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Abstract A semigroup is said to be an internal spined product of its subsemigroups
if it is naturally isomorphic to an external spined product of the subsemigroups.
We shall show that internal spined products can be identified with external spined
products in the class of orthocryptogroups. On the other hand, two concepts are not
equivalent in general as we give examples of external spined products that admit no
internal spined product decomposition. Further, we examine internal spined product
of orthocryptogroups. Using a lattice theoretic method, we obtain a unique decompo-
sition theorem similar to the Krull–Schmidt theorem in group theory. We also study
completely reducible orthocryptogroups in which any normal sub-orthocryptogroup
is a spined factor. We show that such an orthocryptogroup is an internal spined
product of simple sub-orthocryptogroups.

Keywords Orthocryptogroups · Spined products · Krull–Schmidt theorem · Ore
theorem

1 Introduction

An external spined product gives a convenient way to construct a new semigroup
fromold ones. It plays an important role in the structure theory of regular semigroups.
Suppose S1 and S2 are semigroups. Let φ1 : S1 → Q and φ2 : S2 → Q be epimor-
phisms. The external spined product of S1 and S2 over Q with respect to φ1 and
φ2 is defined to be the set of pairs (s1, s2) satisfying φ1(s1) = φ2(s2). Obviously, an
external spined product forms a subsemigroup of the external direct product S1 × S2.
We denote the external spined product by S1 ��Q S2. An external spined product is
called just a spined product in the literature of semigroup theory. An external spined
product of more than two factors is defined similarly. If � is the largest semilattice
homomorphic image of S1 and S2, respectively, and both φ1 and φ2 are the natural
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homomorphisms, then the external spined product can be formed over �. Similarly,
if Green’sH-relation of S1 and S2 are congruences and B = S1/H = S2/H, then the
external spined product with respect toH can be formed over B.

A semigroup is called cryptic if Green’s H-relation is a congruence. A cryptic
completely regular semigroup is called a cryptogroup. An orthodox semigroup is a
regular semigroup in which the set of idempotents forms a subsemigroup and an
orthocryptogroup is an orthodox cryptogroup. It was first studied by Yamada and
called a strictly inversive semigroup in [7]. He showed that an external spined product
of a Clifford semigroup and a band with respect to the structure decomposition is
an orthocryptogroup, and conversely, every orthocryptogroup S is isomorphic to an
external spined product C ��� E(S) of the largest Clifford semigroup homomorphic
image C and the band E(S) of idempotents of S over the structure semilattice �.

The group inverse of an element a in a completely regular semigroup is denoted
by a−1. The identity element of the subgroup of a completely regular semigroup
containing an element a is denoted by a0, that is, a0 = aa−1 = a−1a. It is known
(see [5]) that a completely regular semigroup satisfies the equation

(xy)−1 = (xy)0y−1(yx)0x−1(xy)0 (1.1)

and an orthocryptogroup satisfies the equation

(xy)0 = x0y0. (1.2)

Therefore an orthocryptogroup satisfies the equation

(xy)−1 = x0y−1x−1y0. (1.3)

The equational class of completely regular semigroups defined by (1.3) includes the
variety of orthocryptogroups but does not coincide [9].

The least band congruence of an orthocryptogroup S is Green’s H-relation and
so S has the H-decomposition

⋃
e∈E(S) S(e), where S(e) is the maximal subgroup

containing the idempotent e and E(S) is the band of idempotents of S. Note that
E(S) is isomorphic to the largest band image of S and E(S) ∼= S/H.

A nonempty subset of an orthocryptogroup S is called a sub-orthocryptogroup
if it forms an orthocryptogroup under the multiplication of S, that is, a nonempty
subset is a sub-orthocryptogroup if and only if it is closed under taking an inverse
and multiplication.

Suppose S is an orthocryptogroup and φ is the natural homomorphism of S onto
the largest band image B, that is, B ∼= S/H. A sub-orthocryptogroup H of S is
called full if E(H) = E(S). If S has theH-decomposition

⋃
e∈E(S) S(e), then H has

the H-decomposition
⋃

e∈E(S) H(e). The following lemma is obvious because an
orthocryptogroup is isomorphic to an external spined product of a Clifford semigroup
and a band, however, we give a direct proof.
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Lemma 1.1 Let H1, H2, . . . , Hn be full sub-orthocryptogroups of S. Suppose s1 ∈
H1(e1), s2 ∈ H2(e2), . . ., sn ∈ Hn(en) for e1, e2, . . . , en ∈ E(S). Then there exists
s ′
1 ∈ H1(e), s ′

2 ∈ H2(e), . . ., s ′
n ∈ Hn(e) such that s1s2 . . . sn = s ′

1s
′
2 . . . s ′

n, where e =
e1e2 . . . en.

