
Chapter 2
Cross-Application Cellular Traffic
Optimization

Abstract Asmobile cellular devices and traffic continue growing rapidly, providers
are putting more efforts to optimize traffic, with the hopes of improving user expe-
riences while reducing congestion and bandwidth costs. This chapter presents the
design, deployment, and experiences with Baidu TrafficGuard, a cloud-based mobile
proxy that reduces cellular traffic using a network-layer VPN. The VPN connects a
client-side proxy to a centralized traffic processing cloud. TrafficGuard works trans-
parently across heterogeneous applications, and effectively reduces cellular traffic
by 36% and overage instances by 10.7 times for roughly 10 million Android users
in China. We discuss a large-scale cellular traffic analysis effort, how the resulting
insights guided the design of TrafficGuard, and our experiences with a variety of
traffic optimization techniques over one year of deployment.

2.1 Introduction

Mobile cellular devices are changing today’s Internet landscape. Growth in cellu-
lar devices today greatly outpaces that of traditional PCs, and global cellular traffic
is growing by double digits annually, to an estimated 15.9 Exabytes in 2018 [1].
This growing traffic demand has led to significant congestion on today’s cellular
networks, resulting in bandwidth caps, and throttling at major wireless providers.
The challenges are more dramatic in developing countries, where low-capacity
cellular networks often fail to deliver basic quality of service needed for simple
applications [2–4].

While this is a well-known problem, only recently have we seen efforts to address
it at scale. Google took the unprecedented step of prioritizing mobile-friendly sites
in its search algorithm [5]. This will likely spur further efforts to update popular
websites for mobile devices. Recent reports estimate that most enterprise webpages
are designed for PCs, and only 38% of webpages are mobile-friendly [6]. More
recently, Google released details on their Flywheel proxy service for compressing
content for the Chrome mobile browser [7].

Competition in today’s mobile platforms has led to numerous “walled-gardens,”
where developers build their own suites of applications that keep users within their

© Springer Science+Business Media Singapore 2016
Z. Li et al., Content Distribution for Mobile Internet: A Cloud-based Approach,
DOI 10.1007/978-981-10-1463-5_2

19

20 2 Cross-Application Cellular Traffic Optimization

Fig. 2.1 Architectural overview of TrafficGuard. (Reprinted with permission from [22].)

ecosystem. The ongoing trend limits the benefits of application-specific proxies, even
ones with user bases as large as Google Chrome [7–13]. In contrast, an alternative
approach is to transparently intercept and optimize network traffic across all apps at
the OS/network layer. Although some examples of this approach exist [14–17], little
is known about their design or impact on network performance.

This chapter describes the design, deployment, and experiences with Baidu Traf-
ficGuard, a third-party cellular traffic proxy widely deployed for Android devices
in China.1 As shown in Fig. 2.1, TrafficGuard is a cloud-based proxy that redirects
traffic through a VPN to a client-side mobile app (http://shoujiweishi.baidu.com).
It currently supports all Android 4.0+ devices, and does not require root privileges.
Inside the cloud, a series of software middleboxes are utilized to monitor, filter,
and reshape cellular traffic. TrafficGuard was first deployed in early 2014, and its
Android app has been installed by roughly 10 million users. The average number of
daily active users is around 0.2 million.

In designing a transparent mobile proxy for cellular traffic optimization, Traffic-
Guard targets four key goals:

• First, traffic optimization should not harm user experiences. For example, image
compression through pixel scaling often distorts webpage and UI (user interface)
rendering in user apps. Similarly, traffic processing should not introduce unaccept-
able delays.

• Second, our techniquesmust generalize to different apps, and thus proprietaryAPIs
or data formats should be avoided. For example, Flywheel achieves significant
traffic savings by transcoding images to the WebP format [23]. Though WebP
offers high compression, not all apps support this format.

1Cellular data usage in Asia differs from that of US/European networks, in that HTTP traffic
dominates 80.4% of cellular traffic in China and 74.6% in South Korea [18]. In comparison,
HTTPS accounts for more than 50% of cellular traffic in the US [19–21].

http://shoujiweishi.baidu.com

2.1 Introduction 21

• Third, we wish to limit client-side resource consumption, in terms of memory,
CPU, and battery. Note that the client needs to collaborate well with the cloud
using a certain amount of resources.

• Finally, we wish to reduce system complexity, resource consumption, and mon-
etary costs on the cloud side. In particular, the state information maintained for
each client should be carefully determined.

In this chapter, we document considerations in the design, implementation, and
deployment of TrafficGuard. First, we analyze aggregate cellular traffic measure-
ments over 110K users to understand the characteristics of cellular traffic in China.
This gave us insights on the efficacy and impact of traditional data compres-
sion, as well as the role of useless content like broken images in cellular traffic.
Second, we adopt a lightweight, adaptive approach to image compression, where
more considerate compression schemes are constructed to achieve a sweet spot on
the image-quality versus file-size tradeoff. This helps us achieve traffic savings com-
parable to Flywheel (27%) at roughly 10–12% of the computation overhead. Third,
we develop a customized VPN tunnel to efficiently filter users’ unwanted traffic,
including overnight, background, malicious, and advertisement traffic. Finally, we
implement a cloud-client paired proxy system, and integrate best-of-breed caching
techniques for duplicate content detection. The cloud-client paired design allows us
to finely tune the tradeoff between traffic optimization and state maintenance.

TrafficGuard is the culmination of these efforts. For installed users, it reduces
overall cellular traffic by an average of 36%, and instances of traffic overage (i.e.,
going beyond the users’ allotted data caps) by 10.7 times. Roughly 55% of users saw
more than a quarter reduction in traffic, and 20% of users saw their traffic reduced
by half. TrafficGuard introduces relatively small latency penalties (median of 53ms,
mean of 282ms), and has little to no impact on the battery life of user devices.

While already successful in its current deployment, TrafficGuard can achieve even
higher efficiency if cellular carriers (are willing to) integrate it into their infrastruc-
ture. As demonstrated in Fig. 2.2, carriers could deploy TrafficGuard between the
GGSN (Gateway GPRS Support Node) and SGSN (Serving GPRS Support Node).
Then the optimized traffic is further transferred to the RNC (Radio Network Con-
troller) and BTS (Base Transceiver Station). This would greatly simplify both the
cloud-side and client-side components of TrafficGuard, and further reduce latency
penalties for users.

Finally, we note that while Baidu does not have an internal IRB (institutional
review board [24]) review process, all reasonable steps were taken at Baidu to protect

Fig. 2.2 Potential
integration of TrafficGuard
into a 3G cellular carrier.
Integration for 4G would be
similar. (Reprinted with
permission from [22].) Internet RNCGGSN SGSN

BTS
BTS

22 2 Cross-Application Cellular Traffic Optimization

user privacy during this study. All users who participated in the study opted-in as
volunteers with informed consent, and full traffic traces were limited to one week of
measurements (all other datasets are anonymized logs). Wherever possible, analysis
was limited to anonymized metadata only. When necessary, content analysis was
done on aggregate data, and fully decoupled from any user identifiers or personally
identifiable information.

2.2 State-of-the-Art Systems

This section briefly surveys state-of-the-art mobile traffic proxy systems. As listed
in Table2.1, we compare seven systems with TrafficGuard. We focus on five of
the most important and ubiquitous features supported by these systems: (1) image
compression, (2) text compression, (3) content optimization, (4) traffic filtering, and
(5) caching. In each case, we highlight the strengths of different approaches, as well
as the shortcomings, which motivated our design of TrafficGuard.

Since most mobile traffic proxy systems are closed-source, we rely on a variety
of methods to determine their features. The implementation of Google Flywheel is
described in [7]. For Opera Turbo, UCBrowser (proxy), and QQBrowser (proxy), we
are able to uncover most of their features through carefully controlled experiments.
Specifically, we set up our own web server, used these proxies to browse our own
content hosted by the server, and carefully compared the data sent by the server with
what was received by our client device. Unfortunately, Opera Max, Microsoft Data
Sense, and Onavo Extend use encrypted proxies, and thus we can only discover a
subset of their implementation details.

First, we examine the image compression techniques. Three systems transcode
images to WebP, which effectively reduces network traffic [7]. However, this only
works for user apps that support WebP (e.g., Google Chrome). Similarly, Opera Max
and Onavo Extend transcode PNGs to JPEGs, and Onavo Extend also transcodes
large GIFs to JPEGs. Taking a different approach, UCBrowser rescales large images
(>700×700 pixels) to small images (<150×150 pixels). Although rescaling reduces
traffic, it could harm user experiences by significantly degrading image qualities. In
contrast to these systems, TrafficGuard uses an adaptive quality reduction approach
that is not CPU intensive, reduces traffic across apps, and generally does not harm
user experiences (see Sect. 2.5.1).

Second, we find that all the seven systems compress textual content, typically
with gzip. However, our large-scale measurement findings (in Sect. 2.3.2.2) reveal
that the vast majority of textual content downloaded by smartphone users is very
short, meaning that compression would be ineffective. Thus, TrafficGuard does not
compress texts, since the CPU overhead of decompression is not worth the low
(1.36%) HTTP traffic savings.

