
Chapter 2
Class-Based Storage with a Finite Number
of Items in AS/RS

Abstract Class-based storage is widely studied in the literature and applied in prac-
tice. It divides all stored items into a number of classes according to their turnover.
A class of items with a high turnover is allocated to a region close to the warehouse
depot. Studies have shown that the use of more storage classes leads to a shorter
travel time for storing and retrieving items. A basic assumption in this literature is
that the required storage space for all the items is equal to their average inventory
level, which is valid only if an infinite number of items are stored in each storage
region. Therefore, this chapter revisits class-based storage by considering a finite
number of items and by relaxing the assumption that the “required storage space of
all the items equals their average inventory level”. We develop a travel-time model
and algorithm that can be used for determining the optimal number and the bound-
aries of storage classes in warehouses. Different from the results of conventional
research, our findings illustrate that a small number of classes is generally optimal.
In addition, we find that travel time is fairly insensitive to the number of storage
classes in a wide range around the optimum. This finding suggests that managers can
select a near-optimal number of storage classes in an easyway, and they should not be
worried about the effect of storage-class reconfigurations. We validate our findings
for various cases, including different ABC demand curves, space-sharing factors,
number of items, storage rack shapes, discrete storage locations, and stochastic item
demand.

2.1 Research Background

Class-based storage is the most commonly used storage policy in practice and is
widely discussed in many operations management textbooks (Tompkins et al. 2010;
Heragu 2006; Adams 1996) and scientific papers (Rosenblatt and Eynan 1989;
Kouvelis and Papanicolaou 1995; Johnson andBrandeau 1996; Gu et al. 2007; Eynan
and Rosenblatt 1994; De Koster et al. 2007). It divides stored items into different
classes (using three classes is common in practice) according to the ABC demand
curve (see Fig. 2.1). In case of ABC class-based storage, a relatively small number
of highly demanded items are grouped as A-class items and are then stored in a
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Fig. 2.1 An example of an ABC demand curve

warehouse region closest to the depot (the entrance and exit position). Grouped as
C-class items, rarely demanded items are stored in the region farthest from the depot.
Within each class, items are stored randomly.

Figure2.2 illustrates the side viewof aSIT storage rackwith an example of anABC
class-based storage as used in automated storage and retrieval (AS/R) warehousing
systems. In such a system, the optimal boundary of each region is square because the
storage/retrieval (S/R) machines can drive and lift simultaneously. This capability
leads to a Chebyshev distance metric (Bozer et al. 1990) used to measure the distance
between a storage location and the depot.

Hausman et al. (1976) modeled and analyzed the two- and three-class-based stor-
age policies; Rosenblatt and Eynan (1989) and Eynan and Rosenblatt (1994) for-
mulated a travel-time model for n-class-based storage and addressed the benefits
of class-based storage by increasing the number of classes. Following these studies
and the earlier paper, most studies on class-based storage (Eynan and Rosenblatt
1994; Larson et al. 1997; Gu et al. 2007; Yu and Koster 2009) have implicitly or
explicitly assumed that the total required storage space does not depend on the num-
ber of classes in modeling. This assumption is valid when the number of items in
each class is sufficiently large (infinite). Within each storage class, multiple items
are stored randomly and share a common storage space. They are replenished in the
system at different points in time. When an item is replenished, any available empty
storage location in its class can be used for storing it. As a result, if the number of
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Fig. 2.2 Side view of a rack with ABC class-based storage regions

items in a class is infinite, then the required storage space of the class is approxi-
mately equal to the average total inventory level of all items in the class. With this
assumption, conventional research has indicated that an increase in the number of
classes reduces the average travel time for storing or retrieving items (see the curve
indicating conventional research in Fig. 2.3).

However, the abovementioned widely cited finding is inconsistent with the prac-
tice in which only a few (three to five) classes are usually implemented (Roodbergen
and Vis 2009). To the best of our knowledge, no study has theoretically demonstrated
that an excessive number of classes degrade system performance. This deficiency
motivates us to investigate all assumptions made in the literature. The cause of the
inconsistency appears to be the assumption that regardless of the number of storage
classes, the space needed for each storage class is equal to the sum of the average
inventory levels of the items in the class. This assumption can be justified in the case
of an infinite number of items stored for each product class. However, every time
an item is received, sufficient space should be available for storing the entire batch.
Therefore, items sharing a storage class needmore space than just their average stock
level. If the number of storage classes increases, then the number of items in each
class decreases, and more space is needed for each item as the opportunity for space-
sharing decreases. This condition increases the average travel time for storing and
retrieving items and finally offsets the travel-time reduction resulting from dividing
items over a large number of classes according to their turnover. This tradeoff has
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Fig. 2.3 Travel times in two different lines of research

not been investigated in the literature. Relaxing other common assumptions, such as
deterministic demand, continuous and SIT racks, and use of the classic EOQ replen-
ishment policy, does not affect the existence of this tradeoff. Therefore, we first relax
the (implicit) finite number of items assumption and then validate the robustness of
our findings by relaxing other assumptions made in the literature.