Proof Note that s1 = s1e1 because s1 ∈ S(e1) and e1 is the identity element of S(e1).
Likewise, s2 . . . sn = e2 . . . ens2 . . . sn because s2 . . . sn ∈ S(e2 . . . en) and e2 . . . en
is the identity element of S(e2 . . . en). Then s1s2 . . . sn = s1e1e2 . . . ens2 . . . sn =
s1(e1e2 . . . en)(e1e2 . . . en)s2 . . . sn = s1e2 . . . ene1s2 . . . sn.Likewisewe have s1e2 . . .

ene1s2s3 . . . sn = s1e2 . . . ene1s2e3 . . . ene1e2s3 . . . sn and similarly s1s2 . . . sn =
(s1e2 . . . en)(e1s2e3 . . . en)(e1e2s3e4 . . . en) . . . (e1 . . . en−1sn). Now we set s ′

i = e1e2
. . . ei−1si ei+1 . . . en . Then s1s2 . . . sn = s ′

1s
′
2 . . . s ′

n and s
′
i ∈ Hi (e) for every i = 1, 2,

. . . , n. �

2 Internal Spined Products

Let S be a semigroup and φ a homomorphism of S onto Q. Suppose H1 and H2 are
subsemigroups of S such that φ(H1) = φ(H2) = Q. If the external spined product
H1 ��Q H2 over Qwith respect toφ|H1 andφ|H2 is isomorphic to S under themapping
(h1, h2) �→ h1h2 where (h1, h2) ∈ H1 ��Q H2, then S is said to be the internal spined
product of H1 and H2 over Q. In such a case we denote S = H1 ��Q H2. Similarly,
we can define an internal spined product H1 ��Q H2 ��Q . . . ��Q Hn of finitelymany
subsemigroups.

By the definition, every internal spined product is always isomorphic to an external
spined product of its subsemigroups. On the other hand, an external spined product
does not always admit an internal spined product decomposition as we shall see next.
We note that an external direct product of groups always admits an internal direct
product decomposition of its subgroups.

Example 1 Aband is said to be normal (left normal, right normal, resp.) if it satisfies
the equation xyzx = xzyx (xyz = xzy, yzx = zyx , resp.). Let B be a band defined
on the set {e, f, a, b, c, d} with the following multiplication Table 1.

Table 1 Multiplication table of B

e f a b c d

e e b a b a b

f c f c d c d

a a b a b a b

b a b a b a b

c c d c d c d

d c d c d c d
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Table 2 Multiplication table of L

l1 l2 l3 l4

l1 l1 l3 l3 l3
l2 l4 l2 l4 l4
l3 l3 l3 l3 l3
l4 l4 l4 l4 l4

Table 3 Multiplication table of R

r1 r2 r3 r4

r1 r1 r4 r3 r4
r2 r3 r2 r3 r4
r3 r3 r4 r3 r4
r4 r3 r4 r3 r4

Clearly, {e}, { f }, and {a, b, c, d} areD-classes of B, which are rectangular bands,
and B is a strong semilattice of them. Note that a band is normal if it is a strong
semilattice of rectangular bands [6]. Therefore, B is normal and has the structure
decomposition B = {e} ∪ { f } ∪ {a, b, c, d}. It is well known that a normal band is
an external spined product of a left normal band and a right normal band [6]. It is
easy to see B is isomorphic to an external spined product of four element left normal
band L = {l1, l2, l3, l4} and a four element right normal band R = {r1, r2, r3, r4} over
the structure semilattice� = {α, β, 0} that is the three element non-chain semilattice
(Tables2 and 3).

Note that L and R have the structure decomposition L = {l1} ∪ {l2} ∪ {l3, l4}
and R = {r1} ∪ {r2} ∪ {r3, r4}, respectively. Then L ��� R is isomorphic to B under
the mapping; (l1, r1) �→ e, (l2, r2) �→ f , (l3, r3) �→ a, (l3, r4) �→ b, (l4, r3) �→ c,
(l4, r4) �→ d.

On the other hand, it is easy to verify that there is no proper subsemigroup of
B whose largest semilattice homomorphic image is �. It follows that there is no
subsemigroups B1 and B2 of B so that B is the internal spined product B1 ���

B2. Therefore, B admits no internal spined product with respect to the structure
decomposition even though B is an external spined product.

Example 2 Next we consider a spined product of completely simple semigroups.
Let S1 be the two element right zero semigroup. Note that S1 can be considered as
the Rees matrix semigroupM(G1; I,�; P), where G1 is the trivial group, I = {1},
� = {1, 2}, and the sandwich matrix P is defined by

(
p11
p21

)

=
(
1
1

)

.
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Next let S2 be a Rees matrix semigroupM(G2; I,�; Q), where G2 = {1, g, g2}
is the cyclic group of order three, I = {1}, � = {1, 2}, and the sandwich matrix Q

is defined by

(
q11
q21

)

=
(
g
1

)

. Note that S2 is not a rectangular group because the set

of idempotents does not form a subsemigroup. Clearly both S1/H and S2/H are the
two element right zero semigroup B. Then the external spined product S1 ��B S2
over B can be considered as the Rees matrix semigroup M(G1 × G2; I,�; R),

where the sandwich matrix R is defined by

(
r11
r21

)

=
(

(1, g)

(1, 1)

)

. It is easy to see that

S is isomorphic to S2. On the other hand, there exists no subsemigroup isomorphic
to S1 because M(G1 × G2; I,�; R) does not contain the two element right zero
semigroup. Therefore, S1 ��B S2 admits no internal spined product with respect toH.