Third, we explore the content optimization strategies employed by mobile traf-
fic proxies. We define content optimization as attempts to reduce network traffic by
altering the semantics or functionality of content. For example, Flywheel replaces

2.2 State-of-the-Art Systems 23

Table 2.1 Comparison of state-of-the-art mobile traffic proxy systems

System Image
compression

Text
compression

Content
optimization

Traffic
filtering

Caching

Google
Flywheel

Transcoding
to WebP

Yes Lightweight
error page

Safe Browsing Server-side

Opera Turbo Transcoding
to WebP

Yes Pre-executing
JavaScript

Ad blocking ?

UCBrowser Pixel Scaling Yes No Ad blocking ?

QQBrowser Transcoding
to WebP

Yes No Ad blocking ?

Opera
Max [17]
(China’s
version)

Transcoding
PNG to JPEG

Yes No Restricting
overnight
traffic

?

Microsoft
Data Sense

? Yes No Restricting
background
traffic, and ad
blocking

?

Onavo Extend Transcoding
PNG and large
GIF to JPEG

Yes No No Client-side

TrafficGuard Adaptive
quality
reduction

No Attempting to
discard
useless
content

Restricting
overnight and
background
traffic, ad
blocking, Safe
Browsing

Server-side,
and VBWC on
both sides

“?” means unknown. (Reprinted with permission from [22].)

HTTP 404 error pages with a lightweight version. More aggressively, Opera Turbo
executes JavaScript objects at the proxy, so that clients do not need to download and
execute them. Although this can reduce traffic, it often breaks the original functional-
ity of websites and user apps, e.g., in the controlled experiments we often noticed that
JavaScript functions like onscroll() and oninput() were not properly executed by Opera
Turbo. Rather than adopt these approaches, TrafficGuard validatesHTTP content and
attempts to discard useless content like broken images (see Sect. 2.5.2).

Fourth, we observe that many of the target systems implement traffic filtering.
Four systems block advertisements, plus Flywheel using Google Safe Browsing [25]
to block malicious content. Opera Max attempts to restrict apps’ traffic usage during
the night, when users are likely to be asleep. Microsoft Data Sense takes things a step
further by also restricting traffic from background apps, under the assumption that
apps which are not currently interactive should not be downloading lots of data. We
discover that all these filtering techniques are beneficial to users (see Sect. 2.3.2.4),
and thus we incorporate all of them into TrafficGuard (see Sect. 2.5.3).

Finally, we study the caching strategies of existing systems. Flywheel maintains
a server-side cache of recently accessed objects, while Onavo Extend maintains

24 2 Cross-Application Cellular Traffic Optimization

a local cache (of 100MB by default). In contrast, TrafficGuard adopts server-side
strategies bymaintaining a cache at the proxy (see Sect. 2.4), as well as implementing
Value-based web caching (VBWC) between the client and server (see Sect. 2.5.4).
Although we evaluated other sophisticated caching strategies, we ultimately chose
VBWC because it offers excellent performance and is straightforward to implement.

2.3 Measuring Cellular Traffic

In this section, we present a large-scale measurement study of cellular traffic usage
by Android smartphone users. Unlike prior studies [18, 26–30], our analysis focuses
on content and metadata. Using this dataset, we identify several key performance
issues and tradeoffs that guide the design of TrafficGuard.

2.3.1 Dataset Collection

The ultimate goal of TrafficGuard is to improve smartphone users’ experiences by
decreasing network usage and filtering unwanted content. To achieve this goal, we
decided to take a measurement-driven methodology, i.e., we first observed the actual
cellular traffic usage patterns of smartphone users, and then used the data to drive
our design and implementation decisions.

When we first deployed TrafficGuard between Jan. 5 and Mar. 31, 2014, the
system only monitored users’ cellular traffic; it did not filter or reshape traffic at all.
We randomly invited users to test TrafficGuard from ∼100M existing mobile users
of Baidu. We obtained informed consent from volunteers by prominently informing
them that full traces of their cellular traffic would be collected and analyzed. We
assigned a unique ClientToken to each user device that installed the mobile app of
TrafficGuard.

We used two methods to collect packet traces from volunteers. For an HTTP
request, the TrafficGuard app would insert the ClientToken into the HTTP header.
The TrafficGuard cloud would then record the request, remove the injected header,
complete the HTTP request, and store the server’s response. However, for non-HTTP
requests (most of which are HTTPS), it was not possible for the TrafficGuard cloud
to read the injected ClientToken (we did not attack secure connections via man-in-
the-middle). Thus, the TrafficGuard app locally recorded the non-HTTP traffic, and
uploaded it to the cloud in a batch along with the ClientToken once per week. These
uploads were restricted to WiFi,2 in order to avoid wasting volunteers’ cellular data
traffic. In both cases, we also recorded additional metadata like the specific app

2Certainly TrafficGuard also has the capability of helping mobile users save WiFi traffic, just like
what Google Flywheel does. However, at the moment TrafficGuard only targets at saving cellular
traffic for two reasons. First, WiFi users generally do not care about the traffic usage since they

2.3 Measuring Cellular Traffic 25

Table 2.2 General statistics of our collected TGdataset

Collection period 03/21–03/27, 2014

Unique users 111,910

Total requests 162M

Dataset size 1324 GB (100%)

Non-HTTP traffic (plus TCP/IP) 259 GB (19.6%)

HTTP traffic (plus TCP/IP) 1065 GB (80.4%)

HTTP header traffic 107 GB (8.1%)

HTTP body traffic 875 GB (66.1%)

(Reprinted with permission from [22].)

that initiated each request, and whether that app was working in the foreground or
background.

We collected packet traces from volunteers for one week, betweenMar. 21 and 27,
2014. In total, this dataset contains 320M requests from 0.65M unique ClientTokens.
However, we observe that many user devices in the dataset only used their cellular
connections for short periods of time. These short-term users might have good WiFi
availability, or might be using their cellular connections but did not (remember to)
run the mobile app of TrafficGuard. To avoid bias, we focus on the traces belonging
to 111,910 long-term users who used their cellular connections in at least four days
during the collection period. This final dataset is referred to as TGdataset, whose
general statistics are listed in Table2.2.

2.3.2 Content Analysis

Below, we analyze the content and metadata contained in TGdataset. In particular,
we observe that today’s cellular traffic can be effectively optimized in multiple ways.

2.3.2.1 General Characteristics

We begin by presenting some general characteristics of TGdataset. As listed in
Table2.2, 80.4% of TGdataset is HTTP traffic, most of which corresponds to the
bodies of HTTP messages. This finding is positive for two reasons. First, it means
content metadata (e.g., Content-Length and Content-Type) is readily available for us
to analyze. Second, it is clear that the TrafficGuard system will be able to analyze
and modify the vast majority of cellular traffic, since it is in plaintext.

Table2.3 presents information about the types of HTTP content in TGdataset. We
observe that images are the secondmost frequent type of content, but consume71%of

(Footnote 2 continued)
do not pay for their Internet access in terms of traffic usage. Second, proxy-based traffic saving
inevitably leads to latency penalty and thus would impact WiFi users’ experiences.

26 2 Cross-Application Cellular Traffic Optimization

Table 2.3 Statistics of HTTP content in TGdataset

Type Percentage of
requests (%)

Percentage of
HTTP traffic (%)

Size (KB)

Median Mean

Image 32 71 5.7 15.5

Text 49 15.7 0.2 2.2

Octet-stream 10 5.5 0.4 3.8

Zip 8.1 5.1 0.5 4.3

Audio and video 0.03 2.6 407 614

Other 0.87 0.1 0.3 0.7

(Reprinted with permission from [22].)

the entire HTTP traffic. Textual content is the most frequent, while nonimage binary
content accounts for the remainder of HTTP traffic. We manually analyzed many of
the octet-streams in our dataset and found that they mainly consist of software and
video streams.

2.3.2.2 Size and Quality of Content

Next, we examine the size and quality of content in TGdataset, and relate these
characteristics to the compressibility of content.

Images. Four image types dominate in our dataset: JPEG, WebP, PNG, and GIF.
Certainly, all four types of images are already compressed. However, we observe
that 40% of images are large, which we define as images of w × h pixels such that
w × h ≥ 250, 000 ∧ w ≥ 150 ∧ h ≥ 150 (refer to Sect. 2.5.1 for more details of
image categorization). Some images even have over 4000 × 4000 pixels (exceeding
10MB in size) in extreme cases.

More importantly, we observe that many JPEGs have high quality factors (QFs).
QF determines the strength of JPEG’s lossy-compression algorithm, with QF = 100
causingminimal loss but a larger file size. ThemedianQFof JPEGs in TGdataset is 80
while the average is 74. Such high-quality images are unnecessary for most cellular
users, considering their limited data plans and screen sizes. This presents us with an
optimization opportunity that TrafficGuard takes advantage of (see Sect. 2.5.1).

Textual content. The six most common types of textual content in TGdataset are:
JSON, HTML, PLAIN, JavaScript, XML, and CSS. Compared with images, textual
content is much smaller: the median size is merely 0.2KB. Compressing the short
texts with the size less than 0.2KB (e.g., with gzip, bzip2, or 7-zip) cannot decrease
their size; in fact, the additional compression metadata may even increase the size
of such textual data.

