
Chapter 2
Methods: Ab Initio Downfolding
and Model-Calculation Techniques

2.1 Multi-energy-scale Ab Initio Scheme for Correlated
Electrons (MACE)

2.1.1 General Framework

In principle, all the low-energy phenomena such as superconductivity andmagnetism
arise from the following global energy scale Hamiltonian:
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where ri andRI denote the position of the ith electron and Ith nucleus with the charge
−e and ZIe, respectively. m andMI are the mass of the electron and the Ith nucleus,
respectively. � is the Planck constant. Therefore, we have only to analyze the Hamil-
tonian to understand the physical properties of materials. However, unfortunately,
none of the existing analytic and numerical methods can solve it exactly, except the
case where the number of degrees of freedom is very small. Even the electronic
Hamiltonian derived by applying the Born-Oppenheimer approximation [1] to the
Hamiltonian in Eq. (2.1)
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can not be solved exactly, if the number of electrons exceeds ∼10.
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Given the situation, we have to resort to some reliable approximation. The den-
sity functional theory (DFT) [2, 3] gives a very good approximation to the elec-
tronic Hamiltonian [Eq. (2.2)] in the global energy scale. It successfully reproduces
the material dependence of global electronic structure reflecting e.g., the chemical
composition and the atomic positions. However, the DFT fails in describing strong
correlation effects such as the Mott transition [4] and thus it has a severe limitation
in understanding the properties of strongly correlated materials. On the other hand,
model-calculation techniques developed to analyze low-energy models are good at
treating the electron correlations, while it is difficult for them to take into account
the material dependence since the parameters in the model are usually determined
by hand.

The above consideration leads to an idea of combining the DFT and the model
calculations to study strongly correlated materials [5–7]. It can be justified by the
energy hierarchy in the electronic structure [7]: Under the strong electronic corre-
lation, the low-energy bands near the Fermi level EF , which we call target bands,
may be reconstructed intensively, while the structure of the high-energy bands will
not change drastically. Furthermore, at a temperature where low-energy phenomena
(e.g., superconductivity) emerge, the high-energy states are nearly “frozen”, i.e., they
are nearly totally occupied or empty. Then, nearly all the excitation processes occur
in t-subspace, the subspace which the target bands span (For later use, we define
r-subspace as the rest of the Hilbert space). Therefore, the physical properties are
determined by this low-energy region.

This hierarchical structure allows us to construct the following three-stage
scheme [7], which we will refer to as the multi-energy-scale ab initio scheme for
correlated electrons (MACE):

1. Obtain the global energy structure by the DFT and define the low-energy sub-
space.

2. Trace out the high-energy degrees of freedom and derive low-energy effective
Hamiltonian (downfolding).

3. Solve the derived Hamiltonian accurately by the model-calculation method.

2.1.2 Low-Energy Effective Hamiltonian

Here, we derive the form of the low-energy Hamiltonian starting from the global
energy scale Hamiltonian. We consider the following type of the global energy scale
Hamiltonian

Ĥ =
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where ĉ† and ĉ (b̂† and b̂) are the creation and the annihilation operators for electrons
(phonons), respectively. The Hamiltonian is composed of the electron kinetic energy
(first term), the Coulomb interaction (second term), the electron-phonon interaction
(third term), and the phonon one-body part (fourth term). This Hamiltonian is derived
from Eq. (2.1) by quantizing the nuclei motion as the phonon within the Born-
Oppenheimer approximation [1] and by considering up to the linear coupling between
electrons and phonons. The partition function Z in the coherent state path-integral
formulation [8] is written as

Z =
∫

Db∗DbDc∗Dc e−S[b∗,b,c∗,c] (2.4)

with b∗ and b (c∗ and c) denoting the set of phonon coherent state variables (Grassman
variables) {b∗

ν} and {bν} ({c∗
α} and {cα}), respectively. Here, the action S[b∗, b, c∗, c]

reads

S[b∗, b, c∗, c] =
∫

L[b∗, b, c∗, c]dτ, (2.5)

where L[b∗, b, c∗, c] is the Lagrangian given by

L[b∗, b, c∗, c] =
∑

ν

b∗
ν∂τbν +

∑

α

c∗
α∂τ cα + H[b∗, b, c∗, c]. (2.6)

Nowwe divide the electronic degrees of freedom into high-energy and low-energy
degrees of freedom, to which we will attach subscripts H and L, respectively. We
integrate out the high-energy degrees of freedom, which will define the effective
action for the low-energy electrons and the phonons [5, 9],

1

Zeff
e−Seff [b∗,b,c∗

L,cL] = 1

Z

∫
Dc∗

HDcH e−S[b∗,b,c∗
L,cL,c

∗
H ,cH ]. (2.7)

Defining the effective Lagrangian as Leff = ∂Seff/∂τ , we consider the following
quantity

H̃eff = Leff [b∗, b, c∗
L, cL] −

∑

ν

b∗
ν∂τbν −

∑

αL

c∗
αL

∂τ cαL . (2.8)

This quantity is not static any more, i.e., it contains some frequency dependence.
Furthermore, there exist higher order terms which do not exist in the original Hamil-
tonian in Eq. (2.3) (e.g., interaction term involving six fermion operators).
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If we neglect the frequency dependence and the higher order terms, H̃eff can be
expressed as the static Hamiltonian,1 whose form is the same as that of Eq. (2.3):

Ĥeff =
∑

αLβL

H̃0
el(αL, βL) ĉ

†
αL
ĉβL +

∑

αLβLα
′
Lβ

′
L

H̃el-el(αL, βL, α
′
L, β

′
L) ĉ

†
αL
ĉ†α′

L
ĉβ ′

L
ĉβL

+
∑

αLβLν

H̃el-ph(αL, βL, ν) ĉ†αL
ĉβL (b̂ν + b̂†ν) +

∑

μν

H̃0
ph(μ, ν) b̂†μb̂ν . (2.9)

The Ĥeff Hamiltonian is defined in the low-energy subspace (t-subspace), thus, we
interpret it as a low-energy effective Hamiltonian. Note that the H̃0

el, H̃el-el, H̃el-ph,
and H̃0

ph parameters in Eq. (2.9) differ from the bare parameters in Eq. (2.3), since
the elimination of the high-energy degrees of freedom gives a renormalization of
these terms. These terms will be further renormalized by the processes involving the
t-subspace electrons and the phonons, which are accurately treated when the derived
low-energy Hamiltonian is solved. Therefore, this scheme treats the renormalization
effects in two steps: The ones originating from the high-energy electrons are implic-
itly included in the input parameters, and the ones from the t-subspace electrons and
the phonons are explicitly considered afterward. In other words, this downfolding
procedure enables to avoid the double counting of the renormalization arising from
the low-energy dynamics.

In practice, derivations of the parameters in the low-energy effective model are
usually done by perturbative approaches since the vertex corrections for the processes
involving the high-energy electrons are usually small [7]. In the present study, the
electronic one-body part of the Hamiltonian [the first term on the r.h.s. of Eq. (2.9)]
is constructed by the techniques of the maximally localized Wannier function [11–
13], where we neglect the self-energy correction associated with the downfolding
procedure.2 The detail of the method is given in Sect. 2.2.2. The Coulomb inter-
action parameters [the second term on the r.h.s. of Eq. (2.9)] are calculated as the
Wannier matrix elements of the partially screened Coulomb interaction, where the
partial screening is calculated through the constrained random phase approxima-
tion [15] (see Sect. 2.2.3). To derive the phonon-related part [the third and fourth
terms on the r.h.s. of Eq. (2.9)], we developed a new ab initio scheme, which we
call constrained density-functional perturbation theory (cDFPT) [16]. In the cDFPT,
partially-renormalized electron-phonon couplings and phonon-frequencies are cal-
culated, which is detailed in Sect. 2.2.5.

The derived Hamiltonian needs to be analyzed to study low-energy phenomena.
Low-energy solvers are described in Sect. 2.3. In order to smoothly connect the
derivation and analysis of the low-energy Hamiltonian, we need some interfaces. In
Sect. 2.4, we explain the interfaces and overview the whole scheme.

1See e.g., Ref. [10] for the study in which the frequency dependence of the Coulomb interaction in
H̃eff is explicitly treated.
2The self-energy correction gives only a quantitative change in the low-energy band structure, whose
effects were studied in detail in e.g., Ref. [14].
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2.2 Ab Initio Downfolding for Electron-Phonon
Coupled Systems

2.2.1 Density Functional Theory

The MACE relies on band structure calculations using the density functional the-
ory (DFT), which makes it possible to take into account material dependence. The
DFT [17] is one of the most powerful methods to treat the global-energy-scale
electronic Hamiltonian with treating atoms with non-relativistic Born-Oppenheimer
approximation [1]
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As is alreadymentioned, it is impossible to solve thismany body problemanalytically
and numerically.

However, a breakthrough occurred in 1964: Hohenberg and Kohn [2] proved that,
as far as the ground state has no degeneracy, the electron density of the ground
state and the external potential have one-to-one correspondence. Therefore, once the
ground-state electron density is known, the external potential is determined uniquely.
Furthermore, we can calculate the total number of electrons by the integral of the
electron density over all space. By solving the Hamiltonian with thus calculated
potential and number of electrons, the ground state properties can be derived. Later,
by Kohn himself [18] and Levy [19], it was proved that, even in the case where the
ground states are degenerate, the one-to-one correspondence of the external potential
and the ground-state electron density holds.

Hohenberg andKohn [2] also gave a variational principle: There exists a functional
of the electron density for the ground state energy

Ev[ρ] = Ekin[ρ] +
∫

ρ(r)v(r)dr + Eee[ρ] (2.11)

with the electron density ρ(r), the external potential v(r), the kinetic energy Ekin[ρ],
the potential energy of electron-electron interaction Eee[ρ]; it satisfies the inequality

Ev[ρ] ≥ Ev[ρ0], (2.12)

where ρ0 is the electron density of the ground state. Therefore, the electron density
which gives the global minimum of the energy functional is the ground-state electron
density. Note that, here, the electron density used in the minimization process has
to be given by the ground-state anti-symmetric wave function for a certain external
potential. This limit was also lifted by Levy [19, 20], who proved that the variational
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methods can be applied to electron densities given by every possible anti-symmetric
wave functions.

These developments have given a firm justification for the DFT, which uses the
electron density as a basic variable and express the electronic energy in terms of the
functional of the electron density. The next breakthrough was given by Kohn and
Sham [3], which opened up away for the practicalDFT calculations: They introduced
“fictitious” non-interacting systemwhose external potential is determined to give the
same electron density as that of the true interacting system. The electron density is
written as

ρ(r) =
N∑

i=1

|φi(r)|2 (2.13)

with the total number of electrons N and the spatial part of the one-particle wave
function φi(r). They define the exchange correlation functional Exc[ρ] as

Exc[ρ] = (Ekin[ρ] − EKS
kin [ρ])+ (Eee[ρ] − EH[ρ]), (2.14)

where EKS
kin [ρ] is a simple functional for the kinetic energy

EKS
kin [ρ] =

N∑

i=1

∫
φ∗
i (r)

(
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2

2m

∂2

∂r2

)
φi(r)dr (2.15)

and EH[ρ] is the Hartree term

EH[ρ] = e2

2

∫ ∫
ρ(r)ρ(r′)
|r − r′| drdr′. (2.16)

One should care that the exchange correlation functional Exc[ρ] also includes the
difference between the true kinetic energy Ekin[ρ] and the simplified kinetic energy
EKS
kin [ρ], on top of the real exchange correlation energy. The total energy functional

is rewritten as

Ev[ρ] = EKS
kin [ρ] +

∫
ρ(r)v(r)dr + EH[ρ] + Exc[ρ]. (2.17)

To obtain the ground-state energy, we need to minimize the energy functional Ev[ρ],
whose condition is

δ

δφ∗
i (r)

⎧
⎨

⎩Ev[ρ] −
N∑

i,j=1

εij

(∫
φ∗
i (r)φj(r)dr − δij

)⎫⎬

⎭ = 0, (2.18)
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where εij is the Lagrange parameter which ensures the orthonormality of the one-
particle wave functions φi’s. Equation (2.18) yields

[
− �

2

2m

∂2

∂r2
+ veff(r)

]
φi(r) =

N∑

j=1

εijφj(r) (2.19)

with

veff(r) = v(r) + e2
∫

ρ(r′)
|r − r′|dr

′ + vxc(r) (2.20)

vxc(r) = δExc[ρ]
δρ(r)

. (2.21)

Since the matrix (εij) is Hermitian, we diagonalize Eq. (2.19) and get so called
Kohn-Sham equation

[
− �

2

2m

∂2

∂r2
+ veff(r)

]
ψi(r) = εiψi(r), (2.22)

where the electron density is given by ρ(r) =∑N
i=1 |ψi(r)|2. The electron density

and the form of veff(r) are unchanged under the transformation because the transfor-
mation is unitary. Note that, at this point, we have not yet used any approximation,
i.e., the Kohn-Sham equation is exact.

In the practical calculations, since the form of Exc[ρ] is unknown, we need some
approximation for it. One of the most frequently used approximations is the local
density approximation (LDA), in which Exc[ρ] is approximated as

ELDA
xc [ρ] =

∫
ρ(r)εxc(ρ(r))dr. (2.23)

Here, εxc(ρ(r)) is the exchange-correlation energydensity per particle of the homoge-
neous electron gas with the constant electron density ρ(r) = ρconst. and the compen-
sating positively-charged jellium [21, 22]. The generalized gradient approximation
(GGA) [23, 24] is also often employed, where the gradient of the electron density
on top of the local density, is used to improve the exchange correlation energy.

In the following, we list the procedures of the ground state calculations based on
the DFT:

1. Prepare initial density ρ1(r). Set m = 1.
2. Calculate veff(r) from the mth density ρm(r) within the LDA, the GGA, or other

approximations.
3. Solve the Kohn-Sham equation [Eq. (2.22)] and obtain eigenvalues and eigen-

states {εi, ψi(r)}.
4. Calculate new density by ρnew(r) =∑N

i=1 |ψi(r)|2.
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5. Mix the new density with the old density and obtain (m + 1)th density ρm+1(r) =
αρnew(r) + (1 − α)ρm(r). α is a mixing parameter.

6. If the difference between ρm(r) and ρm+1(r) is sufficiently small below the given
threshold, we regard that a converged solution for the ground state density is
obtained. Otherwise, set m = m + 1 and go back to the step 2.

2.2.2 Maximally Localized Wannier Function

In order to construct the low-energy model, it is convenient to employ localized
functions as a basis. However, wave functions derived from DFT band-structure
calculations are Bloch states, i.e., they are delocalized in space. Therefore, we need
to transform Bloch states into Wannier states.

In general, the Wannier state can be constructed from the Bloch state by the
Fourier transformation. For simplicity, let us first consider the single-orbital case. In
this case, the Wannier function localized at the unit cell with the position R, φR, is
related with the Bloch functions ψk’s via

φR(r) = 1√
N

∑

k

e−ik·Rψk(r), (2.24)

where N is the number of the sampling-k points. Without loss of generality, ψk(r)
can be factorized into a product ofψ ′

k(r) and the additional phase e
iθ(k), i.e.,ψk(r) =

eiθ(k)ψ ′
k(r). Here, the gauge of ψ ′

k(r) is chosen so that ψ
′
k(r = 0) is real. Since wave

functions which differ only in the global phase indicate the same state, the phase
at each k point eiθ(k) becomes indeterminant. Then, one immediately finds that the
Wannier functions are not unique due to the indeterminacy of the phases of the Bloch
functions. In the multi-orbital case, the Wannier orbitals φlR’s are given by

φlR(r) = 1√
N

∑

k

e−ik·Rψ
(w)

lk (r), (2.25)

where ψ
(w)

lk ’s are the Wannier-gauge Bloch functions, which are related with the
Kohn-Sham Bloch functions ψnk’s by unitary transformation:

ψ
(w)

lk (r) =
∑

n

U(k)

nl ψnk(r). (2.26)

In this case, nonuniqueness of the unitary matrix U(k) allows arbitrary choices of
Wannier functions. Therefore, it is difficult to obtain “optimal” set of Wannier func-
tions.
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Marzari and Vanderbilt [11] proposed a choice called maximally localized Wan-
nier functions, which is useful in deriving a simple form of effective Hamiltonian in
the later procedure. In their scheme, a set of the unitarymatrix {U(k)} is determined to
minimize the total spatial spread of the Wannier functions Ωtot, which is defined as

Ωtot =
∑

l

Ωl, (2.27)

where

Ωl =
√

〈φl0|r2|φl0〉 − ∣∣〈φl0|r|φl0〉
∣∣2. (2.28)

With the resultant {U(k)}, the maximally localized Wannier orbitals (MLWO’s) are
constructed from the Kohn-Sham wave functions ψnk’s via Eqs. (2.25) and (2.26).
Hereafter, we adopt the set of MLWO’s as the localized basis for the low-energy
Hamiltonian. Then, the onsite levels andhopping integrals

[H(w)
0 (R)

]
ll′ are calculated

as

[H(w)
0 (R)

]
ll′ = 〈φlR

∣∣ĤKS

∣∣φl′0
〉 = 1

N

∑

k

[∑

n

(
U(k)

nl

)∗
εnkU

(k)

nl′

]
eik·R, (2.29)

where ĤKS is the Kohn-Sham Hamiltonian and the εnk’s are the eigenvalues of
ĤKS. With the resultant H(w)

0 (R), the electronic one-body part of the low-energy
Hamiltonian Ĥ0 is given by

Ĥ0 =
∑

ll′

∑

R,R′

[
H(w)

0 (R − R′)
]
ĉ†lRĉl′R′ −

∑

lR

Δεl n̂lR, (2.30)

where the last term is a double counting correction, which is detailed in Sect. 2.4.1.
Here, ĉ†lR (ĉlR) creates (annihilates) the lth MLWO localized at the cell R and
n̂lR = ĉ†lRĉlR. The choice of the MLWO allows to express the effective low-energy
Hamiltonian on the real space lattice in the forms of the transfer and the interaction
as short range as possible.

2.2.3 Constrained Random Phase Approximation

We estimate an effective Coulomb interaction in the t-subspace by means of the con-
strained random phase approximation (cRPA) developed by Aryasetiawan et al. [15].
In general, the fully screened Coulomb interaction W is given by

W = ε−1v, (2.31)
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where ε is the dielectric function ε = 1 − vχ0 with the irreducible polarization χ0,
and v is the bare Coulomb interaction v(r, r′)= e2

|r−r′ | . We consider a decomposition

of the total irreducible polarization χ0 into the one involving only the t-subspace
electrons χ0

t and the rest χ0
r [15]:

χ0 = χ0
t + χ0

r . (2.32)

Note thatχ0
r contains not only the processes involving only the r-subspace degrees of

freedom but also the ones involving both the t-subspace electrons and the r-subspace
electrons. We define the partially screened Coulomb interaction W (p) as

W (p) = (1 − vχ0
r

)−1
v = ε−1

r v. (2.33)

It is related with the fully screened Coulomb interaction W in Eq. (2.31) by [15]

W = (1 − W (p)χ0
t

)−1
W (p), (2.34)

which means that if the interaction W (p) is screened by the t-subspace electrons, it
exactly reproduces the fully screened interaction. Therefore, we can interpret W (p)

as the effective Coulomb interaction between the t-subspace electrons. The screen-
ing processes involving only the t-subspace electrons will be considered when we
solve the low-energy Hamiltonian. Therefore, in order to avoid the double counting,
we have to exclude the screening effects of χ0

t from the effective Coulomb interac-
tion to be used in the low-energy Hamiltonian. With the above considerations, it is
appropriate to use the partially screened interactionW (p) for the Coulomb interaction
parameters, such as Hubbard U, in the low-energy Hamiltonian.

In principle,W (p) has some frequency dependence, however, the partially screened
Coulomb interaction is often parametrized as theWanniermatrix elements of its static
part W (p)(ω = 0). To calculate this quantity, we need only the static component of
the polarization function χ0(ω = 0), which will, hereafter, be denoted just by χ0

with omitting ω index. Furthermore, we approximate χ0 by that calculated within
the RPA:

χ0(r, r′) = 2
∑

nm

∑

kk′

fnk − fmk′

εnk − εmk′
ψ∗

nk(r)ψmk′(r)ψ∗
mk′(r′)ψnk(r′), (2.35)

where ψnk and εnk are the Kohn-Sham eigenfunction and eigenvalue labeled by
Bloch wave vector k and band index n, respectively. f is the Fermi-Dirac distribution
function. A factor of 2 comes from the summation over spin. Within the RPA, the
total irreducible polarization χ0 is comprised of four types of transitions: (i) occupied
↔ virtual, (ii) occupied ↔ target, (iii) target ↔ virtual, and (iv) target ↔ target.
Then the decomposition of χ0 into χ0

t and χ0
r is clear, namely, χ0

t contains only the
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contribution from the type (iv) transitions, and the rest of the transitions [type (i),
(ii), (iii) processes] contributes to χ0

r . The explicit form of χ0
r is

χ0
r (r, r′) = 2

′∑

nm

∑

kk′

fnk − fmk′

εnk − εmk′
ψ∗

nk(r)ψmk′(r)ψ∗
mk′(r′)ψnk(r′). (2.36)

where
′∑

denotes the summation with the “constraint”, where the target ↔ target
transition processes are excluded.