To investigate this tradeoff overlooked in the existing literature and to deduce
managerial insights for warehouse managers, this chapter develops a new expression
for estimating the required storage space as a function of the number of storage
classes. Based on this expression, a travel-time model is developed from which the
optimal number of classes and their boundaries can be determined for a warehouse
with a finite number of items. The model is solved using dynamic programming
with time complexity O(N 3), where N is the number of stored items in the system.
The results demonstrate that travel time is commonly a bowl-shaped function of the
number of classes as shown in Fig. 2.3. This flat curve shape yields some important
findings. First, beyond a small number of classes, an increase in the number of classes
cannot reduce travel time. Second, a small number of classes is usually enough to
yield an optimal solution. Third, travel time appears to be insensitive to the number
of classes in a wide range around the optimum (corresponding to the bottom of the
bowl-shaped curve in Fig. 2.3). This finding implies that warehouse managers should
not hesitate to change their number of classes if necessary because “they cannot go
wrong”.
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2.2 Problem Description and Conventional Travel-Time
Model

This section describes the system studied and develops the mathematical model. The
traditional model in the literature is also revisited.

2.2.1 Problem Description

Without loss of generality, the basic idea of n-class-based storage is usually discussed
in the abovementioned literature with a basic automated warehousing system: the
AS/RS. This system consists of an S/R machine, a continuous storage rack, and
one depot where all items enter and leave the system. Items can be finished goods,
work-in-process, or raw materials, which are stored on standardized unit loads (e.g.,
pallets or totes) in the AS/RS. The system works as follows: when a storage unit
load arrives at the depot of the system, the machine retrieves and transports it to any
given storage location in the rack. When a stored unit load is requested, the machine
picks it up and moves it to the depot. The system has the following properties:

1. All storage locations are the same size for storing standardized unit loads.
2. The depot is located on the lower-left side of the storage rack.
3. The continuous-space storage rack is SIT; the time for the machine to move from

the depot to the most distant column is equal to the time for the machine to
move from the depot to the most distant tier. The machine travels in horizontal
and vertical directions simultaneously, thus resulting in a Chebyshev distance
metric used to measure the distance between a storage location and the depot
Roodbergen and Vis (2009). An extended model incorporating NSIT racks is
given in Sect. 2.4.1. A discrete space rack is modeled in Sect. 2.4.3.

4. The capacity of the machine is one unit load. The machine operates in a single-
command mode, and it stores or retrieves one unit load each time.

5. The pick-up or deposit time for the machine to load or unload a unit load is
constant and ignored.

6. The turnover of each item is measured as the number of unit loads requested in
a unit-time period, such as a week, a month, or a year, and is determined by the
ABC demand curve given in Eq. (2.1). All the items are ranked according to their
marginal contribution to the total turnover; an item that has a smaller contribution
is indexed with a larger number. We extend this method to the stochastic demand
in Sect. 2.4.3.

7. Item inventories are replenished according to the classic EOQ model.
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As used in conventional research, the ABC demand curve is a plot of ranked
cumulative percentage expected demand per unit time, G(i), and is modeled by the
following:

G(i) = i s =
∫ i

0
D( j)d j

/∫ 1

0
D( j)d j, 0 < s ≤ 1, (2.1)

where i is the item at the i th percentile in the ranked sequence of all items, D(i) is the
demand of item i per unit time, and s is the shape factor of the ABC demand curve.
Given s = 0.222, we know that 20% of the total items (i.e., i = 20%) contribute
G(i) = i s = (20%)0.222 = 70% of the total demand. A lower s means a more
skewedABCdemand curve. For example, s = 0.222 represents a 20%/70%demand
curve that is more skewed than a 20%/50% ABC demand curve for s = 0.431. We
relax the ABC curve function with another demand curve function in Sect. 2.4.2. By
normalizing the total demand

∫ 1
0 D( j)d j = 1, we obtain the following without loss

of generality:

D(i) = dG(i)/di = si s−1, 0 < s ≤ 1, (2.2)

according to Hausman et al. (1976) and Rosenblatt and Eynan (1989).
Given the abovementioned systemproperties and the itemdemands determined by

Eq. (2.2), we intend to find the average one-way travel time for storing or retrieving a
unit load in a class-based storage system. The one-way travel time is the travel time
from the depot to a unit-load storage location.

The class-based storage policy divides the storage space into n regions. Region
k is dedicated to storing items of class k, k = 1, 2, . . . , n. As shown in Fig. 2.1, a
region with items of high demand is located close to the depot. Items are randomly
stored in each region. Furthermore, the regions are L-shaped in a SIT storage system.

Based on the description given so far, the notations used in this chapter are given
and defined in Table2.1.

With the abovementioned notations and according to Rosenblatt and Eynan
(1989), the average one-way travel time (called “travel time” hereafter) in an n-class
system, Tn , can be formulated as the follows:

Tn =
∑n

k=1 tkΛ(k)∑n
k=1 Λ(k)

=
n∑

k=1

tk

(
Λ(k)∑n
k=1 Λ(k)

)
, (2.3)

whereΛ(k)

/∑n
k=1 Λ(k) is the weighted retrieval rate of class k, and

∑n
k=1 Λ(k) is

the total turnover in the whole system. Rosenblatt and Eynan (1989) simplified the
calculation using Eq. (2.2) to obtain the following:
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Table 2.1 Notations used in this chapter

Notations Definitions

i Index of the i th item. An item with a lower demand has a larger index

j Index of the j th storage location (or unit load). A location closer to the depot
has a smaller index

n Number of classes in the storage system

k Index of the kth class, k = 1, 2, . . . , n

ik Index of the item with the lowest turnover in class k

jk Storage location (a corresponding unit load) farthest from the depot in class k.
It also corresponds to the total required storage space of items 1 to k

tk Average one-way travel time for storing/retrieving a unit load of class k

Rk One-way travel time for storing/retrieving a unit load at the further boundary
of class k