Surprisingly, we find that compressing the other, larger half (>0.2KB) of textual
content with gzip brings limited benefits—it only reduced the HTTP traffic of texts

2.3 Measuring Cellular Traffic 27

by 8.7%, equal to 1.36% (= 8.7%× 15.7%) of total HTTP traffic. Similarly, using
bzip2 and 7-zip could not significantly increase the compression rate. However,
decompressing texts on user devices does necessitate additional computation and
thus causes battery overhead. Given the limited network efficiency gains and the toll
on battery life, we opt to not compress texts in TrafficGuard, unlike all other systems
as listed in Table2.1.

Other content. For the remaining octet-stream, zip, audio and video content, we find
that compression provides negligible benefits, since almost all of them are already
compressed (e.g., MP3 and VP9). Although it is possible to reduce network traffic
by transcoding, scaling, or reducing the quality of multimedia content [12], we do
not explore these potential optimizations in this work.

2.3.2.3 Content Validation

Delving deeper into the content downloaded by our volunteers, we discover a sur-
prisingly high portion of useless content, particularly broken images. We define an
image to be broken if it cannot be decoded by any of the three widely used image
decoders: imghdr [31], Bitmap [32], and dwebp [33]. As shown in Table2.4, 10.6%
of images in TGdataset are broken, wasting 3.2% of all image traffic in our dataset
(their average size is much smaller than that of correct images). Note that we also
observe a small fraction of blank and incomplete images that we can decode, as well
as a few inconsistent images that are actually not images, but we do not consider to
obey our strict definition of correctness.

2.3.2.4 Traffic Filtering

As we note in Sect. 2.2, existing mobile traffic proxies have adopted multiple strate-
gies for traffic filtering. In this section, we investigate the potential of four particular
filtering strategies by analyzing TGdataset.

Table 2.4 Validity and usefulness of images

Type Percentage of
requests (%)

Percentage of
image traffic (%)

Image size (KB):

Median Mean

Correct 87 95.9 5.4 14.8

Broken 10.6 3.2 0.13 3.2

Blank 2.3 0.57 0 0

Incomplete 0.1 0.21 0.01 5.0

Inconsistent 0.04 0.16 4.8 33

(Reprinted with permission from [22].)

28 2 Cross-Application Cellular Traffic Optimization

Overnight traffic. Prior studies have observed that many smartphones generate data
traffic late at night, even when users are not using the devices [26, 28, 30]. If we
conservatively assume that our volunteers are asleep between 0 and 6 AM, then
11.4% of traffic in our dataset can potentially be filtered without noticeable impact
on users. Based on this finding, we implemented a feature in TrafficGuard that allows
users to specify a night time period during which cellular traffic is restricted (see
Sect. 2.5.3).

Background traffic. Users expect foreground apps to consume data since they are
interactive, but background apps may also consume network resources. Although
this is expected in some cases (e.g., a user may stream music while also browsing
the web), undesirable data consumption by background apps has become such a
common complaint that numerous articles exist to help mitigate this problem [34–
37]. In TGdataset, we observe that 26.7% of cellular traffic is caused by background
apps. To this end, we implemented dual filters in TrafficGuard specifically designed
to reduce the network traffic of background apps (see Sect. 2.5.3).

Malicious traffic. A recent measurement study of Google Play reveals that more
than 25% of Android apps are malicious, including spammy, re-branded, and cloned
apps [38]. We compare all the HTTP requests in TGdataset against a proprietary
blacklist containing 29M links maintained by major Internet companies (including
Baidu, Google, Microsoft, Symantec, Tencent, etc.), and find that 0.85% of requests
were issued formalicious content.We addressed this issue inTrafficGuard byfiltering
out HTTP requests for blacklisted URLs.

Advertisement traffic. In addition to malicious content, we also find that 4.15%
of HTTP requests in TGdataset were for ads. We determined this by comparing all
the requested HTTP URLs in our dataset against a proprietary list of 102M known
advertisingURLs (similar to thewell-knownEasyList [39]). Ad blocking is amorally
complicated practice, and thus we give TrafficGuard users the choice of whether to
opt-in to ad filtering. Users’ configuration data reveal that the majority (67%) of
users have chosen to block ads. On the other hand, we did get pushback from a small
number of advertisers; when this happened, usually, wewould remove the advertisers
from our ad block list after verification.

2.3.2.5 Caching Strategies

Finally, we explore the feasibility of two common caching strategies. Unfortunately,
we find neither technique offers satisfactory performance, whichmotives us to imple-
ment a more sophisticated caching strategy.

Name-based. Traditional web proxies like Squid [40] implement name-based
caching of objects (i.e., objects are indexed by their URLs). However, this approach
is known to miss many opportunities for caching [41–43]. To make matters worse,
we observe that over half of the content in TGdataset is not cacheable by Squid due
to HTTP protocol issues. This situation is further exacerbated by the fact that many

2.3 Measuring Cellular Traffic 29

start-of-the-art HTTP libraries do not support caching at all [44]. Thus, although
TrafficGuard uses Squid in the back-end cloud, we decided to augment it with an
additional, object-level caching strategy (known as VBWC, see Sect. 2.5.4).

HTTP ETag. The HTTP ETag [45] was introduced in HTTP/1.1 to mitigate the
shortcomings of named-based caching. Unfortunately, the effectiveness of ETag
is still limited by two constraints. First, as ETags are assigned arbitrarily by web
servers, they do not allow clients to detect identical content served by multiple
providers. This phenomenon is called content aliasing [46].We observe that 14.16%
of HTTP requests in TGdataset are for aliased content, corresponding to 7.28% of
HTTP traffic. Second, we find that ETags are sparsely supported: only 5.76% of
HTTP responses include ETags.

2.4 System Overview

Our measurement findings in Sect. 2.3.2 provide useful guidelines for optimizing
cellular traffic across apps. Additionally, we observe that some techniques used by
prior systems (e.g., text compression) are not useful in practice. These findings guide
the design of TrafficGuard for optimizing users’ cellular traffic.

This section presents an overview of TrafficGuard, which consists of a front-end
mobile app on users’ devices and a set of back-end services. Below, we present the
basic components of each end, with an emphasis on how these components support
various traffic optimization mechanisms. Additional details about specific traffic
optimization mechanisms are explained in Sect. 2.5.

Mobile app: the client-side support. The TrafficGuard mobile app is comprised of
a user interface and a child proxy. The user interface is responsible for displaying
cellular usage statistics, and allows users to configure TrafficGuard settings. The
settings include enabling/disabling specific traffic optimization mechanisms, as well
as options for specific mechanisms (the details are discussed in Sect. 2.5). We also
leverage the user interface to collect feedback from users, which help us continually
improve the design of TrafficGuard.

The child proxy does the real work of traffic optimization on the client side.
It intercepts incoming and outgoing HTTP requests at the cellular interface, per-
forms computations on them, and forwards (some) requests to the back-end cloud
via a customized VPN tunnel. As shown in Fig. 2.3, the client-side VPN tunnel is
implemented using the TUN virtual network-level device [47] that intercepts traffic
from or injects traffic to the TCP/IP stack. HTTP GET requests3 are captured by the
child proxy, encapsulated, and then sent to the back-end cloud for further process-

3Non-GET HTTP requests (e.g., POST, HEAD, and PUT) and non-HTTP requests do not ben-
efit from TrafficGuard’s filtering and caching mechanisms, so the child proxy forwards them to
the TCP/IP stack for regular processing. Furthermore, TrafficGuard makes no attempt to analyze
SSL/TLS traffic for privacy reasons.

30 2 Cross-Application Cellular Traffic Optimization

Traffic
Counting

TCP/IP
Stack

Android
User Space

Linux
Kernel

Physical
NIC

Malicious
Blacklist

IP
Analysis

Background
Traffic Filtering

TCP

UDP

HTTP

Local Filtering of
Malicious Links

Traffic
Redirection

OtherTCP
Analysis

Pass

Value-based
Web CachingCached

Content

Value
Table Traffic

Counting

IP
Analysis

Background
Traffic Filtering

TCP

UDP

HTTP

Traffic
Injection

OtherTCP
Analysis

Handling

traffic

Handling

traffic

Local Filtering of
Advertisements

Ad
Blacklist

Results of
Global Filtering

Pass

Cellular Data
 Network

Fig. 2.3 Basic design of the child proxy. (Reprinted with permission from [22].)

ing. Accordingly, the child proxy is responsible for receiving responses from the
back-end.

Themobile app provides client-side support for traffic optimization. First, it allows
users to monitor and restrict cellular traffic at night and from background apps in a
real-time manner. Users are given options to control how aggressively TrafficGuard
filters these types of traffic. Second, it provides local filtering of malicious links and
unwanted ads using two small blacklists of the most frequently visited malicious
and advertising URLs. Requests for malicious URLs are dropped; users are given a
choice of whether to enable ad blocking, in which case requests for ad-related URLs
are also dropped.

Third, the child proxy acts as the client-side of a value-based web cache [46]
(VBWC, see Sect. 2.5.4 for details). At a high level, the child proxy maintains a
key-value store that maps MD5 hashes to pieces of content. The back-end cloud
may return “VBWC Hit” responses to the client that contain the MD5 hash of some
content, rather than the content itself. In this case, the child proxy retrieves the content
from the key-value store using the MD5 hash, and then locally constructs an HTTP
response containing the cached content. The reconstructed HTTP response is then
returned to the corresponding user app. This process is fully transparent to user apps.

