
Chapter 2
Kinematics

In this chapter we introduce the main concepts of kinematics of continua. These
concepts are universal and they do not depend on the choice of specific materials.

2.1 Deformation Gradient

In continuum mechanics the atomistic or molecular structure of material is approx-
imated by a continuously distributed set of the so-called material points (material
particles). A continuum material point is an abstraction that is used to designate a
small representative volume of real material including many physical particles (e.g.,
atoms, molecules).

Material point that occupied position x in the reference configuration moves to
position y(x, t) in the current configuration of the continuum—Fig.2.1. It is usually
convenient, yet not necessary, to assume that the reference state is the initial one:
x = y(x, 0). In accordancewith themotion of itsmaterial points a body that occupied
region Ω0 with boundary ∂Ω0 in the initial state moves to region Ω with boundary
∂Ω in the current state.

If we consider x as an independent variable then we follow motion of a mate-
rial point that occupied position x in the reference configuration. Such description
is called referential or material or Lagrangean. If, alternatively, we consider y as
an independent variable then we follow motion of various material points passing
through the fixed spatial point y in the current configuration. The latter descrip-
tion is called spatial or Eulerian. The Eulerian description is often preferable when
the evolution of the body boundaries is known in advance like in many problems
of fluid mechanics while the Lagrangean description is often preferable when the
evolution of the body boundaries is not known in advance like in many problems
of solid mechanics. Such a division is conditional, of course, and we will use both
Lagrangean and Eulerian descriptions in this book.
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Fig. 2.1 Deformation

An infinitesimal material fiber at points x and y before and after deformation
accordingly are related by the linear mapping

dy = Fdx, (2.1)

where1

F = Grady = ∂y
∂x

= ∂yi
∂xj

ei ⊗ ej (2.2)

is the deformation gradient. This tensor is related to two configurations simultane-
ously and because of that it is called two-point.

We can also use the displacement vector, u = y − x, to get

F = Grad(x + u) = 1 + H, (2.3)

where

H = Gradu = ∂ui
∂xj

ei ⊗ ej (2.4)

is the displacement gradient.
It is possible to calculate any deformation in the vicinity of a given point when

the deformation gradient is known there. We consider deformations of volume, area,
and fiber.

We start with the volume deformation—Fig. 2.2
In this case we have

dy(m) = Fdx(m), (2.5)

1We capitalize the first character in differential operators: “Grad”, “Div”, “Curl”, when differentia-
tion iswith respect tox. The operators arewritten as usual: “grad”, “div”, “curl”,whendifferentiation
is with respect to y.
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Fig. 2.2 Volume mapping

and, by a direct calculation,

dV = det

⎡
⎣
dy(1)

1 dy(1)
2 dy(1)

3

dy(2)
1 dy(2)

2 dy(2)
3

dy(3)
1 dy(3)

2 dy(3)
3

⎤
⎦

= det

⎡
⎢⎣
F1jdx

(1)
j F2jdx

(1)
j F3jdx

(1)
j

F1jdx
(2)
j F2jdx

(2)
j F3jdx

(2)
j

F1jdx
(3)
j F2jdx

(3)
j F3jdx

(3)
j

⎤
⎥⎦

= det

⎡
⎣
dx(1)

1 dx(1)
2 dx(1)

3

dx(2)
1 dx(2)

2 dx(2)
3

dx(3)
1 dx(3)

2 dx(3)
3

⎤
⎦ det

⎡
⎣
F11 F21 F31

F12 F22 F32

F13 F23 F33

⎤
⎦

= JdV0, (2.6)

where
J = det F > 0. (2.7)

The physicalmeaning of the latter restriction is simple—material cannot disappear
during deformation.

In the case of the area deformation—Fig.2.3—we have for a cylinder built on the
infinitesimal base area

dV0 = dA0n0 · dx,
dV = dAn · dy = dAn · Fdx. (2.8)

Using (2.6) we derive

dAn · Fdx = JdA0n0 · dx, (2.9)

and, consequently,
(dAFTn − JdA0n0) · dx = 0. (2.10)
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Fig. 2.3 Area mapping

Since dx is arbitrary we can write down the Nanson formula

ndA = JF−Tn0dA0. (2.11)

Now, we define the fiber stretch—Fig. 2.4—in direction m, |m| = 1,

λ(m) = |dy|
|dx| = |Fdx|

|dx| = |Fm| . (2.12)

We can also define the change of the angle between two fibers—Fig.2.5—by
using stretches as follows, for example,

Fig. 2.4 Fiber mapping

Fig. 2.5 Angle mapping
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Fig. 2.6 Simple shear

cosα = dy1 · dy2
|dy1| |dy2| = (Fm1) · (Fm2)

λ(m1)λ(m2)
,

cosα0 = dx1 · dx2
|dx1| |dx2| = m1 · m2.

