
consists of the same matter all the time. For example, we find in Eringen (1980), p.
791:

The material derivative of any field over a material volume is given by

D

Dt

∫

V (t)
ϕ dV =

∫

V (t)
(ϕ̇ + ϕ∇ · v) dV =

∫

V (t)

(
∂ϕ

∂t
+ ∇ · (vϕ)

)

dV . (6)

1Eringen’s choice of symbols has been adapted to coincide with the ones used in this article.
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The derivative ϕ̇ in (6) has the same meaning as in (5). The apparent difference
between (6) and (5) is due to the fact that the transport theorem in the form (5) is
written for specific quantities, Ψ .

Analogous formulae can be found in many other books, see, e.g., Malvern (1969),
Mase (1970), Fung (1965). However, it is not clear which velocity of what point
appears in the convective part of (3) and what r is fixed. Therefore, in that case the
operation D/Dt on the left side to the integral is also undefined.

Despite such differences, thematerial description is presented in the solids-related
literature more or less similarly. The situation is quite different with hydrodynamics
books. First of all, it should be noted that in fact the material description is also
used in many hydrodynamics books, see, e.g., Serrin (1959), Petrila and Trif (2005).
However, a consistent presentation of the alternative, so-called spatial description can
be found, for example, in Lojtsanskij (1950), Daily and Harleman (1966), Batchelor
(1970).

The spatial description is a method of observing a motion that focuses on a spe-
cific location in space throughwhich the structuremoves as time passes, the so-called
observation point. The difference between the material and the spatial descriptions is
basically as follows. Within the material description there are two configurations—
the reference and the current one—, which are determined by the position vectors R
and r(R, t), respectively. R labels the substantial point and r(R, t) is the basic func-
tional relationship through which all other kinematic characteristics are expressed.
The spatial description considers only the current configuration and the position vec-
tor r describes the position of a (fixed) point in space so that it does not depend on
time and on the evolution of matter. The primary quantity in the spatial description
is the velocity of the matter and all other quantities are expressed in terms of v(r, t).

The concept of a material derivative in hydrodynamics seems to originally stem
from Stokes (cf., Granger (1995), Sect. 1.7.3) in order to describe changes in the
properties of liquid particles during the time dt , which in the beginning of the interval
dt was at a certain point in space. In order to show how the material derivative in
spatial description is introduced we present a quote from the book of Adler (1992), p.
55, who uses δt instead dt for designation of the time increment (the equation labels
have been adjusted for convenience; note that by “element” Adler means “material
element” as he says in a here-not-quoted sentence before):

At time t , the element is located at position r , and at t + δt , it is located at r + vδt . Hence a
change in the quantity ψ for this particular element can be expressed as

ψ(r + vδt, t + δt) − ψ(r, t) =
(

∂ψ

∂t
+ v · ∇ψ

)

δt. (7)

The time derivative ofψ , following themotion of the fluid, can be symbolized by the operator
D/Dt called the material derivative:

Dψ

Dt
= ∂ψ

∂t
+ v · ∇ψ. (8)

This is the only possible way to introduce thematerial derivative within the frame-
work of a spatial description and it is presented in many hydrodynamics books, see,
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e.g., Batchelor (1970), Lamb (1975), Rouse (1959), Lojtsanskij (1950), Landau and
Lifshitz (1959), Prandtl and Tietjens (1929). It should be noted that this definition
of a material derivative cannot be regarded as a mathematical definition of the func-
tion derivative since an increment of argument vδt cannot be expressed in terms of
function arguments r and t .

Thus, the formally introduced definition of the material derivative as a derivative
of a composite function cannot be used in spatial description. Also, it is worthwhile
mentioning that in the velocity of (8) we put v(r, t), whereas in (3) it is a function
of the reference position vector, v(R, t).

Now let us consider the definition of the material derivative (2) as a derivative
following the motion of the fluid. In the spatial description a given region in space is
considered. The material element at position r at time t possesses the velocity v(r, t)
and moves to the position r + vdt . Thus in order to describe the evolution of matter
during the infinitesimal period of time dt onemay use the material description taking
r and du(x, t) = vdt as the reference position and the infinitesimal displacement
correspondingly. As a result, one may apply mathematical methods developed for
the material description to the spatial description, taking at every moment of time
the current configuration as the reference one and considering a small vicinity of this
configuration, see Ilyushin (1971). Fixing the position vector of the material particle
at some moment of time and taking it as the reference position vector contradicts the
essence of spatial description, thus the definition (2) cannot be used in it.

It should be noted that since there is only the current configuration in the spatial
description it is obvious which coordinates should be fixed. The total derivative is
defined as a partial derivative with the observation point, r , being held constant,

dψ

dt
= ∂ψ

∂t

∣
∣
∣
∣
r=const

. (9)

In addition to that the balance equations are formulated for a constant volume con-
taining the observation point. As a result a partial derivative operator appears in front
of the integral (Milne-Thomson 1960; Landau and Lifshitz 1959). The total deriva-
tive is usually not used in classical hydrodynamics at all and all equations are written
in terms of the material and partial derivatives.

However, in order to considermore complicated problems (e.g., fluid flow through
a deformable solid or porousmedia) it is convenient to use amoving observation point
fixed within the (elementary) volume jointly traversing space at a given velocity.

