Spined Product Decompositions
of Orthocryptogroups

AKkihiro Yamamura

Abstract A semigroup is said to be an internal spined product of its subsemigroups
if it is naturally isomorphic to an external spined product of the subsemigroups.
We shall show that internal spined products can be identified with external spined
products in the class of orthocryptogroups. On the other hand, two concepts are not
equivalent in general as we give examples of external spined products that admit no
internal spined product decomposition. Further, we examine internal spined product
of orthocryptogroups. Using a lattice theoretic method, we obtain a unique decompo-
sition theorem similar to the Krull-Schmidt theorem in group theory. We also study
completely reducible orthocryptogroups in which any normal sub-orthocryptogroup
is a spined factor. We show that such an orthocryptogroup is an internal spined
product of simple sub-orthocryptogroups.

Keywords Orthocryptogroups - Spined products - Krull-Schmidt theorem * Ore
theorem

1 Introduction

An external spined product gives a convenient way to construct a new semigroup
from old ones. It plays an important role in the structure theory of regular semigroups.
Suppose S; and S, are semigroups. Let ¢; : S — Q and ¢, : S — Q be epimor-
phisms. The external spined product of S| and S, over Q with respect to ¢; and
¢ is defined to be the set of pairs (s1, 52) satisfying ¢;(s;) = ¢2(s2). Obviously, an
external spined product forms a subsemigroup of the external direct product S; x S5.
We denote the external spined product by S; 0<ip S>. An external spined product is
called just a spined product in the literature of semigroup theory. An external spined
product of more than two factors is defined similarly. If " is the largest semilattice
homomorphic image of S; and S, respectively, and both ¢; and ¢, are the natural
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homomorphisms, then the external spined product can be formed over I'. Similarly,
if Green’s H-relation of S} and S, are congruences and B = S;/H = S»/'H, then the
external spined product with respect to H can be formed over B.

A semigroup is called cryptic if Green’s H-relation is a congruence. A cryptic
completely regular semigroup is called a cryptogroup. An orthodox semigroup is a
regular semigroup in which the set of idempotents forms a subsemigroup and an
orthocryptogroup is an orthodox cryptogroup. It was first studied by Yamada and
called a strictly inversive semigroup in [ 7]. He showed that an external spined product
of a Clifford semigroup and a band with respect to the structure decomposition is
an orthocryptogroup, and conversely, every orthocryptogroup S is isomorphic to an
external spined product C < E(S) of the largest Clifford semigroup homomorphic
image C and the band E(S) of idempotents of S over the structure semilattice I".

The group inverse of an element a in a completely regular semigroup is denoted
by a~!. The identity element of the subgroup of a completely regular semigroup
containing an element a is denoted by a’, that is, a° = aa™' = a~'a. It is known
(see [5]) that a completely regular semigroup satisfies the equation

@)™ = )y o0 ()’ (1.1)
and an orthocryptogroup satisfies the equation
(@)’ =0y". (1.2)

Therefore an orthocryptogroup satisfies the equation

)™ =207 (1.3)
The equational class of completely regular semigroups defined by (1.3) includes the
variety of orthocryptogroups but does not coincide [9].

The least band congruence of an orthocryptogroup S is Green’s H-relation and
so S has the H-decomposition | J,. Es) S(e), where S(e) is the maximal subgroup
containing the idempotent e and E(S) is the band of idempotents of S. Note that
E(S) is isomorphic to the largest band image of S and E(S) = S/H.

A nonempty subset of an orthocryptogroup S is called a sub-orthocryptogroup
if it forms an orthocryptogroup under the multiplication of S, that is, a nonempty
subset is a sub-orthocryptogroup if and only if it is closed under taking an inverse
and multiplication.

Suppose S is an orthocryptogroup and ¢ is the natural homomorphism of S onto
the largest band image B, that is, B = S/H. A sub-orthocryptogroup H of S is
called full if E(H) = E(S). If S has the H-decomposition UeeE(S) S(e), then H has
the H-decomposition (J,. s, H (e). The following lemma is obvious because an
orthocryptogroup is isomorphic to an external spined product of a Clifford semigroup
and a band, however, we give a direct proof.
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Lemma 1.1 Let Hy, H,, ..., H, be full sub-orthocryptogroups of S. Suppose s, €
Hi(e1), 52 € Hy(er), ..., s, € H,(e,) for e, ez, ...,e, € E(S). Then there exists
s; € Hi(e), s5 € Ha(e), ..., s, € Hy(e) suchthats\sy...s, = s{8h...s,, wheree =
e1ey...ey.