In the actual calculation using the plane-wave basis set, it is advantageous to
calculate χ0

r using the momentum-space representation [25]:

χ0
r G,G′(q) = 2

NΩ

′∑

nm

∑

k

fnk − fmk+q

εnk − εmk+q

〈
ψnk

∣∣e−i(q+G)·r∣∣ψmk+q
〉〈
ψmk+q

∣∣ei(q+G′)·r′ ∣∣ψnk
〉
,

(2.37)

where N is the number of sampling-k points in the first Brillouin zone and Ω is the
volume of the unit cell. In order to avoid the singularity in the dielectric matrix εr , it
is convenient to introduce the symmetric dielectric matrix ε̃r defined as [25]

ε̃r = v−1/2εrv
1/2 = 1 − v1/2χrv

1/2. (2.38)

Especially, in the reciprocal space, the Coulomb matrix v becomes diagonal as
vG,G′(q) = 4πe2

|q+G|2 δG,G′ , which leads to the following expression of the dielectric
matrix

ε̃rG,G′(q) = |q + G|
|q + G′| εrG,G′(q) = δG,G′ − 4πe2

1

|q + G| χ
0
r G,G′(q)

1

|q + G′| .
(2.39)

This definition of ε̃r avoids the divergence of the elements with q + G = 0 or
q + G′ = 0 (the original dielectric matrix εr has divergence at the elements with
q = 0, G = 0, G′ 
= 0). Thanks to this property, the inversion matrix of ε̃r can be
easily calculatedwithout employing any tricks. Then, the partially screenedCoulomb
interaction in (2.33) is calculated, in momentum space representation, as

W (p)
G,G′(q) = 4πe2

1

|q + G| ε̃
−1
r G,G′(q)

1

|q + G′| . (2.40)

2.2.4 Density-Functional Perturbation Theory

The density-functional perturbation theory (DFPT) [26–29] is a standard ab initio
method, as well as the frozen phonon method, to calculate the phonon frequencies
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and the electron-phonon couplings. The conventional DFPT gives fully renormalized
quantities within the static mean-field approximation (e.g., LDA). Figure2.1 shows
the phonon dispersions calculatedwith theDFPT for the fccAl, the fcc Pb, and the bcc
Nb.Good agreementswith the experimental dispersions show its reliability in treating
the phonon dynamics. Based on it, we have developed a novel scheme, constrained
DFPT [16], to calculate partially renormalized phonon frequencies and electron-
phonon interaction to be used in the effective low-energy Hamiltonian. Before we
proceed with the explanation of the constrained DFPT, we review the DFPT in this
section.

Fig. 2.1 Phonon dispersions for fcc Al, fcc Pb, and bcc Nb. The solid and dashed curves indicate
the theoretically calculated phonon frequencies with the DFPT, where the difference between the
solid and dashed curves comes from different smearing widths σ used in the calculation (solid σ =
0.3 eV, dashed σ = 0.7 eV). They show good agreement with the experimental data (diamonds).
Reprinted with permission from de Gironcoli, Ref. [27]. Copyright 1995 by the American Physical
Society
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2.2.4.1 Lattice Dynamics

Here, we derive equations to calculate phonon frequencies [30]. We start from the
time-dependent Schrödinger equation

i�
∂Φ
({r}, {R}, t)

∂t
=
[
−
∑

I

�
2

2MI

∂2

∂R2
I

−
∑

i

�
2

2m

∂2

∂r2i
+ V

({r}, {R})
]
Φ
({r}, {R}, t),

(2.41)

where

V ({r}, {R}) =
∑

i<j

e2

|ri − rj| −
∑

i,I

ZIe2

|ri − RI | +
∑

I<J

ZIZJe2

|RI − RJ | (2.42)

with {r} = (r1, . . . , rN ) and {R} = (R1, . . . ,Rn). We apply the Born-Oppenheimer
approximation [1], where electrons are assumed to become equilibrium instanta-
neously at each lattice movement. It reflects the fact that electrons move much faster
than ions. Then the wave function can be divided into lattice part Φn and electron
part Ψe as

Φ
({r}, {R}, t) � Φn

({R})Ψe
({r}|{R})e−iεt/�. (2.43)

Substituting this into Eq. (2.41), we get two separate equations for electrons and
ions:

[
−
∑

i

�
2

2m

∂2

∂r2i
+ V

({r}, {R})
]
Ψe
({r}|{R}) = E

({R})Ψe
({r}|{R}) (2.44)

and

[
−
∑

i

�
2

2MI

∂2

∂R2
I

+ E
({R})

]
Φn
({R}) = εΦn

({R}). (2.45)

The ground-state energies at fixed lattice configurations E
({R}) serve as an effective

potential for the lattice motion (Born-Oppenheimer energy surface). The force acting
on Ith ion FI is given by the derivative of the energy surface

FI = −∂E
({R})
∂RI

. (2.46)

If the ion is located at its equilibrium position, the force acting on the ion vanishes
(FI = 0).



44 2 Methods: Ab Initio Downfolding and Model-Calculation Techniques

In the following, we derive the equation of motion for the lattice vibration in
solids. In solids, the individual ion can be identified as the κth ion in the pth unit cell,
i.e., I = (p, κ). Let us denote the equilibrium position of the κth ion in the pth unit
cell as R(0)

pκ = Rp + τ κ with the origin of the pth unit cell Rp and the position of the
κth ion in the unit cell τ κ . Then, the position of the ion is given by

Rpκ = R(0)
pκ + upκ , (2.47)

where upκ is the displacement from the equilibrium position. Then the kinetic energy
T for the lattice vibration is written as

T = 1

2

∑

pκ

Mκ |u̇pκ |2 = 1

2

∑

pκα

Mκ(u̇
α
pκ)

2 (2.48)

with the mass of the κth ion Mκ and the direction of the displacement α = x, y, z.
For the potential energy U, we apply the harmonic approximation

U = E({R(0)
pκ + upκ}) − E({|R(0)

pκ }) (2.49)

� 1

2

∑

pκα

∑

p′κ ′α′

[
∂2E

∂Rα
pκ∂R

α′
p′κ ′

]

R=R(0)

uα
pκu

α′
p′κ ′ . (2.50)

Note that the first-order terms with respect to u’s vanish since the force is zero at the
equilibrium position

[
−∂E

({R})
∂Rpκ

]

R=R(0)

= 0. (2.51)

Substituting the expressions for T [Eq. (2.48)] and U [Eq. (2.49)] in the Lagrange
equation

d

dt

∂L

∂ u̇α
pκ

− ∂L

∂uα
pκ

= 0 (2.52)

with L = T − U, we get the equation of motion

Mκ ü
α
pκ = −

∑

p′κ ′α′
Cαα′
pκ,p′κ ′uα′

p′κ ′ , (2.53)

where Cαα′
pκ,p′κ ′’s are given by the elements of the Hessian matrix of the potential

surface with respect to displacements and called interatomic force constants:

Cαα′
pκ,p′κ ′ = Cα′α

p′κ ′,pκ = ∂2E

∂uα
pκ∂u

α′
p′κ ′

∣∣∣∣
u=0

. (2.54)
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Cαα′
pκ,p′κ ′ plays a role of the “spring constant” between the oscillators with indices

(p, κ, α) and (p′, κ ′, α′). Due to the translational invariance, Cαα′
pκ,p′κ ′ becomes a func-

tion of the relative position Rp − Rp′

Cαα′
pκ,p′κ ′ = Cαα′

κκ ′ (Rp − Rp′). (2.55)

Then a solution of the equation of motion [Eq. (2.53)] will have a form:

upκ = uκ(q) exp
[
iq · Rp − iω(q)t

]
, (2.56)

where the displacement is labelled by a wave vector q. Using this expression, we
recast Eq. (2.53) into

∑

κ ′α′
Cαα′

κκ ′ (q)uα′
κ ′ (q) = Mκω

2(q)uα
κ (q) (2.57)

with

Cαα′
κκ ′ (q) =

∑

p

Cαα′
κκ ′ (Rp) exp

(−iq · Rp
)
. (2.58)

By defining so called the dynamical matrix as

Dαα′
κκ ′ (q) ≡ 1√

MκMκ ′
Cαα′

κκ ′ (q) (2.59)

and introducing a vector eκ(q) such that

uκ(q) ∝ 1√
Mκ

eκ(q), (2.60)

we get the equation which is used to determine the normal modes

∑

κ ′α′
Dαα′

κκ ′ (q)eα′
κ ′ (q) = ω2(q)eα

κ (q). (2.61)

This equation shows that the phonon frequencyω(q) is given by the square root of the
eigenvalues of the dynamical matrix Dαα′

κκ ′ (q). Since the dimension of the dynamical
matrixDαα′

κκ ′ (q) is 3nwith n being the number of the atoms in the unit cell, there exist
3n solutions (normal modes), which we label by the index ν. The eigenvectors of the
dynamical matrix satisfy the orthonormality:

∑

κα

e∗α
κ (qν)eα

κ (qν ′) = δνν ′ . (2.62)
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2.2.4.2 Expression for Interatomic Force Constants

Here, we derive the expression for the interatomic force constants Cαα′
κκ ′ (q). The

Hellmann-Feynman force FI is given by

FI = −∂E
({R})
∂RI

= −
〈
Ψe
({R})

∣∣∣
∂ĤBO

({R})
∂RI

∣∣∣Ψe
({R})

〉
(2.63)

= −
∫

ρ{R}(r)
∂Vion

(
r; {R})

∂RI
dr − ∂EN

({R})
∂RI

(2.64)

where

ĤBO
({R}) = −

∑

i

�
2

2m

∂2

∂r2i
+ V

({r}, {R}), (2.65)

Vion
(
r; {R}) = −

∑

I

ZIe2

|r − RI | , (2.66)

EN
({R}) =

∑

I<J

ZIZJe2

|RI − RJ | , (2.67)

and Ψe
({R}) and ρ{R}(r) are the electronic wave function and the electron density

at a fixed ionic configuration {R}, respectively. Here, to derive the expression for
Hellmann-Feynman force FI , we used the Hellmann-Feynman theorem [31, 32]:

∂Eλ

∂λ
=
〈
Ψλ

∣∣∣
∂Ĥλ

∂λ

∣∣∣Ψλ

〉
, (2.68)

where theHamiltonian Ĥλ depends on a parameterλ, andΨλ andEλ are the eigenstate
and the eigenvalue of Ĥλ, respectively. The Hessian matrix, which corresponds to
the matrix of interatomic force constants, is given by

∂2E
({R})

∂RI∂RJ
= − ∂FI

∂RJ
(2.69)

=
∫

∂ρ{R}(r)
∂RJ

∂Vion
(
r; {R})

∂RI
dr +

∫
ρ{R}(r)

∂2Vion
(
r; {R})

∂RI∂RJ
dr + ∂2EN

({R})
∂RI∂RJ

.

(2.70)

In solids where I = (pκ), switching to the momentum-space representation makes
the calculation simple. Considering ∂/∂Rpκ = ∂/∂upκ , wewrite down the expression
for the interatomic force constants in the momentum space as

Cαα′
κκ ′(q) = 1

N

[∫ (
∂ρ(r)
∂uα

κ (q)

)∗
∂Vion(r)

∂uα′
κ ′ (q)

dr +
∫

ρ(r)
∂2Vion(r)

∂u∗α
κ (q)∂uα′

κ ′ (q)
dr + ∂2EN

({R})

∂u∗α
κ (q)∂uα′

κ ′ (q)

]

u=0

(2.71)
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with N being the number of the unit cells in the Born-von Karman boundary con-
dition. For simplicity, we omitted {R} index from Vion

(
r; {R}) and ρ{R}(r). On the

r.h.s. of Eq. (2.71), the first (second) term describes the contribution from the linear
(quadratic) electron-phonon coupling and the third term describes the ionic contribu-
tion. The derivation of Eq. (2.71) relies on the fact that the ionic potential is local i.e.,
depends on only one electronic coordination r. However, in actual calculations using
the pseudopotentials, the ionic potential usually contains non-local components, the
terms which depend on two electronic coordination r and r′. In Appendix A, we
show how the equations are modified in the presence of the non-local components.

2.2.4.3 Linear Response (Insulating Case)

To calculate the interatomic force constants [Eq. (2.71)], or the second derivative
of the electronic energy with respect to ionic displacements, we usually employ the
electronic energy calculated within the LDA or the GGA. Then the second and third
terms on the r.h.s. of Eq. (2.71) can be straightforwardly calculated: The equilibrium
density ρeq.(r), which is needed to calculate the second term, is given as an output
of the ground state calculation within the DFT. The Coulomb interaction energy
between the nuclei EN in the third term is efficiently calculated by means of the
Ewald summation [33]. Only the first term requires a post-process calculation: We
need to calculate a linear response of the electron density to the lattice distortion.

To calculate the linear response, we assume that the system obeys the Kohn-Sham
equation

(HSCF − εn)ψn(r) = 0, (2.72)

where

HSCF = − �
2

2m
∇2 + VSCF(r) (2.73)

VSCF(r) = Vion(r) + VH(r) + Vxc(r) (2.74)

with the Hartree potential VH(r) = e2
∫

ρ(r′)/|r − r′|dr′, and the exchange-
correlation potential Vxc(r) = δExc[ρ]/δρ(r). Let us assume that a potential change
due to the lattice distortion ΔVion occurs in the insulating system, in which there
exists a gap between the conduction bottom and the valence top. Then the response
of the system can be summarized into the self-consistent equations

ΔVSCF(r) = ΔVion(r) + e2
∫

Δρ(r′)
|r − r′|dr

′

︸ ︷︷ ︸
=ΔVH(r)

+ dVxc[ρ]
dρ

∣∣∣∣
ρ=ρeq.(r)

Δρ(r)

︸ ︷︷ ︸
=ΔVxc(r)

(2.75)
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and

Δρ(r) = 4Re
∑

v

ψ∗
v (r)Δψv(r) (2.76)

Δψv(r) =
∑

c

ψc(r)
〈ψc|ΔVSCF|ψv〉

εv − εc
. (2.77)

Here, ψv and ψc in Eqs. (2.76) and (2.77) denote the Bloch state within the valence
band and the conduction band, respectively. The factor of 2 in Eq. (2.76) comes from
the sum over spin. The equations represent how the system modifies the electron
charge density and screens the bare perturbation ΔVion(r). The screenings originate
from the Hartree channel ΔVH and the exchange-correlation channel ΔVxc, which
are both related with the modulation of the electron density. The screened potential
ΔVSCF is related with the electron density response via Eqs. (2.76) and (2.77).

In solvingEqs. (2.75)–(2.77) self-consistently, themost time consuming part is the
calculation of Δψv(r) via Eq. (2.77), since it requires the extensive summation over
the unoccupied states. Alternatively, the same quantity can be obtained by solving
the following equation [26]

(
HSCF + αPv − εv

)
︸ ︷︷ ︸

A

∣∣Δψv

〉
︸ ︷︷ ︸

x

= −PcΔVSCF

∣∣ψv

〉
︸ ︷︷ ︸

y

(2.78)

with the projection operators onto valence bands (conduction bands) Pv =∑v

∣∣ψv

〉
〈
ψv

∣∣ (Pc =∑c

∣∣ψc
〉〈
ψc

∣∣). α is a parameter to avoid null eigenvalues in the A matrix.
We can prove that Eq. (2.78) indeed gives the same result as Eq. (2.77) as follows:
In the Bloch basis, the A matrix is expressed as

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε1+α−εv

ε2+α−εv 0
. . .

εNv
+α−εv

εNv+1−εv

0
. . .

εM−εv

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(
Av 0
0 Ac

)

(2.79)

with

Av =

⎛

⎜⎜⎜⎝

ε1+α−εv 0
ε2+α−εv

. . .

0 εNv
+α−εv

⎞

⎟⎟⎟⎠ (2.80)
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and

Ac =
⎛

⎜⎝
εNv+1−εv 0

. . .

0 εM−εv

⎞

⎟⎠ , (2.81)

where Nv is the number of valence (occupied) states and M is the dimension of the
A matrix. Note that, in the actual calculation, the A matrix is not represented in the
Bloch basis, but is expressed in some basis set (e.g., plane-wave basis) to expand the
wave functions. Then,M corresponds to the size of the basis set to describe the Bloch
states, which should be large enough (M � Nv). In the absence of the α parameter, it
is obvious that the Amatrix has at least one null eigenvalue since Avv = εv − εv = 0.
α is arbitrary as far as the introduction of α gets rid of the null eigenvalue(s). Then,
a simplest choice is e.g., α > (bandwidth of the occupied states). Since the y vector
is written, in the Bloch representation, as

y =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0
−〈ψNv+1

∣∣ΔVSCF

∣∣ψv

〉

...

−〈ψM

∣∣ΔVSCF

∣∣ψv

〉

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(

0
) }

Nv

yc
}
M − Nv

, (2.82)

∣∣Δψv

〉
is given by

∣∣Δψv

〉 = A−1y = A−1
c yc =

∑

c

1

εv − εc

∣∣ψc
〉〈
ψc

∣∣ΔVSCF

∣∣ψv

〉
, (2.83)

which proves that Eqs. (2.77) and (2.78) are equivalent. Equation (2.78) requires
only the information about the occupied states (note that Pc = 1 − Pv) and allows
us to avoid the cumbersome summation over the unoccupied states, which leads to
a significant reduction of the computational time.

In crystalline solids, perturbations with different wavelengths are decoupled and
the self-consistent equations [Eqs. (2.75)–(2.78)] can be independently solved for
each wave vector q:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔV q
SCF(r) = ΔV q

ion(r) + e2
∫

Δρq(r′)
|r − r′| e

−iq·(r−r′)dr′ + dVxc[ρ]
dρ

∣∣∣∣
ρ=ρeq.(r)

Δρq(r), (2.84)

Δρq(r) = 4
∑

vk

uk∗
v (r)Δuk+q

v (r), (2.85)

(
Hk+q

SCF + α
∑

v′

∣∣uk+q
v′

〉〈
uk+q
v′

∣∣− εkv

)∣∣Δuk+q
v

〉 = −
(
1 −

∑

v′

∣∣uk+q
v′

〉〈
uk+q
v′

∣∣
)
ΔV q

SCF

∣∣ukv
〉
, (2.86)
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where

ΔO(r) =
∑

q

ΔOq(r)eiq·r (
O = {VSCF, Vion, ρ}) (2.87)

and ukv (r) is the cell-periodic part of the Bloch wave function of the band v and
the wave vector k. In the derivation of Eq. (2.85), we utilized the relations Oq(r) =
[O−q(r)]∗ (Fourier transform of the real functions) and ukv (r) = [u−k

v (r)]∗ (time
reversal symmetry). It is also straightforward to verify that the solution of Eq. (2.86)
is equivalent to that of the following equation:

∣∣Δuk+q
v

〉 =
∑

c

1

εkv −ε
k+q
c

∣∣uk+q
c

〉〈
uk+q
c

∣∣ΔV q
SCF

∣∣ukv
〉
. (2.88)

By solving Eqs. (2.84)–(2.86), we obtain the linear response of the electron density
to the ionic displacements, which is to be used to calculate the first term on the
r.h.s. of Eq. (2.71). As is obvious from Eqs. (2.84)–(2.86), in the DFPT methods, the
wave functions calculated with the original unit cell are used, which is one of the
strongest advantages of the DFPT to the other phonon-calculation methods, such as
the frozen phonon method, in which we need to prepare a large supercell according
to the wavelength of the phonon.