An expression for the material derivative in the spatial description with a moving
observationpointwas suggested inAltenbach et al. (2003), Zhilin (2012) and contains
the total time derivative:

Dψ

Dt
= dψ(r(t), t)

dt
+

(

v(r(t), t) − d r(t)
dt

)

·∇ψ(r(t), t). (10)

A similar expression can be found in the literature on porous media, e.g.,
Hassanizadeh and Gray (1980). A porous medium is viewed as a body consisting of
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two coexistent continua. The motion of the solid phase is defined by the current po-
sition vector rs(Rs, t), the motion of the solid so-to-speak. The time rate of change
with respect to the solid phase of a quantity ψ is defined as:

Dsψ

Dt
= ∂ψ(Rs, t)

∂t

∣
∣
∣
∣
Rs=const

= ∂ψ(rs, t)
∂t

∣
∣
∣
∣
rs=const

+ vs·∇ψ, (11)

where vs is the solid phase velocity. It is obvious that (11) coincides with the def-
initions of the total derivative in the material description (2), (3). The time rate of
change of the quantity ψ with respect to the fluid phase is given by

D f ψ

Dt
= ∂ψ(rs, t)

∂t

∣
∣
∣
∣
rs=const

+ v f ·∇ψ, (12)

where v f is the fluid-phase velocity field.
Subtraction of Eq. (11) from (12) yields the following relation, see Hassanizadeh

and Gray (1980):

D f ψ

Dt
= Dsψ

Dt
+ (v f − vs) · ∇ψ . (13)

By taking into account that d r(t)/dt in (10) corresponds to the velocity of the solid
phase one can see that the definitions (13) and (10) coincide.

The moving observation point is also considered in the Arbitrary Lagrangian–
Eulerian (ALE) technique. ALE is used to account for the deformation of the fluid
domain which arises from the displacement and deformation of the solid structure.
The material derivative is defined by the fundamental ALE equation (see all of the
references immediately below for details):

Dψ

Dt
= dψ

dt

∣
∣
∣
∣
R=const

+ (v − v̂) · ∇ψ, (14)

where v is the velocity of the fluid particle and v̂ is referred to indistinctly as the
“velocity of the reference point” by Dettmer and Peric (2006) or “velocity of the
moving frame” by Del Pin et al. (2007). In fact, it should be called unmistakably
“grid velocity” as in Vuong et al. (2015) and Gadala (2004), or “mesh velocity”
as in Khoei et al. (2007) or Filipovic et al. (2006). Also note that the concept of a
moving grid and of a relative speed inherent to thematerial derivative was anticipated
before ALE became a prominent concept by Müller and Muschik (1983), where v̂
was called “mapping velocity.” Moreover, d/dt corresponds to the change of the
material particle quantity, which is noted by an observer traveling with a point on
the reference frame. The definitions (10), (13), and (14) coincide.

However, in some articles, see Dang and Meschke (2014), Preisig and Zimmer-
mann (2011), Sarrate et al. (2001), the material derivative is defined by:
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Dψ

Dt
= ∂ψ

∂t
+ (

v − v̂
) · ∇ψ, (15)

where the symbol v was used for the fluid velocity and v̂ for the so-called “velocity
of the moving reference,” see Dang and Meschke (2014), or “fluid mesh velocity”
as termed by Preisig and Zimmermann (2011) or Sarrate et al. (2001). Even if we
ignore differences in the linguistic terminology, Eq. (15) coincides with (14), (10),
and (13) only if the partial derivative in (15) is defined with the reference position
vector of the observation point held constant. At the same time it is written in Surana
et al. (2014)2:

... the Eulerian description with transport

ρ

(
∂v
∂t

∣
∣
∣
∣
r=const

+ v · ∇v
)

− ∇ · σ − ρ f = 0,

is converted to ALE form by replacing velocity v (velocity at a fixed location r) in the
convective terms with convective velocity C̄ = v − v̂.

It is obvious that in this case the material derivative in Surana et al. (2014) differs
from the material derivatives defined by (14), (10), and (13). It is seen that there are
different formulae for the operator of amaterial derivative inmodern literature. Some
authors distinguish between the total and the material derivatives, but sometimes it is
used synonymously, namely as “the total time or the material derivative,” cf., Milne-
Thomson (1960), Lojtsanskij (1950). Sometimes an operator of material derivative
is defined through another operator of material derivative (equations analogously
to (13)). It conflicts with the classical interpretation of the material derivative as a
derivative following the motion of the specific particle.

In many papers the material derivative is written in a form very similar to the one
adopted from the classical textbooks. However, it is not specified what is meant by
the partial time derivative. As a result, a comparison of material derivatives used by
different authors in order to ensure that they coincide or differ is extremely difficult in
some cases. Furthermore, definitions of the used notations are not always provided,
and only formulae for calculations are listed.

In summary of our review we have to conclude that we are facing, first, the need
for a clear distinction between the concept of a material and a spatial description of
fields. Second, a distinction of various time derivatives of these fields is required,
namely between one unfortunately called material time derivative, despite the fact
that it exists in material and in spatial description, as well as the other known as
total time derivative. Sometimes both coincide in meaning and sometimes they do
not. Following this remark, it is the goal of the present paper to give, first, clear
mathematical definitions of the material and of the total time derivatives, which can
be used for a moving observation point and for a nonconstant reference vector, and,
second, to clarify the physical meaning of these operators.