Gk 100×(cumulative demand for the first k classes)/(the total demand of all
items in a unit-time period)

Λ(k) Total turnover, in number of unit loads per unit-time period of all items stored
in class k

Tn Average one-way travel time of a unit load for an n-class storage system

Λ(k)

/ n∑
k=1

Λ(k) = Gk − Gk−1 = i sk − i sk−1, k = 1, 2, . . . , n. (2.4)

Furthermore, in case of a SIT system, according to Hausman et al. (1976) and
Rosenblatt and Eynan (1989), tk can be obtained as the follows:

tk = 2
(
R3
k − R3

k−1

)
3
(
R2
k − R2

k−1

) , k = 1, 2, . . . , n. (2.5)

Consequently, by substituting Eqs. (2.4) and (2.5) into Eq. (2.3), the average travel
time for the system can be rewritten as follows:

Tn =
n∑

k=1

2
(
R3
k − R3

k−1

)
3
(
R2
k − R2

k−1

) (i sk − i sk−1

)
. (2.6)

To minimize Tn in Eq. (2.6), we must derive the relationship between Rk and
ik (or Gk), k = 1, 2, . . . , n. When the relationship is obtained, travel time can be
minimized through the optimization of either Rk or ik , for k = 1, 2, . . . , n.

In the next subsection, the conventional travel-timemodel based on the assumption
that “the required storage space of all the items equals their average inventory level”
is revisited.
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2.2.2 Conventional Travel-Time Model

Conventional research (Rosenblatt and Eynan 1989; Hausman et al. 1976; Eynan and
Rosenblatt 1994) assumes that the total required storage space for storing all items
is equal to the total average inventory level of the items regardless of the number of
classes of the system

A = L =
∫ 1

0
Q(i)

/
2di = √

2Ks
/

(s + 1), (2.7)

where A is the total required storage space (in number of unit load locations) for
storing all items, L is the total average inventory level of the items, Q(i) is the
economic order quantity of item i , and K is the ratio of order cost to holding cost and
is assumed to be equal for all items. On the basis of the abovementioned assumptions,
Rosenblatt and Eynan (1989) provided the relationship between Rk and Gk as Gk =
R4s/(s+1)
k with Gk = i sk . As a result, the conventional model (hereafter called as

Model CM) can be defined as follows:

Model CM:
Min Tn =

n∑
k=1

2
(
R3
k − R3

k−1

)
3
(
R2
k − R2

k−1

) (R4s/(s+1)
k − R4s/(s+1)

k−1

)
,

s.t. 0 = R0 < Rk−1 < Rk < Rn = 1,

d.v. Rk, k = 1, 2, . . . , n − 1. (2.8)

Model CM can be solved using the following recursive equation proposed by
Rosenblatt and Eynan (1989):

Tn = 2
(
1 − R3

n−1

)
3
(
1 − R2

n−1

) (1 − R4s/(s+1)
n−1

)
+ R(5s+1)/(s+1)

n−1 Tn−1. (2.9)

2.3 Travel-Time Model with a Finite Number of Items

This section relaxes the assumption of conventional research by adopting a finite
number of items in the system. The total required storage space is not simply equal
to the average inventory level similar to the Model CM but becomes a function of the
number of classes and the number of items in each class. In Sect. 2.3.1, the required
storage space for each storage class and the relationship between Rk and ik are
derived. Section2.3.2 presents our basic model that considers the required storage
space. A solution methodology for the model is provided in Sect. 2.3.3.
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2.3.1 Required Storage Space Function and Relationship
Between Rk and ik

If the number of items sharing a common storage space is finite, then the required
storage space of an item depends on several factors such as the number of items
sharing the space, the skewness of the ABC demand curve (s), the inventory replen-
ishment policies, and the ratio of order cost to holding cost (K ). We first determine
the required storage space of an item as a function of the number of items in the same
shared space by considering the replenishment quantity Q(i) that incorporates the
other factors.

The function ai (Nk) denotes the space required (average over time) to store item
i in class k together with (Nk − 1) other items, where Nk represents the number of
items sharing a common storage space within class k. A large number of storages
and retrievals are simulated for obtaining the presentation of ai (Nk), and the general
shape is sketched in Fig. 2.4. In particular, when Nk = 1, the storage method turns
into a dedicated storage, and the required storage space for item i is equal to its
order quantity Q(i). When Nk = +∞, the method turns into the situation with an
infinite number of items, and the required storage space for item i is now equal to
its average inventory level, Q(i)

/
2 (Hausman et al. 1976; Rosenblatt and Eynan

1989). For 1 < Nk < +∞, the value of ai (Nk) is between Q(i) and Q(i)
/
2, and it

decreases in Nk convexly as shown in Fig. 2.4. The relationship can be represented
by the following mathematical presentation:

ai (Nk) = 0.5
(
1 + N−ε

k

)
Q(i) = 0.5

(
1 + N−ε

k

)√
2K D(i), (2.10)

where ε is the space-sharing factor.