Proof Notethats; = sje; because s; € S(e;) and e; is the identity element of S(e;).
Likewise, s5...5, = e>...¢e,52...5, because s5...5, € S(ex...e,) and e;...¢,
is the identity element of S(ey...e,;). Then sis3...5, = sie1€r...€,52...8, =
si(erex...ep)(erer...e)s2...5, = s1ex...e,e18,...5,. Likewise wehave sie; . . .
€,€15283 ...8, = S1€y...e,e15€3...e,e1e353...5, and similarly s15,...5, =
(s1ez...e,)(e150e3...e,)(erexszeq...e,) ... (er...e,_15,). Now we set si’ =ecie
...€_18i€iy1...¢,. Thensysy...s, = s185...5, and s] € H;(e) foreveryi = 1,2,

R U

2 Internal Spined Products

Let S be a semigroup and ¢ a homomorphism of S onto Q. Suppose H; and H, are
subsemigroups of S such that ¢ (H}) = ¢ (H,) = Q. If the external spined product
H\ >« H,over Q withrespectto ¢|, and ¢| g, isisomorphic to S under the mapping
(h1, ho) + hihy where (hy, hy) € Hy > H>,then §Sissaid to be the internal spined
product of H; and H, over Q. In such a case we denote S = H; < H,. Similarly,
we can define an internal spined product H t<ip H, < ... p<igp H, of finitely many
subsemigroups.

By the definition, every internal spined product is always isomorphic to an external
spined product of its subsemigroups. On the other hand, an external spined product
does not always admit an internal spined product decomposition as we shall see next.
We note that an external direct product of groups always admits an internal direct
product decomposition of its subgroups.

Example 1 A band is said to be normal (left normal, right normal, resp.) if it satisfies
the equation xyzx = xzyx (xyz = xzy, yzx = zyx, resp.). Let B be a band defined
on the set {e, f, a, b, c, d} with the following multiplication Table 1.

Table 1 Multiplication table of B

e f a b c d
e e b a b a b
f c f c d c d
a a b a b a b
b a b a b a b
c c d c d c d
d c d c d c d
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Table 2 Multiplication table of L

Iy 153 I3 In
I I I3 I3 I3
153 In I In In
I3 I3 I3 I3 I3
n In In In In

Table 3 Multiplication table of R

rl r r3 r4
ri r1 r4 r3 r4
n r3 r r3 rq
r3 r3 r4 r3 rq
r4 r3 r4 r3 r4

Clearly, {e}, {f},and {a, b, c, d} are D-classes of B, which are rectangular bands,
and B is a strong semilattice of them. Note that a band is normal if it is a strong
semilattice of rectangular bands [6]. Therefore, B is normal and has the structure
decomposition B = {e} U {f} U {a, b, c, d}. It is well known that a normal band is
an external spined product of a left normal band and a right normal band [6]. It is
easy to see B is isomorphic to an external spined product of four element left normal
band L = {/|, I, I, l4} and a four element right normal band R = {ry, r», 3, r4} over
the structure semilattice I' = {«, 8, 0} that is the three element non-chain semilattice
(Tables 2 and 3).

Note that L and R have the structure decomposition L = {[;} U {l,} U {l3, I4}
and R = {r;} U {ry} U {rs, r4}, respectively. Then L o< R is isomorphic to B under
the mapping; (I, 7)) — e, (lb,r2) — f, (I3,1r3) — a, (I3,r4) — b, (l4,13) — c,
(14, r4) — d.

On the other hand, it is easy to verify that there is no proper subsemigroup of
B whose largest semilattice homomorphic image is I'. It follows that there is no
subsemigroups B; and B, of B so that B is the internal spined product B; o<y
B;. Therefore, B admits no internal spined product with respect to the structure
decomposition even though B is an external spined product.