3 Internal Spined Products of Orthocryptogroups

Suppose S is an orthocryptogroup and φ is the natural homomorphism of S onto
the largest band image B, that is, B ∼= S/H. Let H1, H2, . . . , Hn be full sub-
orthocryptogroups of S. They have the same largest band image B and so we
can consider the external spined product over B. Recall that if S is isomor-
phic to the external spined product H1 ��B H2 ��B . . . ��B Hn under the mapping
(s1, s2, . . . , sn) �→ s1s2 . . . sn , then S is said to be the internal spined product of
H1, H2, . . . , Hn .

Lemma 3.1 If S is the internal spined product of full sub-orthocryptogroups
H1, H2, . . . , Hn, then the following conditions hold.

(A1) Elements of Hi (e) and Hj (e) (i 
= j ) commute for every e ∈ E(S).
(A2) For e ∈ E(S) every element s of S(e) is expressed uniquely as s = s1s2 . . . sn,

where si ∈ Hi (e).

Conversely, if full sub-orthocryptogroups H1, H2, . . . , Hn satisfy (A1) and (A2),
then S is the internal spined product H1 ��B H2 ��B . . . ��B Hn.

Proof If S = H1 ��B H2 ��B . . . ��B Hn , then clearly (A1) and (A2) are satisfied.
We now suppose (A1) and (A2) hold for full sub-orthocryptogroups H1, H2, . . . , Hn .
Define a mapping ψ of the external spined product H1 ��B H2 ��B . . . ��B Hn

into S by ψ(s1, s2, . . . , sn) = s1s2 . . . sn . We shall show that ψ is an isomor-
phism onto S. Take two elements (s1, s2, . . . , sn) and (t1, t2, . . . , tn) of H1 ��B

H2 ��B . . . ��B Hn . Suppose that s1 ∈ H1(e), s2 ∈ H2(e), . . . , sn ∈ Hn(e) and t1 ∈
H1( f ), t2 ∈ H2( f ), . . . , tn ∈ Hn( f ). Let h = e f . Then we have ψ((s1, s2, . . . , sn)
(t1, t2, . . . , tn)) = ψ(s1t1, s2t2, . . . , sntn) = s1t1s2t2s3t3 . . . sntn = s1ht1s2ht2s3t3 . . .

sntn = s1s2hht1t2s3t3 . . . sntn = s1s2t1t2s3t3 . . . sntn since elements of Hi (h) and
Hj (h) commute by (A1). Similarly we can show s1s2t1t2s3t3 . . . sntn = s1s2 . . . snt1t2
. . . tn = ψ(s1, s2, . . . , sn)ψ(t1, t2, . . . , tn). Next, suppose that ψ(s1, s2, . . . , sn) =
ψ(t1, t2, . . . , tn), where s1 ∈ H1(e), s2 ∈ H2(e), . . . , sn ∈ Hn(e) and t1 ∈ H1( f ),
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t2 ∈ H2( f ), . . . , tn ∈ Hn( f ). We have s1s2 . . . sn = t1t2 . . . tn . Then we have e = f
and (A2) implies (s1, s2, . . . , sn) = (t1, t2, . . . , tn). Clearly ψ is surjective by (A2).
Therefore ψ is an isomorphism. �

A sub-orthocryptogroup N of S is called normal if N is full and s−1Ns ⊂ N
for every s in S (see [8]). For any s ∈ S and e ∈ E(S) we have (s−1es)(s−1es) =
s−1(ess−1)(ess−1)s = s−1ess−1s = s−1es. Hence, s−1es ∈ E(S) and so E(S) is
normal. Obviously S itself is normal.

For a normal sub-orthocryptogroup N we define a relation ρN of S by s ρN t if
and only if sH t and st−1 ∈ N . It is easy to see that ρN is an idempotent-separating
congruence of S and N coincides with its kernel Ker(ρN ) = {s | s ρN e for some e ∈
E(S)}. Conversely, for every idempotent-separating congruence ρ the kernel
Ker(ρ) = {s | s ρ e for some e ∈ E(S)} is a normal sub-orthocryptogroup of S, and
furthermore we have ρKer(ρ) = ρ.

Lemma 3.2 If S is the internal spined product of full sub-orthocryptogroups
H1, H2, . . . , Hn, then the following conditions hold.

(B1) Every Hi is normal.
(B2) S = H1H2 . . . Hn.
(B3) Hi ∩ (H1 . . . Hi−1Hi+1 . . . Hn) = E(S) for every i = 1, 2, . . . n.

Conversely, if sub-orthocryptogroups H1, H2, . . . , Hn satisfy (B1), (B2), and (B3),
then S is the internal spined product H1 ��B H2 ��B . . . ��B Hn.