Fig. 2.4 Required storage space of item i as a function of Nk
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To provide a better understanding of the abovementioned relationship,we develop
an analytical model for a special case by assuming that Nk identical items exist in
class k. If the replenishments for the Nk items are fully coordinated, that is, item 1
arrives at time T , item 2 at time T + T/Nk , . . ., item i at time T + (i − 1)T/Nk ,
and so on, then the inventory patterns of the items are according to those shown in
Fig. 2.5. Therefore, the total required storage space of this class, k, can be obtained
as the total inventory level of the Nk items when an order arrives. In other words,∑Nk

i=1 i Q(i)/Nk = (1 + Nk)Q(i)/2. Consequently, the required storage space for
item i can be obtained as follows:

ai (Nk) = ((1 + Nk)Q(i)/2)
/
Nk = 0.5

(
1 + N−1

k

)
Q(i). (2.11)

In this special case, the space-sharing factor is ε = 1, which yields the best space-
sharing because of the item symmetry and synchronization of the item ordering.
However, in practice, the value of ε is significantly smaller than 1 because of the het-
erogeneity of the items in demand volumes, reorder points, order quantities, delivery
lead times, holding costs, and others. Therefore, we use simulation to determine the

Fig. 2.5 Coordinated replenishment cycles for Nk identical items in a class
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Table 2.2 Algorithm used to simulate ε

Steps Job description

Step 1 Obtain the initial inventory level for the Nk items randomly from their possible values

Step 2 Obtain the inventory level as a function of time for all the Nk items

Step 3 Obtain the total inventory level of this class as a function of time based on the results
of Step 2

Step 4 Obtain the maximum value of the function obtained from Step 3 as the required
storage space of this class

Step 5 Obtain the simulated required storage space for each item according to their
weighted contribution to the total required storage space of the class

Step 6 Repeat Steps 1–5 for m times, and obtain an average value as the required storage
space for the items to estimate ε

Step 7 Repeat Steps 1–6 for every possible Nk

Step 8 Estimate ε for Eq. (2.10) using least squares method based on the simulated values

average value of ε. The algorithm steps shown in Table2.2 are used in the simulation,
and the details are given in Appendix A.

Themethod of simulation does not depend on the demand curves or replenishment
policies. In the details presented in Appendix A, the continuous review (r ,S) policy,
classic EOQ policy, and the different kinds of ABC demand curves are verified. The
estimated average value of ε appears to be mostly in the range of 0.15–0.25 and is
quite insensitive to the system parameters.

Consequently, using Eq. (2.10), we can obtain the required storage space for class
k with a finite number of items

jk − jk−1 =
∫ ik

ik−1

ai (Nk)di =
∫ ik

ik−1

(
1 + N−ε

k

)√
0.5K D(i)di, (2.12)

where jk is the storage location farthest from the depot in class k, which also corre-
sponds to the total required storage space of items 1 to ik , and j0 = 0.

To make our result comparable with those of the conventional model, we also
rescale j by j ∗ L , where L = √

2Ks
/
(s + 1) (see Eq. (2.7)) according to Hausman

et al. (1976) andRosenblatt andEynan (1989). Thereafter, usingEqs. (2.2) and (2.12),
we obtain the total required storage space for the first k classes as follows:

jk = i (s+1)/2
k +

k∑
l=1

N−ε
l

(
i (s+1)/2
l − i (s+1)/2

l−1

)
. (2.13)

Furthermore, the relationship between Rk and jk in a SIT continuous storage system
is Rk = √

jk (Hausman et al. 1976; Rosenblatt and Eynan 1989). Therefore, the
boundary of the kth class, Rk , can now be rewritten as follows:
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Rk =
√√√√i (s+1)/2

k +
k∑

l=1

N−ε
l

(
i (s+1)/2
l − i (s+1)/2

l−1

)
, (2.14)

where Nl is the number of items in class l, which is obtained with Nl = N (il − il−1),
and N is the total number of items in the system.

2.3.2 Basic Travel-Time Model with a Finite Number of Items

Considering the relationship between Rk and ik shown in Eq. (2.14), we obtain the
new model (hereafter called “Model BM” to differentiate the basic model from the
extensions in the following sections) that enables us to determine the optimal class
boundaries of the continuous AS/RS.

Model BM:
Min Tn =

n∑
k=1

2
(
R3
k − R3

k−1

)
3
(
R2
k − R2

k−1

) (i sk − i sk−1

)
, (2.15)

s.t. N (ik − ik−1) ≥ 1, (2.16)

Rk =
√√√√i (s+1)/2

k +
k∑

l=1

N−ε
l

(
i (s+1)/2
l − i (s+1)/2

l−1

)
,

d.v. Rk, k = 1, 2, . . . , n; or ik, k = 1, 2, . . . , n − 1,

where R0 = i0 = 0 and in = 1 are known.
Model BM differs from Model CM in three respects. (i) Eq. (2.14) indicates that

the class boundary, Rk , is not only related to the last item and the items’ demand but
also to the number of items in class k and all its preceding classes 1, . . . , k − 1. (ii)
Constraints (2.16) are required to ensure that at least one item is stored in each class
because the items and the total required storage space are finite. (iii) The total required
storage space of the system, Rn , is an unknown value inModel BMbecause Rn relates
to Rk , k = 1, 2, . . . , n − 1, but Rn = 1 is known in Model CM. To determine an
efficient manner of solving this problem, we introduce a solution methodology based
on dynamic programming.