(2.13)

To illustrate the formulas above we consider the simple shear deformation—
Fig. 2.6.

We designate the amount of shear by γ = tan(π/2 − ϕ) = cot ϕ. The law of
motion (deformation) takes form: y1 = x1 + γx2, y2 = x2, y3 = x3. The deformation
gradient is

F = ∂yi
∂xj

ei ⊗ ej = 1 + γe1 ⊗ e2,

and we obtain the following stretches for the axial directions

λ(e1) = √
(Fe1) · (Fe1) = √

e1 · e1 = 1,

λ(e2) = √
(Fe2) · (Fe2) = √

(e2 + γe1) · (e2 + γe1) =
√
1 + γ2,

and the right angle between the directions becomes

α = arccos
(Fe1) · (Fe2)
|Fe1| |Fe2| = arccos

e1 · (e2 + γe1)√
1 + γ2

= arccos
γ√

1 + γ2
.

2.2 Deformation Gradient in Curvilinear Coordinates

In this section we consider the deformation gradient in curvilinear coordinates. To
be specific we choose the deformation law in cylindrical coordinates R, Φ,Z before
and r,ϕ, z after the deformation respectively

r = r(R, Φ,Z), ϕ = ϕ(R, Φ,Z), z = z(R, Φ,Z). (2.14)
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We further introduce the natural curvilinear basis vectors for the reference

GR = cosΦe1 + sinΦe2, GΦ = − sinΦe1 + cosΦe2, GZ = e3, (2.15)

and current configurations

gr = cosϕe1 + sinϕe2, gϕ = − sinϕe1 + cosϕe2, gz = e3, (2.16)

accordingly.
Now, the deformation gradient can be written as follows

F = Grady = ∂y
∂R

⊗ GR + 1

R

∂y
∂Φ

⊗ GΦ + ∂y
∂Z

⊗ GZ , (2.17)

where

y = y1e1 + y2e2 + y3e3
= r cosϕ(cosϕgr − sinϕgϕ) + r sinϕ(sinϕgr + cosϕgϕ) + zgz
= rgr + zgz. (2.18)

Substituting (2.18) in (2.17) we obtain

F = ∂r

∂R
gr ⊗ GR + r

∂gr
∂R

⊗ GR + ∂z

∂R
gz ⊗ GR

+ 1

R

∂r

∂Φ
gr ⊗ GΦ + r

R

∂gr
∂Φ

⊗ GΦ + 1

R

∂z

∂Φ
gz ⊗ GΦ

+ ∂r

∂Z
gr ⊗ GZ + r

∂gr
∂Z

⊗ GZ + ∂z

∂Z
gz ⊗ GZ , (2.19)

where

∂gr
∂R

= ∂gr
∂r

∂r

∂R
+ ∂gr

∂ϕ

∂ϕ

∂R
+ ∂gr

∂z

∂z

∂R
= ∂ϕ

∂R
gϕ,

∂gr
∂Φ

= ∂gr
∂r

∂r

∂Φ
+ ∂gr

∂ϕ

∂ϕ

∂Φ
+ ∂gr

∂z

∂z

∂Φ
= ∂ϕ

∂Φ
gϕ,

∂gr
∂Z

= ∂gr
∂r

∂r

∂Z
+ ∂gr

∂ϕ

∂ϕ

∂Z
+ ∂gr

∂z

∂z

∂Z
= ∂ϕ

∂Z
gϕ. (2.20)

After simplifications, we obtain

F = ∂r

∂R
gr ⊗ GR + 1

R

∂r

∂Φ
gr ⊗ GΦ + ∂r

∂Z
gr ⊗ GZ

+ r
∂ϕ

∂R
gϕ ⊗ GR + r

R

∂ϕ

∂Φ
gϕ ⊗ GΦ + r

∂ϕ

∂Z
gϕ ⊗ GZ

+ ∂z

∂R
gz ⊗ GR + 1

R

∂z

∂Φ
gz ⊗ GΦ + ∂z

∂Z
gz ⊗ GZ . (2.21)
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2.3 Polar Decomposition of Deformation Gradient

Let us square the expression for stretch (2.12) and rewrite it as follows

λ2(m) = (Fm) · (Fm) = m · FTFm = m · Cm, (2.22)

where
C = FTF (2.23)

is the right Cauchy–Green tensor.
Choosing m = m(i) as an eigenvector of tensor C we have