2This is not a verbal quote. For the convenience of the reader it has been adjusted to the symbols
used in this paper.
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3 Material Description

3.1 Kinematics of Continua

In material description quantities related to material particles are functions of the
reference position, R, and of time, t , which we will refer to as “referential variables.”
Any such function f = f∗(R, t)maybe replaced by a function of the spatial variables
f̃ (r, t), which has the same value, f , at the corresponding position vector: f =
f∗(R, t) = f̃ (r∗(R, t), t).
Suppose that the reference position vector does not depend on time. Then the rate

of change of a quantity relevant for characterization of the material particle is

∂ f∗
∂t

= lim
Δt→0

f∗(R, t + Δt) − f∗(R, t)

Δt
, (16)

if it is a function of the referential variables. Otherwise

dr f̃

dt
= lim

Δt→0

f̃ (r∗(R, t + Δt), t + Δt) − f̃ (r∗(R, t), t)

Δt

= lim
Δt→0

f̃ (r∗(R, t + Δt), t + Δt) − f̃ (r∗(R, t + Δt), t)

Δt
(17)

+ lim
Δt→0

f̃ (r∗(R, t + Δt), t) − f̃ (r∗(R, t), t)

Δt

= ∂ f̃ (r, t)
∂t

+ ∂ r∗(R, t)

∂t
· ∇ f̃ , ∇ ≡ ∂

∂ r
.

The rate of change of a physical quantity should not depend on the choice of
variables. Thus

∂ f∗(R, t)

∂t
= dr f̃ (r, t)

dt
,

dr
dt

≡ ∂

∂t

∣
∣
∣
∣
r=const

+ ∂ r∗(R, t)

∂t
· ∇. (18)

Equation (18)1 is consistent with the chain rule of calculus. The operator dr/dt
defines the total derivative under the condition that the reference position vector is a
constant.

Now let R = R∗0(R0, t), where R0 does not depend on time. The velocity vector
is thus defined by

v = lim
Δt→0

r∗(R∗0(R0, t + Δt), t + Δt) − r∗(R∗0(R0, t), t)

Δt

= ∂ r∗(R, t)

∂t
+ ∂R

∂t
· ◦∇r ≡ d◦r

dt
, (19)

◦∇ ≡ ∂

∂R
,

d◦

dt
≡ ∂

∂t

∣
∣
∣
∣
R=const

+ ∂R
∂t

· ◦∇
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The operator d◦/dt is the total time derivative in the reference configuration. Then
the rate of change of the quantity in the current configuration can be found by the
chain rule:

dr f̃
dt

≡ ∂ f̃ (r, t)
∂t

∣
∣
∣
∣
∣
r=const

+ d◦r
dt

· ∇ f̃ . (20)

The operator of the total time derivative in the current configuration, dr/dt , is a
generalization of (18)2. After taking (19) into account, the operators (20) and (18)2
can be expressed in the same manner:

dr
dt

≡ ∂

∂t

∣
∣
∣
∣
r=const

+ v ·∇. (21)

According to Eq. (19) the velocity emerges as a function of the reference position
vector v = v∗(R, t). However, we may eliminate R by assuming that there exists
an inverse of the single-valued function r = r∗(R, t), so that it is possible to obtain
the velocity as a function of spatial coordinates v = ṽ(r, t). In the first case the
acceleration is

a∗(R, t) = d◦v∗(R, t)

dt
= lim

Δt→0

v∗(R∗(R̃, t + Δt), t + Δt) − v∗(R∗(R̃, t), t)

Δt
,

(22)

whilst in the second

ã = dr ṽ
dt

= lim
Δt→0

ṽ(r∗(R∗(R̃, t + Δt), t + Δt), t + Δt) − ṽ(r∗(R(R̃, t), t), t)

Δt
.

(23)

With the rules of differentiation for a composite function it is easy to show that:

d◦v∗(R, t)

dt
= dr ṽ(r, t)

dt
. (24)

This is valid for every physical quantity.
Thus, within the framework of a material description, the rate of change of a

physical quantity of a material particle is determined by the total time derivative.

3.2 Equations of Balance

The equations of balance of continuum thermomechanics are mathematical state-
ments of the conservation laws for mass, linear and angular momentum, and energy.
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We take the mass balance as an example. Consider a material body occupying the
region V0 in the reference configuration. If a continuous medium of density ρ0(R)

fills the region, the total mass in V0 is:

m0(R∗) =
∫

V0

ρ0(R) dV0, (25)

where R∗ is a position vector of a point within the region (e.g., the center of mass).
Note that integration over the region does not imply independence of the result
from a position vector in a case of inhomogeneous medium. This calls for further
explanation: V0 does not necessarily encompass all the mass there. Rather it may
refer to a subvolume, e.g., one layer of a sandwich structure. And it is the position
of this substructure we wish to identify by the label R∗.

In the current configuration the body occupies the region V (t) and its mass is:

m̃(r∗, t) =
∫

V (t)
ρ̃(r, t) dV, where r∗ = r(R∗, t). (26)

By taking into account the well-known expressions:

dV

dV0
= J∗(R, t), J∗(R, t) = Det

(
∂ r∗(R, t)

∂R

)

, (27)

we may express the volume integral in the reference configuration:

m̃(r∗, t) = m∗(r∗, t) =
∫

V0

ρ∗(R, t) J∗(R, t) dV0. (28)

The mass of the body is unchanged during the motion and therefore:

d∗
dt

∫

V (t)
ρ̃(r, t) dV = 0 ⇔ d◦∗

dt

∫

V0

ρ∗(R, t) J∗(R, t) dV0 = 0, (29)

d∗
dt

≡ ∂

∂t

∣
∣
∣
∣
r∗=const

+ d◦∗ r∗

dt
· ∇∗,

d◦∗
dt

≡ ∂

∂t

∣
∣
∣
∣
R∗=const

+ ∂R∗

∂t
· ◦∇∗,

∇∗ = ∂

∂ r∗ ,
◦∇∗ = ∂

∂R∗ .