2.3.3 Solution Methodology

Unfortunately, themethodology for solvingModelCMusedbyRosenblatt andEynan
(1989) cannot be applied because an iterative relation similar to Eq. (2.9) does not
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hold in this case. In addition, the objective function (2.15) is nonlinear, and we
do not know if it is a convex function of Rk (or ik), k = 1, 2, . . . , n. In addition,
constraints (2.16) are nonlinear functions of Rk , k = 1, 2, . . . , n, in considering
Eq. (2.14). For a small number of classes, a grid search can be applied to identify
approximate solutions. We use a different solution method because we are interested
in a fast algorithm that determines the optimal solution for a larger number of classes.
Rewriting expressions (2.14) and (2.15) is possible to enable the use of a dynamic
programming solution approach.We denote Yk = ∑k

l=1 Nl as the cumulative number
of items of the first k classes, where Nl is the number of items in the lth class. The
relationship between ik and Yk is as follows:

ik = Yk/N . (2.17)

By substituting Eq. (2.17) into Eqs. (2.14) and (2.15), we can rewrite Model BM
in a Solution Model (SM) as follows:

Model SM:
Min Tn =

n∑
k=1

2
(
R3
k − R3

k−1

)
3
(
R2
k − R2

k−1

)
((

Yk
N

)s

−
(
Yk−1

N

)s)
, (2.18)

s.t. Yk =
k∑

l=1

Nl ,

Rk =
√√√√(Yk

N

)(s+1)/2

+
k∑

l=1

N−ε
l

((
Yl
N

)(s+1)/2

−
(
Yl−1

N

)(s+1)/2
)

, (2.19)

d.v. Nk > 0, k = 1, 2, . . . , n.

The details of the dynamic programming solution methodology of this model
are described in Appendix B. The complexity of the algorithm appears to be
O(N 3).

2.4 Model Extensions

This section extends the basic model in Sect. 2.3 to consider an NSIT storage rack,
a different ABC demand curve, a discrete rack, and a stochastic item demand. In
particular, Sect. 2.4.1 considers the NSIT rack model, Sect. 2.4.2 examines the model
based onBender’sABCdemand curve, and Sect. 2.4.3 extends themodel to a discrete
storage rack with stochastic item demand.
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2.4.1 NSIT Storage Racks

In practice, storage racks are usually NSIT. Following Eynan and Rosenblatt (1994),
we discuss an NSIT case with a rack face with a fixed height,

√
b, in the vertical

direction, where b is a shape factor with 0 < b ≤ 1.
When class-based storage is applied, three types of class regions exist for theNSIT

storage rack: square regions, rectangular regions, and a transient region as shown in
Fig. 2.6. Square regions like class 1 or L-shaped regions with square outer boundaries
(surrounding a square class 1). The boundary of such a region is Rk ≤ √

b, and the
total area containing the previous k classes is Rk × Rk . Rectangular regions like class
3 with Rk−1 ≥ √

b. The total area containing the previous k classes is Rk × √
b.

A transient region is like class 2. It is a region between the square area and the
rectangular area. For this class, Rk−1 ≤ √

b and Rk ≥ √
b. The total area containing

the previous k classes is Rk × √
b. We note that this region may not exist if the

boundary of the (k − 1)th region is exactly at Rk−1 = √
b. According to Eynan and

Rosenblatt (1994) and with class k̂ as the transient region, the following are true:

Rk =
{√

jk, if 1 ≤ k < k̂,

jk
/√

b, if k ≥ k̂.

tk =

⎧⎪⎪⎨
⎪⎪⎩

2
(
R3
k − R3

k−1

) / (
3R2

k − 3R2
k−1

)
, if 1 ≤ k < k̂,(

b3/2 + 3
√
bR2

k − 4R3
k−1

)/(
6
√
bRk − 6R2

k−1

)
, if k = k̂,

(Rk + Rk−1)
/
2, if k > k̂.

Therefore, the travel-time model with a finite number of items in an NSIT system
can be obtained as follows:

Fig. 2.6 Different types of classes in a NSIT warehouse
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Model NSIT:

Min Tn =
k̂−1∑
k=1

2
(
R3
k − R3

k−1

)
3
(
R2
k − R2

k−1

) (i sk − i sk−1

)+
n∑

k=k̂+1

(Rk + Rk−1)

2

(
i sk − i sk−1

)

+
(
b3/2 + 3

√
bR2

k − 4R3
k−1

)

6
(√

bRk − R2
k−1

) (
i sk − i sk−1

)
, (2.20)

s.t. Yk =
k∑

l=1

Nl , ik = Yk
/
N ,

jk = i (s+1)/2
k +

k∑
l=1

N−ε
l

(
i (s+1)/2
l − i (s+1)/2

l−1

)
,

Rk = √
jk, for 1 ≤ k < k̂,

Rk = jk
/√

b, for k ≥ k̂,

d.v. Nk > 0, k = 1, 2, . . . , n.

The optimal Tn and Nk > 0, k = 1, 2, . . . , n can be found through the solution
methodology presented in Sect. 2.3.3.

2.4.2 Bender’s ABC Demand Curve

Although the ABC demand curve in Eq. (2.1) is widely used in the literature, Bender
(1981) empirically showed that the following equation well represents the ABC
demand curve in reality (Pohl et al. 2011).