λ2(m(i)) = m(i) · Cm(i) = m(i) · ζim(i) = ζi, (2.24)

where ζi is the corresponding eigenvalue of C.
The latter equation means that eigenvalues of the right Cauchy–Green tensor are

equal to the squared stretches in principal directions. Thus, we can write the spectral
decomposition of C in the form

C = λ2
1m

(1) ⊗ m(1) + λ2
2m

(2) ⊗ m(2) + λ2
3m

(3) ⊗ m(3). (2.25)

Now, we define the right stretch tensor as a square root of the right Cauchy–Green
tensor

U = √
C = λ1m(1) ⊗ m(1) + λ2m(2) ⊗ m(2) + λ3m(3) ⊗ m(3), (2.26)

where all principal stretches are positive.
Weassume then that anydeformation gradient can bemultiplicatively decomposed

as
F = RU. (2.27)

This is called the polar decomposition of the deformation gradient and, conse-
quently, we have

R = FU−1. (2.28)

Let us analyze properties of R. First, we observe that it is orthogonal

RTR = (FU−1)TFU−1 = U−TFTFU−1 = U−TU2U−1 = 1. (2.29)

Orthogonal tensors do not change lengths of vectors that they map

|dy| = √
dy · dy = √

(Rdx) · (Rdx) = √
dx · RTRdx = √

dx · dx = |dx| .
(2.30)
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In addition, we observe (for det F > 0)

detR = det F
detU

=
√
det FT det F
detU

=
√
detC
detU

=
√
detU2

detU
= detU

detU
= 1. (2.31)

The latter is the property of the rotation tensor. Thus, R is the proper orthogonal
or rotation tensor.

Finally we note that the polar decomposition can be interpreted as the successive
stretch and rotation—Fig. 2.7.

It is possible, of course, to change the order of stretch and rotation

F = VR, (2.32)

where V is called the left stretch tensor.
By a direct calculation we have

V = FR−1 = FRT = RURT = VT, (2.33)

which means that the left stretch tensor is the rotated right stretch tensor and, conse-
quently, they have the same eigenvalues—principal stretches, while their eigenvec-
tors (principal directions) are different.

Fig. 2.7 Polar decomposition of deformation gradient
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With account of the spectral decomposition of U we have

V = λ1n(1) ⊗ n(1) + λ2n(2) ⊗ n(2) + λ3n(3) ⊗ n(3), (2.34)

where (no sum on i)

n(i) ⊗ n(i) = R(m(i) ⊗ m(i))RT = Rm(i) ⊗ Rm(i). (2.35)

To clarify the meaning of the principal directions of V we square the tensor as
follows

V2 = (RURT)(RURT) = RUURT = RU(RU)T = FFT = B, (2.36)

and, consequently,

B = λ2
1n

(1) ⊗ n(1) + λ2
2n

(2) ⊗ n(2) + λ2
3n

(3) ⊗ n(3), (2.37)

where B is the left Cauchy–Green tensor (also called Finger strain tensor), which
principal directions coincide with the principal directions of V while the principal
values of B are squared principal stretches.

Unfortunately, we cannot directly write the relations between the directions of
eigenvectors m(i) and n(i) in the reference and current configurations because these
directions are not defined uniquely and can always be reversed. However, we can
define the principal directions uniquely by the following procedure. Assume, for
example, that the principal directions in the reference configuration,m(i), are uniquely
chosen then we calculate the principal directions in the current configuration as
follows

n(i) = Rm(i). (2.38)

Of course, we could start with the current configuration otherwise.
Finally, we can calculate the spectral decomposition, which is the singular value

decomposition, of the deformation gradient as follows

F = RU = λ1Rm(1) ⊗ m(1) + λ2Rm(2) ⊗ m(2) + λ3Rm(3) ⊗ m(3)

= λ1n(1) ⊗ m(1) + λ2n(2) ⊗ m(2) + λ3n(3) ⊗ m(3). (2.39)

A nice analytical example on the spectral and polar decompositions of the defor-
mation gradient was found by Marsden and Hughes (1983). They considered the
following law of deformation: y1 = √

3x1 + x2, y2 = 2x2, y3 = x3; and they calcu-
lated the corresponding quantities in Cartesian coordinates

[F] =
⎡
⎣

√
3 1 0
0 2 0
0 0 1

⎤
⎦ , [C] =

⎡
⎣

3
√
3 0√

3 5 0
0 0 1

⎤
⎦ ,
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λ1 = √
6,

[
m(1)

]
= 1

2

⎡
⎣

1√
3
0

⎤
⎦ , λ2 = √

2,
[
m(2)