Example 2 Next we consider a spined product of completely simple semigroups.
Let S; be the two element right zero semigroup. Note that S; can be considered as
the Rees matrix semigroup M(Gy; I, A; P), where G is the trivial group, I = {1},

A = {1, 2}, and the sandwich matrix P is defined by (i“) = (})
21
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Next let S, be a Rees matrix semigroup M(G»; I, A; Q), where G, = {1, g, gz}
is the cyclic group of order three, I = {1}, A = {1, 2}, and the sandwich matrix Q
is defined by (Z”) = '? . Note that S, is not a rectangular group because the set

21
of idempotents does not form a subsemigroup. Clearly both S;/H and S,/H are the
two element right zero semigroup B. Then the external spined product S; <p S>
over B can be considered as the Rees matrix semigroup M(G| x G,; I, A; R),
where the sandwich matrix R is defined by (;1 1) = (S '?;) It is easy to see that
21 )

S is isomorphic to S,. On the other hand, there exists no subsemigroup isomorphic
to S; because M(G; x G; I, A; R) does not contain the two element right zero
semigroup. Therefore, S| ><p S, admits no internal spined product with respect to .

3 Internal Spined Products of Orthocryptogroups

Suppose S is an orthocryptogroup and ¢ is the natural homomorphism of S onto
the largest band image B, that is, B = S/H. Let Hy, H,, ..., H, be full sub-
orthocryptogroups of S. They have the same largest band image B and so we
can consider the external spined product over B. Recall that if S is isomor-
phic to the external spined product H; <ig H, 0<ip ... ><ip H, under the mapping
(51,82, .., 8,) > §152...8,, then § is said to be the internal spined product of
H,, H,, ..., H,.

Lemma 3.1 If S is the internal spined product of full sub-orthocryptogroups
Hi, H,, ..., H,, then the following conditions hold.

(Al) Elements of Hi(e) and Hj(e) (i # j) commute for every e € E(S).
(A2) Fore € E(S) every element s of S(e) is expressed uniquely as s = 5155 . .. Sy,
where s; € H;(e).

Conversely, if full sub-orthocryptogroups Hy, H,, ..., H, satisfy (Al) and (A2),
then S is the internal spined product Hy 0<g Hy ><ig ... ><p H,.

Proof If S = H 0<p Hy<ip ... ><p H,, then clearly (Al) and (A2) are satisfied.
We now suppose (A1) and (A2) hold for full sub-orthocryptogroups H,, Ha, ..., H,.
Define a mapping ¥ of the external spined product H; s<ig H, 0<ip ... <1 H,
into S by ¥(si,s2,...,8,) =s182...5,. We shall show that ¢ is an isomor-
phism onto S. Take two elements (si, s>, ...,S,) and (¢1,%,...,1,) of Hj ><p
H, v<p ...><ap H,. Suppose that s; € H(e), s» € Hy(e),...,s, € Hy(e) and t; €
H\(f),to €e Ho(f),...,t, € H,(f). Let h = ef. Then we have ¥ ((sy, 2, ..., Sy)
(t1, by, oo 1)) = W (s1ty, S2ta, - ooy Suly) = S1HS21283013 . . . Syt = s1htsohtrsats . ..
Spty = S1S2hht 183t ... Syt = S182t1 8313 ... Syt, since elements of H;(h) and
Hj(h) commute by (A1). Similarly we can show s1s2t128323 ... Sy, = $152. .. Spl112
ety =Y (81,82, -, SOV (t1, 1, ..., 1,). Next, suppose that ¥ (s, $2,...,8,) =
v(t, t,...,t,), where s € Hi(e), sy € Hy(e),...,s, € H,(e) and 1, € H](f),
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th e Hy(f),....t, € H,(f). We have s15,...5, =t1ty...t,. Then we have e = f
and (A2) implies (s, $2,...,8,) = (t1, 1o, ..., ty). Clearly ¢ is surjective by (A2).
Therefore i is an isomorphism. ]

A sub-orthocryptogroup N of S is called normal if N is full and s~™'Ns C N
for every s in S (see [8]). For any s € S and e € E(S) we have (s7les)(s es) =
s Hess ™ (ess s = s lessT!s = s'es. Hence, s 'es € E(S) and so E(S) is
normal. Obviously S itself is normal.

For a normal sub-orthocryptogroup N we define a relation py of S by s py t if
and only if s H ¢ and st~! € N. Itis easy to see that py is an idempotent-separating
congruence of S and N coincides with its kernel Ker(py) = {s | s py e for some e €
E(S)}. Conversely, for every idempotent-separating congruence p the kernel
Ker(p) = {s | s p e for some e € E(S)} is a normal sub-orthocryptogroup of S, and
furthermore we have pger(p) = p.

Lemma 3.2 If S is the internal spined product of full sub-orthocryptogroups
Hi, H,, ..., H,, then the following conditions hold.

(B1) Every H; is normal.
(B2) S=HH,...H,.
(B3) HHN(Hy...Hi_1Hiy1...H,) = E(S) foreveryi =1,2,...n.