Note that in (29)1 the operators of differentiation and integration are not inter-
changeable. If R = const then d/dt = ∂/∂t and one may put differentiation in (29)2
under the integral sign. Otherwise we have the following chain of equations:
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d◦∗
dt

∫

V0

ρ∗(R, t) J∗(R, t) dV0 = ∂

∂t

∫

V0

ρ∗0(R0, t) J∗0(R0, t) dV0

=
∫

V0

∂

∂t

[

ρ∗0(R0, t) J∗0(R0, t)
]

dV0

=
∫

V0

d◦

dt

[

ρ∗(R, t) J∗(R, t)
]

dV0. (30)

After taking (30) into account and

J∗(R, t) = J̃ (r, t) = Det

(

∂ R̃(r, t)
∂ r

)−1

, ∇ · ṽ(r, t) = J̃−1(r, t)
dr J̃ (r, t)

dt
,

(31)

we can carry out the differentiation in (29)1:

d∗
dt

∫

V (t)
ρ̃(r, t) dV

= d◦∗
dt

∫

V0

ρ∗(R, t)J∗(R, t) dV0

=
∫

V0

d◦

dt

[

ρ∗(R, t)J∗(R, t)
]

dV0

=
∫

V (t)

dr
dt

[

ρ̃(r, t) J̃ (r, t)
]

J̃−1(r, t) dV

=
∫

V (t)

[

dr ρ̃(r, t)
dt

+ ρ̃(r, t) J̃−1(r, t)
dr J̃ (r, t)

dt

]

dV

=
∫

V (t)

[
dr ρ̃(r, t)

dt
+ ρ̃(r, t)∇ · ṽ(r, t)

]

dV . (32)

By substituting this result into (29) we obtain the local conservation of mass:

dr ρ̃(r, t)
dt

+ ρ̃(r, t)∇ · ṽ(r, t) = 0. (33)

Equation (33) often appears in the literature as:

∂ρ̃(r, t)
∂t

+ ∇ · [

ρ̃(r, t)ṽ(r, t)
] = 0. (34)

This form is obtained after expanding the total derivative in (33).
In contrast to a partial derivative, the total time derivative is an objective operator,

in the sense that it does not depend on the choice of coordinate system. That is why
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it appears in balance equations in a natural way. A partial derivative can appear in
balance equations only after substitution (21).

We will now endeavor to define the total derivative even more stringently.

4 Definition of Total Derivative

Keeping mathematical rigor leads to many different notions of the same physical
quality and symbols of the total derivative. In order to facilitate the notation without
risking confusion, we shall introduce the general definition of the total time derivative
below. However, each formula will be accompanied by verbal remarks, which seem
in order, because physics is involved that goes way beyond mathematics. Let us
proceed in this spirit.

All quantities in continuum mechanics are functions of spatial coordinates and
time. The spatial coordinates may be constants or they may depend upon time. Note
that the latter does not imply that we have a function with an argument (i.e., time).
Themoving coordinates have to depend on other variables that allow us to distinguish
different substantial points. Therefore, in order to define a “total time derivative” we
have to postulate which spatial coordinates are held constant. In other words, we
have to choose a coordinate system with a distinctive feature. The frame of reference
could be the one. At this point it is appropriate to introduce the notion “frame of
reference” formally.

Imagine in a point O three rigidly connected, perpendicular pointers (“arrows”),
e1, e2, and e3. The set {O, e1, e2, e3} is called a “frame.”

Definition 1 The body of reference is defined by a frame to which a set of points (in
space) have been added, whereby a rigid body motion of all the points together with
the frame is allowed. The position of the points are labeled relatively to the frame by
establishing the reference coordinate system x1, x2, x3 with origin O:

r∗ = x1e1 + x2e2 + x3e3, −∞ < (x1, x2, x3) < +∞. (35)

The frame and the reference coordinate system determine the reference body.
They are “immutable.” This is supposed to mean that once introduced they cannot
be changed or this would lead to a different frame of reference (whose definition
will come immediately). In order to describe quantitative characteristics of motion
we must be able to measure distance and time. Hence a “clock” is needed as well:

Definition 2 The reference body with a “clock” is called the “Frame of Reference”
(FoR).

Note that a frame of reference is not just a mathematical construct. Physics is in-
volved due to the requirement ofmeasuring distances in three independent directions
and corresponding lengths as well as time.
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It is impossible to say anything about the motion of the reference body, because it
stands as such alone. However, it is possible to observe and quantify motions of other
bodies with respect to the reference body. All physical qualities describing motion,
such as velocity, for example, are measured with respect to the frame of reference
and do not have any meaning without the reference frame.