G(i) = (1 + B)i
/
(B + i). (2.21)

where B is the shape factor of the ABC demand curve. The difference of these two
demand curves can be clearly observed in Fig. 2.7 by choosing the 20%/70% curve
as an example. To examine the effect of these different ABC demand curves on the
optimal number of classes, we revise Model BM described in Sect. 2.3 as follows:

With regard to the difference between the two curves, the corresponding item
demand, D(i), and the cumulative required storage space for the first k classes, jk ,
can be realized as the following:

D(i) = B(1 + B)
/
(B + i)2, (2.22)
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Fig. 2.7 Two different 20%/70% ABC demand curves

jk =
(
ln

B + ik
B

+
k∑

l=1

ln
B + il
B + il−1

)/
ln

B + 1

B
. (2.23)

Therefore, by replacing ik with Yk/N and with respect to Rk = √
jk , we obtain the

model for Bender’s ABC demand curve Model SMB (“SMB” represents “Solution
Methodology with Bender’s ABC curve”) as follows:

Model SMB:
Min Tn =

n∑
k=1

2
(
R3
k − R3

k−1

)
3
(
R2
k − R2

k−1

)
(

(1 + B)Yk
N B + Yk

− (1 + B)Yk−1

N B + Yk−1

)
, (2.24)

s.t. Yk =
k∑

l=1

Nl,

Rk =
√√√√
(
ln

B + ik
B

+
k∑

l=1

ln
B + il
B + il−1

)/
ln

B + 1

B
, (2.25)

d.v. Nk > 0, k = 1, 2, . . . , n.

ThroughModelNSIT, the optimal Tn and Nk > 0, k = 1, 2, . . . , n can be obtained
similarly through the same solution methodology shown in Sect. 2.3.3.
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2.4.3 Discrete Racks and Stochastic Demand

In this section, our basic model (Model BM) for continuous racks and deterministic
demand in Sect. 2.3 is extended to a more realistic model with discrete storage loca-
tions and stochastic item demand. Different from the problem described in Sect. 2.2,
the demand of each item follows a stochastic distribution over a unit-time period. The
expected demand is determined according to theABCdemandcurve. Item inventories
are replenished according to a continuous review (r ,S) policy with a replenishment
lead time. Here, r is the reorder point, and S is the order-up-to level.

Shortagesmayoccur and lead to backorders because itemdemand is stochastic and
a delivery lead time exists for replenishing orders. Therefore, a maximum stockout
probability is set. The stockout probability of item i in the warehouse must be less
than αi , with (1 − αi ) defined as the service level (or fill rate). As a result, a safety
stock ssi for item i is needed to achieve this service level.

Correspondingly, in addition to the notations given in Sect. 2.2, the notations
shown in Table2.3 are defined for this model.

To obtain the travel-time model for an n-class-based storage system shown as
Eq. (2.6),weneed toget the average travel time for each storage class and theweighted
expected turnover frequency of each class.

First, the cumulative fraction of the total expected demand of the i items can be
expressed as follows according to Hausman et al. (1976):

G(i) = (i/N )s =
i∑

x=1

λ(x)

/ N∑
x=1

λ(x), 0 < s ≤ 1. (2.26)

Second, we define τ j as the one-way travel time from location j to the depot. For
a discrete SIT system, τ j can be expressed as follows:

τ j =
⌈√

j
⌉

, (2.27)

Table 2.3 Notations used in Sect. 2.4.3

Notations Definitions

ri Reorder point of item i

Si Order-up-to level of item i

li Delivery lead time for the orders of item i , which is constant for each item

λ(i) Expected demand (i.e., expected number of retrievals) of item i in a unit-time
period with λ(i) ≥ λ(i + 1) for all i . The expected demand of the item over the
delivery lead time is liλ(i)

fi (·) Demand probability density function of item i during the delivery lead time li
Fi (·) Cumulative demand distribution function of item i during the delivery lead time li
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where
⌈√

j
⌉
represents the smallest integer number not less than

√
j , and the travel

speed is supposed to be one location per second. As a result, the average one-
way travel time for storing (or retrieving) a unit load of class k can be obtained
as follows:

tk = 1

jk − jk−1

jk∑
j= jk−1+1

τ j . (2.28)

Therefore, similar to Eq. (2.6), the average travel time for the system can be obtained
as follows:

Tn =
n∑

k=1

∑ jk
j= jk−1+1 τ j

jk − jk−1

((
Yk
N

)s

−
(
Yk−1

N

)s)
. (2.29)

With the description given so far, the problem now is to determine the relationship
between jk and Yk . First, the function of the required storage space of item i , ai (Nk)

for determining jk − jk−1 can be obtained through simulations similar to Model BM
as follows:

ai (Nk) = 0.5
(
1 + N−ε

k

)
(Si − ri ) + ssi . (2.30)

Thereafter, the required storage space for class k can be obtained as follows:

jk − jk−1 =
⎡
⎢⎢⎢

Yk∑
i=Yk−1+1

ai (Nk)

⎤
⎥⎥⎥

=
⎡
⎢⎢⎢

Yk∑
i=Yk−1+1

(
0.5
(
1 + N−ε

k

)
(Si − ri ) + ssi

)
⎤
⎥⎥⎥ , (2.31)

where j0 = 0.
Consequently, the total required storage space of the first k classes is equal to the

following:

jk =
⎡
⎢⎢⎢

k∑
l=1

Yl∑
i=Yl−1+1

(
0.5
(
1 + N−ε

l

)
(Si − ri ) + ssi

)⎤⎥⎥⎥ , (2.32)

where Nl = Yl − Yl−1 and Y0 = 0.
Considering the previous analysis, the relationship between jk and Yk expressed

in Eq. (2.32), and the objective function given in Eq. (2.29), we obtain the follow-
ing Model DSM (i.e., discrete-stochastic model for discrete racks and stochastic
demand) to determine the optimal class allocations of the AS/RS in the discrete space
scenario.
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Model DSM:
Min Tn =

n∑
k=1

∑ jk
j= jk−1+1 τ j

jk − jk−1

((
Yk
N

)s

−
(
Yk−1

N

)s)
, (2.33)

s.t. τ j =
⌈√

j
⌉

, Yk > Yk−1 and Eq. (2.32),

d.v. Yk > 0, k = 1, 2, . . . , n,

where j0 = Y0 = 0 is known.
Similarly, this model can be solved by the methodology provided in Sect. 2.3.3.