Proof First we suppose S is the internal spined product H1 ��B H2 ��B . . . ��B Hn .
Then H1, H2, . . . , Hn satisfy (A1) and (A2) by Lemma 3.1. Take elements h in H1

and s in S. Suppose h ∈ H1( f ) and s ∈ S(e). By (A2), there exists an element si in
Hi (e) for i = 1, 2, . . . , n such that s = s1s2 . . . sn . Since all si belong to the subgroup
S(e), we have s−1 = s−1

n . . . s−1
2 s−1

1 . Note that s−1
1 hs1 ∈ H1 ∩ S(e f e) = H1(e f e)

because s1, h ∈ H1. Then we have s−1
2 (s−1

1 hs1)s2 = s−1
2 (e f e)(s−1

1 hs1)(e f e)s2 =
(s−1

1 hs1)s
−1
2 (e f e)(e f e)s2 = (s−1

1 hs1)s
−1
2 s2 because elements of H1(e f e) and

H2(e f e) commuteby (A1).On theother hand, (s−1
1 hs1)s

−1
2 s2 = (s−1

1 hs1)e = s−1
1 hs1.

Inductively we can show s−1
n . . . s−1

2 (s−1
1 hs1)s2 . . . sn = s−1

1 hs1. It follows that
s−1hs = s−1

1 hs1 ∈ H1. Thus H1 is normal. Similarly we can show Hi is normal
for i = 2, . . . , n. Obviously, (A2) implies (B2). Now, take an element s in H1 ∩
(H2 . . . Hn). Then s = s2 . . . sn for some s2 ∈ H2, . . . , sn ∈ Hn . Suppose s ∈ H1(e)
for some e ∈ E(S). ByLemma1.1wemay assume that si ∈ Hi (e). Thenwe have e =
s−1s = s−1s2 . . . sn . By (A2) we have e = s−1 = s2 = . . . = sn and s = e. Hence,
E(S) = H1 ∩ (H2 . . . Hn). Similarly we can show Hi ∩ (H1 . . . Hi−1Hi+1 . . . Hn) =
E(S) for every i = 2, . . . , n. Therefore, (B1), (B2), and (B3) hold.

Conversely, we suppose (B1), (B2), and (B3). Take elements s in Hi (e) and
t in Hj (e) (i 
= j). Since sts−1 ∈ Hj and ts−1t−1 ∈ Hi , we have sts−1t−1 ∈
Hi ∩ Hj . By (B3) we have sts−1t−1 ∈ E(S) ∩ S(e). Hence, sts−1t−1 = e. On the
other hand, s−1t−1ts = s−1es = s−1s = e. Then st = ste = sts−1t−1ts = ets =
ts. Hence, (A1) holds. Next, take an element s in S(e). By (B2) s = s1s2 . . . sn
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for some si ∈ Hi (i = 1, 2, . . . , n). Moreover, we may take si ∈ Hi (e) for i =
1, 2, . . . , n by Lemma 1.1. Suppose s1s2 . . . sn = t1t2 . . . tn , where si , ti ∈ Hi (e) for
every i = 1, 2, . . . , n. Then, t−1

1 s1 = t2 . . . tns−1
n . . . s−1

2 . Note that t−1
1 s1 ∈ H1(e).

Since we have already shown (A1) holds, t2 . . . tns−1
n . . . s−1

2 = t2s
−1
2 t3s

−1
3 . . . tns−1

n .
Thus t2 . . . tns−1

n . . . s−1
2 ∈ H2(e)H3(e) . . . Hn(e). By (B3) we have t−1

1 s1 =
t2 . . . tns−1

n . . . s−1
2 = e. Therefore, s1 = t1. Similarly we can show si = ti for every

i = 2, . . . , n. Consequently we obtained (A2). �

In group theory, the external direct productG = G1 × G2 always admits an inter-
nal direct decomposition of its subgroups isomorphic to G1 and G2. Let H1 be
{(g1, 1) | g1 ∈ G1} and H2 be {(1, g2) | g2 ∈ G2}, respectively. Then G is the inter-
nal direct product of H1 and H2. Thus, the concept of external and internal direct
products are equivalent. This is not the case with wider classes of semigroups as we
have seen in the preceding section. Fortunately spined products of orthocryptogroups
over the largest band image are similar to direct products of groups.

Theorem 3.3 Every external spined product of orthocryptogroups over the largest
band image admits an internal spined product decomposition.

Proof Suppose S is the external spined product of S1 and S2 over the band
B, where S1/H ∼= B ∼= S2/H. We define subsemigroups H1 and H2 of S to be
H1 = {(s, e) | s ∈ S1(e), e ∈ E(S2)} and H2 = {(e, t) | t ∈ S2(e), e ∈ E(S1)},
respectively. It is routine to check H1 and H2 satisfy (B1), (B2), and (B3). Hence,
S is the internal spined product of H1 and H2. It can be similarly shown for
S1 ��B S2 ��B . . . ��B Sn for n ≥ 3. �

4 Spined Product Decompositions

Decomposing an algebraic system into indecomposable ones is an essential prob-
lem in mathematics. In group theory, the Krull–Schmidt theorem guarantees the
uniqueness of direct product decompositions of groups satisfying certain finiteness
conditions into indecomposable factors (see [2]). Ore [4] proved the Krull–Schmidt
theorem using a lattice theoretic method. We shall prove the uniqueness of internal
spined product decompositions of orthocryptogroups into indecomposable factors
using a lattice theoretic method.