2.2.4.4 Linear Response (Metallic Case)

Next, we consider ametallic case [27]. In theDFT calculation for themetal, it is usual
to introduce a smearing function δ̃(x) and the corresponding smoothed step function
θ̃ (x) = ∫ x

−∞ δ̃(x′)dx′. In the present calculation, we employ the gaussian smearing

δ̃(x) = exp(−x2) /
√

π . Then, the expression for the electron density response is
modified as (the expression of ΔVSCF remains the same)

Δρ(r) =
∑

n,m

θ̃F,n − θ̃F,m

εn − εm
ψ∗

n (r)ψm(r)
〈
ψm

∣∣ΔVSCF

∣∣ψn
〉

= 2
∑

n,m

θ̃F,n − θ̃F,m

εn − εm
θ̃m,nψ

∗
n (r)ψm(r)

〈
ψm

∣∣ΔVSCF

∣∣ψn
〉
, (2.89)

where θ̃F,n and θ̃m,n are defined as θ̃F,n = θ̃
[
(εF − εn)/σ

]
and θ̃m,n = θ̃

[
(εm −

εn)/σ
]
, respectively, with the Fermi energy εF and a smearing width σ . If we define

Δψn(r) as

Δψn(r) =
∑

m

θ̃F,n − θ̃F,m

εn − εm
θ̃m,nψm(r)

〈
ψm

∣∣ΔVSCF

∣∣ψn
〉
, (2.90)
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Equation (2.89) can be recast into

Δρ(r) = 2
∑

n

ψ∗
n (r)Δψn(r). (2.91)

Similarly to the insulating case, one can show that Δψn’s satisfy the equation [27]

(
HSCF + Q − εn

)
︸ ︷︷ ︸

A

∣∣Δψn
〉

︸ ︷︷ ︸
x

= −(θ̃F,n − Pn
)
ΔVSCF

∣∣ψn
〉

︸ ︷︷ ︸
y

(2.92)

where

Q =
∑

m

αm

∣∣ψm
〉〈
ψm

∣∣, Pn =
∑

m

βn,m

∣∣ψm
〉〈
ψm

∣∣ (2.93)

with

βn,m = θ̃F,nθ̃n,m + θ̃F,mθ̃m,n + αm
θ̃F,n − θ̃F,m

εn − εm
θ̃m,n. (2.94)

Here αm’s are parameters to avoid null eigenvalues of the A matrix, which can be
set to be a constant value which is larger than [(maximum energy among partial
occupied states)− (minimumenergyof occupied states)] for all the partially occupied
states, and zero for the totally unoccupied states. This αm parametrization enables a
calculation without any information about the totally unoccupied states. Noting that
θ̃F,n − Pn on the r.h.s of Eq. (2.92) is rewritten as

θ̃F,n − Pn =
∑

m

[
θ̃F,n
(
1 − θ̃n,m

)− θ̃F,mθ̃m,n − αm
θ̃F,n − θ̃F,m

εn − εm
θ̃m,n

]
∣∣ψm
〉〈
ψm

∣∣

=
∑

m

[
(
θ̃F,n − θ̃F,m

)
θ̃m,n − αm

θ̃F,n − θ̃F,m

εn − εm
θ̃m,n

]
∣∣ψm
〉〈
ψm

∣∣

= −
∑

m

[
θ̃F,n − θ̃F,m

εn − εm
θ̃m,n
(
εm + αm − εn

)
]
∣∣ψm
〉〈
ψm

∣∣ (2.95)

and that the elements of the matrix A in Eq. (2.92) are given, in the Bloch basis, by

A =

⎛

⎜⎜⎜⎝

ε1+α1−εn 0
ε2+α2−εn

. . .

0 εM+αM−εn

⎞

⎟⎟⎟⎠ , (2.96)
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we obtain the expression of
∣∣Δψn

〉
:

∣∣Δψn
〉 = A−1y =

∑

m

θ̃F,n − θ̃F,m

εn − εm
θ̃m,n

∣∣ψm
〉〈
ψm

∣∣ΔVSCF

∣∣ψn
〉
, (2.97)

which is nothingbut the proof thatEq. (2.92) gives the same result as that ofEq. (2.90).
Although we did not show the indices for the wave vector q in the above equations,
linear response calculations for different wave vectors can be done individually as
in the insulating case.

Onlywhen the perturbation has periodicitywith the lattice (q = 0) and the number
of electrons is fixed, the Fermi energy may change and Δρ acquires an additional
term:

Δρ(r) = 2
∑

n

ψ∗
n (r)Δψn(r) + ρ(r, εF)ΔεF (2.98)

with

ρ(r, ε) =
∑

n

1

σ
δ̃

(
ε − εn

σ

) ∣∣ψn(r)
∣∣2. (2.99)

The change in the Fermi energyΔεF is determined by the charge neutrality condition.

2.2.4.5 Electron-Phonon Coupling

When ions move from their equilibrium position, the ionic potential changes. Then,
the surrounding electronswill respond to the potential change and screen it. Electrons
will feel this screened potential change and will be scattered. Within the framework
of the DFT, the change is expressed as

ΔVSCF(r) = VSCF(r;{R(0)
pκ + upκ}) − VSCF(r;{R(0)

pκ }) (2.100)

�
∑

pκ

upκ ·
(

∂VSCF

∂Rpκ

)

R=R(0)

. (2.101)

Given that the displacement operator iswritten, in the second quantization formalism,
as

ûpκ =
∑

qν

√
�

2MκNωqν

(
b̂qν + b̂†−qν

)
eκ(qν)eiq·Rp (2.102)

with b̂†qν and b̂qν being the creation and annihilation operators of the phonon with
the wave vector q and the branch ν, respectively, the electron-phonon coupling is
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expressed by the Hamiltonian

Ĥel-ph = 1√
N

∑

qν

∑

knn′σ

gν
n′n(k,q)cσ†

n′k+qc
σ
nk(bqν + b†−qν). (2.103)

Here,

gν
n′n(k,q) =

∑

κα

√
�

2Mκωqν

eα
κ (qν)

〈
ψn′k+q

∣∣∣∣
∂VSCF(r)
∂uα

κ (q)

∣∣∣∣ψnk

〉
(2.104)

is the electron-phonon-coupling matrix element involving the Bloch states ψnk and
ψn′k+q and the νth branch phonon with the wave vector q. cσ

nk (cσ†
nk ) annihilates

(creates) an electron on the nth Bloch orbital with the wave vector k and the spin σ .

2.2.4.6 Flow of Calculation

The phonon frequencies and the electron-phonon couplings for a certain q vector
are calculated in the following procedures. As is already mentioned, calculations for
different q vectors can be done independently.

1. Calculate the contributions to the interatomic force constantswhich do not depend
on the electron density response [the second and third terms on the r.h.s. of
Eq. (2.71)].

2. Self-consistently solve the linear response equations [Eqs. (2.84)–(2.86) for
insulating case, Eqs. (2.75), (2.91), and (2.92) for metallic case], and obtain
∂VSCF(r)/∂uα

κ (q) and ∂ρ(r)/∂uα
κ (q). At the first iteration, the bare perturbation

∂Vion(r)/∂uα
κ (q) is often employed as an initial guess for ∂VSCF(r)/∂uα

κ (q).
3. Calculate the first term on the r.h.s. of Eq. (2.71) with the resultant ∂ρ(r)/∂uα

κ (q).
Add it to the other contributions calculated at the step 1 and obtain the interatomic
force constants.

4. Calculate the dynamical matrix [Eq. (2.59)] and diagonalize it. Phonon frequen-
cies are given by the square root of the eigenvalues [Eq. (2.61)].

5. Calculate electron-phonon couplings via Eq. (2.104).

2.2.5 Constrained Density-Functional Perturbation Theory

2.2.5.1 Basic Idea and Practical Implementation

In this section, we show how the phonon frequencies and the electron-phonon cou-
plings in the low-energy Hamiltonian should be parametrized. As in the case of
the effective Coulomb interactions, they should be partially renormalized quantities,
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which take into account the renormalization effects associated with the elimination
of the high-energy degrees of freedom. In other words, we derive the parameters with
avoiding the double counting of the renormalization effects which are to be taken
into account in the model analysis step.

Since the present low-energy effective Hamiltonian includes the linear electron-
phonon couplings that can renormalize the phonon frequencies after themodel analy-
sis, we define (ionic contribution) + (contribution from the quadratic coupling) as
“bare” term, and (contribution from the linear coupling) as “renormalizing” term.
Then the interatomic force constants Cαα′

κκ ′ (q) given in Eq. (2.71) can be divided
as Cαα′

κκ ′ (q) = bareCαα′
κκ ′ (q) + ren.Cαα′

κκ ′ (q), where bareCαα′
κκ ′ (q) gives the “bare” phonon

frequencies

bareCαα′
κκ ′ (q) = 1

N

[
∂2EN

({R})

∂u∗α
κ (q)∂uα′

κ ′ (q)
+
∫

ρ(r)
∂2Vion(r)

∂u∗α
κ (q)∂uα′

κ ′ (q)
dr
]
, (2.105)

and ren.Cαα′
κκ ′ (q) gives the renormalization of the phonon frequencies via the linear

electron-phonon coupling

ren.Cαα′
κκ ′ (q) = 1

N

∫ (
∂ρ(r)
∂uα

κ (q)

)∗
∂Vion(r)

∂uα′
κ ′ (q)

dr. (2.106)

The derivative of the self-consistent field potential ∂VSCF(r)/∂uα
κ (q) in Eq. (2.104)

is also decomposed into the bare contribution

bare

[
∂VSCF(r)
∂uα

κ (q)

]
= ∂Vion(r)

∂uα
κ (q)

(2.107)

and the screening contribution

ren.

[
∂VSCF(r)
∂uα

κ (q)

]
=
∫ (

e2

|r − r′| + dVxc(r)
dρ

δ(r − r′)
)

∂ρ(r′)
∂uα

κ (q)
dr′. (2.108)

We see that the origin of the renormalization of the phonon frequencies and
the screening for the electron-phonon couplings is the modulation of the electron
density due to the lattice motion ∂ρ(r)/∂uα

κ (q). The modulation calculated in the
conventional DFPT scheme is the sumof contributions from all possible particle-hole
excitations [Eq. (2.89)]. In the cDFPT method [16], we exclude the target↔ target
excitation processes to avoid the double counting of them, and calculate the partially
renormalized phonon frequencies and electron-phonon couplings. Below, we show
that the exclusion of the target↔ target processes can be done by a slightmodification
in the linear response equations.

Now,wepropose a practicalway to impose constraint onEqs. (2.91) and (2.92), the
equations which determine the variation of the electron density. If

∣∣ψn
〉
in Eq. (2.92)

belongs to t-subspace, in order to exclude the target↔ target polarization processes,
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the r.h.s. of Eq. (2.92) should be modified as

(
HSCF + Q − εn

)∣∣Δψn
〉 = −Pr

(
θ̃F,n − Pn

)
ΔVSCF

∣∣ψn
〉

(2.109)

with Pr being the projection onto the r-subspace. The very same constraint can be
achieved by solving Eq. (2.92) with modified βn,m’s given by

βn,m =
⎧
⎨

⎩
θ̃F,n

(
n,m ∈ t-subspace

)
,

θ̃F,nθ̃n,m + θ̃F,mθ̃m,n + αm
θ̃F,n−θ̃F,m

εn−εm
θ̃m,n

(
the other cases

)
.

(2.110)

The identity can be checked as follows: When n ∈ t-subspace, both −Pr
(
θ̃F,n −

Pn
)
ΔVSCF

∣∣ψn
〉

and −(θ̃F,n − Pn
)
ΔVSCF

∣∣ψn
〉 = −(θ̃F,n −∑m βn,m

∣∣ψm
〉〈
ψm

∣∣)

ΔVSCF

∣∣ψn
〉
with the new βn,m’s give the same quantity:

⎧
⎨

⎩
0

(
m ∈ t-subspace

)
,

[
θ̃F,n−θ̃F,m

εn−εm
θ̃m,n
(
εm + αm − εn

)]∣∣ψm
〉〈
ψm

∣∣ΔVSCF

∣∣ψn
〉 (

m ∈ r-subspace
)
.

(2.111)

Therefore, the r.h.s. of Eq. (2.109) is equal to that of Eq. (2.92) with the modified
βn,m’s, which ensures the equivalence of the two types of modifications. When we
consider the practical aspect, the latter modification is much easier to implement if
one has a code of the conventional DFPT. One has only to modify the part where the
βn,m parameters are defined, and no modification is needed in the other parts. With
the modified βn,m’s and following the very same flow of calculations of the usual
DFPT method, one can get the change of the electron density without target↔ target
polarization processes. Then, with the resulting density response, we evaluate the
partially-screened (renormalized) quantities ω(p) and g(p).

2.2.5.2 Comparison Between cDFPT and cRPA

Here, we compare the present cDFPT with the cRPA [15]. In the cRPA to derive the
effective electron-electron interactions in the model, the screening of the Coulomb
interaction is decomposed into two steps [15];

W (p) = (1 − vχ0
r

)−1
v (2.112)

and

W (f ) = (1 − W (p)χ0
t

)−1
W (p), (2.113)
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where v is the bare Coulomb interaction. Here, the total irreducible polarization χ0

is divided into χ0
t and χ0

r with χ0
t being the polarization within the t-subspace and

χ0
r = χ0 − χ0

t is the rest of the polarization. Such a decomposition holds even if v

is replaced by ṽ = v + Kxc with Kxc = δVxc/δρ defined as the exchange-correlation
kernel. Here, Vxc and ρ are the exchange-correlation potential and the electron den-
sity, respectively. Then, we obtain

W̃ (p) = (1 − ṽχ0
r

)−1
ṽ (2.114)

and

W̃ (f ) =
(
1 − W̃ (p)χ0

t

)−1
W̃ (p). (2.115)

Now, the cDFPT to derive the phonon-related term in the low-energy Hamiltonian
is formulated as follows: First, on the basis of the usual DFPT scheme [26–29], the
induced electron density Δρ to the perturbation ΔVion (bare potential) is given by3

Δρ = χ0
(
1 − ṽχ0

)−1

︸ ︷︷ ︸
=χLDA

ΔVion (2.116)

= χ0ΔVSCF, (2.117)

where the change in the self-consistent field potential ΔVSCF (screened potential) is
written as

ΔVSCF = (1 − ṽχ0
)−1

ΔVion. (2.118)

Note Eqs. (2.117) and (2.118) correspond to Eqs. (2.89) and (2.75), respectively.
Since the electron-phonon coupling g is given as the matrix element of the electron
scattering via ΔVSCF, the same decomposition as Eqs. (2.114) and (2.115) holds
for the fully screened electron-phonon interaction; that is, g(f ) = (1 − ṽχ0

)−1
g(b) is

decomposed as

g(p) = (1 − ṽχ0
r

)−1
g(b) (2.119)

and

g(f ) =
(
1 − W̃ (p)χ0

t

)−1
g(p). (2.120)

3Strictly speaking, this expression [Eq. (2.116)] is valid onlywhen the ionic potential Vion is local. In
practice, we utilize the pseudopotential, which has non-local part. In this case, we have to introduce
three-point response functions, however, it does not change the outline presented in this section.
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Therefore, the present cDFPT is formally based on the cRPA-like decomposition,
but the difference is that, in the former, ṽ is used instead of v.

The similar idea applies to the derivation of the phonon frequencies in the low-
energy effective Hamiltonian. In this case, the self-energy is decomposed. One can
show that Eq. (2.106) is rewritten as

ren.C = |g′(b)|2χLDA, (2.121)

where g′(b) = √
2Mω(b)g(b) with the bare phonon frequency ω(b). In this expression,

we omitted the subscripts for simplicity. Then, we define the phonon self-energy in
the DFPT scheme as

Σ =
ren.C

2Mω(b)
= |g(b)|2χLDA (2.122)

This self-energy can be divided into two contributions asΣ = Σt + Σr . Here,Σr =
|g(b)|2χ r

LDA with χ r
LDA = χ0

r

(
1 − ṽχ0

r

)−1
is the phonon self-energy due to the inter-

actions between the r-subspace electrons and the phonons. The interactions between
the t-subspace electrons and the phonons through the partially-screened coupling g(p)

give rise to the self-energy Σt = |g(p)|2χ t
LDA with χ t

LDA = χ0
t

(
1 − W̃ (p)χ0

t

)−1
.4 The

decomposition of Σ into Σt and Σr is achieved by dividing the density-response
contributions to ren.C into the target-target contribution and the others. Then, the
partially-dressed phonon Green’s function D(p) is given by

[D(p)]−1 = [D(b)]−1 − Σr, (2.123)

where D(b) is the bare phonon Green’s function and its pole position gives the bare
phonon frequency ω(b). Similarly, the pole of D(p) gives the effective phonon fre-
quencyω(p) in themodel. If we further considerΣt , the fully-dressed phononGreen’s
function D(f ) is derived as

[D(f )]−1 = [D(p)]−1 − Σt . (2.124)

2.3 Analysis of Low-Energy Hamiltonian

Analyzing the derived effective low-energy Hamiltonians with accurate model-
calculations techniques is of great interest. There exist a variety of methods to take
into account the correlation effects beyond the static mean-field level: the dynamical
mean-field theory (DMFT) [34] and its derivatives such as extended DMFT [35,
36] and cluster extensions of the DMFT [37], auxiliary field quantum Monte Carlo

4See Appendix B for the proof that Σt + Σr = |g(p)|2χ t
LDA + |g(b)|2χ r

LDA is indeed identical to
Σ = |g(b)|2χLDA.
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method [38, 39], the variational Monte Carlo method (VMC) [40–44], the fluc-
tuation exchange approximation (FLEX) [45, 46], exact diagonalization (ED), the
density matrix renormalization group (DMRG) [47, 48], the functional renormal-
ization group (fRG) [49], the path-integral renormalization group (PIRG) [50], the
calculations using the thermal pure quantum (TPQ) states [51, 52], and so on. Each
method has both good and bad points. For example, the ED is the most accurate
method, however, the computational cost grows exponentially as the increase of the
degrees of freedom in the Hamiltonian, which results in serious finite size effects.
The DMFT obtains an accurate description of the local quantum fluctuations since
it takes into account all the local skeleton diagrams. However, it totally neglects the
spatial correlations. Since the momentum differentiation tends to be large (small)
in low- (high-)dimensional systems, the DMFT is considered to become a better
approximation with the increase of the dimension. The DMRG is very powerful in
treating one-dimensional problems, while its application to the systems with higher
dimensions is still limited. Considering these aspects, it is important to choose an
appropriate solver depending on the nature of low-energy Hamiltonian.

In the case of the fcc A3C60 families with the three dimensional electronic struc-
ture, a suitable low-energy Hamiltonian solver would be the DMFT since each site
(=molecule) has large coordination number of 12 and the pairing symmetry of the
superconductivity is s-wave (i.e., a momentum dependence is small). What makes
the DMFT even more powerful in this case is that the DMFT can treat the onsite
Coulomb interaction and the coupling to intramolecular phonon on the same footing.
Furthermore, in order to take account of dynamics involving the off-site Coulomb
interactions, we employ the extended DMFT method, for which we will give a
detailed description in Sect. 2.3.2.

2.3.1 Dynamical Mean-Field Theory

2.3.1.1 Formulation

Before proceeding with the review of the extendedDMFT, we start with the overview
of the conventional DMFT. The basic idea of the DMFT self-consistent equations
was first given by Kuramoto and Watanabe [53] for the periodic Anderson model.
Here, we consider the Hubbard model in the limit of infinite dimensions d = ∞ [54]
to describe the formulation of the DMFT.

The Hamiltonian of the single-orbital Hubbardmodel with only the nearest neigh-
bor hopping t is written as

Ĥ = −t
∑

〈i,j〉

∑

σ

(
ĉ†iσ ĉjσ + ĉ†jσ ĉiσ

)+ U
∑

i

n̂i↑n̂i↓, (2.125)
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where ĉ†iσ (ĉiσ ) creates (annihilates) the electron with the spin σ at site i, 〈i, j〉 denotes
the nearest neighbor pairs, U is the Hubbard interaction, and n̂iσ = ĉ†iσ ĉiσ . Metzner
and Vollhardt [54] showed that, in order to avoid the divergence of the kinetic energy
and keep nontrivial competition between the kinetic and the potential energies even
in the limit of d = ∞, the hopping has to be scaled as t ∼ d− 1

2 . As a consequence of
the scaling, the diagrammatic treatments become drastically simple: The diagrams
with finite contributions are only the local skelton diagrams, which indicates that the
self-energy is site-diagonal and momentum-independent, i.e., Σij(iωn) = Σ(iωn)δij
for any Matsubara frequencies ωn = (2n + 1)πT [55].