Web proxy: the back-end support. As shown in Fig. 2.4, the cloud side of Traffic-
Guard consists of two components: a cluster of parent proxy servers that decapsulate

2.4 System Overview 31

Internet

Parent
Proxy

 Global
Filtering of

Malicious LinksHTTP
GET

(original) HTTP GET
(encapsulated)

Pass

Content
Validation

Correct Image
Compression

Traffic
Transforming

Internet

Value
Table

Hit

Miss

Useless

Squid Proxy
HTTP Response

Software Middleboxes

Original
Response

Malicious
Blacklist

Value-based
Web Caching

HTTP
Decapsulation

 Global
Filtering

of AdsPass
Ad

BlacklistFail Fail

 HTTP
GET

Fig. 2.4 Cloud-side overview of TrafficGuard. HTTP requests are generally processed from left to
right by a cluster of parent proxy servers and a series of software middleboxes implemented on top
of Nginx. (Reprinted with permission from [22].)

users’ HTTP GET requests and fetch content from the Internet; and a series of soft-
ware middleboxes that process HTTP responses.

Once an HTTP GET request sent by the child proxy is received, the parent proxy
decapsulates it and extracts the original HTTP GET request. Next, middleboxes
compare the original HTTP GET request against large blacklists of knownmalicious
and ads-related URLs. Note that this HTTP GET request has passed the client-side
filteringwith small blacklists. Together, this two-level filtering scheme prevents Traf-
ficGuard users from wasting memory loading large blacklists on their own devices.
If a URL hits either blacklist, it is reported back to the mobile app so the user can be
notified.

An HTTP request that passes the blacklist filters is forwarded to a Squid proxy,
which fetches the requested content from the original source. The Squid proxy imple-
ments name-based caching of objects using an LRU (Least Recently Used) scheme,
which helps reduce latency for popular objects. Once the content has been retrieved
by Squid, it is further processed by middleboxes that validate content (Sect. 2.5.2)
and compress images (Sect. 2.5.1).

Lastly, before the content is returned to users, it is indexed byVBWC (Sect. 2.5.4).
VBWC maintains a separate index of content for every active user, which contains
the MD5 hash of each piece of content recently downloaded by that user. For a
given user, if VBWC discovers that some content is already indexed, it returns that
MD5 in a “VBWC Hit” response to the mobile app, instead of the actual content.
As described above, the child proxy then constructs a valid HTTP response message
containing the cached content. Otherwise, the MD5 is inserted into the table and the
actual content is sent to the user.

2.5 Mechanisms

This section presents the details of specific traffic optimization mechanisms in Traf-
ficGuard. Since many of the mechanisms include user-configurable parameters, we
gathered users’ configuration data between Jul. 4 and Dec. 27, 2014. This dataset is
referred to as TGconfig.

32 2 Cross-Application Cellular Traffic Optimization

2.5.1 Image Compression

Overview. Image compression is the most important traffic reduction mechanism
implemented by TrafficGuard, since our TGdataset shows that cellular traffic is dom-
inated by images. Based on our observation that the majority of JPEGs have quality
factors (QFs) that are excessively high for display on smartphone screens, Traffic-
Guard adaptively compresses JPEGs by reducing their QFs to an acceptable level.
Additionally, TrafficGuard transcodes PNGs and GIFs to JPEGs with an acceptable
QF. Note that TrafficGuard does not transcode PNGs with transparency data or ani-
mated GIFs, to avoid image distortion. TrafficGuard ignores WebP images, since
they are already highly compressed.

TrafficGuard’s approach to image compression has three advantages over alter-
native strategies. First, as JPEG is the dominant image format supported by almost
all (>99% to our knowledge) user apps, TrafficGuard does not need to transcode
images back to their original formats on the client side. Second, our approach costs
only 10–12% as much CPU as Flywheel’s WebP-based transcoding method (see
Sect. 2.6.3). Finally, our approach does not alter the pixel dimensions of images.
This is important because many UI layout algorithms (e.g., CSS) are sensitive to the
pixel dimensions of images, so rescaling images may break webpage and app UIs.

Categorizing Images. The challenge of implementing our adaptive QF reduction
strategy is deciding how much to reduce the QFs of images. Intuitively, the QFs
of large images can be reduced more than small images, since the resulting visual
artifacts will be less apparent in larger images. Thus, following the approach of
Ziproxy [48] (an open-source HTTP proxy widely used to compress images), we
classify images into four categories according to their width (w) and height (h) in
pixels:

• Tiny images contain <5000 pixels, i.e., w × h < 5000.
• Small images include images with less than 50,000 pixels (i.e., 5000 ≤ w ×
h <50,000), as well as “slim” images with less than 150 width or height pixels
(i.e., w × h ≥ 5000 ∧ (w < 150 ∨ h < 150)).

• Mid-size images contain less than 250,000 pixels, that is 50,000≤ w × h <

250,000∧w ≥ 150 ∧ h ≥ 150.
• Large images contain no less than 250,000 pixels, that is w × h ≥ 250,000∧w ≥
150 ∧ h ≥ 150.

QF Reduction Scheme. After images are divided into the above four categories,
we need to determine a proper QF (reduction) scheme for transcoding images in
each category. Our goal is to maximize compression by reducing QF, while also
minimizing the reductions of user-perceived image quality. To measure quality, we
use structural similarity (SSIM) [49], which assesses the visual similarity between a
compressed image and the original (1 means the two images are identical). Quanti-
tatively, we calculate the SSIM and compression ratio (= Size of images after compression

Size of images before compression)
corresponding to consecutive QFs, based on all the correct images in TGdataset. The
results are plotted in Figs. 2.5 and2.6.

2.5 Mechanisms 33

Fig. 2.5 Average SSIM
corresponding to consecutive
QFs. (Reprinted with
permission from [22].)

 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1

 0 20 40 60 80 100

A
vg

. S
S

IM

QF (Quality Factor)

Large
Mid-size

Small
Tiny

Fig. 2.6 Average
compression ratio
corresponding to consecutive
QFs. (Reprinted with
permission from [22].)

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 20 40 60 80 100A
vg

. C
om

pr
es

si
on

 R
at

io

QF (Quality Factor)

Large
Mid-size

Small
Tiny

Fig. 2.7 Average SSIM
corresponding to the three
QF schemes. (Reprinted with
permission from [22].)

 0.8
 0.82
 0.84
 0.86
 0.88

 0.9
 0.92
 0.94
 0.96
 0.98

 1

Tiny Small Mid-size Large

A
vg

. S
S

IM

Image Category

ImgQFHigh
ImgQFMiddle

ImgQFLow

Specifically, we define a QF scheme ImgQFScheme = {T , S, M , L} to mean
that tiny, small, mid-size, and large images are compressed to QF = T , S, M , and
L , respectively. In practice, we constructed three QF schemes that vary from high
compression, less quality to low compression, high quality: ImgQFLow = {30, 25,
25, 20}, ImgQFMiddle = {60, 55, 50, 45}, and ImgQFHigh = {90, 90, 85, 80}. We
then compressed all the correct images in TGdataset using each scheme to evaluate
their impact on image quality and size.

Figure2.7 examines the impact of each QF scheme on image quality. Prior work
has shown that image compression with SSIM≥0.85 is generally considered accept-
able by users [7]. As shown in Fig. 2.7, all three QF schemes manage to stay above
the 0.85 quality threshold for small, mid-size, and large images. The two cases where
image quality becomes questionable concern tiny images, which are the hardest case
for any compression strategy. Overall, these results suggest that in most cases, even

34 2 Cross-Application Cellular Traffic Optimization

Fig. 2.8 Average
compressed size
corresponding to the three
QF schemes. (Reprinted with
permission from [22].)

 0

 10

 20

 30

 40

 50

 60

 70

Tiny Small Mid-size LargeA
vg

. C
om

pr
es

se
d

S
iz

e
(K

B
)

Image Category

Original
ImgQFHigh

ImgQFMiddle
ImgQFLow

the aggressive ImgQFLow scheme will produce images with an acceptable level of
fidelity.

Figure2.8 examines the image size reduction enabled by each QF scheme, as
compared to the original images. As expected, more aggressive QF schemes provide
more size reduction, especially for large images.

User Behavior. The mobile app of TrafficGuard allows users to choose their desired
QF scheme. Users must select a scheme after they install TrafficGuard. The data
in TGconfig reveal that 95.4% of users selected the ImgQFMiddle scheme. Also,
qualitative feedback from TrafficGuard users suggests that they are satisfied with the
quality of images while using the system.

2.5.2 Content Validation

As mentioned in Sect. 2.3.2.3, TrafficGuard users encounter a nontrivial amount
of broken images when using apps. The back-end cloud of TrafficGuard naturally
noticesmost broken images during the image analysis, transcoding, and compression
process. In these cases, the cloud simply discards the broken image and sends a
“Broken Warning” response to the client. From the requesting app’s perspective,
broken images appear to be missing due to a network error, and are handled as such.

2.5.3 Traffic Filtering

In this section, we present the implementation details of the four types of filters
employed by TrafficGuard. Most traffic filtering in our system occurs on the client
side (in the child proxy), including first-level filtering of malicious URLs and ads,
and throttling of overnight and background traffic. Only second-level filtering of
malicious URLs and ads occurs on the cloud side.