A lattice is said to be of finite length if there is a bound on the length of its chains.
Two elements a and b in a lattice with the least element 0 and the greatest element
1 are said to be complementary if a ∨ b = 1 and a ∧ b = 0 hold. In such a case, b
is said to be complement of a and vice versa. Two elements in a lattice that have a
common complement c are said to be c-related. A lattice L is called modular if it
satisfies the modular law

a ≤ b ⇒ (c ∨ a) ∧ b = (c ∧ b) ∨ a (a, b, c ∈ L) (4.1)
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Let L be a modular lattice with the least element 0. A subset {a1, a2, . . . , an} of
finitely many elements of L is said to be independent if ai 
= 0 (i = 1, 2, . . . , n) and

ai ∧ (a1 ∨ . . . ∨ ai−1 ∨ ai+1 ∨ . . . ∨ an) = 0 (4.2)

for every i = 1, 2, . . . , n. If an element a ∈ L is represented as the join of an
independent set, that is, a = a1 ∨ . . . ∨ an where {a1, a2, . . . , an} is independent,
then a is said to be the direct join of the elements a1, a2, . . . , an and we write
a = a1 × . . . × an . An element a in a lattice L is said to be indecomposable if a 
= 0
and it admits no direct join a = b × c with b 
= a and c 
= a. If a is written as a
direct join of indecomposable elements, then it is called a complete decomposition
of a. The following theorem is due to Ore (see [1, 3] for a proof).

Proposition 4.1 In a modular lattice L of finite length, if

1 = a1 × . . . × am

and
1 = b1 × . . . × bn

are two complete decompositions of 1, then each ai is a′
i -related to some b j for

i = 1, 2, . . . ,m, where a′
i = a1 × . . . × ai−1 × ai+1 × . . . × am. �

We shall show that the set of normal sub-orthocryptogroups of an orthocryp-
togroup S forms a lattice. Suppose M and N are normal sub-orthocryptogroups of
S. Take m ∈ M and n ∈ N . Note that S satisfies the Eqs. (1.2) and (1.3). Then we
have mn = mn(mn)0 = mnm−1mn0 ∈ NM since mnm−1 ∈ N and n0 ∈ M . Thus,
MN ⊂ NM and vice versa. Hence, MN = NM . Then (MN )(MN ) = MMNN =
MN and so MN is closed under multiplication. Next we take m ∈ M and n ∈ N .
We have (mn)−1 = m0n−1m−1n0 ∈ MNMN = MN . Hence, MN is closed under
taking inverse. Since M and N are full, M ⊂ ME(S) ⊂ MN and N ⊂ E(S)N ⊂
MN . Thus MN include both M and N . Next take s ∈ MN and h ∈ S. Sup-
pose s ∈ S(e). By Lemma 1.1 we can write s = mn for some m ∈ M(e) and n ∈
N (e). Then we have h−1sh = h−1mnh = h−1m(h−1m)0nh = h−1mhh−1m0nh ∈
MN since h−1mh ∈ M and h−1m0nh ∈ N . Thus MN is normal. Therefore, MN
is the smallest normal sub-orthocryptogroup including both M and N . On the other
hand, M ∩ N is the largest normal sub-orthocryptogroup contained in both M and
N . Consequently, the set of normal sub-orthocryptogroups forms a lattice with the
join MN and the meet M ∩ N . This lattice has the greatest element S and the least
element E(S). Moreover, we have the following.

Lemma 4.2 The lattice of normal sub-orthocryptogroups of an orthocryptogroup
is modular.

Proof Let S be an orthocryptogroup. Suppose that A, B,C are normal sub-ortho
cryptogroups of S satisfying A ⊂ B. It is enough to show (CA) ∩ B ⊂ (C ∩ B)A.
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Take an arbitrary element s from (CA) ∩ B. Then s = ca, where c ∈ C , a ∈ A and
s ∈ B. Note that sa−1 = caa−1. Since A ⊂ B, we have sa−1 ∈ B. On the other hand,
caa−1 ∈ C because C is full. Therefore, s = ca = caa−1a = (sa−1)a ∈ (C ∩ B)A
and so (CA) ∩ B ⊂ (C ∩ B)A. �

It is easy to see that the lattice of normal sub-
orthocryptogroups is isomorphic to the lattice of idempotent-separating congruences
under the correspondence N ↔ ρN . Therefore the lattice of idempotent-separating
congruences of an orthocryptogroup is modular by Lemma 4.2.

We say that an orthocryptogroup S is spined indecomposable if S 
= E(S) and
the internal spined product decomposition S = S1 ��B S2, where B = S/H, implies
either S1 = S or S2 = S. Note that an orthocryptogroup S always admits the internal
spined product decomposition S = S ��B E(S).