Conversely, if sub-orthocryptogroups Hy, H,, . . ., H, satisfy (Bl), (B2), and (B3),
then S is the internal spined product Hy <g Hy ><ip ... <p H,.

Proof First we suppose S is the internal spined product H; s<ip Hy b<ip ... ><p H,.
Then H,, H,, ..., H, satisfy (A1) and (A2) by Lemma 3.1. Take elements 4 in H,
and s in S. Suppose h € H(f) and s € S(e). By (A2), there exists an element s; in
H;(e)fori =1,2,...,nsuch thats = 51572 . .. S,. Since all s; belong to the subgroup
S(e), we have s~! =s' .. .5y sy ! Note that sy ths) € H1 NS(efe) = Hi(efe)
because s, h € H;. Then we have s, (s1 1hs1)sz =5, (efe)(s1 1hs1)(efe)sz =
(s7'hsi)sy ' (efe)(efe)sy = (s; 'hsy)s, 'sy because elements of Hj(efe) and
H,(efe) commute by (Al). Ontheotherhand, (sl_lhs])sz_lsz = (sl_'hsl)e = sl_]hsl.
Inductively we can show s, —1 sz_ (s]_ hsi1)sy...sp =581 "hs,. It follows that

s 'hs = sy 'hs, € Hy. Thus H1 is normal. Similarly we can show H; is normal
for i =2,...,n. Obviously, (A2) implies (B2). Now, take an element s in H; N

(H;... Hn). Then s =5...5, forsomes, € H,...,s, € H,. Suppose s € H(e)
forsomee € E(S). By Lemma 1.1 we may assume thats; € H;(e). Thenwehavee =
sl =s7ls, . 05, By (A2) we have e = s1=s,=...=s, and s = e. Hence,

E(S)=H N (H,...H,).Similarly wecanshow H; N (H, ... H;_1H;}, ... H,) =
E(S) foreveryi =2, ..., n. Therefore, (B1), (B2), and (B3) hold.

Conversely, we suppose (B1), (B2), and (B3). Take elements s in H;(e) and
tin Hj(e) (i # j). Since sts™' € H; and ts7't7! € H;, we have sts™!t7!
H; N H By (B3) we have sts~lt7l e E(S) N S(e). Hence, sts~'t~! = e. On the
other hand st lts = s les = s ls = e. Then st = ste = sts 't ts = ets =
ts. Hence, (Al) holds. Next, take an element s in S(e). By (B2) s =s152...5,
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for some s; € H; (i =1,2,...,n). Moreover, we may take s; € H;(e) for i =
1,2,...,n by Lemma I.1. Suppose s152...5, = tity...t,, where s;, t; € H;(e) for
every i = 1,2,...,n. Then, tl_lsl = tz...tnsn’l...sz_l. Note that tl_lsl € Hi(e).

Since we have already shown (A1) holds, 15 .. . 1,57 .. 55" = tasy ‘1353 .. tus .

Thus ty...t,5, " ...5;" € Hy(e)Hs(e)... Hy(e). By (B3) we have #;'s) =
... t,,sn_' .. .s{l = e. Therefore, s; = t;. Similarly we can show s; = t; for every
i =2,...,n.Consequently we obtained (A2). O

In group theory, the external direct product G = G| x G, always admits an inter-
nal direct decomposition of its subgroups isomorphic to G; and G,. Let H; be
{(g1, 1) | g1 € G} and H, be {(1, g») | g» € G»}, respectively. Then G is the inter-
nal direct product of H; and H,. Thus, the concept of external and internal direct
products are equivalent. This is not the case with wider classes of semigroups as we
have seen in the preceding section. Fortunately spined products of orthocryptogroups
over the largest band image are similar to direct products of groups.

Theorem 3.3 Every external spined product of orthocryptogroups over the largest
band image admits an internal spined product decomposition.

Proof Suppose S is the external spined product of S| and S, over the band
B, where S;/H = B = S,/H. We define subsemigroups H; and H, of S to be
Hy ={(s,e) | s € Si(e),e € E(S2)}] and Hy = {(e,1) |1t € S(e), e € E(S1},
respectively. It is routine to check H; and H, satisfy (B1), (B2), and (B3). Hence,
S is the internal spined product of H; and H,. It can be similarly shown for
Sy <ip Sy p<ip ... < S, forn > 3. O

4 Spined Product Decompositions

Decomposing an algebraic system into indecomposable ones is an essential prob-
lem in mathematics. In group theory, the Krull-Schmidt theorem guarantees the
uniqueness of direct product decompositions of groups satisfying certain finiteness
conditions into indecomposable factors (see [2]). Ore [4] proved the Krull-Schmidt
theorem using a lattice theoretic method. We shall prove the uniqueness of internal
spined product decompositions of orthocryptogroups into indecomposable factors
using a lattice theoretic method.