Restricting overnight traffic. The mobile app of TrafficGuard automatically turns
the user’s cellular data connection off between the hours of t1 and t2, which are

2.5 Mechanisms 35

configurable by the user. This feature is designed to halt device traffic during the
night, when the user is likely to be asleep. TrafficGuard pops-up a notification just
before t1, alerting the user that her cellular connection will be turned off in ten
seconds. Unless the user explicitly cancels the action, her cellular data connection
will not be resumed until t2. According to TGconfig, nearly 20%of users have enabled
the overnight traffic filter, and 84% of them adopt the default night duration of
0–6 AM.

Throttling background traffic. To prevent malicious or buggy apps from drain-
ing users’ limited data plans, TrafficGuard throttles traffic from background apps.
Specifically, the TrafficGuard app has a configurable warning bound (B1) and a dis-
connection bound (B2), with B2 � B1. TrafficGuard also maintains a count c of
the total bytes transferred by background apps. If c increases to B1, TrafficGuard
notifies the user that background apps are consuming a significant volume of traffic.
If c reaches B2, another notification is created to alert the user that her cellular data
connectionwill be closed in ten seconds. Unless the user explicitly cancels this action
or manually reopens the cellular data connection, her cellular data connection will
not be resumed. After the user responds to the B2 notification, c is reset to zero.

According to TGconfig, 97.6% of users have enabled the background traffic fil-
ter, indicating that users actually care about background traffic usage. Initially, we
set the default warning bound B1 = 1.0MB. However, we observed over 57% of
users decreased B1 to 0.5MB, indicating that they wanted to be reminded of back-
ground traffic usagemore frequently. Conversely, the initial disconnection boundwas
B2 = 5MB, but 69% of users raised B2 to 20MB, implying that the initial default
setting was too aggressive. Based on this implicit feedback, we changed the default
values of B1 and B2 to 0.5 and 20MB. In comparison, Microsoft Data Sense only
maintains a disconnection bound (B2) to restrict background traffic, and there is no
default value provided.

Two-level filtering of malicious links and ads. To avoid wasting cellular traffic
on unwanted content, TrafficGuard always prevents users from accessing malicious
links, while giving users the choice of whether to opt-in to ad blocking. In Sect. 2.4,
we have presented high-level design of the two-level filtering. Here we talk about
two more nuanced implementation issues.

The first issue is about the sizes of the local, small blacklists. Both lists have to
be loaded in memory by the child proxy for quick searching, so they must be much
shorter than the cloud-side large blacklists (which contain 29Mmalicious URLs and
102M ads-related URLs). To balance memory overhead with effective local traffic
filtering, we limit the maximum size of the local blacklists to 40MB. Consequently,
the local blacklists usually contain around 1M links in total, which we observe are
able to identify 72–78% of malicious and ads links.

The second issue concerns updates to blacklists. As mentioned in Sect. 2.3.2.4,
the large blacklists are maintained by an industrial union that typically updates them
once per month. Accordingly, the TrafficGuard cloud automatically creates updated
small blacklists and pushes them to mobile users.

36 2 Cross-Application Cellular Traffic Optimization

2.5.4 Value-Based Web Caching (VBWC)

Early in 2003, Rhea et al. proposed VBWC to overcome the shortcomings of tradi-
tional HTTP caching [46]. The key idea of VBWC is to index objects by their hash
values rather than their URLs, since an object may have many aliases. VBWC has
a much better hit rate than HTTP caching because it handles aliased content. How-
ever, prior to TrafficGuard, VBWC has not been widely deployed in practice due
to two problems: (1) the complexity of segmenting an object into KB-sized blocks
and choosing proper block boundaries; (2) its incompatibility with the HTTP pro-
tocol, since VBWC requires that the proxy and the client maintain significant state
information, i.e., a mapping from hash values to cached content.

Reducing complexity. To determine whether TrafficGuard’s VBWC implementa-
tion should segment content into blocks (and if so, at what granularity), we con-
duct trace-driven simulations using the content in TGdataset. Specifically, we played
back each user’s log of requests, and inserted the content into VBWC using 8,
32, 128KB, and full content segmentation strategies. To determine segment bound-
aries, we ran experiments with simple fixed-size segments [46] and variable-sized,
Rabin-fingerprinting based segments [50].We also examined the handprinting-based
approach that combines Rabin-fingerprinting and deterministic sampling [51].

Through these simulations, we discovered that 13% of HTTP requests would hit
the VBWC cache if we stored content whole, i.e., with no segmentation. Surpris-
ingly, even if we segmented content into 8KB blocks using the Rabin-fingerprinting
(the most aggressive caching strategy we evaluated), the hit rate only increased to
15%. The handprinting-based approach exhibited similar performance to Rabin-
fingerprinting when a typical number (k = 4) of handprint samples are selected,
while incurring a bit lower computation overhead. By carefully analyzing the cache-
hit results, we find that the whole-content hashing is good enough for two reasons:
(1) images dominate the size of cache-hit objects in TGdataset; (2) there are almost
no partial matches among images. Thus, we conclude that a simple implementation
of content-level VBWC is sufficient to achieve high hit rates.

Addressing incompatibility. As discussed above, VBWC is incompatible with stan-
dard HTTP clients and proxies. Fortunately, we have complete control over the
TrafficGuard system, particulary the cloud-client paired proxies, which enabled us
to implement VBWC. The front-end child proxy takes care of encapsulating HTTP
requests from user apps and decapsulating responses from the back-end cloud, mean-
ing thatVBWC is transparent to user apps. In practice, themobile app of TrafficGuard
maintains a 50-MBcontent cache on the client’s file system, alongwith an in-memory
table mapping content hashes to filenames that is a few KB large.

Ideally, every change to the cloud-side mapping table triggers a change to the
client-side mapping table accordingly. But in practice, for various reasons (e.g.,
network packet loss) this pair of tables may be different at some time, so we need
to synchronize them with proper overhead. In TrafficGuard, the client-side mapping
table is loosely synchronized with the cloud-side mapping table on an hourly basis,
making the synchronization traffic negligible and VBWC mostly effective.

2.6 Evaluation 37

2.6 Evaluation

In this section, we evaluate the traffic reduction, systemoverhead, and latency penalty
brought by TrafficGuard.

2.6.1 Data Collection and Methodology

We evaluate the performance of TrafficGuard using both real-system logs and trace-
driven simulations. We collect working logs from TrafficGuard’s back-end cloud
servers between Dec. 21 and 27, 2014, which include traces of 350MHTTP requests
issued from 0.6M users, as well as records of CPU and memory utilization over time
on the cloud servers. We refer to this dataset as TGworklog.

On the other hand, as the client-side traffic optimization mechanisms mainly help
users reduce traffic by suppressing unwanted requests, it is not possible to accurately
record the corresponding saved traffic (which never occurred in reality). Instead,
we rely on trace-driven simulations using TGdataset to estimate the client-side and
overall traffic savings.

2.6.2 Traffic Reduction

Client-side. First, we examine the effectiveness of TrafficGuard’s client-side mech-
anisms at reducing traffic. In TGdataset, 11.4% of cellular traffic is transferred at
night, and according to TGconfig, 20% of users have enabled overnight traffic filter-
ing. Thus, we estimate that users eliminate 2.3% (=11.4%×20%) of cellular traffic
using the overnight traffic filter.

Moreover, we observe that 1% of users in TGdataset regularly exceed the discon-
nection bound B2 = 20 MB per day of background traffic. The resulting overage
traffic amounts to 5.33% of cellular traffic. In TGconfig, 97.6% of users have enabled
background traffic filtering. Therefore, we estimate that the background traffic fil-
ter reduces cellular traffic by 5.2% (=5.33% × 97.6%). Note that this background
traffic saving is an under-estimation, since we do not take the potential effect of B1

(=0.5 MB, the warning bound) into account.
Additionally, in TGdataset malicious content accounts for 0.8% of HTTP traffic

while ads account for 4%. According to TGconfig, 67% of users have chosen to
drop ads. Consequently, after all malicious content and unwanted ads are filtered,
3.48% (=0.8%+ 4%× 67%) of HTTP traffic can be saved. This is equal to 2.8%
(=3.48% × 80.4%) of total cellular traffic.

Overall. Next, we evaluate how much traffic TrafficGuard is able to reduce over-
all through trace-driven simulations. Specifically, we play back all the requests in
TGdataset, and record howmany bytes are saved by eachmechanism: traffic filtering,

38 2 Cross-Application Cellular Traffic Optimization

Fig. 2.9 Total cellular traffic
usage optimized by each
mechanism. (Reprinted with
permission from [22].)

 0

 200

 400

 600

 800

 1000

 None
Traffic Filtering

Content Validation

Image Compression

VBWC

T
ra

ffi
c

U
sa

ge
 (

G
B

)

HTTP
Non-HTTP

Fig. 2.10 Distribution of
users’ cellular traffic
reduction ratios. (Reprinted
with permission from [22].)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Reduction Ratio of Cellular Traffic (%)

content validation, image compression, and VBWC. As shown in Fig. 2.9, Traffic-
Guard is able to reduce HTTP traffic by 43% and non-HTTP traffic by 7.4% when
all four mechanisms are combined. In summary, the overall cellular traffic usage is
reduced by 36%, from 1324 to 845GB.