We shall next give a sufficient condition for an orthocryptogroup to admit a spined
product decomposition into spined indecomposable factors. An orthocryptogroup S
is said to satisfy the ascending chain condition if N1 ⊂ N2 ⊂ N3 ⊂ . . . is a chain of
normal sub-orthocryptogroups, then there exists t for which Nt = Nt+1 = Nt+2 =
. . ., and S is said to satisfy the descending chain condition if K1 ⊃ K2 ⊃ K3 ⊃ . . . is
a chain of normal sub-orthocryptogroups then there exists t for which Kt = Kt+1 =
Kt+2 = . . ..

Theorem 4.3 Suppose S satisfies either the ascending or descending chain condi-
tion. Then S is an internal spined product of a finitely many spined indecomposable
factors.

Proof Suppose the conclusion does not hold. Then S is not spined indecompos-
able and so it is decomposed as H0 ��B K0, where H0 and K0 are proper sub-
orthocryptogroups. By the assumption, either H0 or K0 is not spined indecomposable,
say H0. By induction, there is a sequence of sub-orthocryptogroups H0, H1, H2, . . .,
where every Hi is a proper spined factor of Hi−1. Then we have a descending chain
S � H0 � H1 � H2 � . . .. It is easy to see Hi is normal in S. If S satisfies the
descending chain condition, this is a contradiction. Now we suppose S satisfies the
ascending chain condition. Since each Hi is a spined factor of Hi−1, there is a normal
sub-orthocryptogroup Ki in Hi−1 satisfying Hi−1 = Hi ��B Ki . Since each Ki is nor-
mal in S, we have an ascending chain K0 � K0 ��B K1 � K0 ��B K1 ��B K2 � . . .,
which is a contradiction. �

We note that a modular lattice is of finite length if and only if it satisfies both
the chain conditions (see [3]). Therefore, if an orthocryptogroup S satisfies both the
chain conditions, then the lattice of normal sub-orthocryptogroups is of finite length
and vice versa.

Theorem 4.4 Let S be an orthocryptogroup satisfying both the chain conditions and
B = S/H. If S has two spined product decompositions H1 ��B H2 ��B . . . ��B Hm

and K1 ��B K2 ��B . . . ��B Kn,where Hi (i = 1, 2, . . . ,m)and K j ( j = 1, 2, . . . , n)
are spined indecomposable, then m = n and there exists a bijection 	 of the family
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{Hi | i = 1, 2, . . . ,m} onto the family {Ki | j = 1, 2, . . . , n} such that Hi is isomor-
phic and H ′

i -related to 	(Hi ).

Proof Note that the lattice of normal sub-orthocryptogroups of S is modular by
Lemma 4.2, and it is of finite length because S satisfies both the chain conditions.
By Lemma 3.2, {H1, H2, . . . , Hm} and {K1, K2, . . . , Kn} are independent, respec-
tively. Therefore both H1 ��B H2 ��B . . . ��B Hm and K1 ��B K2 ��B . . . ��B Kn

are complete decompositions of S.
Suppose n ≤ m. By Proposition 4.1, H1 is H ′

1-related to some K j (say K1). Recall
that H ′

1 = H2 ��B . . . ��B Hm . We have S = K1 ��B H ′
1 = K1 ��B H2 ��B . . . ��B

Hm . By induction, we obtain S = K1 ��B K2 ��B . . . ��B Kn ��B Hn+1 ��B . . . ��B

Hm after renumbering K j . On the other hand, we have S = K1 ��B K2 ��B . . . ��B

Kn . Therefore, we have m = n. Moreover, each Hi is H ′
i -related to K j for some j

by Proposition 4.1.
Next we shall show that if H1 and K j (say K1) is H ′

1-related, then H1 and K1

are isomorphic. Suppose that S = H1 ��B H ′
1 = K1 ��B H ′

1. Define a mapping ψ :
H1 → K1 as follows. For h ∈ H1(e) (e ∈ E(S)) we set ψ(h) = k where k is an
element of K1(e) satisfying h = ka for some a ∈ H ′

1(e). Such an element is uniquely
determined by Lemma 3.1 and so ψ is well defined.

Suppose thatψ(h1) = ψ(h2) = k for h1, h2 ∈ H1(e) (e ∈ E(S)). Then h1 = ka1
and h2 = ka2 for some a1, a2 ∈ H ′

1(e). We have h−1
1 h2 = (ka1)−1

ka2 = a−1
1 k−1ka2 = a−1

1 a2 as k, a1 ∈ S(e). Thus a−1
1 a2 = h−1

1 h2 ∈ H1(e). On the
other hand, a−1

1 a2 ∈ H ′
1(e). Since H1(e) ∩ H ′

1(e) = {e}, we have a−1
1 a2 = e. There-

fore, a1 = a1e = a1a
−1
1 a2 = ea2 = a2. It follows that h1 = ka1 = ka2 = h2 and ψ

is injective. It is easy to see ψ is surjective.
Next we shall show that ψ is a homomorphism. Take arbitrary elements h1 ∈