A lattice is said to be of finite length if there is a bound on the length of its chains.
Two elements a and b in a lattice with the least element 0 and the greatest element
1 are said to be complementary if a v b =1 and a A b = 0 hold. In such a case, b
is said to be complement of a and vice versa. Two elements in a lattice that have a
common complement ¢ are said to be c-related. A lattice L is called modular if it
satisfies the modular law

a<b =(cvayArb=(cAb)yva (a,b,cel) 4.1)
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Let L be a modular lattice with the least element 0. A subset {a;, a3, ..., a,} of
finitely many elements of L is said to be independentifa; #0( =1,2,...,n)and

aAN@V...Vai_1Va1V...Va,) =0 “4.2)

for every i = 1,2,...,n. If an element a € L is represented as the join of an
independent set, that is, a = a; V...V a, where {aj, as, ..., a,} is independent,
then a is said to be the direct join of the elements ap, ay, ..., a, and we write
a=a; X ...Xa,.Anelement a in a lattice L is said to be indecomposable if a # 0
and it admits no direct join @ = b x ¢ with b # a and ¢ # a. If a is written as a
direct join of indecomposable elements, then it is called a complete decomposition
of a. The following theorem is due to Ore (see [1, 3] for a proof).

Proposition 4.1 In a modular lattice L of finite length, if
l=a; x...xXa,

and
l=b; x...xb,

are two complete decompositions of 1, then each a; is a;-related to some b for
I = l,2,...,m,wherea;:a1 X oo X Aio] X Ajg] X oo X . O

We shall show that the set of normal sub-orthocryptogroups of an orthocryp-
togroup S forms a lattice. Suppose M and N are normal sub-orthocryptogroups of
S. Take m € M and n € N. Note that S satisfies the Eqgs. (1.2) and (1.3). Then we
have mn = mn(mn)® = mnm~'mn® € NM since mnm~' € N and n® € M. Thus,
MN C NM and vice versa. Hence, MN = NM.Then (MN)(MN) = MMNN =
MN and so MN is closed under multiplication. Next we take m € M andn € N.
We have (mn)~' = m°n~'m~'n® €e MNMN = MN.Hence, MN is closed under
taking inverse. Since M and N are full, M C ME(S) C MN and N C E(S)N C
MN. Thus MN include both M and N. Next take s € MN and h € S. Sup-
pose s € S(e). By Lemma 1.1 we can write s = mn for some m € M(e) and n €
N(e). Then we have h='sh = h'mnh = h"'m(h~"'m)°nh = h""'mhh~"'mnh €
MN since h~'mh € M and h~'m®nh € N. Thus M N is normal. Therefore, M N
is the smallest normal sub-orthocryptogroup including both M and N. On the other
hand, M N N is the largest normal sub-orthocryptogroup contained in both M and
N. Consequently, the set of normal sub-orthocryptogroups forms a lattice with the
join M N and the meet M N N. This lattice has the greatest element S and the least
element E (S). Moreover, we have the following.

Lemma 4.2 The lattice of normal sub-orthocryptogroups of an orthocryptogroup
is modular.

Proof Let S be an orthocryptogroup. Suppose that A, B, C are normal sub-ortho
cryptogroups of S satisfying A C B. It is enough to show (CA) N B C (C N B)A.
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Take an arbitrary element s from (CA) N B. Then s = ca, where c € C,a € A and
s € B.Notethatsa~—' = caa~".Since A C B, wehavesa~! € B.On the other hand,
caa~! € C because C is full. Therefore, s = ca = caa™'a = (sa Da € (C N B)A
and so (CA)N B C (C N B)A. O

It is easy to see that the lattice of normal sub-
orthocryptogroups is isomorphic to the lattice of idempotent-separating congruences
under the correspondence N <> py. Therefore the lattice of idempotent-separating
congruences of an orthocryptogroup is modular by Lemma 4.2.

We say that an orthocryptogroup S is spined indecomposable if S # E(S) and
the internal spined product decomposition S = S} s<ip S, where B = S/H, implies
either S} = S or S, = S. Note that an orthocryptogroup S always admits the internal
spined product decomposition S = S o< E(S).