In addition to the reference coordinate system one is free to choose any
mathematical coordinate system in which the equations are specified. However, the
reference coordinate system is a distinctive one since it determines the frame of
reference. As an example consider a first coordinate transformation within an FoR,
x ′
i = x̂ ′

i (x j ), i, j ∈ (1, 2, 3). On top of that we now impose a second coordinate
transformation x ′′

i = x̃ ′′
i (x

′
j ) = x̃ ′′

i (x̂
′
j (xk)) ≡ x̂ ′′

i (x j ), i, j, k ∈ (1, 2, 3). Note that
if this operation is applied in context with the spatial dependence of a physical field
quantity this would be a purely mathematical operation leading to no change of the
meaning or value of that physical quantity. However, if we perform a change of the
FoR this could result in a completely different story.

In this context it should be noted that many people do not distinguish between the
concepts of frame of reference and coordinate system. Indeed, we read in Cornille
(1993), p. 149:

... a distinction between mathematical sets of coordinates and physical frames of reference
must be made. The ignorance of such distinction is the source of much confusion ...

or in Nerlich (1994), pp. 64–65:

... the idea of a reference frame is really quite different from that of a coordinate system.
Frames differ just when they define different spaces (sets of rest points) or times (sets of
simultaneous events). So the ideas of a space, a time, of rest and simultaneity, go inextricably
together with that of frame. However, a mere shift of origin, or a purely spatial rotation of
space coordinates results in a new coordinate system. So frames correspond at best to classes
of coordinate systems. ...

In order to emphasize it once more: A change of the coordinate system is a purely
mathematical operation, where an observer (i.e., the creator and user of the FoR)
“sensing” vector quality is not needed. That is why in this case there is no difference
how a vector is considered, as a directed segment or as a set of three components.
Evenmore, we can completely exclude base vectors from our considerations and deal
only with vector components. We use the notation employed with the coordinate
transforms from above in an example. Suppose the coordinates of a vector in the
reference coordinate system of the FoR are given by pi . We would then obtain the

corresponding coordinates w.r.t. the two other coordinate systems by p′
j = ∂ x̂ ′

j

∂xi
pi

and p′′
k = ∂ x̃ ′′

k
∂x ′

j
p′
j = ∂ x̃ ′′

k
∂x ′

j

∂ x̂ ′
j

∂xi
pi = ∂ x̂ ′′

k
∂xi

pi .

Let f (x1, x2, x3, t) be a function of the reference coordinates and of time. The
total time derivative of f is:

d f (x1, x2, x3, t)

dt
= lim

Δt→0

f (x1, x2, x3, t + Δt) − f (x1, x2, x3, t)

Δt
, (36)
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under the condition that the reference coordinates x1, x2, x3 are held constant and
there is an increment in the function only because of the increment in time.

Now let and g(x(x1, x2, x3, t), y(x1, x2, x3, t), z(x1, x2, x3, t), t) be a com-
posite function of several variables, namely x , y, and z, which are functions like f .
Then the total time derivative of g is:

dg

dt
= ∂g

∂x

dx

dt
+ ∂g

∂y

dy

dt
+ ∂g

∂z

dz

dt
+ ∂g

∂t
. (37)

Hence, we arrive at:

Definition 3 The total time derivative is the partial derivative with the reference
coordinates held constant.

This definition allows us to drop the function arguments and keep the notation
relative to different arguments. In other words we can simply write:

v = d r
dt

, a = dv
dt

,
dρ

dt
+ ρ∇ · v = 0.

Note that in the case of partial derivatives the arguments of the function have to
be present. Indeed:

a(R, t) = ∂v∗(R, t)

∂t
, a(r, t) 
= ∂ ṽ(r, t)

∂t
,

∂ρ̃(r, t)
∂t

+ ∇ · [

ρ̃(r, t)ṽ(r, t)
] = 0,

∂ρ∗(R, t)

∂t
+ ∇ · [

ρ∗(R, t)v∗(R, t)
] 
= 0.

As we shall learn in the next chapter the distinction between various functions,
identified by a hat and a tilde, will become obsolete if we turn to the spatial descrip-
tion,where the concepts of a reference and of a current configuration becomeobsolete
and the motion and state of matter is described with respect to an independent grid
in space.

5 Spatial Description

5.1 Body of General Type

The fundamental laws of mechanics are formulated for a body. Within the material
description the body is amaterial volume. In the spatial description it is not so obvious
which object should be considered as the body. In an attempt to make things clearer
we start with some definitions.

Definition 4 Consider a closed surface undergoing deformation and motion. A set
of material particles located at the present moment within the surface is called the
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“body.” A set of material particles located outside the surface will be referred to as
the “exterior of the body.”3

Definition 5 The body is said to be closed if it exchanges no matter with its exterior,
otherwise it is said to be open.

The material volume that we considered above is an example of a closed body.
This sounds like a tautology at first glance, but, as it wasmentioned before, the notion
“material volume” is frequently claimed by the solids community. However, we also
want to think in terms of a fixed ensemble of gas or fluid by the term “closed system.”
In the spatial description we deal with an open body as a set of particles within a
certain volume in space. The specifics of how to formulate balance equations for an
open body will now be demonstrated for the mass balance.

5.2 Balance Equations

Consider a closed, undeformed surface S whose position is fixed in space and which
encloses a volume V . If ρ(r, t) is the density field at time t , the mass of matter
enclosed by the surface at any moment is:

m(r∗, t) =
∫

V
ρ(r, t) dV, (38)

where r∗ is the position vector of a fixed point within the surface. Note that this
point cannot be considered as the center of mass since the volume is undeformed
and fixed in space while the density distribution within the volume changes during
the evolution of the medium.