H1(e) and h2 ∈ H1( f ), where e, f ∈ E(S). Suppose ψ(h1) = k1 and ψ(h2) = k2.
Then h1 = k1a1 and h2 = k2a2 for some a1 ∈ H ′

1(e) and a2 ∈ H ′
1( f ). Then we

have h1h2 = k1a1k2a2 = k1a1e f k2a2 = k1a1e f e f k2a2 = k1e f k2a1e f a2=k1k2a1a2
since S is orthodox and a1e f (∈ H ′

1(e f )) and e f k2(∈ K1(e f )) commute by Lemma
3.1. Note that k1k2 ∈ K1(e f ) and a1a2 ∈ H1(e f ). Therefore, ψ(h1h2) = k1k2 =
ψ(h1)ψ(h2). Consequently, ψ is an isomorphism of H1 onto K1. �

5 Completely Reducible Orthocryptogroups

In the preceding sections, we have considered internal spined products of finitely
many sub-orthocryptogroups. We now consider internal spined product of an arbi-
trary family of sub-orthocryptogroups and examine orthocryptogroups in which any
normal sub-orthocryptogroup is an internal spined product factor.

Let B be a band and {Sλ | λ ∈ �} a nonempty family of orthocryptogroups such
that E(Sλ) ∼= B for everyλ in�. Note that each Sλ has the same largest homomorphic
band image B. Consider the set P of functions defined on � for which there exists
e f in B satisfying the following.
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1. f (λ) ∈ Sλ(e f ).
2. f (λ) = e f for all but finitely many λ ∈ �.

For f, g ∈ P , we define a multiplication f g by ( f g)(λ) = f (λ)g(λ). It is easy to
see that f g belongs to P and P forms an orthocryptogroup under this multiplication.
Then the set of the idempotents is isomorphic to B and we identify it with B. We
say that P is the external spined product of the family {Sλ | λ ∈ �} and denote it by
��λ∈� Sλ. Note that if� is finite, then ��λ∈� Sλ is exactly the external spined product
defined in Sect. 1.

Suppose S is an orthocryptogroup and {Hλ | λ ∈ �} is a family of full sub-
orthocryptogroups of S. If the external spined product ��λ∈� Hλ is isomorphic
to S under the mapping f �→ f (λ1) f (λ2) . . . f (λn), where f (τ ) = e f (∈ E(S))

for τ ∈ � \ {λ1, λ2, . . . , λn}, then S is said to be the internal spined product of
{Hλ | λ ∈ �} and denoted by S =��λ∈� Sλ.

A family of sub-orthocryptogroups {Hλ | λ ∈ �} of S is called independent if any
finite subset is independent in the lattice of sub-orthocryptogroups, that is, any finite
subset satisfies (4.2). A proof of the following lemma is similar to the one for Lemma
3.2 and so we omit it.

Lemma 5.1 If an orthocryptogroup S is the internal spined product of a family of
full sub-orthocryptogroups {Hλ | λ ∈ �}, then the following conditions hold.

(C1) Every Hλ is normal.
(C2) S is generated by

⋃
λ∈� Hλ.

(C3) {Hλ | λ ∈ �} is independent.
Conversely, if the family {Hλ | λ ∈ �} of full sub-orthocryptogroups satisfy (C1),

(C2), and (C3), then S is the internal spined product ��λ∈� Hλ. �

A full sub-orthocryptogroup H of S is said to be a spined factor if there exists a full
sub-orthocryptogroup K such that S = H ��B K . For example, both E(S) and S are
spined factors. An orthocryptogroup S is called simple if S 
= E(S) and there exists
no proper normal sub-orthocryptogroup other than E(S). We say that S is completely
reducible if there exists a family {Hλ | λ ∈ �} of simple full sub-orthocryptogroups
such that S = ��λ∈� Hλ.

Theorem 5.2 Let S be an orthocryptogroup. Then the following conditions are
equivalent.

(1) S is completely reducible.
(2) There is a family of simple normal sub-orthocryptogroups {Hλ | λ ∈ �} such

that S is generated by
⋃

λ∈� Hλ.
(3) Every normal sub-orthocryptogroup H is a spined factor.

Proof (1) implies (2). Suppose S = ��λ∈� Hλ where Hλ is simple. By Lemma 5.1,
Hλ is normal and S is generated by

⋃
λ∈� Hλ.