We shall next give a sufficient condition for an orthocryptogroup to admit a spined
product decomposition into spined indecomposable factors. An orthocryptogroup S
is said to satisfy the ascending chain condition if Ny C N, C N3 C ... 1is a chain of
normal sub-orthocryptogroups, then there exists ¢ for which Ny, = Nyy = Nyyp =
...,and S is said to satisfy the descending chain conditionif K| D K, D K3 D ...1s
a chain of normal sub-orthocryptogroups then there exists ¢ for which K; = K, =
Kipo=...

Theorem 4.3 Suppose S satisfies either the ascending or descending chain condi-
tion. Then S is an internal spined product of a finitely many spined indecomposable
factors.

Proof Suppose the conclusion does not hold. Then S is not spined indecompos-
able and so it is decomposed as Hj ><ip K¢, where Hy and K, are proper sub-
orthocryptogroups. By the assumption, either Hy or K is not spined indecomposable,
say Hy. By induction, there is a sequence of sub-orthocryptogroups Hy, H;, Ha, . . .,
where every H; is a proper spined factor of H;_;. Then we have a descending chain
SDOHy 2 H 2 H,2.... Itiseasytosee H; is normal in S. If § satisfies the
descending chain condition, this is a contradiction. Now we suppose S satisfies the
ascending chain condition. Since each H; is a spined factor of H;_y, there is a normal
sub-orthocryptogroup K; in H;_; satisfying H;_; = H; 0<ip K;. Since each K; is nor-
mal in S, we have an ascending chain Ko C Ko <p K| C Ko<p Ky <p Kp € ..,
which is a contradiction. O

We note that a modular lattice is of finite length if and only if it satisfies both
the chain conditions (see [3]). Therefore, if an orthocryptogroup S satisfies both the
chain conditions, then the lattice of normal sub-orthocryptogroups is of finite length
and vice versa.

Theorem 4.4 Let S be an orthocryptogroup satisfying both the chain conditions and
B = S/H. If S has two spined product decompositions Hy v<ig Hy ><ip ... ><ip Hy,
and K| v<p Ky <p ... o<ip Ky, where Hi (i =1,2,...,m)andK;(j=1,2,...,n)
are spined indecomposable, then m = n and there exists a bijection ¥ of the family
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{H; |i=1,2,...,m}ontothe family{K; | j = 1,2, ..., n} such that H; is isomor-
phic and H/-related to WV (H;).

Proof Note that the lattice of normal sub-orthocryptogroups of S is modular by
Lemma 4.2, and it is of finite length because S satisfies both the chain conditions.
By Lemma 3.2, {H,, H>, ..., H,} and {K|, K>, ..., K,} are independent, respec-
tively. Therefore both H| <ig H, 0<ip ... <1 H,, and K| 0<ig Ky o<1 ... <15 K
are complete decompositions of S.

Suppose n < m.By Proposition 4.1, H; is H{-related to some K ; (say K ). Recall
thatH{=H2><13 ...>xg H,. We have § = K| 0«p H{:K] ><p Hy ><ip ... ><1p
H,,. By induction, we obtain § = K b<ip K p<ip ... <ip K, b<ip Hyq1 ><ip ... ><p
H,, after renumbering K ;. On the other hand, we have § = K| b<p K) <p ... p<p
K,,. Therefore, we have m = n. Moreover, each H; is Hi’—related to K; for some j
by Proposition 4.1.

Next we shall show that if H; and K; (say K) is Hj-related, then H; and K
are isomorphic. Suppose that S = H; 0z H{ = K <z H|. Define a mapping ' :
H, — K, as follows. For h € Hi(e) (e € E(S)) we set ¥ (h) = k where k is an
element of K (e) satisfying i = ka for somea € H|(e). Such an element is uniquely
determined by Lemma 3.1 and so v is well defined.

Suppose that ¥ (hy) = ¥ (hy) = kforhy, h, € Hi(e) (e € E(S)). Then h| = ka;
and h, =ka, for some aj,a, € H(e). We have hl_lhz = (ka;)™!
ka, = a,_lk’lkaz = a]_laz as k,a; € S(e). Thus al_laz = hl_lhz € Hi(e). On the
other hand, aflaz € H/(e). Since H,(e) N H{(e) = {e}, we have aflaz = e. There-
fore, a; = aje = alaflag = eay = ay. It follows that hy = ka; = ka, = h, and
is injective. It is easy to see y is surjective.