As expected, image compression is the most important mechanism when used in
isolation. 38% of the image traffic is reduced by our implemented adaptive qual-
ity reduction approach. In other words, our approach saves a comparable portion
(27% = 38% × 71%) of HTTP traffic as compared to Flywheel’s WebP-based
transcoding method, at a small fraction of the CPU cost (see Sect. 2.6.3).

To understand how traffic savings are spread across users, we plot the distribution
of cellular traffic reduction ratios for our users in Fig. 2.10. We observe that 55% of
users saved over a quarter of cellular traffic, and 20% users saved over a half (most
of whom benefit a lot from traffic filtering and VBWC). These results demonstrate
that most users received significant traffic savings.

Using TrafficGuard’s built-in user-feedback facility, we asked users to report their
cellular data caps. 95% of the long-term volunteers in TGdataset reported their caps
to us. Using this information, we plot Fig. 2.11, which shows the percentage of each
user’s data cap that would be used with and without TrafficGuard (again, based
on trace-driven simulations). We observe that 58.2% of users exceed their usage
caps under normal circumstances, and that TrafficGuard grants significant practical
benefits for these users, e.g., users who would normally be using 200–300% of
their allocation (and thus pay overage fees) are able to stay below 100% usage with

2.6 Evaluation 39

Fig. 2.11 Users’ cellular
traffic usage relative to their
data caps. (Reprinted with
permission from [22].)

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500 600 700D
at
a

C
ap

 U
sa

ge
 w

/ T
G

 (
%

)

Data Cap Usage w/o TG (%)

Table 2.5 Top-10 applications served by TrafficGuard, ordered by popularity and by greatest traffic
reduction

By User Ratio (UR) By Traffic Saving Ratio (TSR)

App name UR (%) TSR (%) App name UR (%) TSR (%)

WeChat 74 22 Android
Browser

0.11 84

QQ 66 22 Zhihu Q&A 0.15 81

Baidu Search 29 21 iAround 0.03 63

Taobao 23 42 No.1 Store 0.26 61

QQBrowser 22 27 Baidu news 0.45 57

Sogou Pinyin 20 12 Tiexue
military

0.01 56

Baidu
Browser

16 30 WoChaCha 0.34 54

Toutiao News 14 22 Mogujie store 0.91 53

Sohu News 10 30 Koudai store 0.26 53

QQ Zone 10 33 Papa photo 0.02 52

(Reprinted with permission from [22].)

TrafficGuard. Overall, TrafficGuard reduces the number of users who exceed their
data caps by 10.7 times.

At last, we wonder how TrafficGuard’s traffic reduction gains are spread across
user apps. Table2.5 lists the top-10 apps ordered by popularity (the fraction of users
with the app) as well as by the fraction of traffic eliminated. We observe that Traf-
ficGuard is able to eliminate 12–42% of traffic for popular apps, but that the apps
with the greatest traffic savings (52–84%) tend to be unpopular. This indicates that
the developers of popular apps may already be taking steps to optimize their network
traffic, while most unpopular apps can hardly become mobile-friendly in the near
future.

40 2 Cross-Application Cellular Traffic Optimization

Fig. 2.12 CPU and memory
overhead of the back-end
servers. (Reprinted with
permission from [22].)

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

U
til

iz
at

io
n

(%
)

Hour

Memory
CPU

2.6.3 System Overhead

Cloud-side overhead. The major cost of operating TrafficGuard lies in provisioning
back-end cloud servers and supplying them with bandwidth. TrafficGuard has been
able to support ∼0.2M users who send ∼90M requests per day using only 23 com-
modity servers (HP ProLiant DL380). The configuration of each server is: 2*4-core
Xeon CPU E5-2609 @2.50GHz, 4*8-GB memory, and 6*300-GB 10K-RPM SAS
disk (RAID-6).

Figure2.12 illustrates the CPU/memory utilization of cloud servers on a typical
day. Mainly thanks to our lightweight image compression strategy, the CPU uti-
lization stays below 40%. Further, to compare the computation overhead of our
image compression strategy with Flywheel’s WebP-based transcoding (based on
the cwebp [52] encoder), we conduct offline experiments on two identical server
machines using 1M correct images randomly picked from TGdataset as the work-
load. Images are compressed one by onewithout intermission. The results in Fig. 2.13
confirm that the computation overhead (= average CPU utilization × total running
time) of TrafficGuard image compression is only a small portion (10–12%) of that
of WebP-based transcoding.

Memory utilization is typically>90% since content is in-memory cached when-
ever possible. Using a highermemory capacity, say 1TBper server, can accelerate the
back-end processing and thus decrease the corresponding latency penalty. Nonethe-
less, as shown in Fig. 2.25, the back-end processing latency constitutes only a minor
portion of the total latency penalty, so we do not consider extending the memory
capacity in the short term.

Figure2.14 reveals the inbound/outbound bandwidth for back-end servers. Inter-
estingly, we observe that a back-end server uses more outbound bandwidth than
inbound, though inbound traffic has been optimized. This happens because the back-
end has a 38% cache-hit rate (with 4TB of disk cache), so many objects are down-
loaded from the Internet once but then downloaded by many clients.

Client-side overhead. The client-side overhead of TrafficGuard comes from three
sources: memory, computation, and battery usage. The memory usage is mod-
est, requiring 40MB for local blacklists, and 10–20MB for the VBWC mapping
table. Similarly, while running on a typical (8-core ARM CPU @1.7GHz) Android

2.6 Evaluation 41

Fig. 2.13 CPU overhead of
different image compression
strategies. (Reprinted with
permission from [22].)

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7

C
P

U
 U

til
iz
at

io
n

(%
)

Hour

WebP-based Transcoding
TrafficGuard Image Compression

Fig. 2.14 Inbound and
outbound bandwidth for
back-end servers. (Reprinted
with permission from [22].)

 0

 5

 10

 15

 20

 0 5 10 15 20

B
an

dw
id

th
 (

M
bp

s)

Hour

Outbound
Inbound

Fig. 2.15 Distribution of
client-side battery power
consumption. (Reprinted
with permission from [22].)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300

C
D

F

Battery Power (mW)

Minimum power = 5 mW
Median power = 81 mW
Average power = 93 mW

Maximum power = 424 mW

smartphone, TrafficGuard’s single-core CPU usage is generally below 20% when
the cellular modem is active, and almost zero when the network is inactive.

To understand the impact of TrafficGuard on battery life, we record the battery
power consumption of itsmobile appwhen the child proxy is processing data packets.
As shown in Fig. 2.15, its working-state battery power is 93mW on average, given
that the battery capacity of today’s smartphones lies between 5–20Wh and their
working-state battery power lies between 500mW and a few watts [53, 54].

To understand specific facets of TrafficGuard’s battery consumption, we con-
duct micro-benchmarks on the client side with three popular, diverse user apps:
the stock Android Browser, WeChat (the most popular app in China, similar to
WhatsApp), and Youku (China’s equivalent of YouTube). In each case, we drove
the app for five minutes with and without TrafficGuard enabled while connected
to a 4G network. Figures2.16, 2.17 and 2.18 show the battery usage in each

42 2 Cross-Application Cellular Traffic Optimization

Fig. 2.16 Battery usage of
Android Browser with and
w/o TrafficGuard. (Reprinted
with permission from [22].)

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300

B
at

te
ry

 U
sa

ge
 (

m
A

h)

Time (second)

Android Browser (w/o TG)
Android Browser + TG

Fig. 2.17 Battery usage of
WeChat with and without
TrafficGuard. (Reprinted
with permission from [22].)

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300

B
at

te
ry

 U
sa

ge
 (

m
A

h)

Time (second)

WeChat (w/o TG)
WeChat + TG

Fig. 2.18 Battery usage of
Youku with and without
TrafficGuard. (Reprinted
with permission from [22].)

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300

B
at

te
ry

 U
sa

ge
 (

m
A

h)

Time (second)

Youku (w/o TG)
Youku + TG

experiment. Meanwhile, Figs. 2.19, 2.20 and2.21 depict the corresponding CPU
usage; Figs. 2.22, 2.23 and2.24 plot the corresponding memory usage. All these
results reveal that in cases where TrafficGuard can effectively reduce network traf-
fic (e.g., while browsing the web), it also saves battery life or has little impact on
battery life, because the user app needs to process less traffic; accordingly, Traffic-
Guard does not increase CPU/memory usage on the whole. However, in cases where
TrafficGuard can hardly reduce any traffic (e.g., Youku video streaming), it reduces
battery life and increases CPU/memory usage. Thus, we are planning to improve
the design of TrafficGuard, in order that it can recognize and bypass the traffic from
audio/video streams.

2.6 Evaluation 43

Fig. 2.19 CPU usage of
Android Browser with and
w/o TrafficGuard. (Reprinted
with permission from [22].)

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300

C
P

U
 U
sa

ge
 (

%
)

Time (second)

Android Browser (w/o TG)
Android Browser + TG

Fig. 2.20 CPU usage of
WeChat with and without
TrafficGuard. (Reprinted
with permission from [22].)

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300

C
P

U
 U

sa
ge

 (
%

)

Time (second)

WeChat (w/o TG)
WeChat + TG

Fig. 2.21 CPU usage of
Youku with and without
TrafficGuard. (Reprinted
with permission from [22].)