(2) implies (3). Let H be a normal sub-orhtocryptogroup of S. If H = S, then we
can take K = E(S). So we may assume H 
= S. Let A be the set of all subsets A
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of � such that the family {H} ∪ {Hλ | λ ∈ A} is independent. Since H 
= S and S is
generated by

⋃
λ∈� Hλ, there exists λ ∈ � such that Hλ 
⊂ H . Then Hλ ∩ H = E(S)

because Hλ is simple. Therefore A is not empty. By Zorn’s lemma, there exists a
maximal element M in A. Let L be the sub-orthocryptogroup generated by H ∪
(
⋃

λ∈M Hλ).UsingLemma1.1,we can show L is also normal as H and Hλ are normal.
If L 
= S, then there exists ρ ∈ � such that Hρ 
⊂ L . Since Hρ is simple and Hρ ∩ L
is normal, we have Hρ ∩ L = E(S). Then the family {H, Hρ} ∪ {Hλ | λ ∈ M} is
independent, which contradicts to the maximality of M . It follows that L = S. Let K
be the sub-orthocryptogroup generated by

⋃
λ∈M Hλ. By Lemma 3.2, S = H ��B K

and so H is a spined factor.
(3) implies (1). We may assume that S 
= E(S). First, we shall show that for

any proper normal sub-orthocryptogroup H , there exists a normal simple sub-
orthocryptogroup T such that H ∩ T = E(S). Choose an element u ∈ S such that
u /∈ H . Let B be the family of the normal sub-orthocryptogroups of S containing H
but not u. By Zorn’s lemma, there exists a maximal element M in the family. Next
we shall show that M is a maximal normal sub-orthocryptogroup. Suppose M is not.
Then M � L for some proper normal sub-orthocryptogroup L . By our assumption,
there exists a proper sub-orthocryptogroup V such that S = L ��B V . If MV ⊂ M
then V ⊂ E(S)V ⊂ MV ⊂ M . This implies L ��B V ⊂ LM = L , which is a con-
tradiction. Therefore, M � MV . By the maximality of M we have u ∈ MV ∩ L . By
Lemma 4.2,MV ∩ L = M(V ∩ L) = ME(S) = M . This contradicts to the fact that
u /∈ M . Therefore, M is a maximal normal sub-orthocryptogroup. By our assump-
tion, S = M ��B T for some T . If T is not simple, then there exists a nontrivial proper
normal sub-orthocryptogroup D � T . Then M ��B D is normal by Lemmas 1.1 and
3.2, but M � M ��B D � S, which is a contradiction. Therefore, T is simple. Since
H ⊂ M and M ∩ T = E(S), we have H ∩ T = E(S).

By the preceding argument, there exists a simple normal sub-orthocryptogroup
T 
= E(S) since we are assuming S 
= E(S). We consider the family of indepen-
dent sets of simple normal sub-orthocryptogroups of S. By Zorn’s lemma, there
exists a maximal set {Hλ | λ ∈ �}. Let H0 be the sub-orthocryptogroup generated
by

⋃
λ∈� Hλ. Note that H0 is normal. If H0 � S, there exists a normal simple sub-

orthocryptogroup C such that H0 ∩ C = E(S) by the preceding argument. Then the
family {Hλ | λ ∈ �} ∪ {C} is independent, which contradicts to themaximality of the
set {Hλ | λ ∈ �}. Hence, H0 = S and so S = ��λ∈� Hλ byLemma5.1. Consequently,
S is completely reducible. �

Finally we characterize simple orthocryptogroups. Recall that a completely reg-
ular semigroup S can be decomposed into a semilattice � of completely simple
semigroups Rγ (γ ∈ �). Each Rγ is a J class of S. Such a completely simple semi-
group is called completely simple component of S. In particular, every completely
simple component is a rectangular group if S is an orthocryptogroup.
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Theorem 5.3 Let S be a simple orthocryptogroup. If S is a semilattice � of rectan-
gular groups Rγ (γ ∈ �), then there exists an element δ in� such that Rδ

∼= G × Bδ ,
where G is a simple group and Bδ is a rectangular band, and Rγ is a rectangular
band for every γ ∈ � \ {δ}.
Proof Since S is simple, S 
= E(S) and so at least one completely simple component
is not a rectangular band. We shall show that there exists exactly one completely
simple component that is not a rectangular band. Suppose that Rδ 
= E(Rδ) and
Rτ 
= E(Rτ ) for δ, τ ∈ � (δ 
= τ ). We may assume τ � δ. Let H be a set defined by

(
⋃

τ≤ρ

E(Rρ)

)

∪
⎛

⎝
⋃

τ�ρ

Rρ

⎞

⎠ .

We shall show H is normal. Take h ∈ H and s ∈ S. If either h or s belongs to⋃
τ�ρ Rρ then so does s−1hs. We now suppose that h and s belong to

⋃
τ≤ρ E(Rρ).

In this case, h and s are idempotents and so is s−1hs. Thus, s−1hs belongs to⋃
τ≤ρ E(Rρ). It follows that H is a proper normal sub-orthocryptogroup of S. This

contradicts to the assumption that S is simple. Hence, there exists exactly one com-
pletely simple component Rδ that is not a rectangular band.

Suppose Rδ = G × Bδ for some nontrivial group G and a rectangular band Bδ

and that the other completely simple components are rectangular bands. Suppose that
G is not simple. There exists a proper normal subgroup N of G. Let R′

δ = N × Bδ .
Let J be a set defined by ⎛

⎝
⋃

γ∈�\{δ}
Rγ

⎞

⎠ ∪ R′
δ.

It is easy to see that J is a proper normal sub-orthocryptogroup of S. This is a
contradiction. Therefore, G must be simple. �
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