2.5 Numerical Illustrations

This section provides detailed numerical illustrations to present in detail the results
of the models deduced in this chapter and to show managerial insights to help ware-
house managers make useful decisions. In Sect. 2.5.1, the results of Model CM from
Sect. 2.2 and those of our newModel BM fromSect. 2.3 are compared under different
ABC demand curves. Section2.5.2 presents the results of the extended models with
respect to NSIT storage racks, Bender’s ABC demand curve, and discrete rack and
stochastic item demand.

2.5.1 Base Examples: Results for Basic Model

In our base example, the total number of items in the system is N = 100, and the
space-sharing factor is ε = 0.22 (the average value, obtained through simulation, see
Appendix A). This section shows the comparison between Model BM and Model
CM for different numbers of classes. We solve both models for 1 class to 100 classes.
The results for the optimal travel time Tn as a function of the number of classes n are
shown in Fig. 2.8 under four different ABC demand curves, with s = 1(20%/20%),
0.431(20%/50%), 0.222(20%/70%), and 0.065(20%/90%). The corresponding
required storage space of the system is shown in Fig. 2.9.

The results shown in Figs. 2.8 and 2.9 imply the following:

(i) The optimal number of classes n∗ is small, and n = 3 provides near-optimal
solutions in all cases tested. In Fig. 2.8, n∗ ≤ 5 for all our examples, which cover
all practical values of the ABC demand curves. A small number of classes is
very close to the warehousing practice, in which only three storage classes are
often used (Roodbergen and Vis 2009).

(ii) Travel time is insensitive to the number of classes in a wide range beyond the
optimum. In Fig. 2.8, the differences in travel time between n = 3 and n = 8 are
basically negligible. However, the range of the number of classes yielding the
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Fig. 2.8 Travel times in our basic model compared to those in the literature. a The 20%/20%ABC
curve. b The 20%/50% ABC curve. c The 20%/70% ABC curve. d The 20%/90% ABC curve.

Fig. 2.9 Total required storage space as a function of the number of classes

near-optimal travel time depends on the ABC demand curves. For instance, if
we define that the acceptable gap is 1% for the 20%/20% curve, then the range
of 1 class to 17 classes is acceptable, whereas for the 20%/90% curve, the
acceptable range is from 3 classes to 75 classes. If the acceptable gap is 5%,
then the range of 1 class to 44 classes is acceptable for the 20%/20% curve and
that of 3 classes to 100 classes is all acceptable for the 20%/90% curve. That
is, a full turnover-based policy is acceptable for this curve. Therefore, managers
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should not hesitate to select any reasonable small number of classes because the
result is essentially near optimal. This result is also true even when the required
storage space is considered because the required storage space does not increase
significantly from n = 3 to 8 as shown in Fig. 2.9.

(iii) The relative gaps between the travel times of ourModel BM and those ofModel
CM increase with n in all examples. Even at n = 1, the gaps are still quite
large (almost 15% for all examples in Fig. 2.8). Therefore, warehouse man-
agers should not only simply adopt the average inventory level as the required
storage space for the warehousing system. The underestimation of required
storage space may lead to managers’ incorrect decisions, such as response time
estimation and cost budgeting.

(iv) Compared with the required storage space adopted in conventional research, the
required storage space of Model BM and that of Model CM have a significant
gap that is usually more than 30% and can be as large as 100% when dedicated
storage is adopted. Consequently, warehouse managers should consider the dif-
ference among the required storage spaces when the storage policy changes, and
this result provides warehouse managers a direction about warehouse capacity
design.

2.5.2 Results for Extended Models

To verify the robustness of the results obtained in Sect. 2.5.1, this section presents the
numerical results for the extendedmodels given in Sect. 2.4. Noting that the values of
parameters are different section between Model DSM and the others, we first show
the results for the NSIT storage rack and Bender’s ABC curve in Sect. 2.5.2.1 and
then provide the results of Model DSM in Sect. 2.5.2.2.

2.5.2.1 Results for the NSIT Storage Racks and Bender’s ABC Demand
Curve

This section presents the results for the NSIT storage racks and Bender’s ABC
demandcurve.The results shown inFig. 2.10 are basedona20%/70%curve,which is
a common case in practice. The results based on other curves with different skewness
are omitted here because they have the same trend.

The results show that themain findings of Sect. 2.5.1 still hold for different storage
racks and different kinds of ABC demand curves: a small number of classes yield the
minimum travel time of the system, and any number of classes around the optimal
one is a near-optimal solution.

In particular, an NSIT storage rack leads to longer travel times than a SIT rack
because the optimal rack configuration is not NSIT but SIT (as shown in Fig. 2.10a).
In Fig. 2.10b, the travel time of the conventional ABC curve (Eq. (2.1)) is shorter than
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Fig. 2.10 Travel time for Model NSIT and Model SMB. a The result of the NSIT storage rack.
b The result of Bender’s ABC curve

that ofBender’sABCcurve (Eq. (2.21)) because the conventionalABCdemand curve
is more skewed (as shown in Fig. 2.7).