Based on these considerations, Georges and Kotliar [56] noticed that the Hubbard
model in infinite dimensions can be mapped onto the Anderson impurity model
embedded with self-consistently determined bath sites (see also the works by, e.g.,
Ohkawa [57, 58] and Jarrell [59]). The single-site action of the impurity problem
with the impurity-site Coulomb repulsion U is written, in the coherent state path
integral formalism [8], as

Simp
[
c∗, c,G−1

0

] = −
∫ β

0
dτdτ ′∑

σ

c∗σ (τ )G−1
0 (τ − τ ′)cσ (τ ′) +

∫ β

0
dτUn↑(τ )n↓(τ ),

(2.126)

where c∗
σ (τ ) and cσ (τ ) are Grassmann variables, c∗ and c denote sets of the

Grassmann variables c∗ = {c∗
↑(τ ), c∗

↓(τ )}, c = {c↑(τ ), c↓(τ )}, β is the inverse tem-
perature, and G0(τ − τ ′) is the “bare” Green’s function obtained by integrating out
the bath sites. They showed that the impurity model gives the exact self-energy for
the Hubbard model in infinite dimensions provided that G0 satisfies the following
self-consistent conditions:

⎧
⎨

⎩
Σ(iωn) = [G0(iωn)

]−1 − [G(iωn)
]−1

, (2.127)
[
G0(iωn)

]−1 =
{
D̃
[
iωn + μ − Σ(iωn)

]}−1 + Σ(iωn). (2.128)

Here,G(iωn) is the Fourier transform of the impurity-site Green’s function calculated
from the action Simp, μ is the chemical potential, and D̃(ζ ) is the Hilbert transform

D̃(ζ ) =
∫ ∞

−∞
dε

D(ε)

ζ − ε
= 1

Nk

∑

k

1

ζ − εk
(2.129)

with the noninteracting density of states of the d = ∞ tight-binding model D(ε),
the eigenenergy of the noninteracting Hamiltonian εk and the number of k points
Nk. Since the single-site Anderson impurity model can be solved by numerically
exact methods, such as the quantumMonte Carlo method, we can simulate the exact
solution for the Hubbard model in infinite dimensions through the mapping.
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2.3.1.2 Mott Transition: DMFT Description

One of the most remarkable successes of the DMFT is the unified description of
the Mott metal-insulator transition [4, 64] in infinite dimensions. Historically, the
Mott transition had been considered to occur due to the opening/closure of the gap
between the upper and lower Hubbard bands (Hubbard’s scenario [65]), or due to the
divergence of the quasiparticle effective mass (Brinkman-Rice’s scenario [66]). The
DMFT calculation suggested that, at zero temperature T = 0, the transition from a
paramagnetic metal to a paramagnetic insulator is characterized by the continuous
disappearance of the quasiparticle weight Z [60] (see Fig. 2.2), which is consistent
with Brinkman-Rice picture [66]. In the metal side, there exists a low-energy coher-
ence peak understood as the Kondo resonance peak and its weight (=Z) gradually
decreases as U increases. The rest of the spectral weight (=1 − Z) is transferred to
the incoherent part and form the upper and lower Hubbard bands (Hubbard picture).
Thus the spectral functions have three-peak structure (Fig. 2.2,U < Uc). In the insu-
lating side, the coherence peak disappears and the spectrum consists of two broad
peaks of the upper and lower Hubbard bands (Fig. 2.2, U > Uc). While the metallic

Fig. 2.2 DMFT + NRG results for spectral functions near Mott transition at T = 0 for half-filled
single-orbitalHubbardmodel. The calculationswere done for both theBethe andhypercubic lattices.

Effective bandwidthW = 4
[∫

dεD(ε)ε2
] 1
2 was set to beW = 4 for both cases. TheMott transition

occurs at Uc = 1.47W and Uc = 1.45W for the Bethe and the hypercubic lattices, respectively.
Reprinted with permission from Bulla, Ref. [60]. Copyright 1999 by the American Physical Society
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Fig. 2.3 DMFT+ED results for phase diagram of half-filled single-orbital Hubbardmodel defined
on infinite-dimensional Bethe lattice. PM and PI denote the paramagnetic metal and the paramag-
netic insulator, respectively. Symmetry-broken phases are not considered. The bandwidth W is set
to be W = 2. The squares (�) and crosses (+) indicate the boundaries of the coexistence region
Uc1(T),Uc2(T), and the first-order transition line Uc(T), respectively. Above the critical temper-
ature T∗, the metal-insulator transition becomes crossover. The crossover region is depicted as
dashed lines between × symbols. At T = 0, the results obtained by the projective self-consistent
approach [61] (circle, located at U ∼ 2.9) and the DMFT + NRG [60, 62] (diamonds) are shown.
Reprinted with permission from Tong et al., Ref. [63]. Copyright 2001 by the American Physical
Society

state is stable below Uc (Uc ∼ 1.5W ) at T = 0,5 the metastable insulating solution
exists in the finite region Uc1 < U < Uc (Uc1 ∼ 1.2W ), i.e., the metallic and insula-
tion solutions coexist in the range Uc1 < U < Uc. The coexistence is also observed
at finite temperature in the range Uc1(T) < U < Uc2(T) (see Fig. 2.3 for the T − U
phase diagram [63]). The region Uc2(T) − Uc1(T) gradually shrinks as the increase
of the temperature and eventually Uc1(T) and Uc2(T) merge at the critical end point.
The metal-insulator transition becomes crossover above the critical temperature T∗.
Below T∗, theMott transition is of the first order. The first order transition lineUc(T)

is located in the range Uc1(T) < U < Uc2(T) at 0 < T < T∗ and it finally coincides
with Uc2 at T = 0, i.e., Uc2(T = 0) = Uc(T = 0) [63].

2.3.1.3 Flow of Calculation

The above-described DMFT procedure in the infinite dimensions can also be applied
to the Hubbard model in finite dimensions: One just replaces the density of states of
the infinite dimensional lattice to that of finite dimensional systemwhich one wish to

5If we allow the long range magnetic order, the antiferromagnetically ordered phase occupies the
wide region in the T -U phase diagram at T = 0.
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analyze. In this case, the DMFT becomes an approximation in which the self-energy
is assumed to be local. Furthermore, the extension to themulti-orbital Hubbardmodel
is also straightforward. Below, we describe the DMFT self-consistent scheme for the
multi-orbital Hubbard model in finite dimensions (Bold symbols denote matrices
with respect to orbital indices).

1. Prepare an initial self-energy �(iωn).
2. Calculate the onsite Green’s function using �(iωn)

Gloc(iωn) = 1

Nk

∑

k

[
(iωn + μ)1 − H0(k) − �(iωn)

]−1
. (2.130)

Here, Nk is the number of k point in the Brillouin zone, andH0(k) is the matrix
of the one-body part of the Hamiltonian.

3. Calculate G0(iωn) via G0(iωn) = [G−1
loc(iωn) + �(iωn)

]−1
.

4. Calculate the Green’s function of the impurity problemGimp(iωn) from the action

Simp
[
c∗, c,G−1

0

] = −
∫ β

0
dτdτ ′∑

lmσ

c∗
lσ (τ )

[G−1
0 (τ − τ ′)

]
lmcmσ (τ ′)

+
∫ β

0
dτ
∑

lmno

∑

σσ ′
Ulmnoc

∗
lσ (τ )c∗

mσ ′(τ )cnσ ′(τ )coσ (τ ). (2.131)

5. Calculate a new self-energy �new(iωn) via �new(iωn) = G−1
0 (iωn) − G−1

imp(iωn).
6. Go back to the step 2 with �(iωn) = �new(iωn) until the new self-energy

�new(iωn) converges to the old one, �(iωn). Note that the equality Gloc(iωn) =
Gimp(iωn) holds when the convergence is achieved.

2.3.2 Extended Dynamical Mean-Field Theory

2.3.2.1 Formulation

The extended DMFT takes into account the effects of the dynamical screening of
the non-local interactions beyond the original DMFT [35, 36, 67–70]. In order to
understand the essence of the formulation of the extended DMFT, let us consider the
single-orbital extended Hubbard model for simplicity. The extension to the multi-
orbital case is again straightforward. The grand canonical Hamiltonian is given by

Ĥ = −
∑

ijσ

tij ĉ
†
iσ ĉjσ +

∑

i

Un̂i↑n̂i↓ + 1

2

∑

ij

VijN̂iN̂j − μ
∑

i

N̂i. (2.132)
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Here, Vij denotes the non-local Coulomb interaction and N̂i = n̂i↑ + n̂ı↓. By defining
ˆ̃O = Ô − 〈Ô〉, the Hamiltonian is rewritten, except a trivial constant shift, as

Ĥ = −
∑

ijσ

tij ĉ
†
iσ ĉjσ +

∑

i

U ˆ̃ni↑ ˆ̃ni↓ + 1

2

∑

ij

Vij
ˆ̃Ni

ˆ̃Nj −
∑

i

μ̃iσ N̂i, (2.133)

where μ̃iσ = μ − U〈n̂iσ̄ 〉 −∑j Vij〈N̂i〉 is a shifted effective chemical potential. If
we assume a half-filled homogeneous system without spin polarization, i.e., 〈ni↑〉 =
〈ni↓〉 = 1/2 for every site, the Hamiltonian is further recast into

Ĥ = −
∑

ijσ

tij ĉ
†
iσ ĉjσ +

∑

i

U ˆ̃ni↑ ˆ̃ni↓ + 1

2

∑

ij

Vij
ˆ̃Ni

ˆ̃Nj − μ̃
∑

i

N̂i, (2.134)

with μ̃ = μ − U/2 −∑j V0j. The action of the lattice problem in the coherent-state
path integral formalism [8] is given by

S
[
c∗
i , ci

] =
∫ β

0
dτ

{
∑

iσ

c∗
iσ (τ )

[
∂

∂τ
− μ̃

]
ciσ (τ ) + H[c∗

i , ci]
}

(2.135)

=
∫ β

0
dτ

{
−
∑

ijσ

c∗
iσ (τ )

[
G̃−1
0

]
ijcjσ (τ ) + U

∑

i

ñi↑(τ )ñi↓(τ ) + 1

2

∑

ij

VijÑi(τ )Ñj(τ )

}
,

(2.136)

where c∗
iσ and ciσ denote theGrassmann variables corresponding to the creation oper-

ator ĉ†iσ and the annihilation operator ĉiσ , respectively, c∗
i = {c∗

iσ (τ )
}
, ci = {ciσ (τ )

}
,[

G̃−1
0

]
ij = (−∂τ + μ̃) δij + tij, ñiσ = c∗

iσ ciσ − 1/2, and Ñi = ñi↑ + ñi↓. From the

action, the partition function Z = Tre−βĤ is calculated as

Z =
∫ ∏

iσ

D
[
c∗
iσ (τ )

]
D
[
ciσ (τ )

]
e−S[c∗

i , ci]. (2.137)

Now, we apply the Hubbard-Stratonovich transformation [71, 72] to decouple the
nonlocal interaction part6

6There is another formulation of the extended DMFT, in which the Hubbard-Stratonovich transfor-
mation is applied to both the local and non-local interactions [69, 70].
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1

2

∑

ij

VijÑi(τ )Ñj(τ ) = 1

2

∑

ij

Ñi(τ )[V − λI]ijÑj(τ ) + 1

2
λÑi(τ )Ñi(τ )

= −1

2

∑

ij

Ñi(τ )[λI − V ]ijÑj(τ ) + λ ñi↑(τ )ñi↓(τ ) + λ

4

(2.138)

where we define a matrix V with the elements [V ]ij = Vij and introduce a shift −λI
(λ>0) with the identity matrix I to make the matrix λI − V positive definite. The
Hubbard-Stratonovich transformation is based on the following identity:

exp

⎛

⎝1

2

M∑

i,j=1

xiAijxj

⎞

⎠ =
∫ ∞

−∞
dy1 . . . dyM√
(2π)MdetA

exp

⎛

⎝−1

2

M∑

i,j=1

yi
[
A−1
]
ijyj ∓

M∑

i=1

xiyi

⎞

⎠

(2.139)

with a real symmetric positive-definite M × M matrix A and real variables {xi, yi}.
Hereafter, we will choose − sign for ∓∑M

i=1 xiyi term. By identifying A with V ′ ≡
λI − V , xi with Ñi(τ ), and yi with an auxiliary boson field φ′

i(τ ) at each time slice,7

the partition function is recast, with neglecting a trivial constant factor coming from
λ/4 term in Eq. (2.138), as

Z =
∫ ∏

iσ

D
[
c∗
iσ (τ )

]
D
[
ciσ (τ )

]
D
[
φ′
i(τ )
]
e−S′[c∗

i , ci, φ′
i ] (2.140)

where the new action S′ is given by

S′[c∗
i , ci, φ

′
i

] =
∫ β

0
dτ

{
−
∑

ijσ

c∗
iσ (τ )[G̃−1

0 ]ijcjσ (τ ) + (U + λ)
∑

i

ñi↑(τ )ñi↓(τ )

+
∑

i

φ′
i(τ )Ñi(τ ) + 1

2

∑

ij

φ′
i(τ )[V ′−1]ijφ′

j(τ )

}
(2.141)

with φ′
i denoting a set of the auxiliary boson fields φ′

i = {φ′
i(τ )
}
. The impurity site

action can be constructed by taking one site (0th site) and integrating out all the
other sites in Eq. (2.141) and taking the limit of d = ∞. In the limit of d → ∞,
the hopping term should be scaled as tij ∼ d−||i−j||/2 with ||i−j || being a “distance”
between site i and site j, which takes some integer number (e.g., if sites i and j are
the nearest neighbor, ||i−j || = 1). As for the Coulomb interaction part, to avoid
the divergence of the Hartree contribution from Vij terms, Vij has to be scaled as

7In the coherent-state path integral formalism, the coherent states, the eigenstates of the annihilation
operators, are used as the basis. Since the eigenvalues of the boson operators, which are constructed
to be Hermitian, are real numbers, we can treat the operators as if they were just real numbers in
this formalism.
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Vij ∼ d−||i−j|| [55]. In this case, it was shown that, among all the diagrams involving
the non-local Coulomb interactions, only the Hartree-type diagrams survive at d =
∞, i.e., the off-site Coulomb interactions become static and trivial. However, if we
only consider the dynamical part of the density (the difference from the thermal
average) and the homogeneous systems, we can introduce another scaling, namely
Vij ∼ d−||i−j||/2 [36]. The new scaling, which is employed in the extended DMFT,
allows us to take into account the dynamical screening effects coming from the
non-local Coulomb interactions by absorbing the static Hartree contributions into
the chemical potential. Then, the impurity model action within the extended DMFT
formalism is given by (we omit the site index 0 for simplicity)

S′
imp

[
c∗, c, φ′,G−1

0 ,D′
0
−1] = −

∫ β

0
dτdτ ′∑

σ

c∗
σ (τ )G−1

0 (τ − τ ′)cσ (τ ′)

+
∫ β

0
dτ (U + λ)ñ↑(τ )ñ↓(τ ) +

∫ β

0
dτ φ′(τ )Ñ(τ )

−1

2

∫ β

0
dτdτ ′φ′(τ )D′

0
−1

(τ − τ ′)φ′(τ ′) (2.142)

with self-consistent conditions:
⎧
⎪⎪⎨

⎪⎪⎩

Σ(iωn) = G−1
0 (iωn) − G−1(iωn), (2.143)

G−1
0 (iωn) =

{
1

Nk

∑

k

1

iωn + μ̃ − εk − Σ(iωn)

}−1

+ Σ(iωn) (2.144)

and
⎧
⎪⎪⎨

⎪⎪⎩

Π ′(iνn) = D′
0
−1

(iνn) − D′−1
(iνn), (2.145)

D′
0
−1

(iνn) =
{

− 1

Nk

∑

k

1

V ′
k
−1 + Π ′(iνn)

}−1

+ Π ′(iνn). (2.146)

Here, G(iωn) and D′(iνn) are the Fourier transform of the impurity site Green’s
function of the electrons G(τ − τ ′)=−〈T ĉ(τ )ĉ†(τ ′)〉S′

imp
and the auxiliary bosons

D′(τ − τ ′)=−〈T φ̂′(τ )φ̂′(τ ′)〉S′
imp
, respectively. εk and V ′

k are the Fourier transform
of −tij and λ − Vij, respectively. In this formulation, the effects of the off-site inter-
actions are partially taken into account through the processes which start and end at
the site 0. However, the processes which end at a site different from the initial site
are neglected. Then, the self-energy obtained by the extended DMFT calculation is
local as in the case of the DMFT.

In the following, we show that λ, which was originally introduced to decouple
the non-local Coulomb interaction terms, is not necessary any more. Performing the
integral over the bosonic field in the equation (we assume that the matrix (−D′

0
−1

)

is positive definite, for which we will give a proof below)
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Zimp =
∫ ∏

σ

D
[
c∗
σ (τ )

]
D
[
cσ (τ )

]
D
[
φ′(τ )

]
exp
(
−S′

imp

[
c∗, c, φ′,G−1

0 ,D′
0
−1])

,

(2.147)

one gets

Zimp =
{∫ ∏

σ

D
[
c∗
σ (τ )

]
D
[
cσ (τ )

]
exp
(
−S′

imp

[
c∗, c,G−1

0 ,D′
0

])}× (const.)

(2.148)

with

S′
imp

[
c∗, c,G−1

0 ,D′
0

] = −
∫ β

0
dτdτ ′∑

σ

c∗
σ (τ )G−1

0 (τ − τ ′)cσ (τ ′) +
∫ β

0
dτ (U + λ)ñ↑(τ )ñ↓(τ )

+ 1

2

∫ β

0
dτdτ ′Ñ(τ )D′

0(τ − τ ′)Ñ(τ ′). (2.149)

Here, we note that the eigenvalues of the D′
0 matrix

{
D′

0(iνn)
}
satisfy the condition

D′
0(iνn) < −λ, which can be shown as follows: D′

0(iνn) calculated via Eq. (2.146)
satisfies the inequality D′

0(iνn) < −λ when − 1
max{V ′

k} < Π ′(iνn) < 0. Generally, the
auxiliary-boson self-energy Π ′(iνn) in Eqs. (2.145) and (2.146) is negative. Within
the extended DMFT, |Π ′(iνn)| > 1

max{V ′
k} is the criteria for instability towards charge

ordering. Therefore, if the non-local Coulomb interaction is not strong enough to
give the instability, we can expect − 1

max{V ′
k} < Π ′(iνn) < 0 and thus D′

0(iνn) < −λ.

This fact allows us to introduce a new Weiss function D0(iνn) = D′
0(iνn) + λ. We

rewrite Eq. (2.149) with D0 with neglecting a trivial constant shift:

Simp
[
c∗, c,G−1

0 ,D0
] = −

∫ β

0
dτdτ ′∑

σ

c∗σ (τ )G−1
0 (τ − τ ′)cσ (τ ′) +

∫ β

0
dτUñ↑(τ )ñ↓(τ )

+ 1

2

∫ β

0
dτdτ ′Ñ(τ )D0(τ − τ ′)Ñ(τ ′). (2.150)

Since the (−D0) matrix is positive-definite, we can apply the Hubbard-Stratonovich
decomposition [71, 72] to 1

2

∫ β

0 dτdτ ′Ñ(τ )D0(τ − τ ′)Ñ(τ ′) term, which yields the
modified impurity-site action:

Simp
[
c∗, c, φ,G−1

0 ,D−1
0

] = −
∫ β

0
dτdτ ′∑

σ

c∗
σ (τ )G−1

0 (τ − τ ′)cσ (τ ′) +
∫ β

0
dτUñ↑(τ )ñ↓(τ )

+
∫ β

0
dτ φ(τ)Ñ(τ ) − 1

2

∫ β

0
dτdτ ′φ(τ)D−1

0 (τ − τ ′)φ(τ ′),

(2.151)
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where we introduce a set of new auxiliary boson fields {φ(τ)}. The old and new
actions give the same electronic self-energy and Green’s function, since the actions
after the integral over the boson fields agree with each other except a trivial constant
shift. On the other hand, the quantities related to the auxiliary boson fields, which
are irrelevant to the physical observables, may change [67]. The new self-consistent
conditions for the bosonic part read

⎧
⎪⎪⎨

⎪⎪⎩

Π(iνn) = D−1
0 (iνn) − D−1(iνn), (2.152)

D−1
0 (iνn) =

{
1

Nk

∑

k

1

Vk
−1 − Π(iνn)

}−1

+ Π(iνn). (2.153)

Here, D(iνn) is the impurity site Green’s function of the auxiliary bosons on the
Matsubara axis, and Vk is the Fourier transform of Vij. The self-consistent equations
for the electrons [Eqs. (2.145) and (2.146)] are unchanged. Note that, now the λ

parameter completely disappears from the formulas of the extended DMFT.
Finally, we briefly comment on how effective Coulomb interaction between the

impurity-site electrons is modified due to the presence of non-local Coulomb inter-
actions. The expression in Eq. (2.150) allows us to interpret U + D0(iνn) as the
effective Coulomb interaction between the impurity-site electrons. The Weiss func-
tion D0(iνn) generally takes negative value. In high-frequency limit, it approaches
zero sinceΠ(iνn) → 0 as |νn| → ∞. Itmeans that the non-localCoulomb interaction
brings about dynamical screening of the onsite Coulomb interaction: the electrons
feel a screened Coulomb interaction at low-frequencies, while they feel the bare
Coulomb interaction (=U) in the high-frequency limit.

2.3.2.2 Flow of Extended DMFT Calculation

Here, we describe the self-consistent procedure of the extended DMFT in the case
of multi-orbital Hubbard model with the Hamiltonian,

Ĥ = −
∑

ijlmσ

til,jm ĉ
σ†
il ĉ

σ

jm

︸ ︷︷ ︸
=Ĥ0

+
∑

iσσ ′

∑

lmno

Ulmnoĉ
σ†
il ĉ

σ ′†
im ĉσ ′

in ĉ
σ

io + 1

2

∑

ij

Vij
ˆ̃Ni

ˆ̃Nj − μ
∑

i

N̂i,

(2.154)

where l,m, n, and o denote orbital indices, N̂ i =∑l n̂il =∑lσ ĉ
σ†
il ĉ

σ

il . Since the
orbital dependence of the off-site Coulomb interactions is usually small, we ignore it.
Then, the auxiliary bosonwill couple to the total density of each site. In the following,
the bold symbols denote matrices with respect to orbital indices.