The rate of change of the total mass in the volume, after differentiation under the
integral sign (remembering that the volume is fixed in space), is:

∂m(r∗, t)
∂t

= lim
Δt→0

m(r∗, t + Δt) − m(r∗, t)
Δt

=
∫

V

∂ρ(r, t)
∂t

dV . (39)

In the absence of a source of mass (an expression frequently used in fluid
mechanics-oriented textbooks, cf., Batchelor (1970) or Pasipoularides (2009), but
sometimes also in the more solid mechanics-based literature Malvern (1969), p.
451) inside V the mass change is equal to the mass flux through the surface:

∫

V

∂ρ(r, t)
∂t

dV = −
∫

S
n(r) · v(r, t)ρ(r, t) dS = −

∫

V
∇ · (v(r, t)ρ(r, t)) dV,

(40)

3For simplicity it is assumed that there is no particle on the surface.
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where n(r) is the unit outward normal to S. The last line follows from the divergence
theorem. Since the relation (40) is valid for arbitrary choices of V we have a local
form of the mass balance:

∂ρ(r, t)
∂t

+ ∇ · [

ρ(r, t)v(r, t)
] = 0. (41)

A different form of Eq. (41) is obtained by expanding the divergence term:

δrρ(r, t)
δt

+ ρ(r, t)∇ · v(r, t) = 0. (42)

Here the following notation is introduced:4

δrρ(r, t)
δt

≡ ∂ρ(r, t)
∂t

+ v(r, t) · ∇ρ(r, t), (43)

The operator

δr

δt
≡ ∂

∂t

∣
∣
∣
∣
r=const

+ v · ∇ (44)

is the operator of the material derivative in spatial description. The material deriv-
ative in form (44) is well known in hydrodynamics.

As long as the position vector r does not depend on time the total time derivative
coincides with the partial derivative and Eq. (44) can be rewritten as:

δr

δt
= d

dt
+ v · ∇. (45)

This form is more convenient for comparison with the material derivative for the
moving observation point that will be considered later.

5.3 Material Derivative

Consider a material point located at the observation point of position r at time t . In
the small intervalΔt it moves to the position r+Δs. Thus, the particle displacement
is determined as Δs = v(r, t)Δt . In order to determine the change of a property
f (r, t) relevant to the given material point one has to find the material derivative.

Definition 6 The material derivative of f (r, t) is:

4We will use symbol δ for the material derivative since the notation D introduced in Sect. 2 is often
associated with the material description.
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δr f

δt
= lim

Δt→0

f (r + Δs, t + Δt) − f (r, t)
Δt

. (46)

The numerator on the right side of (46) describes the change of the property of
the given material point in time Δt . Thus, the material derivative determines a rate
of change of the property of the material point located at the observation point at
time t .

We now show that the formulae (45), (44) are consistent with the definition of the
material derivative (46). Indeed, the function f (r + Δs, t + Δt) can be written as

f (r + Δs, t + Δt) = f (r, t + Δt) + Δs ·∇ f (r, t + Δt), (47)

and then it follows from (46):

δr f

δt
= lim

Δt→0

f (r, t + Δt) − f (r, t)
Δt

+ lim
Δt→0

v(r, t) · ∇ f (r, t + Δt)

= d f (r, t)
dt

+ v(r, t) · ∇ f (r, t). (48)

It should be noted that even though the definition (46) looks like the definitions of
the total and partial derivatives, there is a significant difference between them. The
material derivative (46) is not a derivative of a function in the mathematical sense.
Indeed, the displacement Δs = v(r, t)Δt on the right side of Eq. (46) cannot be
expressed in terms of function arguments. This is due to a peculiarity of the spatial
description in which the position vector r is unrelated to the evolution of matter and

the velocity v(r, t) is an independent characteristic. Since
d r
dt

= 0 and ∇r = I (I

is the unit tensor), the equation relating the position vector and the velocity,

v(r, t) ≡ δr r
δt

= d r
dt

+ v(r, t) · ∇r (49)

turns into an identity.
Thus, the velocity v(r, t) is the primary quantity in the spatial description and all

other quantities are expressed in terms of v(r, t). For example, the acceleration of a
material particle a(r, t) is determined as the material derivative of the velocity:

a(r, t) ≡ δrv(r, t)
δt

= dv(r, t)
dt

+ v(r, t) · ∇v(r, t). (50)

Note that the first term on the right side of (50) is the local rate of velocity change
due to temporal changes at the observation point. It is not the acceleration of the
material point at position r at time t , because the material point is located at that
position only instantaneously.

The spatial description is usedmostly in fluid and gas dynamicswhere the velocity,
density, and the pressure are the main unknowns. Due to the complex motion of fluid
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and gas particles a monitoring of their motion, i.e., of their displacements is hardly
feasible. As a result, the displacement vector is usually not considered in classical
hydrodynamics. However, from a theoretical point of view, the introduction of this
concept is an interesting task. There are different approaches to a formal introduction
of the displacement vector. But all of them result in the following differential relation
between the velocity v(r, t) and the displacement vector u(r, t):

δru(r, t)
δt

= v(r, t). (51)

Note that in spatial description this relation is used for determination of the dis-
placement vector provided v is known. Then one can introduce the concept of the
reference position vector in the same manner as in the case of the material descrip-
tion R(r, t) = r − u(r, t). In contrast to the material description, where the current
position vector, r , is a function of the reference position vector, R, and time, t , the
reference position vector, R, within the spatial description is a function of the cur-
rent position vector, r , and time, t . This means that we have a different reference
configuration for every moment of time. Since

δru(r, t)
δt

= δr (R(r, t) + r)
δt

= δr R(r, t)
δt

+ v(r, t) (52)

it follows from (51) that

δr R(r, t)
δt

= dR
dt

+ v · ∇R = 0. (53)

This differential equation determines the relation between the velocity of thematerial
point, v, and its reference position, R.