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300

C
P

U
 U
sa

ge
 (

%
)

Time (second)

Youku (w/o TG)
Youku + TG

Fig. 2.22 Memory usage of
Android Browser with and
w/o TrafficGuard. (Reprinted
with permission from [22].)

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 50 100 150 200 250 300

M
em

or
y

U
sa

ge
 (

M
B

)

Time (second)

Android Browser (w/o TG)
Android Browser + TG

2.6.4 Latency Penalty

As TrafficGuard forwards HTTP GET requests to a back-end proxy rather than
directly to the source, it may add response latency to clients’ requests. In addition,
client-side packet processing by the child proxy also brings extra latency. To put the

44 2 Cross-Application Cellular Traffic Optimization

Fig. 2.23 Memory usage of
WeChat with and without
TrafficGuard. (Reprinted
with permission from [22].)

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 50 100 150 200 250 300

M
em

or
y

U
sa

ge
 (

M
B

)

Time (second)

WeChat (w/o TG)
WeChat + TG

Fig. 2.24 Memory usage of
Youku with and without
TrafficGuard. (Reprinted
with permission from [22].)

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 50 100 150 200 250 300

M
em

or
y

U
sa

ge
 (

M
B

)

Time (second)

Youku (w/o TG)
Youku + TG

latency penalty into perspective, first, we note threemitigating factors that effectively
reduce latency: (1) TrafficGuard filters out ∼10.3% of requests locally, which elim-
inates all latency except for client-side processing; (2) the ∼21.2% of traffic that is
not owing to HTTP GET requests is delivered over the Internet normally, thus only
incurring the latency penalty for client-side processing; and (3) 38% of HTTP GET
requests hit the back-end Squid cache, thus eliminating the time needed to fetch the
content from the Internet.

Next, to understand TrafficGuard’s latency penalty in the worst-case scenario
(unfiltered HTTP GETs that do not hit the Squid cache), we examine latency data
from TGworklog. Figure2.25 plots the total latency of requests that go through the
TrafficGuard back-end and miss the cache, as well as the individual latency costs of
four aspects of the system: (1) processing time on the client side, (2) processing time
in the back-end, (3) time for the back-end to fetch the desired content, and (4) theRTT
from the client to the back-end. Figure2.25 shows that both client-side processing and
back-end processing add little delay to requests. Instead, the majority of delay comes
from fetching content, and the RTT from clients to the back-end cloud. Interestingly,
Fig. 2.26 reveals that the average processing time of an outbound packet is longer
than that of an inbound packet, although outbound packets are usually smaller than
inbound packets. This is because the client-side filtering of malicious links and ads
is the major source of client-side latency penalty.

In the worst-case scenario, we see that TrafficGuard does add significant latency
to user requests. If we conservatively assume that clients can fetch content with
the same latency distribution as Baidu’s servers, then TrafficGuard adds 131ms of
latency in the median case and 474ms of latency in the average case. However, if we

2.6 Evaluation 45

Fig. 2.25 Latency for each
phase content processing and
retrieval. (Reprinted with
permission from [22].)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
D

F

Latency (msec)

Back-End Processing
Client-Side Processing

Content Fetch
RTT to the Back-End

Total

Fig. 2.26 Latency for
clients’ processing data
packets. (Reprinted with
permission from [22].)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Latency (msec)

Inbound
All

Outbound

take into account the three mitigating factors listed at the beginning of this section
(which all reduce latency), the median latency penalty across all traffic is reduced to
merely 53ms, and the average is reduced to 282ms.

2.7 Conclusion

Traffic optimization is a common desire of today’s cellular users, carriers, and service
developers. Although several existing systems can optimize the cellular traffic for
specific apps (typically web browsers), cross-app systems are much rarer, and have
not been comprehensively studied. In this chapter, we share our design approach and
implementation experiences in building and maintaining TrafficGuard, a real-world
cross-app cellular traffic optimization system used by 10 million users.

To design TrafficGuard, we took a measurement-driven methodology to select
optimization strategies that are not only high-impact (i.e., they significantly reduce
traffic) but also efficient, easy to implement, and compatible with heterogenous apps.
This methodology led to some surprising findings, including the relative ineffective-
ness of text compression. Real-world performance together with trace-driven exper-
iments indicates that our system meets its stated goal of reducing traffic (by 36%
on average), while also being efficient (23 commodity servers are able to handle the
entire workload). In the future, we plan to approach cellular carriers about integrat-

46 2 Cross-Application Cellular Traffic Optimization

ing TrafficGuard into their networks, since this will substantially decrease latency
penalties for users and simplify the overall design of the system.

References

1. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update 2014-2019
White Paper. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/white_paper_c11-520862.html

2. Isaacman, S.,Martonosi,M.: Low-infrastructuremethods to improve internet access for mobile
users in emerging regions. In: Proceedings of the 20th International World Wide Web Confer-
ence (WWW), pp. 473–482 (2011)

3. Johnson,D., Pejovic,V., Belding, E., vanStam,G.: Traffic characterization and internet usage in
Rural Africa. In: Proceedings of the 20th International World Wide Web Conference (WWW),
pp. 493–502 (2011)

4. Li, Z.,Wilson,C.,Xu, T., Liu,Y., Lu, Z.,Wang,Y.:Offline downloading inChina: a comparative
study. In: Proceedings of the 15th ACM InternetMeasurement Conference (IMC), pp. 473–486
(2015)

5. Google to websites: be mobile-friendly or get buried in search results. http://mashable.com/
2015/04/21/google-mobile-search-2/#UbuurRKFaPqU

6. The State Of Digital Experience Delivery (2015). https://www.forrester.com/
The+State+Of+Digital+Experience+Delivery+2015/fulltext/-/E-RES120070

7. Agababov, V., Buettner, M., Chudnovsky, V., Cogan, M., Greenstein, B., McDaniel, S., Piatek,
M., Scott, C., Welsh, M., Yin, B.: Flywheel: Google’s data compression proxy for the mobile
web. In: Proceedings of the 12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), pp. 367–380 (2015)

8. Opera Turbo mobile web proxy. http://www.opera.com/turbo
9. QQBrowser. http://browser.qq.com
10. UCBrowser. http://www.ucweb.com
11. Cui, Y., Lai, Z.,Wang, X., Dai, N., Miao, C.: QuickSync: improving synchronization efficiency

for mobile cloud storage services. In: Proceedings of the 21st ACM International Conference
on Mobile Computing and Networking (MobiCom), pp. 592–603 (2015)

12. Li, Z., Huang, Y., Liu, G.,Wang, F., Zhang, Z.L., Dai, Y.: Cloud transcoder: bridging the format
and resolution gap between internet videos and mobile devices. In: Proceedings of the 22nd
SIGMM Workshop on Network and Operating Systems Support for Digital Audio and Video
(NOSSDAV), pp. 33–38 (2012)

13. Li, Z., Jin, C., Xu, T., Wilson, C., Liu, Y., Cheng, L., Liu, Y., Dai, Y., Zhang, Z.L.: Towards
network-level efficiency for cloud storage services. In: Proceedings of the 14th ACM Internet
Measurement Conference (IMC), pp. 115–128 (2014)

14. Data Sense for Windows Phone apps. http://www.windowsphone.com/en-us/how-to/wp8/
connectivity/use-data-sense-to-manage-data-usage

15. Onavo Extend for Android. http://www.onavo.com/apps/android_extend
16. Opera Max. http://www.operasoftware.com/products/opera-max
17. Opera Max, China’s version. http://www.oupeng.com/max
18. Woo, S., Jeong, E., Park, S., Lee, J., Ihm, S., Park, K.: Comparison of caching strategies in

modern cellular backhaul networks. In: Proceedings of the 11th ACM International Conference
on Mobile Systems, Applications, and Services (MobiSys), pp. 319–332 (2013)

19. Naylor, D., Schomp, K., Varvello, M., Leontiadis, I., Blackburn, J., Lopez, D., Papagiannaki,
K., Rodriguez, P., Steenkiste, P.: Multi-context TLS (mcTLS): enabling secure in-network
functionality in TLS. In: Proceedings of the 2015 ACM Conference on Special Interest Group
on Data Communication (SIGCOMM), pp. 199–212 (2015)

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html
http://mashable.com/2015/04/21/google-mobile-search-2/#UbuurRKFaPqU
http://mashable.com/2015/04/21/google-mobile-search-2/#UbuurRKFaPqU
https://www.forrester.com/The+State+Of+Digital+Experience+Delivery+2015/fulltext/-/E-RES120070
https://www.forrester.com/The+State+Of+Digital+Experience+Delivery+2015/fulltext/-/E-RES120070
http://www.opera.com/turbo
http://browser.qq.com
http://www.ucweb.com
http://www.windowsphone.com/en-us/how-to/wp8/connectivity/use-data-sense-to-manage-data-usage
http://www.windowsphone.com/en-us/how-to/wp8/connectivity/use-data-sense-to-manage-data-usage
http://www.onavo.com/apps/android_extend
http://www.operasoftware.com/products/opera-max
http://www.oupeng.com/max