1. Prepare initial self-energies, �(iωn) and Π(iνn).
2. Calculate the onsite Green’s function, Gloc(iωn) and Dloc(iνn), via
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Gloc(iωn) = 1

Nk

∑

k

[(
iωn + μ

)
1 − H0(k) − �(iωn)

]−1
(2.155)

with theH0(k) is the Fourier transform of the one-body part of the Hamiltonian
and

Dloc(iνn) = 1

Nq

∑

q

1

V−1
q − Π(iνn)

, (2.156)

respectively.
3. Compute the Weiss functions, G0(iωn) and D0(iνn), via

G−1
0 (iωn) = G−1

loc(iωn) + �(iωn) (2.157)

and

D−1
0 (iνn) = D−1

loc(iνn) + Π(iνn), (2.158)

respectively.
4. Solve the impurity problem with the action

Simp
[
c∗, c,G−1

0 ,D0
] = −

∫ β

0
dτdτ ′∑

lmσ

c∗
lσ (τ )

[G−1
0 (τ − τ ′)

]
lmcmσ (τ ′)

+
∫ β

0
dτ
∑

lmno

∑

σσ ′
Ulmnoc

∗
lσ (τ )c∗

mσ ′(τ )cnσ ′(τ )coσ (τ )

+ 1

2

∫ β

0
dτdτ ′Ñ(τ )D0(τ − τ ′)Ñ(τ ′) (2.159)

and obtain Gimp(iωn). Dimp(iνn) is given by

Dimp(iνn) = D0(iνn) + D0(iνn)χimp(iνn)D0(iνn), (2.160)

where χimp(iνn) is the Fourier transform of the impurity-site charge-charge cor-

relation function χimp(τ ) = −〈T ˆ̃N(τ ) ˆ̃N(0)〉Simp .
5. Calculate new self-energies �new(iωn) and Πnew(iνn) via

�new(iωn) = G−1
0 (iωn) − G−1

imp(iωn) (2.161)

and

Πnew(iνn) = D−1
0 (iνn) − D−1

imp(iνn), (2.162)

respectively.
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6. Iterate the procedures 2–5 until the self-energies are converged. When the con-
vergence is achieved, the lattice onsite Green’s functions and impurity site
Green’s functions become identical, i.e.,Gloc(iωn) = Gimp(iωn), andDloc(iνn) =
Dimp(iνn).

2.3.3 Impurity Solver: Continuous-Time Quantum Monte
Carlo Method

To perform the extendedDMFT calculation, we need a solver for the impuritymodel.
In the present study, we employ the continuous-time quantum Monte Carlo (CT-
QMC) method [73]. It is free from the discretization error which exists in the Hirsch-
Fye algorithm [74] and enables a numerically exact analysis. There are several types
of formulation of CT-QMC to study the impurity model. The CT-INT [75, 76] and
CT-AUX [77] algorithms are based on the weak-coupling expansion of the partition
function. On the other hand, the CT-HYB [78] method relies on the strong coupling
expansion. Thus, the computational cost of the CT-INT or the CT-AUX (CT-HYB)
becomes more expensive as the increase (decrease) of correlation strength [73]. In
the case of the alkali-doped fullerides, which are in the strongly correlated regime,
we find that the CT-HYB method is much more efficient than the CT-INT method.
Therefore we adopt the CT-HYB method, whose details are given in the following.

2.3.3.1 Multi-orbital Impurity Model with Phonon Degrees of Freedom

The Hamiltonian of the spin-unpolarized multi-orbital Anderson impurity model
with SU(2)-symmetric Coulomb interactions is given by

Ĥ = Ĥbath + Ĥloc + Ĥhyb. (2.163)

Here, Ĥbath describes non-interacting bath sites

Ĥbath =
∑

pσ

εpâ
†
pσ âpσ , (2.164)

where εp is the bath site energy, and â†pσ and âpσ are the creation and annihilation
operators for the pth bath-site electronwith the spin σ , respectively. Ĥloc is composed
of the interaction terms and the one-body part (impurity-site energy and chemical
potential terms)



70 2 Methods: Ab Initio Downfolding and Model-Calculation Techniques

Ĥloc =
∑

l

U

(
n̂l↑ − 1

2

)(
n̂l↓ − 1

2

)
+
∑

l<m,σ

U ′
(
n̂lσ − 1

2

)(
n̂mσ − 1

2

)

+
∑

l<m,σ

(
U ′ − JH

) (
n̂lσ − 1

2

)(
n̂mσ − 1

2

)
+
∑

l 
=m

JH ĉ
†
l↑ĉm↑ĉ

†
m↓ĉl↓

+
∑

l 
=m

JH ĉ
†
l↑ĉm↑ĉ

†
l↓ĉm↓ +

∑

lσ

Elĉ
†
lσ ĉlσ − μN̂, (2.165)

whereU,U ′, and JH are the intraorbital Coulomb repulsion, the interorbital Coulomb
repulsion, and the Hund’s coupling, respectively. El is the impurity-site level of l-th
orbital and N̂ =∑lσ ĉ

†
lσ ĉlσ . If the orbitals are degenerate as in the case of alkali-

doped fullerides, one can set E1=E2=· · ·=ENorb =0 with Norb being the number of
electrons, since the impurity site energy can be absorbed into the chemical potential
term. Thus, in the arguments below, we omit

∑
lσEl ĉ

†
lσ ĉlσ term. Ĥhyb hybridizes the

bath-site and the impurity-site electrons

Ĥhyb = Ĥ′
hyb + Ĥ′†

hyb, (2.166)

where

Ĥ′
hyb =

∑

plσ

Vplâ
†
pσ ĉlσ (2.167)

with the amplitude of the hybridization Vpl. GivenHbath andHhyb, the hybridization
function matrix �(iωn) is calculated as

[
�(iωn)

]
lm = Γlm(iωn) =

∑

p

V ∗
plVpm

iωn − εp
. (2.168)

�(iωn) is related with the Weiss function G0(iωn) as

G0(iωn) = [(iωn + μ)1 − �(iωn)
]−1

, (2.169)

or

�(iωn) = (iωn + μ)1 − G−1
0 (iωn). (2.170)

The bath parameters Vpl and εp are determined self-consistently so as to reproduce
G0 at each self-consistent loop.

We furthermore take into account “phonon” degrees of freedom. In this case, the
“phonons” denote both the real phonons and the auxiliary bosons introduced in the
extendedDMFT.Then Ĥloc acquires additional terms, namely, the electron-“phonon”
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interactions and “phonon” one-body term8

Ĥphonon
loc =

∑

lν

gν
l

(
n̂l↑ + n̂l↓ − 1

)(
b̂†ν + b̂ν

) +
∑

l<m,σν

λν
lm

(
ĉ†lσ ĉmσ + ĉ†mσ ĉlσ

)
(B̂†

ν + B̂ν)

+
∑

ν

ων b̂
†
ν b̂ν +

∑

ν

Ων B̂
†
ν B̂ν, (2.171)

where b̂†ν (b̂ν) creates (annihilates) “phonons” which couple to the density of the
orbitals, and B̂†

ν (B̂ν) creates (annihilates) phonons which give non-density-type
couplings.9 As we will show in the following, the density-type electron-“phonon”
couplings can be efficiently treated [79, 80] by employing the Lang-Firsov trans-
formation [81]. However, when we employ this efficient method for the density-
type electron-“phonon” coupling term, the non-density-type electron-phonon cou-
pling and the non-density-type Coulomb interactions, such as the spin-flip and pair-
hopping terms, have to be treated via perturbation expansion [82]. This is because the
Lang-Firsov transformation can be usefully applied only when the local Hamiltonian
consists of density-density-type Coulomb interactions and density-type electron-
phonon couplings. In the alkali-doped fullerides, the magnitudes of the positive
exchange interaction (Coulomb interaction) and the negative exchange interaction
mediated by phonons are comparable. We found that, in such a situation, the pertur-
bative expansion of the both interactions gives a severe negative sign problem, for
which we have not come up with a solution. Since the alkali-doped fullerides have
rather high phonon frequencies up to∼0.2 eV, as a starting point, we take into account
the phonons which give non-density-type couplings in the anti-adiabatic limit, i.e.,
Ων → ∞with keeping the ratio (λν

lm)2/Ων fixed. It results in instantaneous phonon-
mediated interactions (Jph)lm = −∑ν 2(λ

ν
lm)2/Ων , which do not cause the serious

negative sign problem. The investigation of the effect coming from the finiteness
of the phonon frequency remains as a future issue (see Sect. 5.2). The resulting
Hamiltonian reads

Ĥphonon
loc =

∑

lν

gν
l

(
n̂l↑ + n̂l↓ − 1

)(
b̂†ν + b̂ν

)+
∑

ν

ων b̂
†
ν b̂ν −

∑

l<m,σ

Jphn̂lσ n̂mσ

+
∑

l 
=m

Jph ĉ
†
l↑ĉm↑ĉ

†
m↓ĉl↓ +

∑

l 
=m

Jph ĉ
†
l↑ĉm↑ĉ

†
l↓ĉm↓. (2.172)

8Since we consider the low-energy Hamiltonian, the Coulomb interaction in Eq. (2.165) and
the electron-phonon couplings in Eq. (2.171) should be partially screened quantities. Then, they
have some frequency dependence reflecting the frequency dependence of the polarization [see
Eqs. (2.114) and (2.119)]. In this section we assume them to be static since we expect this assump-
tion is a good approximation in the case of the alkali-doped fullerides (see Appendix in Chap. 3.).
9The non-local Coulomb interactions with the form VijN̂iN̂j only give the density-type coupling.

Therefore, B̂†
ν and B̂ν can be identified with the real-phonon operators.

http://dx.doi.org/10.1007/978-981-10-1442-0_5
http://dx.doi.org/10.1007/978-981-10-1442-0_3
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Here, we assume that Jph has no orbital-dependence, which holds for the fcc A3C60

systems.With the electron contribution in Eq. (2.165) and the phonon contribution in
Eq. (2.172), the local Hamiltonian to be solved by the quantumMonte Carlo method
is given by

Ĥloc = Ĥ0
loc + Ĥ′

loc, (2.173)

where Ĥ0
loc is composed of the density-density type Coulomb interactions, the

density-type electron-“phonon” coupling, the “phonon”one-bodypart, and the chem-
ical potential term

Ĥ0
loc =

∑

l

U

(
n̂l↑ − 1

2

)(
n̂l↓ − 1

2

)
+
∑

l<m,σ

U ′
(
n̂lσ − 1

2

)(
n̂mσ − 1

2

)

+
∑

l<m,σ

(
U ′ − Jeff

) (
n̂lσ − 1

2

)(
n̂mσ − 1

2

)
+
∑

lν

gν
l

(
n̂l↑ + n̂l↓ − 1

)(
b̂†ν + b̂ν

)

+
∑

ν

ων b̂
†
ν b̂ν − μN̂ (2.174)

with Jeff ≡ JH + Jph, and Ĥ′
loc consists of the spin-flip term Ĥs.f.

loc and the pair-hopping
term Ĥp.h.

loc

Ĥ′
loc = Ĥs.f.

loc + Ĥp.h.
loc =

∑

l 
=m

Jeff ĉ
†
l↑ĉm↑ĉ

†
m↓ĉl↓︸ ︷︷ ︸

=
[
Ôs.f.

]
lm

+
∑

l 
=m

Jeff ĉ
†
l↑ĉm↑ĉ

†
l↓ĉm↓︸ ︷︷ ︸

=
[
Ôp.h.

]
lm

. (2.175)

Here, the magnitudes of the spin-flip and pair-hopping interactions are the same.
This equality always holds within the present model-derivation techniques treating
only the charge response function. When we consider the spin and orbital degrees
of freedom explicitly in the downfolding procedure, the values for the spin-flip and
the pair-hopping interactions can be slightly different from each other, which might
affect the superconducting instability at a quantitative level. It would be interesting
to formulate a new downfolding scheme in this direction (see also Sect. 5.2).

2.3.3.2 Strong-Coupling Expansion of Partition Function

The CT-HYB relies on the perturbation expansion of Ĥhyb.Whenwe employ the effi-
cient method to treat the density-type electron-“phonon” coupling, we also perform
the perturbation expansion of Ĥ′

loc. Now, we define the unperturbed Hamiltonian Ĥ0

as Ĥ0 = Ĥ0
loc + Ĥbath. Then, the perturbation expansion of Ĥhyb and Ĥ′

loc leads to
the following expression for the partition function:

http://dx.doi.org/10.1007/978-981-10-1442-0_5
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Z =
∞∑

kh=0

∞∑

ks=0

∞∑

kp=0

(−Jeff )
ks+kp

∫ β

0
dτ1 · · ·

∫ β

τkh−1

dτkh

∫ β

0
dτ ′

1 · · ·
∫ β

τ ′
kh−1

dτ ′
kh

∫ β

0
dτ ′′

1 · · ·
∫ β

τ ′′
ks−1

dτ ′′
ks

×
∫ β

0
dτ ′′′

1 · · ·
∫ β

τ ′′′
kp−1

dτ ′′′
kp

Tr
[
T e−βĤ0 Ĥ′†

hyb(τkh )Ĥ
′
hyb(τ

′
kh

) · · · Ĥ′†
hyb(τ1)Ĥ

′
hyb(τ

′
1)

× Ôs.f.(τ
′′
ks

) · · · Ôs.f.(τ
′′
1 ) Ôp.h.(τ

′′′
kp

) · · · Ôp.h.(τ
′′′
1 )
]

=
∞∑

kh=0

∞∑

ks=0

∞∑

kp=0

(−Jeff )
ks+kp

∫ β

0
dτ1 · · ·

∫ β

τkh−1

dτkh

∫ β

0
dτ ′

1 · · ·
∫ β

τ ′
kh−1

dτ ′
kh

∫ β

0
dτ ′′

1 · · ·
∫ β

τ ′′
ks−1

dτ ′′
ks

×
∫ β

0
dτ ′′′

1 · · ·
∫ β

τ ′′′
kp−1

dτ ′′′
kp

∑

p1,p
′
1,...,pkh ,p′

kh

∑

l1,l
′
1,...,lkh ,l′kh

∑

σ1,...,σkh

∑

l′′1 ,...,l′′ks

∑

m′′
1 ,...,m′′

ks

∑

l′′′1 ,...,l′′′kp

∑

m′′′
1 ,...,m′′′

kp

× V ∗
p1l1

Vp′
1l

′
1

· · · V ∗
pkh lkh

Vp′
kh
l′kh

Tra
[
T e−βĤbath âpkhσkh

(τkh )â
†
p′
kh

σkh
(τ ′
kh

) · · · âp1σ1(τ1)â†p′
1σ1

(τ ′
1)
]

× TrbTrc
[
T e−βĤ0

loc ĉ
†
lkhσkh

(τkh )ĉl′khσkh
(τ ′
kh

) · · · ĉ†l1σ1(τ1)ĉl′1σ1(τ
′
1)
[
Ôs.f.

]
l′′ksm

′′
ks

(τ ′′
ks

) · · ·

× [
Ôs.f.

]
l′′1m′′

1
(τ ′′
1 )
[
Ôp.h.

]
l′′′kpm

′′′
kp

(τ ′′′
kp

) · · · [Ôp.h.
]
l′′′1 m′′′

1
(τ ′′′
1 )
]
, (2.176)

wherewe have defined the trace over the bath-site electronic, impurity-site electronic,
and impurity-site bosonic degrees of freedom as Tra, Trc, and Trb, respectively. To
get non-zero contribution to Z , the orders of the expansion in terms of Ĥ′†

hyb and Ĥ′
hyb

have to be the same, thus we only consider such cases in Eq. (2.176). Since bath-site
electrons are noninteracting, we can easily perform the trace over bath-site degrees
of freedom Tra, whose result is

1

Zbath

{ ∑

p1,p′
1,...,pkσ ,p′

kσ

V ∗
p1l1Vp′

1l
′
1
· · · V ∗

pkσ lkσ
Vp′

kσ
l′kσ Tra

[
T e−βĤbath

× âpkσ σ (τkσ
)â†p′

kσ
σ
(τ ′

kσ
) · · · âp1σ (τ1)â

†
p′
1σ

(τ ′
1)
] }

= detA(σ )
[
Cσ
hyb(kσ )

]
(2.177)

for σ =↑,↓. Here, we have defined a configuration of the expansion in powers of
Ĥhyb as

Cσ
hyb(kσ ) = {(l1, l′1, τ1, τ ′

1), (l2, l
′
2, τ2, τ

′
2), . . . , (lkσ

, l′kσ
, τkσ

, τ ′
kσ

)
}
. (2.178)

Zbath is the bath-site partition function

Zbath = Trae
−βĤbath =

∏

σ

∏

p

(1 + e−βεp), (2.179)
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andA(σ )
[
Cσ
hyb(kσ )

]
is a kσ × kσ matrixwith elementsA(σ )

ij

[
Cσ
hyb(kσ )

] = Γli l′j (τi − τ ′
j ):

A(σ )
[
Cσ
hyb(kσ )

] =

⎛

⎜⎜⎜⎝

Γl1l′1(τ1 − τ ′
1) Γl1l′2(τ1 − τ ′

2) · · · Γl1l′kσ (τ1 − τ ′
kσ

)

Γl2l′1(τ2 − τ ′
1) Γl2l′2(τ2 − τ ′

2) · · · Γl2l′kσ (τ2 − τ ′
kσ

)

...
...

. . .
...

Γlkσ l
′
1
(τkσ

− τ ′
1) Γlkσ l

′
2
(τkσ

− τ ′
2) · · · Γlkσ l

′
kσ

(τkσ
− τ ′

kσ
)

⎞

⎟⎟⎟⎠ .

(2.180)

Furthermore, if we consider a solution where the orbitals are degenerate, the Green’s
function becomes diagonal with respect to the orbitals and the orbital dependence
vanishes, i.e.,

[
G(iωn)

]
ij = G(iωn)δij. Similarly, the off-diagonal elements and the

orbital dependence of other quantities such as the self-energy �(iωn), the Weiss
function G0, and the hybridization function �(iωn) vanish. Then the A(σ )

[
Cσ
hyb(kσ )

]

matrix becomes block-diagonal with respect to orbital indices. In this case, the par-
tition function in Eq. (2.176) is simplified to

Z = Zbath

⎧
⎨

⎩
∏

lσ

∞∑

klσ =0

∫ β

0
dτ

(lσ)
1 · · ·

∫ β

τklσ −1

dτ
(lσ)
klσ

∫ β

0
dτ

′(lσ)
1 · · ·

∫ β

τ ′
klσ −1

dτ
′(lσ)
klσ

⎫
⎬

⎭

×
∞∑

ks=0

∞∑

kp=0

∫ β

0
dτ ′′

1 · · ·
∫ β

τ ′′
ks−1

dτ ′′
ks

∫ β

0
dτ ′′′

1 · · ·
∫ β

τ ′′′
kp−1

dτ ′′′
kp

×
∑

l′′1 ,...,l′′ks

∑

m′′
1 ,...,m

′′
ks

∑

l′′′1 ,...,l′′′kp

∑

m′′′
1 ,...,m′′′

kp

{
∏

lσ

detA(lσ)
[
Clσ
hyb(klσ )

]
}

× (−Jeff )
ks+kpTrbTrc

[
T e−βĤ0

loc

{
∏

lσ

ĉ
†
lσ

(
τ

(lσ)
klσ

)
ĉlσ
(
τ

′(lσ)
klσ

) · · · ĉ†lσ
(
τ

(lσ)
1

)
ĉlσ
(
τ

′(lσ)
1

)
}

× [
Ôs.f.

]
l′′ksm

′′
ks

(τ ′′
ks ) · · · [Ôs.f.

]
l′′1m′′

1
(τ ′′

1 )
[
Ôp.h.

]
l′′′kpm

′′′
kp

(τ ′′′
kp ) · · · [Ôp.h.

]
l′′′1 m′′′

1
(τ ′′′

1 )

]
,

(2.181)

where we have defined a new configuration

Clσ
hyb(klσ ) = {(τ (lσ)

1 , τ
′(lσ)
1

)
,
(
τ

(lσ)
2 , τ

′(lσ)
2

)
, . . . ,

(
τ

(lσ)

klσ
, τ

′(lσ)

klσ

)}
. (2.182)

Now, we define a total configuration C
({klσ }, ks, kp

)
as

C
({klσ }, ks, kp

) =
{{

Clσ
hyb(klσ )

}
,Cs.f.(ks),Cp.h.(kp)

}
(2.183)

with the configuration related with the spin-flip term

Cs.f.(ks) = {(l′′1 ,m′′
1, τ

′′
1 ), (l′′2 ,m

′′
2, τ

′′
2 ), . . . , (l′′ks ,m

′′
ks , τ

′′
ks)
}

(2.184)
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and the configuration related with the pair-hopping term

Cp.h.(kp) = {(l′′′1 ,m′′′
1 , τ ′′′

1 ), (l′′′2 ,m′′′
2 , τ ′′′

2 ), . . . , (l′′′kp ,m
′′′
kp , τ

′′′
kp )
}
. (2.185)

We also define a weight related to Trb and Trc traces as

Wloc

[
C
({klσ }, ks, kp

)] = (−Jeff)
ks+kpTrbTrc

[
T e−βĤ0

loc

{∏

lσ

ĉ†lσ
(
τ

(lσ)

klσ

)
ĉlσ
(
τ

′(lσ)

klσ

) · · ·

× ĉ†lσ
(
τ

(lσ)
1

)
ĉlσ
(
τ

′(lσ)
1

)}

× [
Ôs.f.