5.4 Moving Observation Point

Now consider the closed surface S defined as the boundary of a volume that is
no longer fixed in space but moves with a known velocity as a rigid body. The
motion of points within the volume is expressed by the field of the position vector
r(x1, x2, x3, t), where x1, x2, x3 is the reference coordinate system. The total mass
in the volume is determined by Eq. (38). The vector r∗(t) is the position vector of
a point fixed with respect to the volume but it moves with respect to the reference
coordinate system. The rate of change of the total mass in the volume is the total
time derivative of the mass:

dm(r∗(t), t)
dt

= ∂m(r∗, t)
∂t

∣
∣
∣
∣
r∗ = const

+ d r∗

dt
· ∇∗m(r∗, t), ∇∗ = ∂

∂ r∗ . (54)
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To clarify the meaning of Eq. (54) we note two special cases. The first of these
concerns a volume fixed in space. Then r∗ does not depend on time and the rate of
change of the total mass is characterized only by the partial derivative. The second
special case is relevant when the mass density is inhomogeneously distributed over
space and this distribution does not change with time. In this case the first term on
the right side of (54) is equal to zero and the change in mass is due to transport of
the volume to a different position.

In order to pull the total derivative under the integral sign in (38) a change of
variables is required:

r = r(r̂, t), ρ(r, t) = ρ̂(r̂, t), r∗ = r∗(r̂∗
, t), m(r∗, t) = m̂(r̂∗

, t), (55)

where r̂ and r̂∗ are fixed in the reference system.
By doing so we can make the following transformations:

dm(r∗, t)
dt

= ∂m̂(r̂∗
, t)

∂t
= ∂

∂t

∫

V
ρ̂(r̂, t) dV =

∫

V

∂ρ̂(r̂, t)
∂t

dV =
∫

V

dρ(r, t)
dt

dV,

(56)

where use has been made of the fact that the volume V is independent of time. Thus,
in the case of a moving undeformed volume we obtain

d

dt

∫

V
ρ(r, t) dV =

∫

V

dρ(r, t)
dt

dV . (57)

Here the total derivative of the mass density is:

dρ(r, t)
dt

= lim
Δt→0

ρ(r(t + Δt), t + Δt) − ρ(r(t), t)
Δt

= ∂ρ(r, t)
∂t

+ d r
dt

·∇ρ(r, t).

(58)

Equation (58) characterizes the rate of change of the mass density at the observation

point that moves with velocity
d r
dt

.

It should be emphasized that the meaning of the total derivative is the same in both
descriptions. The total derivative determines the rate of change of a property related
to the matter at the observation point. Within the material description the motion of
the observation point coincides with the motion of the material point. This is why,
in this particular case, the results of calculation of the material and total derivatives
coincide.

The change of mass in the volume is equal to the mass flux through its surface.
The rate of mass flow is determined by ρ(r, t) and by the relative velocity of the
material points and the surface. Thus the mass balance reads:
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d

dt

∫

V
ρ(r, t) dV = −

∫

S

[

n(r) ·
(

v(r, t) − d r
dt

)]

ρ(r, t) dS. (59)

After transforming the integral on the right side by means of the divergence theorem
and using (57), we arrive at the local mass balance:

dρ(r, t)
dt

+ ∇·
[

ρ(r, t)
(

v(r, t) − d r
dt

)]

= 0. (60)

By taking into the account the following relations:

∇· d r
dt

= ∇· ∂ r
∂t

= ∂(∇· r)
∂t

= 0, (61)

Equation (60) is transformed as follows:

dρ(r, t)
dt

+
(

v(r, t) − d r
dt

)

· ∇ρ(r, t) + ρ(r, t)∇· v(r, t) = 0. (62)

Upon introducing the notation

δρ(r, t)
δt

= dρ(r, t)
dt

+
(

v(r, t) − d r
dt

)

· ∇ρ(r, t) (63)

the mass balance becomes:

δρ(r, t)
δt

+ ρ(r, t)∇· v(r, t) = 0. (64)

In order to obtain (64) we assume that the volume is not deformed (because
of Eq. (57), which hold for an undeformed volume). Rejection of the assumption
complicates the derivations but the final Eqs. (62)–(64) remain unchanged.

The operator

δ

δt
= d

dt
+

(

v − d r
dt

)

·∇ (65)

is a generalization of thematerial-derivative operator (45) for themoving observation
point.

Definition 7 If the motion of the observation point r(t) is known then the material
derivative of a material point property f (r, t) is:

δ f

δt
= lim

Δt→0

f (r(t + Δt) + Δs, t + Δt) − f (r, t)
Δt

, Δs =
(

v − d r
dt

)

Δt,

(66)
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whereΔs is the displacement with respect to the observation point of a material point
that was in the observation point at time t .