2.5.2.2 Results for Discrete Racks and Stochastic Demand

The basic parameters in this section are as follows: N = 100 items are stored in the
warehousing system; the total annual demand of all the items is

∑N
i=1 λ(i) = 10, 000;

and K = 2 and li = 1/50 year for i = 1, 2, . . . , N . A continuous review order-up-to
level replenishment policy is adopted for item i , i = 1, 2, . . . , N with the required
service level 1−αi = 95% for a 20%/70% demand curve. The demand of each item
follows a normal distributionwithσi/μi = 0.2 andμi = λ(i) for all i = 1, 2, . . . , N .
The reorder point ri is chosen according to the service level as ri = F−1

i (1 − αi ).
Thereafter, the safety stock level can be obtained as ssi = ri − liλ(i). Finally,
according to Kapalka et al. (1999), the order-up-to level is Si = ri + √

2Kλ(i).
The results of Model DSM for discrete racks and stochastic demand are given in

Figs. 2.11, 2.12 and 2.13. The comparison of the results with those of Model BM can
be found in Fig. 2.11, in which the results of Model DSM are normalized through

the replacement of R j with R j

/√∑N
i=1 Q(i)/2, comparable with the normalized

results of Model BM. We only present the result of s = 0.222 for an example
in Fig. 2.11 because the results of different ABC demand curves are similar. Fig-
ures2.12 and 2.13 show the sensitivity results of the optimal number of classes and
the corresponding required storage space with varying parameters.

The results indicate that our major findings in Sect. 2.5.1 hold in the case of
discrete rack and stochastic demand; a small number of classes lead to a minimum
travel time (as shown in Figs. 2.11a and 2.12) through varying number of items,
service level, and demand variability. The minimum travel time is insensitive to the
optimal number of classes around the optimum.
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Fig. 2.11 Comparison of Model BM and Model DSM, s = 0.222. a Travel time. b Normalized
required storage space

Fig. 2.12 Optimal number of classes, depending on N , αi , σi/μi and ε. a Number of items.
b Service level. c Demand variability. d Space-sharing factor

In particular, as shown in Fig. 2.10a, the travel time of Model DSM is longer than
that of Model BM. The difference mainly comes from the extra space needed for
the safety stock of the items in Model DSM. Figure2.10b shows that more required
storage spaces for Model DSM are needed, that is, at least 60% larger than those of
Model CM for eight storage classes and even 100% for a large number of classes.

Figure2.13 illustrates that the required storage space increases with the required
service level, demand variability, and number of items in the system but decreases
with the space-sharing factor. The required storage space convexly increases because
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Fig. 2.13 Total required storage space at the optimal number of classes, depending on N , αi , σi/μi
and ε. a Number of items. b Service level. c Demand variability. d Space-sharing factor

the safety stock increaseswith the service level convexly.The required space is largely
linear in the demand variability σi/μi .

2.6 Chapter Summary

This chapter extends the research on class-based storage by considering a finite
number of items to be stored in an AS/RS. Our results reveal that the optimal number
of classes is relatively small, and three classes give the near-shortest travel time for
the ABC demand curves between 20%/50% and 20%/90%. This finding contradicts
the common idea in the literature that more storage classes are better in view of travel
time.

The results also show a flat range of the number of classes yielding the near-
optimal solution, which is dependent on the skewness of the demand curves. For
example, for the 20%/20% curve, 17 classes lead to a 1% increase in travel time
compared with the minimum value, and 45 classes lead to more than 5%. For the
20%/90% curve, a 1% gap enables managers to adopt up to 75 classes, and the
gap is less than 3.5% for the 100-class system. Although the flat range is influenced
by the demand curves, a common range provides a near-optimal solution for all the
cases. This finding is important for warehouse managers because it suggests that any
reasonable number of classes such as between 3 and 8 is near optimal. As a result,
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warehouse managers can freely change the number of classes when necessary (e.g.,
for space use purposes) because travel time is not sensitive to the number of classes.

Furthermore, by analyzing the extendedmodels,we show that the results are robust
for different storage rack shapes, different kinds of ABC demand curves, discrete
storage locations, and stochastic item demand. These findings provide important
managerial directions about item classification when class-based storage is adopted
in a warehousing system.

Moreover,we reveal that the space needed for awarehousewith an optimal number
of storage classes should be at least 30–50%of the average inventory level. This result
is in accordance with the practical knowledge that every warehouse needs a slack
space to warrant a smooth operation. An important conclusion for the research is that
the space-sharing effect cannot be ignored in the class-based storage system. Models
assuming perfect space-sharing (i.e., by implicitly assuming an infinite number of
items per class) underestimate the space requirements, the travel time needed, and
investments in racks and equipment. This finding provides a clearer guidance for
capacity design, instead of simply adopting the average inventory level, in a class-
based storage system.

Therefore, further research on storage policies based on a finite number of items
is called for because many studies use class-based storage and implicitly assuming
an infinite number of items. The results of these studies should be revisited to address
the consequence of assuming a finite number of items to be stored in the system. The
results for a finite number of items may substantially differ from those for an infinite
number of items. First, travel time results under the assumption of an infinite number
of items per class are usually overly optimistic because a division in storage classes
requires more storage space than that accounted for. Second, an increasing number
of storage classes increases the response times rather than reducing them. Similar
results will hold for parallel-aisle or fishbone-layout warehouses (Gue and Meller
2009). Our contribution to identify the tradeoff between travel time reduction by item
ranking and increase through increased storage space leading to an optimal product
and storage number of classes may also be applied to other areas where products are
classified by some criterion.
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