References 47

20. Rao, A., Kakhki, A., Razaghpanah, A., Tang, A., Wang, S., Sherry, J., Gill, P., Krishnamurthy,
A., Legout, A., Mislove, A., Choffnes, D.: Using the Middle to Meddle with Mobile. Technical
report NEU-CCS-2013-12-10, CCIS, Northeastern University

21. Sherry, J., Lan, C., Popa, R., Ratnasamy, S.: BlindBox: deep packet inspection over encrypted
traffic. In: Proceedings of the 2015 ACM Conference on Special Interest Group on Data Com-
munication (SIGCOMM), pp. 213–226 (2015)

22. Li, Z., Wang, W., Xu, T., Zhong, X., Li, X.Y., Wilson, C., Zhao, B.Y.: Exploring cross-
application cellular traffic optimization with Baidu trafficguard. In: Proceedings of the 13th
USENIX Symposium on Networked Systems Design and Implementation (NSDI), pp. 61–76
(2016)

23. WebP: a new image format for the Web. http://developers.google.com/speed/webp
24. Institutional review board (IRB). https://en.wikipedia.org/wiki/Institutional_review_board
25. Google Safe Browsing. http://developers.google.com/safe-browsing
26. Aucinas, A., Vallina-Rodriguez, N., Grunenberger, Y., Erramilli, V., Papagiannaki, K., Crow-

croft, J., Wetherall, D.: Staying online while mobile: the hidden costs. In: Proceedings of the
9th ACM Conference on emerging Networking EXperiments and Technologies (CoNEXT),
pp. 315–320 (2013)

27. Falaki, H., Lymberopoulos, D., Mahajan, R., Kandula, S., Estrin, D.: A first look at traffic on
smartphones. In: Proceedings of the 10th ACM Internet Measurement Conference (IMC), pp.
281–287 (2010)

28. Huang, J., Qian, F., Mao, Z., Sen, S., Spatscheck, O.: Screen-off traffic characterization and
optimization in 3G/4G networks. In: Proceedings of the 12th ACM Internet Measurement
Conference (IMC), pp. 357–364 (2012)

29. Lumezanu, C., Guo, K., Spring, N., Bhattacharjee, B.: The effect of packet loss on redun-
dancy elimination in cellular wireless networks. In: Proceedings of the 10th ACM Internet
Measurement Conference (IMC), pp. 294–300 (2010)

30. Qian, F., Wang, Z., Gao, Y., Huang, J., Gerber, A., Mao, Z., Sen, S., Spatscheck, O.: Periodic
transfers in mobile applications: network-wide origin, impact, and optimization. In: Proceed-
ings of the 21th International World Wide Web Conference (WWW), pp. 51–60 (2012)

31. imghdr—Determine the type of an image. http://docs.python.org/2/library/imghdr.html
32. System.Drawing.Bitmap class in the .NET Framework. http://msdn.microsoft.com/library/

system.drawing.bitmap(v=vs.110).aspx
33. dwebp—Decompress a WebP file to an image file. http://developers.google.com/speed/webp/

docs/dwebp
34. Android OS background data increase since 4.4.4 update. http://forums.androidcentral.com/

moto-g-2013/422075-android-os-background-data-increase-since-4-4-4-update-please-
help.html

35. Android OS is continuously downloading something in the background. http://android.
stackexchange.com/questions/28100/android-os-is-continuously-downloading-something-
in-the-background-how-can-i

36. How to Minimize Your Android Data Usage and Avoid Overage Charges. http://www.
howtogeek.com/140261/how-to-minimize-your-android-data-usage-and-avoid-overage-
charges

37. Vergara, E., Sanjuan, J., Nadjm-Tehrani, S.: Kernel level energy-efficient 3G background traf-
fic shaper for android smartphones. In: Proceedings of the 9th IEEE International Wireless
Communications and Mobile Computing Conference (IWCMC), pp. 443–449 (2013)

38. Viennot, N., Garcia, E., Nieh, J.: A measurement study of google play. ACM SIGMETRICS
Perform. Eval. Rev. 42(1), 221–233 (2014)

39. Adblock Plus EasyList for ad blocking. http://easylist.adblockplus.org
40. Wessels, D.: Squid: The Definitive Guide. O’Reilly Media, Inc. (2004)
41. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T.: Hyper-

text transfer protocol—HTTP/1.1 (1999)
42. Qian, F., Sen, S., Spatscheck, O.: Characterizing resource usage for mobile web browsing. In:

Proceedings of the 12th ACM International Conference on Mobile Systems, Applications, and
Services (MobiSys), pp. 218–231 (2014)

http://developers.google.com/speed/webp
https://en.wikipedia.org/wiki/Institutional_review_board
http://developers.google.com/safe-browsing
http://docs.python.org/2/library/imghdr.html
http://msdn.microsoft.com/library/system.drawing.bitmap(v=vs.110).aspx
http://msdn.microsoft.com/library/system.drawing.bitmap(v=vs.110).aspx
http://developers.google.com/speed/webp/docs/dwebp
http://developers.google.com/speed/webp/docs/dwebp
http://forums.androidcentral.com/moto-g-2013/422075-android-os-background-data-increase-since-4-4-4-update-please-help.html
http://forums.androidcentral.com/moto-g-2013/422075-android-os-background-data-increase-since-4-4-4-update-please-help.html
http://forums.androidcentral.com/moto-g-2013/422075-android-os-background-data-increase-since-4-4-4-update-please-help.html
http://android.stackexchange.com/questions/28100/android-os-is-continuously-downloading-something-in-the-background-how-can-i
http://android.stackexchange.com/questions/28100/android-os-is-continuously-downloading-something-in-the-background-how-can-i
http://android.stackexchange.com/questions/28100/android-os-is-continuously-downloading-something-in-the-background-how-can-i
http://www.howtogeek.com/140261/how-to-minimize-your-android-data-usage-and-avoid-overage-charges
http://www.howtogeek.com/140261/how-to-minimize-your-android-data-usage-and-avoid-overage-charges
http://www.howtogeek.com/140261/how-to-minimize-your-android-data-usage-and-avoid-overage-charges
http://easylist.adblockplus.org

48 2 Cross-Application Cellular Traffic Optimization

43. Spring, N., Wetherall, D.: A protocol-independent technique for eliminating redundant net-
work traffic. In: Proceedings of the 2000 ACM Conference on Special Interest Group on Data
Communication (SIGCOMM), pp. 87–95 (2000)

44. Qian, F., Quah, K., Huang, J., Erman, J., Gerber, A., Mao, Z., Sen, S., Spatscheck, O.: Web
caching on smartphones: ideal vs. reality. In: Proceedings of the 10th ACM International
Conference on Mobile Systems, Applications, and Services (MobiSys), pp. 127–140 (2012)

45. HTTP ETag. http://en.wikipedia.org/wiki/HTTP_ETag
46. Rhea, S., Liang, K., Brewer, E.: Value-based web caching. In: Proceedings of the 12th Inter-

national World Wide Web Conference (WWW), pp. 619–628 (2003)
47. Universal TUN/TAP device driver. http://www.kernel.org/doc/Documentation/networking/

tuntap.txt
48. Ziproxy: the HTTP traffic compressor. http://ziproxy.sourceforge.net
49. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility

to structural similarity. IEEE Trans. Image Process. (TIP) 13(4), 600–612 (2004)
50. Rabin, M.: Fingerprinting by Random Polynomials. Technical report TR-15-81, Center for

Research in Computing Technology, Harvard University (1981)
51. Pucha, H., Andersen, D., Kaminsky, M.: Exploiting similarity for multi-source downloads

using file handprints. In: Proceedings of the 4th USENIX Conference on Networked Systems
Design and Implementation (NSDI), pp. 2–2 (2007)

52. cwebp—Compress an image file to a WebP file. http://developers.google.com/speed/webp/
docs/cwebp

53. Carroll, A., Heiser, G.: An analysis of power consumption in a smartphone. In: Proceedings of
the 2010 USENIX Annual Technical Conference (ATC), pp. 21–21 (2010)

54. Liu, Y., Xiao, M., Zhang, M., Li, X., Dong, M., Ma, Z., Li, Z., Chen, S.: GoCAD: GPU-
assisted online content adaptive display power saving for mobile devices in internet streaming.
In: Proceedings of the 25th InternationalWorldWideWebConference (WWW), pp. 1329–1338
(2016)

http://en.wikipedia.org/wiki/HTTP_ETag
http://www.kernel.org/doc/Documentation/networking/tuntap.txt
http://www.kernel.org/doc/Documentation/networking/tuntap.txt
http://ziproxy.sourceforge.net
http://developers.google.com/speed/webp/docs/cwebp
http://developers.google.com/speed/webp/docs/cwebp

http://www.springer.com/978-981-10-1462-8

	2 Cross-Application Cellular Traffic Optimization
	2.1 Introduction
	2.2 State-of-the-Art Systems
	2.3 Measuring Cellular Traffic
	2.3.1 Dataset Collection
	2.3.2 Content Analysis

	2.4 System Overview
	2.5 Mechanisms
	2.5.1 Image Compression
	2.5.2 Content Validation
	2.5.3 Traffic Filtering
	2.5.4 Value-Based Web Caching (VBWC)

	2.6 Evaluation
	2.6.1 Data Collection and Methodology
	2.6.2 Traffic Reduction
	2.6.3 System Overhead
	2.6.4 Latency Penalty

	2.7 Conclusion
	References