Next we shall show that i is a homomorphism. Take arbitrary elements /; €
Hy(e) and hy € H|(f), where e, f € E(S). Suppose ¥ (hi) = k; and ¥ (hy) = k.
Then hy = kia; and hy = kya, for some a; € H{(e) and a, € H{(f). Then we
have h1h2 = k1d1k2a2 = klaleszag = klalefefkgaz = kleszalefazzklkgalaz
since S is orthodox and a;ef (€ Hj(ef)) and efk,(€ K;(ef)) commute by Lemma
3.1. Note that k1k, € Ki(ef) and aja, € H\(ef). Therefore, ¥ (hi1hy) = kik, =
Y (h1)y (hy). Consequently, i is an isomorphism of H; onto K. O

S Completely Reducible Orthocryptogroups

In the preceding sections, we have considered internal spined products of finitely
many sub-orthocryptogroups. We now consider internal spined product of an arbi-
trary family of sub-orthocryptogroups and examine orthocryptogroups in which any
normal sub-orthocryptogroup is an internal spined product factor.

Let B be a band and {S, | » € A} a nonempty family of orthocryptogroups such
that £(S,) = B forevery A in A. Note thateach S has the same largest homomorphic
band image B. Consider the set P of functions defined on A for which there exists
ey in B satisfying the following.
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L. f(A) € Siley).
2. f(A) = ey for all but finitely many A € A.

For f, g € P, we define amultiplication fgby (fg)(A) = f(A)g(r).Itis easy to
see that fg belongs to P and P forms an orthocryptogroup under this multiplication.
Then the set of the idempotents is isomorphic to B and we identify it with B. We
say that P is the external spined product of the family {S, | . € A} and denote it by
><hep 1. Note thatif A is finite, then o<, 4 S;, is exactly the external spined product
defined in Sect. 1.

Suppose S is an orthocryptogroup and {H, |A € A} is a family of full sub-
orthocryptogroups of S. If the external spined product m<cp H, is isomorphic
to S under the mapping f +— f(A1)f(X2)... f(X,), where f(7) =es(e E(S))
for T € A\ {A1,A2,..., A}, then S is said to be the internal spined product of
{H, | » € A} and denoted by S =p<;;cp Sy

A family of sub-orthocryptogroups {H, | A € A} of S is called independent if any
finite subset is independent in the lattice of sub-orthocryptogroups, that is, any finite
subset satisfies (4.2). A proof of the following lemma is similar to the one for Lemma
3.2 and so we omit it.

Lemma 5.1 If an orthocryptogroup S is the internal spined product of a family of
Sull sub-orthocryptogroups {H, | A € A}, then the following conditions hold.

(Cl) Every H, is normal.
(C2) S is generated by | J, ., H,.
(C3) {H, | ) € A} is independent.

Conversely, if the family {H, | . € A} of full sub-orthocryptogroups satisfy (CI),
(C2), and (C3), then S is the internal spined product <, ¢ H,. O

A full sub-orthocryptogroup H of S is said to be a spined factor if there exists a full
sub-orthocryptogroup K such that S = H s« K. For example, both E(S) and S are
spined factors. An orthocryptogroup S is called simple if S # E(S) and there exists
no proper normal sub-orthocryptogroup other than E(S). We say that S is completely
reducible if there exists a family {H, | A € A} of simple full sub-orthocryptogroups
such that S = baycp Hy.

Theorem 5.2 Let S be an orthocryptogroup. Then the following conditions are
equivalent.

(1) S is completely reducible.

(2) There is a family of simple normal sub-orthocryptogroups {H, | A € A} such
that S is generated by | J, ., H,.

(3) Every normal sub-orthocryptogroup H is a spined factor.

Proof (1) implies (2). Suppose S = <icp H, where H, is simple. By Lemma 5.1,
H, is normal and S is generated by | J;_, H,..

(2) implies (3). Let H be a normal sub-orhtocryptogroup of S. If H = §, then we
can take K = E(S). So we may assume H # S. Let A be the set of all subsets A
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of A such that the family {H} U {H, | A € A}isindependent. Since H # § and S is
generated by U/\eA H,, thereexists A € A suchthat H, ¢ H.Then H, N H = E(S)
because H, is simple. Therefore A is not empty. By Zorn’s lemma, there exists a
maximal element M in A. Let L be the sub-orthocryptogroup generated by H U
(UAEM H,).Using Lemma 1.1, we can show L is alsonormal as H and H,_are normal.
If L # S, then there exists p € A such that H, ¢ L. Since H, is simple and H, N L
is normal, we have H, N L = E(S). Then the family {H, H,} U {H, | A € M} is
independent, which contradicts to the maximality of M. It followsthat L = S.Let K
be the sub-orthocryptogroup generated by | J, ., Hy. By Lemma 3.2, S = H 0z K
and so H is a spined factor.