]
= 1

2

⎡
⎣

√
3

−1
0

⎤
⎦ , λ3 = 1,

[
m(3)

]
=

⎡
⎣
0
0
1

⎤
⎦ ,

[U] = 1

2
√
2

⎡
⎣
3 + √

3 3 − √
3 0

3 − √
3 1 + 3

√
3 0

0 0 2
√
2

⎤
⎦ ,

[
U−1

]
= 1

4
√
6

⎡
⎣
1 + 3

√
3

√
3 − 3 0√

3 − 3 3 + √
3 0

0 0 4
√
6

⎤
⎦ ,

[R] = 1

2
√
2

⎡
⎣
1 + √

3
√
3 − 1 0

1 − √
3 1 + √

3 0
0 0 2

√
2

⎤
⎦ , [V] = 1√

2

⎡
⎣
1 + √

3
√
3 − 1 0√

3 − 1 1 + √
3 0

0 0
√
2

⎤
⎦ .

2.4 Strain

Strain is a geometric measure of deformation and it can be introduced in various
ways. We start with one-dimensional measures for the change of the length of a
material fiber—Fig. 2.8.

We can introduce the engineering strain, logarithmic strain, or the Green strain
accordingly

EE = L − L0
L0

= λ − 1,

EL =
∫ L

L0

dL

L0
= ln

L

L0
= ln λ,

EG = L2 − L2
0

2L2
0

= 1

2
(λ2 − 1).

(2.40)

In order to generalize one-dimensional strains to the three-dimensional ones we
assume that the previous formulas are valid in the principal directions of the reference
configuration. In this case, the three-dimensional strain tensors take forms

EE =
3∑

i=1

(λi − 1)m(i) ⊗ m(i) = U − 1,

EL =
3∑

i=1

(ln λi)m(i) ⊗ m(i) = lnU,

EG =
3∑

i=1

1

2
(λ2

i − 1)m(i) ⊗ m(i) = 1

2
(U2 − 1).

(2.41)

Fig. 2.8 Strain
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The Green strain tensor is very popular and it can be written without the suffix

E = 1

2
(U2 − 1) = 1

2
(C − 1) = 1

2
(FTF − 1). (2.42)

2.5 Motion

Velocity and acceleration vectors are defined as material time derivatives of the
placement vector y(x, t) as follows

v = dy(x, t)
dt

= ẏ = ẋ + u̇ = u̇,

a = dv
dt

= v̇.
(2.43)

When the Eulerian or spatial description is used it is necessary to apply the chain
rule for differentiation of function f (y(t), t)

df

dt
= ḟ (y(t), t) = ∂f

∂t
+ gradf · ∂y

∂t
= ∂f

∂t
+ gradf · v. (2.44)

For example, we have for the acceleration vector

a = dv
dt

= ∂v
∂t

+ Lv, (2.45)

in which another important quantity—velocity gradient —is introduced

L = gradv = ∂v
∂y

. (2.46)

We emphasize that the partial time derivatives are taken for y fixed

∂f

∂t
≡

(
∂f (y, t)

∂t

)

y fixed
. (2.47)

Another way to calculate the velocity gradient comes from identity

Ḟ = d

dt
Grady = Gradẏ = Gradv = (gradv)F = LF. (2.48)

From the latter equation we get
L = ḞF−1. (2.49)
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The velocity gradient can be decomposed into symmetric and skew parts

L = D + W, D = 1

2
(L + LT), W = 1

2
(L − LT), (2.50)

whereD andW are the deformation rate and the spin (vorticity) tensors accordingly.

2.6 Rigid Body Motion

The rigid bodymotion (RBM) superimposedon the current configuration—Fig. 2.9—
is of importance for constitutive modeling, which will be discussed in the coming
chapters. It is generally required that the constitutive laws should not be affected by
the superimposed rigid body motion—they should be objective.

The superimposed RBM, designated with asterisk, can be described as follows

y∗ = Q(t)y + c(t), (2.51)

where
QT = Q−1, detQ = 1 (2.52)

is a proper-orthogonal tensor.
We remind the reader that since detQ = 1 > 0 then material does not disappear

and tensor Q describes rotation.
The transformation law for a material fiber takes form

s∗ = y∗
2 − y∗

1 = Q(y2 − y1) = Qs. (2.53)

This motion preserves length

∣∣s∗∣∣ = √
s∗ · s∗ =

√
s · QTQs = √

s · 1s = |s| . (2.54)

Besides, it preserves angles between fibers. Check it.
All quantities related to the reference configuration at t = 0 are unaffected by

RBM and only quantities related to the current configuration are affected by RBM.