]
l′′ksm

′′
ks
(τ ′′

ks) · · · [Ôs.f.
]
l′′1m′′

1
(τ ′′

1 )

× [
Ôp.h.

]
l′′′kpm

′′′
kp
(τ ′′′

kp ) · · · [Ôp.h.
]
l′′′1 m′′′

1
(τ ′′′

1 )

]
.

(2.186)

Then the partition function in Eq. (2.181) is recast into

Z

Zbath
=
⎧
⎨

⎩
∏

lσ

∞∑

klσ =0

∫ β

0
dτ

(lσ)
1 · · ·

∫ β

τklσ −1

dτ
(lσ)
klσ

∫ β

0
dτ

′(lσ)
1 · · ·

∫ β

τ ′
klσ −1

dτ
′(lσ)
klσ

⎫
⎬

⎭

×
∞∑

ks=0

∞∑

kp=0

∫ β

0
dτ ′′

1 · · ·
∫ β

τ ′′
ks−1

dτ ′′
ks

∫ β

0
dτ ′′′

1 · · ·
∫ β

τ ′′′
kp−1

dτ ′′′
kp

⎧
⎨

⎩
∏

lσ

detA(lσ)
[
Clσ
hyb(klσ )

]
⎫
⎬

⎭

×
∑

l′′1 ,...,l′′ks

∑

m′′
1 ,...,m

′′
ks

∑

l′′′1 ,...,l′′′kp

∑

m′′′
1 ,...,m′′′

kp

Wloc
[
C
({klσ }, ks, kp

)]
. (2.187)

This expression allows us to interpret Wtot
[
C
({klσ }, ks, kp

)]
given by

Wtot

[
C
({klσ }, ks, kp

)] =
{
∏

lσ

detA(lσ)
[
Clσ
hyb(klσ )

] klσ∏

i=1

dτ
(lσ)
i dτ

′(lσ)
i

}

×Wloc

[
C
({klσ }, ks, kp

)] ks∏

i′′
dτ ′′

i′′

kp∏

i′′′
dτ ′′′

i′′′ (2.188)

as the weight for the configuration C
({klσ }, ks, kp

)
. Based on the weight, we perform

the Monte Carlo simulations using the Metropolis-Hastings algorithm [83, 84].
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2.3.3.3 Calculation Details to Evaluate Wloc
[
C

({klσ }, ks, kp
)]

In order to calculate Wloc
[
C
({klσ }, ks, kp

)]
, we apply the Lang-Firsov transforma-

tion [81]. Defining X̂ν = (b̂†ν + b̂ν)/
√
2, P̂ν = −i(b̂†ν − b̂ν)/

√
2, and X̂(0)ν

l =√
2gν

l /ων

(nl↑ + nl↓ − 1), we rewrite the electron-“phonon” interaction terms and “phonon”
one-body terms as

∑

lν

gν
l

(
n̂l↑ + n̂l↓ − 1

)(
b̂†ν + b̂ν

)+
∑

ν

ων b̂
†
ν b̂ν =

∑

lν

ων X̂
(0)ν
l X̂ν +

∑

ν

ων

2

(
X̂2

ν + P̂2ν
)
.

(2.189)

The Lang-Firsov transformation [81]

LFÔ = exp

(
∑

lν

iP̂νX̂
(0)ν
l

)
Ôexp

(
−
∑

lν

iP̂ν X̂
(0)ν
l

)
(2.190)

transforms the operators as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LFX̂ν = X̂ν −
∑

l

X̂(0)ν
l , (2.191)

LFP̂ν = P̂ν, (2.192)

LFĉ†lσ ≡ d̂†lσ = exp

[
∑

ν

gν
l

ων

(
b̂†ν − b̂ν

)]
ĉ†lσ , (2.193)

LFĉlσ ≡ d̂lσ = exp

[
−
∑

ν

gν
l

ων

(
b̂†ν − b̂ν

)]
ĉlσ , (2.194)

LFn̂lσ = d̂†lσ d̂lσ = ĉ†lσ ĉlσ = n̂lσ . (2.195)

d̂†lσ and d̂lσ canbeunderstood as the polaronoperators [81],where the electronic oper-

ators (ĉ†lσ and ĉlσ ) are dressed by the “phonon” factors
(
F̂s
l = exp

[
s
∑

ν
gν
l

ων

(
b̂†ν − b̂ν

)]
,

s = ±1
)
. The Lang-Firsov transformation applied to Ĥ0

loc leads to [79, 80]

LFĤ0
loc =

∑

l

U

(
n̂l↑ − 1

2

)(
n̂l↓ − 1

2

)
+
∑

l<m,σ

U ′
(
n̂lσ − 1

2

)(
n̂mσ − 1

2

)

+
∑

l<m,σ

(
U ′ − Jeff

) (
n̂lσ − 1

2

)(
n̂mσ − 1

2

)
+
∑

lν

ων X̂
(0)ν
l

(
X̂ν −

∑

l′
X̂(0)ν
l′

)

+
∑

ν

ων

2

[(
X̂ν −

∑

l

X̂(0)ν
l′
)2 + P̂2

ν

]
− μN̂
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=
∑

l

Ueff

(
n̂l↑ − 1

2

)(
n̂l↓ − 1

2

)
+
∑

l<m,σ

U ′
eff

(
n̂lσ − 1

2

)(
n̂mσ − 1

2

)

+
∑

l<m,σ

(
U ′
eff − Jeff

) (
n̂lσ − 1

2

)(
n̂mσ − 1

2

)
+
∑

ν

ων b̂
†
ν b̂ν − μeff N̂ + (const.).

(2.196)

A remarkable feature of the Hamiltonian after the Lang-Firsov transformation LFĤ0
loc

is that there are no explicit electron-“phonon” interaction terms any more, i.e., the
electrons and the “phonons” are decoupled [79, 80]. The forms of the density-density
type electron interaction terms are unchanged, however, the interaction strengths are
modified as U → Ueff = U + U“ph” = U −∑ν 2(g

ν
l )

2/ων , and U ′ → U ′
eff = U ′ +

U ′
“ph” = U ′ −∑ν 2g

ν
l g

ν
m/ων (l 
= m). Here, we omitted the orbital indices because

orbital dependences vanish in the alkali-doped fullerides. The chemical potential is
also shifted as μ → μeff = μ + U“ph”/2 + (Norb − 1)U ′

“ph”. For later use, we define

the bosonic part of the Hamiltonian as Ĥb
LF =∑ν ων b̂†ν b̂ν and electronic part as

Ĥc
LF = LFĤ0

loc − Ĥb
LF − (const.) (we ignore the constant term since it is completely

irrelevant).
Since the trace does not change through the Lang-Firsov transformation, which

is unitary, Wloc
[
C
({klσ }, ks, kp

)]
can be calculated with the Hamiltonian after the

transformation

Wloc

[
C
({klσ }, ks, kp

)] = (−Jeff )
ks+kpTrbTrc

[
T e

−β
(
LFĤ0

loc

) {∏

lσ

d̂†lσ
(
τ
(lσ)
klσ

)
d̂lσ
(
τ
′(lσ)
klσ

) · · ·

× d̂†lσ
(
τ
(lσ)
1

)
d̂lσ
(
τ
′(lσ)
1

)}[LFÔs.f.

]

l′′ksm
′′
ks

(τ ′′
ks

) · · ·
[
LFÔs.f.

]

l′′1m′′
1
(τ ′′
1 )

×
[
LFÔp.h.

]

l′′′kpm
′′′
kp

(τ ′′′
kp

) · · ·
[
LFÔp.h.

]

l′′′1 m′′′
1

(τ ′′′
1 )

]

(2.197)

with
[
LFÔs.f.

]
lm= d̂†l↑d̂m↑d̂

†
m↓d̂l↓ and

[
LFÔp.h.

]
lm= d̂†l↑d̂m↑d̂

†
l↓d̂m↓. Since LFĤ0

loc has
no explicit electron-“phonon” coupling term, Trb and Trc can be performed individ-
ually, i.e.,Wloc

[
C
({klσ }, ks, kp

)] = Wb
[
C
({klσ }, ks, kp

)]× Wc
[
C
({klσ }, ks, kp

)]
.

Here, the “phonon” contribution Wb
[
C
({klσ }, ks, kp

)]
is given by

Wb

[
C
({klσ }, ks, kp

)] = Trb

[
T e−βĤb

LF

{∏

lσ

F̂+1
l

(
τ

(lσ)

klσ

)
F̂−1
l

(
τ

′(lσ)

klσ

) · · ·

× F̂+1
l

(
τ

(lσ)
1

)
F̂−1
l

(
τ

′(lσ)
1

)}[
F̂s.f.

]
l′′ksm

′′
ks
(τ ′′

ks) · · · [F̂s.f.
]
l′′1m′′

1
(τ ′′

1 )

× [F̂p.h.
]
l′′′kpm

′′′
kp
(τ ′′′

kp ) · · · [F̂p.h.
]
l′′′1 m′′′

1
(τ ′′′

1 )

]
, (2.198)
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where

{ [
F̂s.f.

]
lm(τ ) = F̂+1

l (τ + 3ε)F̂−1
m (τ + 2ε)F̂+1

m (τ + ε)F̂−1
l (τ ) (2.199)

[
F̂p.h.

]
lm(τ ) = F̂+1

l (τ + 3ε)F̂−1
m (τ + 2ε)F̂+1

l (τ + ε)F̂−1
m (τ ). (2.200)

with an infinitesimal real number ε to define the time order within
[
F̂s.f.

]
lm(τ ) and[

F̂p.h.
]
lm(τ ). The time ordering results in

Wb

[
C
({klσ }, ks, kp

)] = Trb
[
e−βĤb

LF F̂
s̃kt
l̃kt

(τ̃kt ) · · · F̂s̃1
l̃1

(τ̃1)
]
, (2.201)

where kt is the total number of the F̂ operators kt =∑lσ 2klσ + 4ks + 4kp, the imagi-
nary times in Eq. (2.198) are arranged to obey the time order 0 ≤ τ̃1 < · · · < τ̃kt < β,
and l̃i’s (s̃i’s) are the corresponding orbital indices (signs of the phonon factors). The
weight has an analytic form and thus can be easily calculated as [79, 80]

Wb

[
C
({klσ }, ks, kp

)] = exp

⎡

⎣
∑

kt≥i>j≥1

s̃i s̃jKl̃i l̃j
(τ̃i − τ̃j)

⎤

⎦ (2.202)

with Kll′(τ ) being a function defined in the region τ ∈ [0, β]:
⎧
⎪⎨

⎪⎩

Kll′(τ ) = K ′
ll′(τ ) − K ′

ll(0) (2.203)

K ′
ll′(τ ) = −gν

l g
ν
l′

ω2
ν

cosh
[
(τ − β/2)ων

]

sinh[βων/2] . (2.204)

The electronic contribution Wc
[
C
({klσ }, ks, kp

)]
to the weight Wloc

[
C
({klσ },

ks, kp
)]

is given by

Wc

[
C
({klσ }, ks, kp

)] = Trc

[
T e−βĤc

LF

⎧
⎨

⎩
∏

lσ

ĉ
†
lσ
(
τ
(lσ)
klσ

)
ĉlσ
(
τ
′(lσ)
klσ

) · · · ĉ†lσ
(
τ
(lσ)
1

)
ĉlσ
(
τ
′(lσ)
1

)
⎫
⎬

⎭

×
[
Ôs.f.

]

l′′ksm
′′
ks

(τ ′′
ks

) · · ·
[
Ôs.f.

]

l′′1m′′
1
(τ ′′
1 )

×
[
Ôp.h.

]

l′′′kpm
′′′
kp

(τ ′′′
kp

) · · ·
[
Ôp.h.

]

l′′′1 m′′′
1

(τ ′′′
1 )

]
× (−Jeff )

ks+kp

= (−Jeff )
ks+kp sT Trc

[
e−βĤc

LF Ôk′t (τ̃k′t ) · · · Ô1(τ̃1)

]
, (2.205)

where Ôi’s take ĉ†, ĉ, Ôs.f. or Ôp.h. with appropriate orbital/spin indices, k′
t =∑

lσ 2klσ + ks + kp, sT is a sign coming from the permutations of fermion operators
to arrange them in the time order. The trace over fermion degrees of freedom Trc
can be performed by using the matrix representation of the operators [O]ij = 〈i|Ô|j〉



2.3 Analysis of Low-Energy Hamiltonian 79

with |i〉 and |j〉 being the eigenstates of the Ĥc
LF Hamiltonian, which is evaluated as

Trc

[
e−βĤc

LF Ôk′
t
(τ̃k′

t
) · · · Ô1(τ̃1)

]
= Tr

[
H(β − τ̃k′

t
)Ok′

t
H(τ̃k′

t
− τ̃k′

t−1)Ok′
t−1 · · ·O1H(τ̃1)

]
,

(2.206)

where the elements of the H(τ ) matrix are given by
[
H(τ )

]
ij = exp(−Eiτ)δij with

Ei’s being the eigenvalues of the Ĥc
LF Hamiltonian [85]. The calculation of the trace

can be more efficiently performed if one makes use of the conserved quantities of
Ĥc

LF [86]. In the case of the multi-orbital Anderson impurity model, by employing
the conserved-number set of total number of electrons N , z component of the total
spin Sz, and the “PS” vector defined as PS = [(n1↑ − n1↓)2, . . . , (nNorb↑ − nNorb↓)2

]
,

the Hc
LF matrix can be block diagonalized, whose size is drastically reduced from

the original size of 4Norb [87]. For example, the maximum (average) block sizes are
reduced to 3 (1.45), 10 (2.90), and 35 (6.92) for Norb = 3, 5, 7, respectively (the
original matrix sizes are 64, 1024, and 16384, respectively) [87]. We label the blocks
by α (α = 1, . . . ,Nb with Nb being the number of the blocks), and the αth block size
is denoted as Mα . An operator Ô acted on the states in the αinth block will connect
them with the states in some block, which we will denote as αoutth block. Then, the
O matrix can be expressed as an Mαout × Mαin matrix whose elements are given by
[O]ij = 〈i;αout|Ô|j;αin〉. We find that αin 
= αout for Ô = ĉ†, ĉ, and αin = αout for
Ô = Ôs.f., Ôp.h.. Now, Tr[. . .] can be evaluated as

∑
α Trα[. . .] with Trα being the

trace of the αth block [86, 87]. Note that, while the sequence of the matrix operations
starts from the αth block and ends with the αth block, in between them, it may pass
through other blocks. Since the cost of matrix operation is O(N3), the reduction of
the matrix size drastically speeds up the trace calculations.

As we will show later, in the update of the configuration employed in the present
study, the expansion order of the spin-flip or pair-hopping terms (ks or kp) is changed
by one. However, if we consider e.g., a configuration where klσ = 0 for all (lσ)

channels (i.e., no hybridization vertices) and ks = 1, one can easily show that the
weight for the configuration is zero since the matrix representation of Ôs.f. has only
off-diagonal elements, which do not contribute to the trace. Therefore, if one employs
the single-vertex update (ks → ks ± 1), the transition from ks = 0 configuration to
ks = 2 is impossible since it has to go through ks = 1 configuration, which means
that the single-vertex update violates the ergodicity. The very same problem holds for
pair-hopping term. To solve the problems, we introduce an auxiliary spin sa = ±1
to add diagonal elements to the Os.f. and Op.h. matrices as

[Os.f.]ij → [O′
s.f.(sa)]ij = [Os.f.]ij + saγ δij (2.207)

and

[Op.h.]ij → [O′
p.h.(sa)]ij = [Op.h.]ij + saγ δij, (2.208)
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respectively.10 Here γ is a positive real number, for which we typically use γ ∼
0.01. If the magnitude of Jeff is very small as in the case of C60 superconductors,
to increase the acceptance ratio, we use a slightly larger value γ ∼ 0.03. Since
Os.f. = 1

2

∑
sa
O′

s.f.(sa) and 1
2Op.h. =∑sa

O′
p.h.(sa), we can reproduce the original

weight by sampling both sa = ±1.With this trick, the ks = 1 configuration or kp = 1
configuration has a non-zero weight, which makes the single-vertex update to satisfy
the ergodicity condition.11 Note that the realweight for ks = 1 configuration or kp = 1
configuration is still zero, since (weight with sa = +1) = −(weight with sa = −1).

Based on the above considerations, we enlarge the configuration space to include
the auxiliary Ising-type spins and redefine the configurations as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Cs.f.(ks) → C′
s.f.(ks)=

{
(l′′1 ,m

′′
1, τ

′′
1 , s′′1), (l

′′
2 ,m

′′
2, τ

′′
2 , s′′2), . . . , (l

′′
ks ,m

′′
ks , τ

′′
ks , s

′′
ks)
}

Cp.h.(kp) → C′
p.h.(kp)=

{
(l′′′1 ,m

′′′
1 , τ

′′′
1 , s′′′1 ), (l′′′2 ,m

′′′
2 , τ

′′′
2 , s′′′2 ), . . . , (l′′′kp,m

′′′
kp, τ

′′′
kp, s

′′′
kp)
}
,

C
({klσ }, ks, kp

)→ C′({klσ }, ks, kp
)=
{{

Clσ
hyb(klσ )

}
,C′

s.f.(ks),C
′
p.h.(kp)

}
, (2.209)

where s′′i ’s and s′′′i ’s are the auxiliary spins. Then the weight for the C′({klσ }, ks, kp
)

configuration is given by

Wtot

[
C′({klσ }, ks, kp

)] =
⎧
⎨

⎩
∏

lσ

detA(lσ)
[
Clσ
hyb(klσ )

] klσ∏

i=1

dτ
(lσ)
i dτ

′(lσ)
i

⎫
⎬

⎭

× Wb

[
C′({klσ }, ks, kp

)]
W ′

c

[
C′({klσ }, ks, kp

)] ks∏

i′′
dτ ′′

i′′

kp∏

i′′′
dτ ′′′

i′′′ ,

(2.210)

where detA(lσ) andWb are not affected by the introduction of auxiliary spins, while
the method to compute the electronic contributionW ′

c is modified as

W ′
c

[
C′({klσ }, ks, kp

)] =
(

− Jeff
2

)ks+kp
sT Tr

[
H(β − τ̃k′t )Ok′t H(τ̃k′t −τ̃k′t−1)Ok′t−1 · · ·O1H(τ̃1)

]

=
(

− Jeff
2

)ks+kp
sT

Nb∑

α=1

Mα∑

i=1

×
[
H(β − τ̃k′t )Ok′t H(τ̃k′t − τ̃k′t−1)Ok′t−1 · · ·O1H(τ̃1)

]

iα,iα︸ ︷︷ ︸
wiα

(2.211)

10In practice, theOs.f. andOp.h. matrices have non-zero off-diagonal elements for a limited blocks
(the diagonal elements are always zero). Then, it is enough to introduce the constant shift matrices
saγ I to the block-diagonalized matrices which have nonzero off-diagonal elements, where I is the
identity matrix.
11An alternative solution is e.g., to introduce the n-vertices update, where ks → ks ± n or kp →
kp ± n [82].
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where O takes c†, c, O′
s.f., and O′

p.h. with proper orbital, spin, and auxiliary spin
indices. The partition function is then written as

Z

Zbath
=

′∑

configurations

Wtot

[
C′({klσ }, ks, kp

)]
, (2.212)

where the “summation” over all possible configurations
′∑
denotes the sum over the

expansion order ({klσ }, ks, kp
)
, the integral over τ ’s, and the sum over orbital, spin,

and auxiliary spin indices.

2.3.3.4 Update Scheme

In the Metropolis-Hastings algorithm [83, 84], we perform the importance sampling
over every possible configurations with the weightsWtot’s in Eq. (2.210).We employ
the following updates for the simulations of the normal state [73, 82, 85, 88]:

1. Add a pair of (lσ) component of the hybridization vertices at random times τ and
τ ′ in the range τ, τ ′ ∈ [0, β), i.e., increase the expansion order of (lσ) component
by one klσ → klσ + 1.

2. Remove a randomly-chosen pair from the existing (lσ)-component hybridization
vertices in

[
0, β

)
, i.e., decrease the expansion order of (lσ) component by one

klσ → klσ − 1.
3. Add a pair of (lσ) component of the hybridization vertices at random times τ and

τ ′ in a range shorter than that of the update 1. The range is set to be [τ0, τ0 + Δτ
)

with a random time τ0 ∈ [0, β) and the interval Δτ (0 < Δτ < β).
4. Remove a randomly-chosen pair from the existing (lσ)-component hybridization

vertices in a limited range
[
τ0, τ0 + Δτ

)
with a random time τ0 ∈ [0, β) and the

interval Δτ (0 < Δτ < β).
5. Add one spin-flip or pair-hopping vertex with randomly-chosen orbital and

auxiliary spin indices at a random time τ (0 ≤ τ < β), i.e., ks → ks + 1 or
kp → kp + 1.