The above definition has the same physical meaning as (46). The material deriv-
ative characterizes the rate of change a property of the material point that was in the
observation point at time t .

It can be shown that Eq. (65) is in agreement with this definition. Since

f (r(t + Δt) + Δs, t + Δt) = f (r(t + Δt), t + Δt) + Δs·∇ f (r(t + Δt), t + Δt),
(67)

Equation (66) yields:

δ f

δt
= d f (r, t)

dt
+

(

v(r, t) − d r
dt

)

·∇ f (r, t). (68)

By taking into account

d

dt
= ∂

∂t

∣
∣
∣
∣
r=const

+ d r
dt

· ∇, (69)

we rewrite (65) in the form:

δ

δt
= ∂

∂t

∣
∣
∣
∣
r=const

+ v ·∇. (70)

It is easy to see that the expression for the material derivative (70) coincides
with the expression for the material derivative with the fixed observation point (44).
However, it is impossible to say from these expressions as to whether the observation
point is fixed or not. Furthermore, the expression (70) looks similar to the total
derivative in the current configuration within the material description (21). Such
a coincidence is confusing and obscures the sense and meaning of the total and
material derivatives. But from the expressions (65) and (69) the difference between
the derivatives is obvious. The material derivative determines a rate of change of
a property of the material point located at the observation point at time t , the total
derivative determines a rate of change of the property at the observation point. It is
true both in the spatial and the material descriptions. Within the material description
the observation point is the material point, thus:

v = d r
dt

⇒ δ

δt
= d

dt
, (71)

and the material derivative coincides with the total derivative. Only in this particular
case the statement “the total derivative, it is also thematerial derivative” can bemade.

In general, the observation point velocity
d r
dt

in Eq. (69) does not relate to a material
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point. If the observation point is fixed or moves independently of the motion of the
medium, the total and material derivatives have different meanings and different
values. If in a particular case their values coincide it does not mean that the physical
meaning of a derivative changes. That is why the difference between the concepts
of the total and material derivatives is important. This is particularly relevant when
modeling amulticomponent medium, where all components have different velocities
with respect to the common observation point.

In conclusion of this section note that the gradient operators have different prop-
erties in the material and spatial descriptions. This becomes important if one wants
to investigate gradients of displacements, i.e., strains and their time derivatives, i.e.,

strain rates. Within the material description there are two gradient operators,
◦∇ in

the reference configuration, and ∇ in the current configuration. It is easy to show
that:

◦∇ d

dt
= d

dt

◦∇, ∇ d

dt

= d

dt
∇. (72)

The spatial description deals with the gradient in the current configuration only. In
the case of the fixed observation point we have

∇ d

dt
= d

dt
∇, ∇ δr

δt

= δr

δt
∇. (73)

Nevertheless, for amoving observation point the gradient operator is not interchange-
able neither with the material nor with the total derivative.

6 Outlook and Conclusions

In Chap.2 we started by presenting a rather detailed literature review of the various
notions of timederivatives for thematerial and spatial description of continuumfields,
which illustrated the confusing, almost desolate state of the subject. This made the
need for a rigorous clarification apparent.

For this purpose the concept of material description was carefully analyzed in
Chap.3. The so-called total time derivative was introduced and analyzed for the
reference and for the current configuration. Within the material description it may be
interpreted as the rate of change of physical field quantities characterizing a material
particle. The total time derivative was then examined in context with global balance
equations, in particular, the mass balance. The property of the total time derivative
being an objective operator independent of the choice of coordinate system was
emphasized.

The latter property gave rise for a precise definition and further investigations of
the total time derivative in combination with the concepts of Frames of Reference
(FoR) and observers in Chap.4. To this end an FoR was formally defined. The
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difference between an FoR, being a physics-based concept, and coordinates and
transformations thereof, being purely mathematical operations, was pointed out.

Chapter5 was dedicated to the description of continuum fields in spatial descrip-
tion. Here the considered matter is not necessarily a material volume any more. In
order to point out the issue of a possible exchange of matter the notion of a body was
introduced. The formulation of balance equations, specifically of the mass balance,
was investigated and the operator of a material time derivative in spatial description
for a nonmoving position vector, i.e., observation point was introduced. Moreover,
an attempt was made to clarify the notion of displacement in spatial description.
This culminated in a differential equation between the velocity of a material point
and its reference configuration which, under these circumstances, must be viewed as
continuously varying. The end of this chapter was devoted to the generalization of
the material time derivative for a moving point of observation. It was shown that the
material derivative characterizes the rate of change a property of the material point
that was in the observation point at the certain moment of time, while the total deriv-
ative is the rate of change of property in an observation point. If this point coincides
with a material particle (the material description) then (and only then) it is the rate
of change of a quantity of the material point. In general, we may conclude that if the
observation point is fixed or moves independently of the motion of the medium, the
total and material derivatives have different meanings and different values.

Moreover, similarities regarding the mathematical form of the material derivative
in spatial description with the total derivative in the current configuration within the
material description are nothing else but amis faux.

Finally, in context with the mathematical description and the physical interpreta-
tion of time derivatives it became expedient to point out the difference between the
mathematical concept of a coordinate system representation and the physics-based
notion of an FoR. However, the question regarding the indifference of time deriva-
tives w.r.t. changes of an FoR remains an open issue. In particular, an examination
of the objectivity of time derivatives in context with the principle of material frame
indifference will be presented in future work.
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