Fig. 2.9 Superimposed rigid
body motion
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Vector quantities that transform under superimposed RBM following the rule

s∗ = Qs (2.55)

are called objective, i.e. unaffected by RBM.
Not all vectors are objective. For example, velocity and acceleration vectors are

not objective

v∗ = ẏ∗ = d

dt
(Qy + c) = Qẏ + Q̇y + ċ = Qv + �(y∗ − c) + ċ,

a∗ = v̇∗ = Qa + c̈ + (�̇ − �2)(y∗ − c) + 2�(v∗ − ċ),
(2.56)

where
y = Q(y∗ − c),

� = Q̇Q−1 = Q̇QT = −�T,

d

dt
(QQT) = Q̇QT + QQ̇T = 0,

(2.57)

and tensor � is the spin of RBM.
Second-order tensors defined in the current configuration are called objective if

they preserve objectivity of the vectors that they map. Let tensor A map objective
vector s into objective vector r:

r = As. (2.58)

Then, tensor A∗ maps proper transformations of the objective vectors

r∗ = A∗s∗, (2.59)

or
Qr = A∗Qs, (2.60)

and, consequently, we have
r = QTA∗Qs. (2.61)

Comparing (2.58) and (2.61) and assuming that the choice of vectors is arbitrary,
we obtain the transformation rule for the objective second-order tensor

A∗ = QAQT. (2.62)

Not all tensors are objective. Let us examine objectivity of the velocity gradient
tensor
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L∗ = Ḟ∗F∗−1

= (Q̇F + QḞ)F−1Q−1

= Q̇Q−1 + QḞF−1Q−1

= � + QLQT. (2.63)

This tensor is affected by the superimposed RBM and it is not objective. However,
its symmetric part—the deformation rate tensor—is objective

D∗ = 1

2
(L∗ + L∗T)

= 1

2
(� + QLQT + �T + QLTQT)

= 1

2
Q(L + LT)QT

= QDQT. (2.64)

We note that the rate of an objective second-order tensor is not objective

Ȧ∗ = d

dt
(QAQT) = Q̇AQT + QȦQT + QAQ̇T. (2.65)

The latter observation triggered various proposals for an objective rate of an
objective tensor. For example, we mention the Jaumann-Zaremba, Truesdell, and
Oldroyd objective rates respectively

•
A = Ȧ − WA − AWT,

◦
A = Ȧ − LA − ALT + (trL)A,

�
A = Ȧ − LA − ALT.

(2.66)

The proof of the objectivity of the Oldroyd rate, for example, is by the direct
calculation

�
A∗ = Ȧ∗ − L∗A∗ − A∗L∗T

= Q̇AQT + QȦQT + QAQ̇T − (QLQT + Q̇QT)QAQT − QAQT(QLQT + Q̇QT)T

= Q̇AQT + QȦQT + QAQ̇T − QLAQT − Q̇AQT − QALTQT − QAQ̇T

= QȦQT − QLAQT − QALTQT

= Q(Ȧ − LA − ALT)QT

= Q
�
AQT.
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2.7 Lagrangean, Eulerian and Two-Point Tensors

Tensor fields considered in the previous sections can be classified as Lagrangean,
Eulerian, and two-point.

Lagrangean tensors are defined on the initial or referential configuration. For
example, the right Cauchy–Green tensor C, right stretch tensor U, strain tensors EG,
EE, EL are Lagrangean.

Eulerian tensors are defined on the current configuration. For example, the left
Cauchy–Green tensor B, left stretch tensor V, velocity gradient L, deformation rate
D, spin W are Eulerian.

Two-point tensors belong to both initial and current configurations simultaneously.
For example, deformation gradient F and rotation tensor R are two-point.

Vectors cannot be two-point—they are Eulerian, like n(i), or Lagrangean, like
m(j).

It is important to follow the character of the tensor (Lagrangean, Eulerian, and
two-point) in order to have physically consistent formulations. It is also important
to not confuse Eulerian and Lagrangean tensors with the Eulerian and Lagrangean
descriptions of motion. Lagrangean description of motion can be used for Eulerian
tensors and Eulerian description of motion can be used for Lagrangean tensors.

2.8 Exercises

1. Find principal directions and stretches for the following deformation law

y1 = (1 + α)x1 + αx2, y2 = −αx1 + (1 + α)x2, y3 = x3, (2.67)

where α = constant.
2. Calculate the polar decomposition of the deformation gradient for the deformation

law presented in (2.67).
3. Calculate the Cartesian components of the Green strain for the deformation law

presented in (2.67).
4. Derive (2.56).
5. Prove objectivity of the Jaumann-Zaremba and Truesdell rates (2.66)1,2.
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