6. Remove, randomly, one of the existing spin-flip or pair-hopping vertices vertices
in [0, β), i.e., ks → ks − 1 or kp → kp − 1.

7. Shift the imaginary time of one of the existing hybridization vertices (the expan-
sion orders do not change). We use a random number to determine the magnitude
of the time shift (see below for the detail).

The updates 1, 2, 5, and 6 are necessary to ensure the ergodicity. The updates 3, 4, and
7 are introduced to improve the acceptance rates and the efficiency of the simulation.
Note that updates 1–4 have to be done for all (lσ) channels. τ0 in updates 3 and 4 is
randomly chosen at each steps, while we fix the value of Δτ in the simulation. We
typically use Δτ/β ∼ 0.05.
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In the Metropolis-Hasting algorithm [83, 84], the acceptance rate is determined
to satisfy the detailed balance condition:

P(C′
old → C′

new)=min
[
R(C′

old,C
′
new), 1

]
. (2.213)

R(C′
old,C

′
new)= Wtot(C′

new)P0(C′
new → C′

old)

Wtot(C′
old)P0(C′

old → C′
new)

(2.214)

with P0(C′
old → C′

new) being a proposal probability for the transition from an old
configuration C′

old to a new configuration C′
new. Here, we omitted the ({klσ }, ks, kp

)

indices from the configuration C′({klσ }, ks, kp
)
for simplicity. In the simulations, at

each proposal, we calculate the acceptance rate in Eq. (2.213) and compare it with
a random number r between 0 and 1 generated by the Mersenne Twister [89]. If r
is smaller than the acceptance rate, the proposal is accepted and the configuration
is changed into the new configuration. Below, we list the ratio R(C′

old,C
′
new) for the

above mentioned updates.
For the update 1, the proposal probabilities are given by P0(C′

old → C′
new) =

(dτ)2/β2 andP0(C′
new → C′

old) = 1/(klσ + 1)2. Then theR(C′
old,C

′
new) ratio is given

by [85]

update 1 : R(C′
old,C

′
new) = β2

(klσ + 1)2
Wb(C′

new)W ′
c(C

′
new)detA(lσ)(C′

new)

Wb(C′
old)W ′

c(C
′
old)detA

(lσ)(C′
old)

,

(2.215)

where the determinant ratio is efficiently calculated by the Sherman-Morrison for-
mula [90, 91] with O(k2lσ ) operations. Similarly, the ratio for the update 2 is [85]

update 2 : R(C′
old,C

′
new) = k2lσ

β2

Wb(C′
new)W ′

c(C
′
new)detA(lσ)(C′

new)

Wb(C′
old)W ′

c(C
′
old)detA

(lσ)(C′
old)

. (2.216)

To compute the acceptance rate of the updates 3 and 4, we have to count the number
of the existing (lσ)-component hybridization vertices in [τ0, τ0 + Δτ), which is
denoted by k′

lσ . Then, the ratios for the updates 3 and 4 are given by [88]

update 3 : R(C′
old,C

′
new) = (Δτ)2

(k′
lσ + 1)2

Wb(C′
new)W ′

c(C
′
new)detA(lσ)(C′

new)

Wb(C′
old)W ′

c(C
′
old)detA

(lσ)(C′
old)

(2.217)

update 4 : R(C′
old,C

′
new) = k′2

lσ

(Δτ)2

Wb(C′
new)W ′

c(C
′
new)detA(lσ)(C′

new)

Wb(C′
old)W ′

c(C
′
old)detA

(lσ)(C′
old)

. (2.218)

At the update 5, we first randomly choose either the spin-flip term or the pair-
hopping term, and randomly determine orbital components l, m (l < m) and the ori-
entation of the auxiliary spin sa. Then we pick a random time from[0, β). P0(C′

old →
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C′
new) for the update 5 is hence given by P0(C′

old → C′
new) = 1/2 × 1/Norb(Norb −

1) × 1/2 × dτ/β = dτ/[4Norb(Norb − 1)β]. P0(C′
new → C′

old) is simply a probabil-
ity to pick one of (ks + kp + 1) vertices P0(C′

new → C′
old) = 1/(ks + kp + 1). The

proposal probabilities for the update 6 can be derived in a similar way. Thus we
obtain the ratios for the updates 5 and 6 as

update 5 : R(C′
old,C

′
new) = 4Norb(Norb − 1)β

ks + kp + 1

Wb(C′
new)W ′

c(C
′
new)

Wb(C′
old)W ′

c(C
′
old)

, (2.219)

update 6 : R(C′
old,C

′
new) = ks + kp

4Norb(Norb − 1)β

Wb(C′
new)W ′

c(C
′
new)

Wb(C′
old)W ′

c(C
′
old)

. (2.220)

Note that the determinant ratio of A matrix disappears since the spin-flip and pair-
hopping terms contain no bath-site electron operators.

In the update 7, we randomly choose a channel from (lσ) = (1↑) to (Norb↓). Let
us assume that the (lσ) channel is chosen. Since there exists 2klσ vertices in the
(lσ) channel, we choose one of them by a probability 1/2klσ . We set the magnitude
of the time shift by δτ = β/2 × [tanh(2ra − a)/tanh(a) + 1

]
, where r is a random

number chosen from [0, 1). We always set a positive real constant a to be a = 2.5,
while in principle, a can be tuned case by case to improve the acceptance rate. This
formula generates small shift (δτ ∼ 0 or δτ ∼ β)12 with a large probability, which
helps to improve the acceptance rate. Since, in this case, the equality P0(C′

old →
C′
new) = P0(C′

new → C′
old) holds, the R(C′

old,C
′
new) ratio for the update 7 is given by

update 7 : R(C′
old,C

′
new) = Wb(C′

new)W ′
c(C

′
new)detA(lσ)(C′

new)

Wb(C′
old)W ′

c(C
′
old)detA

(lσ)(C′
old)

. (2.221)

While in the above argument, we implicitly assume that the R(C′
old,C

′
new) ratio

is positive or zero, it sometimes becomes negative. In this case, we use the absolute
value |R(C′

old,C
′
new)| to calculate the acceptance rates. Correspondingly, it produces

negative signs in the Monte Carlo simulations. We found that a large value of γ

in Eqs. (2.207) and (2.208) produces a larger amount of negative signs. In the case
of the simulations of the low-energy models for the alkali-doped fullerides using
γ ∼ 0.03, the average sign is ∼0.5.

2.3.3.5 Measurements

In order to cycle the self-consistent loop, we have to measure, at least, the impurity-
site Green’s function Gimp and the charge-charge correlation function χimp. The
diagonal part of the Green’s function with the spin σ [Gσ

imp]ll (l = 1, . . .Norb) is
efficiently estimated by using the inverse matrix of A(lσ) (≡ B(lσ)) as [73, 78]

12δτ ∼ β corresponds to the shift in minus direction by the amount β − δτ ∼ 0.
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[
Gσ

imp(τ )
]
ll

= 1

β

〈 klσ∑

i,j=1

[
B(lσ)

]
ji
δ̃(τ, τ

′(lσ)
j − τ

(lσ)
i )

〉

MC

, (2.222)

where 〈. . .〉MC indicates the Monte-Carlo average, and δ̃(τ, τ ′
j − τi) is defined as

δ̃(τ, τ ′) =
{

δ(τ − τ ′),
(
τ ′ > 0

)

−δ(τ − τ ′ − β).
(
τ ′ < 0

) (2.223)

Note that the expansion order klσ maychangemeasurement bymeasurement. The off-
diagonal elements of the Green’s function vanish in the case where the off-diagonal
hybridization functions are zero. In the simulation of the paramagnetic phase, we
often take average over the spin at each self-consistent cycle.

As for the charge-charge correlation function χimp, since the operators for total

number of electrons N̂ commute with theHc
LF Hamiltonian, there exists an efficient

way to directly measure χimp on the Matsubara axis [86]. First, let us define a “prob-
ability” of the |i;α〉 state (ith eigenstate ofHc

LF in block α), using wiα in Eq. (2.211),
as [86]

piα = wiα∑Nb
α=1

∑Mα

i=1 wiα

. (2.224)

With piα’s, the expectation value of the static part of the correlation function χimp(0)
is computed as [86]

χimp(0) = 1

β

〈 Nb∑

α=1

Mα∑

i=1

piα

( k′
t∑

k=0

Nαk (τ̃k+1 − τ̃k)

)2 〉

MC

− βN2
av, (2.225)

where τ̃k’s (1 ≤ k ≤ k′
t) are the same as those in Eq. (2.211). On top of that, we

define τ̃k′
t+1 and τ̃0 as τ̃k′

t+1 = β and τ̃0 = 0. Nαk is the number of electrons of the
eigenstates in αkth block with αk identifying the trace of the blocks which are passed
through during the matrix operation. Nav is the average occupation at the impurity
site, which is given by

Nav =
〈 Nb∑

α=1

Mα∑

i=1

piα

( k′
t∑

k=0

Nαk

τ̃k+1 − τ̃k

β

) 〉

MC

. (2.226)

Similarly, the dynamical part of the correlation function χimp(iνn) (νn 
=0) can be
estimated as [86]

χimp(iνn) = 1

β

〈 Nb∑

α=1

Mα∑

i=1

piα

∣∣∣∣
k′
t∑

k=0

Nαk

eiνn τ̃k+1 − eiνn τ̃k

iνn

∣∣∣∣
2 〉

MC

. (2.227)
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2.3.3.6 Flow of Calculation

1. Choose an update from above listed seven types of updates.
2. Compute the acceptance rateP(C′

old → C′
new) inEq. (2.213) for the chosenupdate.

3. Generate a uniform random number r between 0 and 1 with the Mersenne
Twister [89].

4. If r < P(C′
old → C′

new), move to a new configuration. Otherwise, leave the old
configuration.

5. Once every Nmeas. times, perform measurements of the impurity-site Green’s
functionGimp, the charge-charge correlation function χimp, and so on. A simplest
choice of Nmeas. is Nmeas. ≥ (

∑
lσ klσ + ks + kp)/(average acceptance rate).

6. Go back to step 1.

Before starting the measurements, we typically take “warm-up” steps, where we
repeat steps 1–4 for ∼100Nmeas. times to thermalize. If the thermalization is slow,
you need longer “warm-up” iterations.

2.3.4 Simulation of Superconducting State Within
Extend DMFT

The schemes described above refer to the simulation of normal paramagnetic phases.
If we want to treat an s-wave superconducting phase, we need some modifications
in the schemes [92]. To this end, we introduce the Nambu spinor as

Ψk =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ĉ↑
k1
...

ĉ↑
kNorb

ĉ↓†
−k1
...

ĉ↓†
−kNorb

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.228)

The Green’s function is defined as

G̃k(τ )=−〈T Ψk(τ )Ψ
†
k (0)〉 (2.229)

=
(
Gk(τ ) Fk(τ )

F†
k(τ ) −G−k(−τ)

)
, (2.230)

whereFk(τ ) is amatrix of the anomalousGreen’s functionwith elements [Fk(τ )]lm =
−〈T ĉ↑

kl(τ )ĉ↓
−km(0)〉. Here,we assume that the up-spin and down-spin normalGreen’s

function are identical. Following the notations in Sects. 2.3.1, 2.3.2, and 2.3.3.2, the
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bold symbols without the tilde symbol denotematrices with respect to orbital indices.
The bold symbols with the tilde symbol denotematrices in theNambu representation.

Correspondingly, the Weiss function, the self-energy, and the hybridization func-
tion, are also expressed in the Nambu representation. The self-energy has a form

�̃(iωn) =
(

�N(iωn) �A(iωn)

�
†
A(−iωn) −�∗

N(iωn)

)
, (2.231)

where �N(iωn) [�A(iωn)] is the normal [anomalous] self-energy. We consider the
singlet even-frequency intra-orbital pairing, which will be most favored in the pres-
ence of a negative pair-hopping interaction, and assume the orbital degeneracy. In
this case, the anomalous self-energy is written as [�A(iωn)]ij = �A(iωn)δij, where
�A(iωn) takes a real number13 and satisfies the equality ΣA(iωn) = ΣA(−iωn).
Therefore, �†

A(−iωn) = �A(iωn). It leads to the expression of the self-energy

�̃(iωn) =
(

�N(iωn) �A(iωn)

�A(iωn) −�∗
N(iωn)

)
. (2.232)

The hybridization function is obtained by

�̃(iωn) =
(

(iωn + μ)1 0
0 (iωn − μ)1

)
− G̃−1

0 (iωn). (2.233)

Below, we will show how the introduction of anomalous part modifies the CT-
HYB scheme. As for the impurity-site action in Eq. (2.159), only the Weiss function
part is modified, i.e.,

−
∫ β

0
dτdτ ′∑

lmσ

c∗lσ (τ )
[G−1

0 (τ − τ ′)
]
lmcmσ (τ ′) → −

∫ β

0
dτdτ ′Ψ †(τ )G̃−1

0 (τ − τ ′)Ψ (τ ′),

(2.234)

which corresponds to a modification of the expression of Ĥbath in Eq. (2.164) to
include the anomalous part as

Ĥbath =
∑

pσ

εpâ
†
pσ âpσ +

∑

p

(
Δpâ

†
p↑â

†
p↓ + H.c.

)
. (2.235)

The self-consistent equations (2.155), (2.157), and (2.161) in the flow of the
extended DMFT calculation described in Sect. 2.3.2 are modified to

13We choose a gauge so that the anomalous self-energy is real.
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G̃loc(iωn)= 1

Nk

∑

k

( (
iωn + μ

)
1 − H0(k) − �N(iωn) −�A(iωn)

−�A(iωn)
(
iωn − μ

)
1 + H0(k) + �∗

N(iωn)

)−1

,

(2.236)

G̃−1
0 (iωn) = G̃−1

loc(iωn) + �̃(iωn) (2.237)

and

�̃new(iωn) = G̃−1
0 (iωn) − G̃−1

imp(iωn), (2.238)

respectively. In Eq. (2.236), we assumed that the matrix elements ofH0(k) are real
and the up-spin and down-spin electrons are degenerate, which holds in the alkali-
doped fullerides with the time-reversal and space-inversion symmetries.

As for the QMC part in Sect. 2.3.3.2, the existence of anomalous part of the
hybridization function, the A(l↑) and A(l↓) matrices are not independent anymore [79,
93, 94]. Therefore, we need to redefine the configuration as

C̃({kl}, ks, kp) =
{{

C̃l
hyb(kl)

}
,C′

s.f.(ks),C
′
p.h.(kp)

}
(2.239)

where the definitions of C′
s.f.(ks) and C′

p.h.(kp) are the same as Eq. (2.209), and

C̃l
hyb(kl) is given by

C̃l
hyb(kl) = {(f (l)

1 , f ′(l)
1 , τ

(l)
1 , τ

′(l)
1 ), (f (l)

2 , f ′(l)
2 , τ

(l)
2 , τ

′(l)
2 ), . . . , (f (l)

kl
, f ′(l)

kl
, τ

(l)
kl

, τ
′(l)
kl

)
}
.

(2.240)

Here, f (l)
i ’s and f ′(l)

i ’s are “flavors” which specify the orientations of the spins and
the types of bath-site operators (creation or annihilation), i.e., f (l)

i

[
f ′(l)
i

]
is a com-

posite index f (l)
i = (σ

(l)
i , t(l)i )

[
f ′(l)
i = (σ

′(l)
i , t′(l)i )

]
with the spin index σ

(l)
i

[
σ

′(l)
i

]
and

the type (creation or annihilation) index t(l)i

[
t′(l)i

]
. Note that the type index specifies

the operator type of bath-site degrees of freedom and that if the type is “creation”
(“annihilation”), the corresponding type of the impurity-site operators is “annihila-
tion” (“creation”). Remember that the hybridization vertices are composed of the
pair of the creation bath-site operator and the annihilation impurity-site operator, or
the annihilation bath-site operator and the creation impurity-site operator. Then, we
introduce a kl × kl matrix A(l)

[
C̃l
hyb(kl)

]
whose elements are given by
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A(l)[C̃l
hyb(kl)

] =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Γ̃
f̃ (l)
1 f̃ ′(l)1

(τ
(l)
1 − τ

′(l)
1 ) Γ̃

f̃ (l)
1 f̃ ′(l)

2
(τ

(l)
1 − τ

′(l)
2 ) · · · Γ̃

f̃ (l)1 f̃ ′(l)
kl

(τ
(l)
1 − τ

′(l)
kl

)

Γ̃
f̃ (l)
2 f̃ ′(l)1

(τ
(l)
2 − τ

′(l)
1 ) Γ̃

f̃ (l)
2 f̃ ′(l)

2
(τ

(l)
2 − τ

′(l)
2 ) · · · Γ̃

f̃ (l)2 f̃ ′(l)
kl

(τ
(l)
2 − τ

′(l)
kl

)

.

.

.
.
.
.

. . .
.
.
.

Γ̃
f̃ (l)
kl

f̃ ′(l)1
(τ

(l)
kl

− τ
′(l)
1 ) Γ̃

f̃ (l)
kl

f̃ ′(l)
2

(τ
(l)
kl

− τ
′(l)
2 ) · · · Γ̃

f̃ (l)kl
f̃ ′(l)
kl

(τ
(l)
kl

− τ
′(l)
kl

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

(2.241)

where f̃ (l)
i

[
f̃ ′(l)
i

]
is the spinor-component index corresponding to the orbital index

l and the composite index f (l)
i

[
f ′(l)
i

]
. For example, in the case where l = 1 and{

f (l)
i , f ′(l)

i

} = {(↑, annihilation), (↓, annihilation)
}
, the corresponding f̃ (l)

i and f̃ ′(l)
i

are
{
f̃ (l)
i , f̃ ′(l)

i

} = {1,Norb + 1}. The weight for the C̃
({kl}, ks, kp

)
configuration is

given by

Wtot

[
C̃
({kl}, ks, kp

)] =
{
∏

l

detA(l)
[
C̃l
hyb(kl)

] kl∏

i=1

dτ
(l)
i dτ

′(l)
i

}

× Wb

[
C̃
({kl}, ks, kp

)]
W ′

c

[
C̃
({kl}, ks, kp

)] ks∏

i′′
dτ ′′

i′′

kp∏

i′′′
dτ ′′′

i′′′ ,

(2.242)

where the methods to compute Wb and W ′
c are the same as the ones in the normal

state simulations [Eqs. (2.202) and (2.211), respectively]. Then the partition function
in the superconducting phase is written as

Z(SC)

Zbath
=

′∑

configurations

Wtot

[
C̃
({kl}, ks, kp

)]
. (2.243)

In the simulation of the superconducting phase, in order to ensure the ergodicity,
we need the following updates on top of the updates 1, 2, 5, and 6 described in
Sect. 2.3.3.2.

8. Add four hybridization vertices at random times in [0, β). They are composed
of the (l↑) and (l↓) components of Ĥ′†

hyb, and the (m↓) and (m↑) components

(m 
= l) of Ĥ′
hyb. It corresponds to the increase of the expansion orders of the lth

and mth channels, kl → kl + 1 and km → km + 1.
9. Remove four hybridization vertices from the existing hybridization vertices in

the range [0, β). They are composed of the (l↑) and (l↓) components of Ĥ′†
hyb,

and the (m↓) and (m↑) components (m 
= l) of Ĥ′
hyb. The vertices are randomly-

chosen with satisfying the above condition. It corresponds to the decrease of the
expansion orders of the lth andmth channels, i.e., kl → kl − 1 and km → km − 1.
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The updates 8 and 9 have to be performed for all possible combinations of the l and
m indices (l 
= m). The necessity of these updates can be understood by considering
e.g., a following case. Let us assume that a configuration has the following expansion
orders, k1 = 1, k2 = 1, kl 
=1,2 = 0, ks = 0, and kp = 1. In the first hybridization chan-
nel (l = 1), the flavors f (l=1)

1 and f ′(l=1)
1 are (↑, annihilation) and (↓, annihilation),

respectively. In the second hybridization channel (l = 2), the flavors f (l=2)
1 and f ′(l=2)

1
are (↓, creation) and (↑, creation), respectively. Then if the pair-hopping vertex is
of (l′′ = 2,m′′ = 1) channel, the configuration can have non-zero weight only in the
superconducting state: In this case, the elements of the A(l=1) and A(l=2) matrices
become anomalous parts of the hybridization function, thus, the determinants of
A(l=1) and A(l=2) matrices are zero in the normal state. While this configuration can
appear by e.g., the combination of the updates 5 and 8 starting from zero vertices, it
is never realized by the seven types of updates for the normal state calculations.