(3) implies (1). We may assume that S # E(S). First, we shall show that for
any proper normal sub-orthocryptogroup H, there exists a normal simple sub-
orthocryptogroup 7T such that H N T = E(S). Choose an element u € S such that
u ¢ H.Let B be the family of the normal sub-orthocryptogroups of S containing H
but not u. By Zorn’s lemma, there exists a maximal element M in the family. Next
we shall show that M is a maximal normal sub-orthocryptogroup. Suppose M is not.
Then M C L for some proper normal sub-orthocryptogroup L. By our assumption,
there exists a proper sub-orthocryptogroup V such that S = L < V.If MV C M
then V C E(S)V C MV C M. This implies L 0<ip V C LM = L, which is a con-
tradiction. Therefore, M C MV . By the maximality of M we haveu € MV N L. By
Lemma4.2, MV NL =MV NL)=ME(S) = M. This contradicts to the fact that
u ¢ M. Therefore, M is a maximal normal sub-orthocryptogroup. By our assump-
tion, S = M s<p T forsome T.If T is not simple, then there exists a nontrivial proper
normal sub-orthocryptogroup D C T. Then M s« D is normal by Lemmas 1.1 and
32,but M C M < D C S, which is a contradiction. Therefore, T is simple. Since
HCcMandMNT = E(S), wehave HNT = E(S).

By the preceding argument, there exists a simple normal sub-orthocryptogroup
T # E(S) since we are assuming S # E(S). We consider the family of indepen-
dent sets of simple normal sub-orthocryptogroups of S. By Zorn’s lemma, there
exists a maximal set {H, | A € A}. Let Hy be the sub-orthocryptogroup generated
by U, Ha. Note that Hy is normal. If Hy C S, there exists a normal simple sub-
orthocryptogroup C such that Hy N C = E(S) by the preceding argument. Then the
family {H, | A € A} U {C}isindependent, which contradicts to the maximality of the
set{H, | . € A}.Hence, Hy = Sandso S = p<;cp H, by Lemma5.1. Consequently,
S is completely reducible. 0

Finally we characterize simple orthocryptogroups. Recall that a completely reg-
ular semigroup S can be decomposed into a semilattice I' of completely simple
semigroups R, (y € I'). Each R, is a J class of S. Such a completely simple semi-
group is called completely simple component of S. In particular, every completely
simple component is a rectangular group if S is an orthocryptogroup.
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Theorem 5.3 Let S be a simple orthocryptogroup. If S is a semilattice I of rectan-
gular groups R, (y € T'), then there exists an element § in I such that R = G x Bs,
where G is a simple group and Bs is a rectangular band, and R, is a rectangular
band for every y € I \ {6}.

Proof Since S is simple, S # E(S) and so at least one completely simple component
is not a rectangular band. We shall show that there exists exactly one completely
simple component that is not a rectangular band. Suppose that R; # E(Rs) and
R; # E(R;) for§,t € T (6 # 7). We may assume 7 ﬁ 8. Let H be a set defined by

(U E(R»)u UR,

T=p rﬁp

We shall show H is normal. Take 4 € H and s € S. If either & or s belongs to
Ur;{p R, then so does s ~'hs. We now suppose that h and s belong to | J,_, E(R,).

In this case, & and s are idempotents and so is s~ hs. Thus, s~ 1hs belongs to
U, <p E(R,). It follows that H is a proper normal sub-orthocryptogroup of S. This
contradicts to the assumption that S is simple. Hence, there exists exactly one com-
pletely simple component R; that is not a rectangular band.

Suppose Rs = G x B; for some nontrivial group G and a rectangular band B;
and that the other completely simple components are rectangular bands. Suppose that
G is not simple. There exists a proper normal subgroup N of G. Let R; = N x Bs.
Let J be a set defined by

T<p

U » |ukr;.
yel\{s}

It is easy to see that J is a proper normal sub-orthocryptogroup of S. This is a
contradiction. Therefore, G must be simple. O
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