Let us define the number of bath-site operators in the lth channel with (σ, creation)
and (σ, annihilation) flavors as k(l)

(σ,c) and k
(l)
(σ,a), respectively. They should satisfy the

equality

kl = k(l)
(↑,a) + k(l)

(↓,c) = k(l)
(↑,c) + k(l)

(↓,a). (2.244)

Note that, in the normal-state simulations, the equalities k(l)
(↑,a) = k(l)

(↑,c) and k(l)
(↓,c) =

k(l)
(↓,a) always hold. However, in the superconducting-state simulations, it is not the
case due to the presence of the updates 8 and 9. Then, the R ratios in Eq. (2.214) for
the updates 8 and 9 are given by

update 8 : R(C̃old, C̃new) = β4

(
k(l)
(↑,a) + 1

)(
k(l)
(↓,a) + 1

)(
k(m)

(↓,c) + 1
)(
k(m)

(↑,c) + 1
)

× Wb(C̃new)Wc(C̃new)detA(l)(C̃new)detA(m)(C̃new)

Wb(C̃old)Wc(C̃old)detA(l)(C̃old)detA(m)(C̃old)
,

(2.245)

and

update 9 : R(C̃old, C̃new) = k(l)
(↑,a) k

(l)
(↓,a) k

(m)

(↓,c) k
(m)

(↑,c)

β4

× Wb(C̃new)Wc(C̃new)detA(l)(C̃new)detA(m)(C̃new)

Wb(C̃old)Wc(C̃old)detA(l)(C̃old)detA(m)(C̃old)
,

(2.246)

respectively. We can further introduce updates, in which four vertices are added or
removed within a limited imaginary-time range. The introduction helps to increase
the acceptance rate and to improve the efficiency of the QMC simulation. The for-
mulae to compute R ratios for these updates can be derived in a similar way as in the
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case of updates 3 and 4. Furthermore, the exchange of time indices of the neighboring
vertices on the imaginary-time axis, which is employed in Ref. [93], also improves
the efficiency.

In the simulation of the superconducting phase, the expressions of the ratios for
the updates 1–7 are slightly modified from those for the normal state. Below, we just
list them:

update 1 :R(C̃old, C̃new) = β2

(
k(l)
(σ,c) + 1

)(
k(l)
(σ,a) + 1

)
Wb(C̃new)W ′

c(C̃new)detA(l)(C̃new)

Wb(C̃old)W ′
c(C̃old)detA(l)(C̃old)

,

(2.247)

update 2 :R(C̃old, C̃new) =
k(l)
(σ,c)k

(l)
(σ,a)

β2
Wb(C̃new)W ′

c(C̃new)detA(l)(C̃new)

Wb(C̃old)W ′
c(C̃old)detA(l)(C̃old)

, (2.248)

update 3 :R(C̃old, C̃new) = (Δτ)2

(
k′(l)
(σ,c) + 1

)(
k′(l)
(σ,a) + 1

)
Wb(C̃new)W ′

c(C̃new)detA(l)(C̃new)

Wb(C̃old)W ′
c(C̃old)detA(l)(C̃old)

,

(2.249)

update 4 :R(C̃old, C̃new) =
k′(l)
(σ,c)k

′(l)
(σ,a)

(Δτ)2
Wb(C̃new)W ′

c(C̃new)detA(l)(C̃new)

Wb(C̃old)W ′
c(C̃old)detA(l)(C̃old)

, (2.250)

update 5 :R(C̃old, C̃new) = 4Norb(Norb − 1)β

ks + kp + 1

Wb(C̃new)Wc(C̃new)

Wb(C̃old)W ′
c(C̃old)

, (2.251)

update 6 :R(C̃old, C̃new) = ks + kp
4Norb(Norb − 1)β

Wb(C̃new)W ′
c(C̃new)

Wb(C̃old)W ′
c(C̃old)

, (2.252)

update 7 :R(C̃old, C̃new) = Wb(C̃new)W ′
c(C̃new)detA(l)(C̃new)

Wb(C̃old)W ′
c(C̃old)detA(l)(C̃old)

. (2.253)

The method to measure the impurity-site Green’s function is also slightly modi-
fied as

[
G̃imp(τ )

]
pq = 1

β

〈 Norb∑

l=1

kl∑

i,j=1

[
B(l)
]
ji δ̃(τ, τ

′(l)
j − τ

(l)
i )δ

q,f̃i
(l) δ

p,f̃j
′(l)

〉

MC

, (2.254)

where B(l) is the inverse matrix of the A(l) matrix. Then, the s-wave superconducting
order parameter PSC =∑Norb

l=1 〈cl↓cl↑〉 is given by PSC =∑Norb
l=1

[
G̃imp(τ = 0+)

]
l,l+Norb

.

2.4 Combining Model Derivation and Model Analysis

2.4.1 Interfaces

Here, we describe interfaces to smoothly connect the downfolding part described in
Sect. 2.2 and the low-energy solver described in Sect. 2.3.
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2.4.1.1 Preparation of H0(k) in Eq. (2.155)

One possible form of the double counting correction Δεl in Eq. (2.30) is the Hartree
contribution of the local Coulomb interaction calculated with the DFT occupations
of the orbitals nDFTl ’s

Δεl = Ull n
DFT
l /2 +

∑

m

(2Ulm − Jlm)nDFTm /2 (2.255)

where we explicitly show the orbital indices in the Coulomb interaction parameters.
In the case where all the orbitals are degenerate (nDFT1 = nDFT2 = · · · = nDFTNorb

) and
there is no orbital dependence in the interaction, the orbital dependence of Δεl
vanishes, i.e., Δε1 = Δε1 = · · · = ΔεNorb . This equality also holds in the case of
other definition of the double counting correction (see e.g., Refs. [5–7, 95] for the
definitions). Then, the double counting correction gives only a constant shift, which
can be absorbed in the chemical potential.

Considering the above arguments, we ignore the double counting correction term
from Eq. (2.30) and we calculate H0(k) by

H0(k) =
∑

R 
=0

H(w)
0 (R)e−ik·R, (2.256)

where we exclude R = 0 term from the sum because the degenerate onsite levels[H(w)
0 (R = 0)

]
lm

= εδlm again can be absorbed in the chemical potential. Note that,
because of the time-reversal symmetry and the space-inversion symmetry, H0(k)

has no spin dependence, and the matrix elements of H0(k) take real numbers [∵
H(w)

0 (R) = H(w)
0 (−R)]. Note also that, the k-meshes for the calculation of H0(k)

can be taken to be much finer than those of the original DFT.

2.4.1.2 Evaluation of Effective Coulomb Interaction Parameters

The partially screened Coulomb interactionW (p) [Eq. (2.33)] calculated by the cRPA
is regarded as an effective interaction between the low-energy electrons (t1u electrons
in the case of the fullerides). In this thesis, we use the static part of W (p) to calculate
the interaction parameters in the low-energy Hamiltonian. Namely, the frequency
dependence of W (p) is neglected.14 However, in the present case, we consider that
the usage of the static interaction is a good approximation because of weak frequency
dependence of the partially screened Coulomb interaction up to a frequency larger

14The calculations of the frequency dependence of the partially screened interactions are highly
expensive in the case of the alkali-doped fullerides, which have a large unit cell. In Appendix in
Chap.3, in order to check the validity of using the static interaction, we calculate the frequency
dependence in a limited frequency region for a representative material (Cs3C60 with VC60

3− = 762

Å3).

http://dx.doi.org/10.1007/978-981-10-1442-0_3


92 2 Methods: Ab Initio Downfolding and Model-Calculation Techniques

than the bandwidth (see Appendix in Chap.3). A possible (small) effect of the fre-
quency dependence on the quantitative issues such as the calculation of Tc will be
discussed in Sect. 5.2.

The onsite Coulomb repulsionUlm and the exchange interaction Jlm are evaluated
as

Ulm =
∫ ∫

drdr′ ∣∣φl0(r)
∣∣2W (p)(r, r′)

∣∣φm0(r′)
∣∣2

= 4πe2

NΩ

∑

q

∑

GG′
ρll(q + G)W (p)

G,G′(q)ρ∗
mm(q + G′) (2.257)

and

Jlm =
∫ ∫

drdr′φ∗
l0(r)φm0(r)W (p)(r, r′)φ∗

m0(r
′)φl0(r′)

= 4πe2

NΩ

∑

q

∑

GG′
ρlm(q + G)W (p)

G,G′(q)ρ∗
lm(q + G′), (2.258)

respectively, where Ω is the volume of the unit cell, and ρlm(q + G) is given, with
the Wannier-gauge Bloch functions ψ

(w)

lk ’s, by

ρlm(q + G) = 1

N

∑

k

〈
ψ

(w)

lk+q

∣∣ei(q+G)·r∣∣ψ(w)
mk

〉
. (2.259)

Note that the magnitude of the pair-hopping interaction J ′
lm, which is computed as

J ′
lm =

∫ ∫
drdr′φ∗

l0(r)φm0(r)W (p)(r, r′)φ∗
l0(r

′)φm0(r′) (2.260)

is equal to that of the exchange interaction, i.e., J ′
lm = Jlm, because the Wannier

functions are real [φ∗
lR(r) = φlR(r)].

If there is no orbital dependence inUlm’s and Jlm’s, the onsite Coulomb interaction
parameters are parametrized as

U = Ull, U ′ = Ulm, JH = Jlm = J ′
lm (l 
= m). (2.261)

The Fourier transform of the off-site Coulomb interaction Vq in Eq. (2.156) can be
computed by taking the average over orbital indices (the orbital dependence of the
off-site Coulomb interaction is generally very small) as

Vq = 1

N2
orb

∑

lm

[
Vlm(q) − Ulm

] = 1

N2
orb

∑

lm

Vlm(q) − U + (Norb − 1)U ′

Norb
(2.262)

http://dx.doi.org/10.1007/978-981-10-1442-0_3
http://dx.doi.org/10.1007/978-981-10-1442-0_5
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with

Vlm(q) = 4πe2

Ω

∑

GG′
ρll(q + G)W (p)

G,G′(q)ρ∗
mm(q + G′). (2.263)

2.4.1.3 Calculation of Phonon-Related Input Parameters

To computeW ′
c in Eq. (2.211), we need the information ofUeff = U + U“ph′′ ,U ′

eff =
U ′ + U ′

“ph′′ , μeff = μ + U“ph′′/2 + (Norb − 1)U ′
“ph′′ , and Jeff = JH + Jph. Since the

methods to calculate the Coulomb parameters, U, U ′, and JH, are described above,
we here show how to compute the “phonon” parametersU“ph′′ ,U ′

“ph′′ , and Jph. Within
the extended DMFT formalism, U“ph′′ and U ′

“ph′′ consist of the contribution from the
real phonons (Uph and U ′

ph) and the one from the auxiliary bosons to decompose the
non-local Coulomb interactions (UV and U ′

V ), i.e., U“ph′′ = Uph + UV , and U ′
“ph′′ =

U ′
ph + U ′

V . On the other hand, Jph purely originates from the real phonons, because
we consider only the density-type off-site Coulomb interaction and thus off-site
Coulomb interactions contribute only to the density-density channels (Ueff andU ′

eff ).
Here, we first consider the real-phonon contributions Uph, U ′

ph and Jph. The par-
tially screened electron-phonon coupling is given by [c.f. Eq. (2.104)]15

g(p)ν
lm (k,q) =

∑

κα

√
�

2Mκω
(p)
qν

e(p)α
κ (qν)

〈
ψ

(w)

lk+q

∣∣∣∣∣
∂V (p)

SCF(r)
∂uα

κ (q)

∣∣∣∣∣ψ
(w)
mk

〉
, (2.264)

where we employ the Wannier-gauge for the electrons, and the superscript (p) indi-
cates the partially renormalized quantities. Then, Uph, U ′

ph and Jph are given by

Uph =− 1

Nq

∑

qν

2
∣∣g̃(p)

ll (q, ν)
∣∣2

ω
(p)
qν

, (2.265)

U ′
ph =− 1

Nq

∑

qν

2 g̃(p)
ll (q, ν) g̃(p)∗

mm (q, ν)

ω
(p)
qν

, (2.266)

Jph =− 1

Nq

∑

qν

2 g̃(p)
lm (q, ν) g̃(p)∗

lm (q, ν)

ω
(p)
qν

= − 1

Nq

∑

qν

2 g̃(p)
lm (q, ν) g̃(p)∗

ml (q, ν)

ω
(p)
qν

,

(2.267)

15In this thesis, we do not consider the frequency dependence of the partially screened electron-
phonon coupling g(p) for the same reason as the partially screened Coulomb interactions W (p).
Since the expressions for g(p) Eq. (2.119) and W (p) Eq. (2.114) are similar, we also expect that g(p)

has little structure in a frequency region up to a frequency larger than the bandwidth. Then the static
approximation is a reasonable assumption in the fulleride problem.
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respectively, where we assume that the orbital dependences of Uph, U ′
ph and Jph do

not exist, and g̃(p)
lm (q, ν) is calculated as

g̃(p)
lm (q, ν) = 1

Nk

∑

k

g(p)ν
lm (k,q). (2.268)

The non-local Coulomb interaction contributions, UV and U ′
V , are identified with

the static part of the bosonic Weiss function D0(iνn = 0) in Eq. (2.158), i.e., UV =
U ′

V = D0(iνn = 0). Since we neglect the orbital dependence of the off-site Coulomb
interaction, the amounts of the dynamical screening are the same for the intraorbital
channel and the interorbital channel (UV = U ′

V ). Therefore, Ueff , U ′
eff , and μeff are

given by

Ueff =U + Uph + D0(iνn = 0), (2.269)

U ′
eff =U ′ + U ′

ph + D0(iνn = 0), (2.270)

μeff =μ + [Uph + D0(iνn = 0)
]
/2 + (Norb − 1)

[
U ′

ph + D0(iνn = 0)
]
, (2.271)

respectively.
Another important quantity related with the “phonons” is the Kll′(τ ) function

defined in the interval [0, β] [Eq. (2.203)], which is used to calculate Wb in
Eq. (2.202). As for the contributions from the real phonons Kph

ll′ (τ ), we follow the
recipe of Eqs. (2.203) and (2.204):

⎧
⎪⎪⎨

⎪⎪⎩

Kph
ll′ (τ ) = K ′ph

ll′ (τ ) − K ′ph
ll (τ ) (2.272)

K ′ph
ll′ (τ ) = − 1

Nq

∑

qν

g̃(p)
ll (q,ν) g̃(p)∗

l′l′ (q,ν)
(
ω

(p)
qν

)2
cosh

[
(τ − β/2)ω(p)

qν

]

sinh
[
βω

(p)
qν /2

] (2.273)

Note that, although we explicitly show the orbital indices here, in the case of the
alkali-doped fullerides, Kph

ll′ (τ )’s take only two types of values: the intraorbital and
interorbital values. On the other hand, as for the non-local Coulomb interaction con-
tributionsKV (τ ) (we omit the orbital indices because there is no orbital dependence),
while we treat the propagator on the imaginary axis D0(iνn), we do not explicitly
know the frequencies of the fictitious “phonons”. In this case, KV (τ ) can be calcu-
lated by [69]

KV (τ ) = 1

β

∑

n 
=0

D0(iνn) − D0(0)

(iνn)2
(
eiνnτ − 1

)
(2.274)

= − 2

β

∑

n>0

D0(iνn) − D0(0)

ν2
n

[
cos(νnτ) − 1

]
, (2.275)
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where, we have employed the equality D0(iνn) = D0(−iνn) = D0(iν−n) in the last
equality. With Kph

ll′ (τ ) and KV (τ ), Kll′(τ ) is given by the simple sum of them as

Kll′(τ ) = Kph
ll′ (τ ) + KV (τ ). (2.276)

2.4.2 Overview of Whole Scheme

Here, we briefly overview the whole calculation procedure. See Fig. 2.4 for more
details.

Fig. 2.4 Schematic picture of whole scheme. In the model analysis part, arrows in red (blue)
indicate the flow of the normal (superconducting) state simulation. Correspondingly, “N” and “S”
in the figure are the abbreviations for the normal and superconducting states, respectively
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1. Calculate a global band structure using the DFT and choose the target band.
2. Construct MLWO’s within the t-subspace.
3. Perform the cRPA and cDFPT calculations.
4. Perform the interface calculations.
5. Analyze the derived model by the extended DMFT.

Appendix: Supplemental Information for DFPT

A. Expression for Interatomic Force Constants with Non-local
Pseudopotential

In Sect. 2.2.4, the expression of the interatomic force constants is based on the locality
of the ionic potential. However, in the actual DFPT calculations with the plane-wave
basis, the true ionic potential,which is local, is replaced by the pseudopotential.When
the pseudopotential has non-local components, i.e., depends on two coordinates r
and r′,16 we need some modifications in the equations. The generalized expression
for the second derivative of the energy with respect to parameters {λi} reads

∂2Eλ

∂λi∂λj
=
∑

k

occ.∑

n

[〈ψnk

∂λi

∣∣∣
∂Vλ

∂λj

∣∣∣ψnk

〉
+
〈
ψnk

∣∣∣
∂Vλ

∂λj

∣∣∣
ψnk

∂λi

〉
+
〈
ψnk

∣∣∣
∂2Vλ

∂λi∂λj

∣∣∣ψnk

〉]

(2.277)

withψnk being the one-particle wave function with the band n and the wave vector k.
Then, the electronic contribution to the interatomic force constant elCαα′

κκ ′ (q), i.e., the
contribution other than the ionic contribution ∂EN({R})/∂u∗α

κ (q)∂uα′
κ ′ (q), is given by

elCαα′
κκ ′ (q) =

[∑

k

occ.∑

n

(
4

N

〈 ψnk
∂uα

κ (q)

∣∣∣
∂Vion

∂uα′
κ ′ (q)

∣∣∣ψnk

〉
+ 2

N

〈
ψnk

∣∣∣
∂2Vion

∂u∗α
κ (q)∂uα′

κ ′ (q)

∣∣∣ψnk

〉) ]

u=0

=
[∑

k

occ.∑

n

(
4

N

〈 ψnk
∂uα

κ (q)

∣∣∣
∂Vion

∂uα′
κ ′ (q)

∣∣∣ψnk

〉

+ δκκ ′
2

N

〈
ψnk

∣∣∣
∂2Vion

∂uα
κ (q=0)∂uα′

κ (q=0)

∣∣∣ψnk

〉) ]

u=0
(2.278)

16The pseudopotential is composed of the local part Vloc(r) and the non-local part VNL(r, r′).



2.4 Combining Model Derivation and Model Analysis 97

B. Confirmation of the Equality Σ = Σt + Σr in Sect. 2.2.5.2

Here, we show that the equality Σ = Σt + Σr in Sect. 2.2.5.2 indeed holds. In prin-
ciple, the self-energy Σ , the electron-phonon coupling g, the polarization function
χ0, and so on, are expressed as matrices. In this section, for the sake of simplicity,
we treat them as if they were scalar quantities. One can easily extend the proof to
the case where they are matrices. Σt = |g(p)|2χ t

LDA is rewritten as

Σt = |g(p)|2 χ0
t

1 − W̃ (p)χ0
t

= |g(b)|2 1

1 − ṽχ0
r

χ0
t

1 − W̃ (p)χ0
t

1

1 − ṽχ0
r

= |g(b)|2
(
1 + ṽχ0

r

1 − ṽχ0
r

)
χ0
t

1 − W̃ (p)χ0
t

(
1 + ṽχ0

r

1 − ṽχ0
r

)

= |g(b)|2
(
1 + χ0

r W̃
(p)
) χ0

t

1 − W̃ (p)χ0
t

(
1 + W̃ (p)χ0

r

)

= |g(b)|2
[

χ0
t

1 − W̃ (p)χ0
t

+ χ0
r

W̃ (p)

1 − W̃ (p)χ0
t

χ0
t

+χ0
t

W̃ (p)

1 − W̃ (p)χ0
t

χ0
r + χ0

r W̃
(p) χ0

t

1 − W̃ (p)χ0
t

W̃ (p)χ0
r

]

= |g(b)|2
[

χ0
t + χ0

t W̃
(f )χ0

t + χ0
r W̃

(f )χ0
t + χ0

t W̃
(f )χ0

r + χ0
r W̃

(p) χ0
t

1 − W̃ (p)χ0
t

W̃ (p)χ0
r

]
.

(2.279)

Similarly, Σr = |g(b)|2χ r
LDA is rewritten as

Σr = |g(b)|2 χ0
r

1 − ṽχ0
r

= |g(b)|2
[

χ0
r + χ0

r W̃
(p)χ0

r

]
. (2.280)

Using the equality

W̃ (p) + W̃ (p) χ0
t

1 − W̃ (p)χ0
t

W̃ (p) = W̃ (p)

1 − W̃ (p)χ0
t

= W̃ (f ), (2.281)
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one can show that Σt + Σr is expressed as

Σt + Σr = |g(b)|2
[

χ0
t + χ0

r + (χ0
t + χ0

r

)
W̃ (f )

(
χ0
t + χ0

r

) ]

= |g(b)|2
[

χ0 + χ0W̃ (f )χ0

]

= |g(b)|2χLDA, (2.282)

which agrees with the expression for Σ in Eq. (2.122).
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