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An Introduction to Thermal

Field Theory

Abhee K. Dutt-Mazumder

2.1 Introduction

Thermal Field Theory (TFT) is a combination of all three basic branches of
modern physics, namely quantum mechanics, the theory of relativity, and sta-
tistical physics. Therefore one could also call it statistical quantum field theory.

Within TFT, two classes of formalism can be distinguished: one is the
imaginary time (Euclidean) formalism (ITF) and other is the real time formal-
ism (RTF). Matsubara was the first to build a TFT by incorporating a purely
imaginary time variable into the evolution operator. His name is associated
with the discrete energy frequencies. The RTF formulation however is more
appropriate for studying transition processes than ITF since no analytical con-
tinuation is necessary to reach the physical region. The two formalisms agree in
the calculation of the self-energy and the thermodynamic potential with which
we are presently concerned. Though ITF has difficulties, as it involves frequency
summations, whereas RTF is free of such problems, nevertheless, for our pur-
pose here, we restrict our discussion to ITF to calculate thermal self-energies
and thermodynamic quantities.

Another important application of TFT is to study gauge theories at fi-
nite temperature. This has applications both in the context of early universe
cosmology and laboratory based heavy ion collisions where the properties of
Quantum Chromo Dynamics (QCD) at finite temperature can be studied.

We know quantum field theories have difficulties in dealing with loops be-
cause of divergences. At finite temperature no additional ultraviolet divergence
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appear as the higher momentum modes are cut off by the distribution func-
tions. However, new infrared divergences do appear in dealing with the massless
bosonic field. In ITF this would correspond to the zero Matsubara mode; in
the RTF formalism this is even easier to understand. In the soft momentum
limit, the Bose distribution brings in a factor of T/k which cancels one power
of momentum from the numerator. Therefore new infrared divergences may ap-
pear and divergences which were already there might get worse. For instance, a
logarithmic divergence in vacuum may become a quadratic divergence at finite
temperature.

2.2 Green’s Function

The most important quantity in perturbative field theory is the 2-point Green’s
function or propagator. How do propagators looks like at non-zero temperature?
Here we discuss scalar field theory, which we shall use in the following as a
simple model to study the different techniques in TFT. At zero temperature
the bare propagator is given by the vacuum expectation value of the time
ordered product of two fields at different space time points

iΔ(X − Y ) = 〈0|T{φ(X)φ(Y )}|0〉

=

∫
d4K

(2π)4
e−iK.(X−Y )

K2 −m2 + iη
(2.1)

where |0〉 denotes the vacuum state of the non-interacting theory and Δ de-
scribes the free propagation of a free scalar particle from Y to X for x0 > y0
(creation at y, destruction at x) and from X to Y for y0 > x0. At finite tem-
perature the vacuum is replaced by a ground state having real particles. Stated
differently, the destruction operator acting on the vacuum at finite tempera-
ture T does not annihilate the vacuum to gives zero. Thus vacuum expectation
values have now to be replaced by quantum statistic expectation values, i.e.

〈A〉 ≡ Tr(DA)

=
1

Z
Tr(Ae−βH)

=
1

Z

∑
n

〈n|A|n〉e−βEn (2.2)

where A is an arbitrary quantum operator, β = 1
T , D is the density operator

and Z is the partition function. Applying eq. (2.2) for non-zero T to the scalar
propagator yields

iΔ(X − Y ) =
1

Z

∑
n

〈n|T{φ(X)φ(Y )}|n〉e−βEn (2.3)

where En and |n〉 are the eigenvalues and eigenstates of the non-interacting
Hamiltonian.
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2.2.1 The Imaginary Time Green’s Function

The non-interacting Hamiltonian operator H0 is usually expressed in terms of
creation and annihilation operator a and a†. Thus the calculation of Z reduces
to the expectation value of time ordered products of such operators.

The possible propagators ∼ 〈T ak(τ1) a
†
k(τ2)〉, 〈T ak(τ1) ak(τ2)〉 or

〈T a†k(τ1) a
†
k(τ2)〉 since H0 =

∑
εka

†
kak and a†kak = N where N is the num-

ber operator. As H0 commutes with N , only the first among the three possible
propagators listed above will enter the perturbative expansion. We define time
dependent creation and annihilation operators in the interaction picture as (see
Appendix I)

a†k(τ) ≡ eτH0a†k(0)e
−τH0 = eεkτa†k(0) (2.4)

ak(τ) ≡ eτH0ak(0)e
−τH0 = e−εkτak(0) (2.5)

The Green’s function or propagator is defined as (to focus on temporal
properties all the spatial coordinates have been suppressed).

Gk(τ1 − τ2) = 〈T ak(τ1)a
†
k(τ2)〉

= e−εk(τ1−τ2)
[
Θ(τ1 − τ2)〈aka†k〉 ±Θ(τ2 − τ1)〈a†kak〉

]
= e−εk(τ1−τ2)

[
Θ(τ1 − τ2)〈1± a†kak〉 ±Θ(τ2 − τ1)〈a†kak〉

]
= e−εk(τ1−τ2) [Θ(τ1 − τ2)(1±Nk)±Θ(τ2 − τ1)Nk] (2.6)

where ± signs are for bosons and fermions respectively. We also have used
[ak, a

†
k] = 1 for bosons and {ak, a†k} = 1 for fermions.

Nk ≡ 〈a†kak〉 =
1

eβεk∓1
(2.7)

(Here ± signs are for fermions and bosons respectively ). Using eq. (2.6) for
bosons, with τ = τ1 − τ2 we have

Gk(τ − β) = e−εk(τ−β) [Θ(τ − β)(1 +Nk) + Θ(−τ + β)Nk] (2.8)

When 0 ≤ τ ≤ β we obtain

Gk(τ − β) = e−εkτeεkβNk

= e−εkτeεkβ
(

1

eβεk−1

)
= e−εkτ (1 +Nk)

≡ Gk(τ)

(2.9)

and when−β ≤ τ ≤ 0 we obtain

Gk(τ + β) = e−εkτe−εkβ(1 +Nk)

= e−εkτNk

≡ Gk(τ) (2.10)
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Thus

Gk(τ − β) = Gk(τ) for 0 ≤ τ ≤ β,

Gk(τ + β) = Gk(τ) for − β ≤ τ ≤ 0, (2.11)

or the imaginary time Green’s function obeys the periodicity condition. Since
Gk(τ − β) = Gk(τ) where (0 ≤ τ ≤ β), i.e. the Green’s function is defined
within a finite time interval maintaining the periodicity condition, this allows
us to represent Gk(τ) by a Fourier series:

Gk(τ) =
1

β

∑
n

e−iωnτGk(iωn)

Gk(iωn) =

∫ β

0

dτeiωnτGk(τ) (2.12)

where ωn = nπ/β with n = 0,±1,±2, . . .. Even though all integer modes
are allowed in the Fourier expansion, because of the periodicity (boson) or
antiperiodicity (fermion) condition satisfied by Gk, only even integer modes
contribute to the bosonic Green’s function while only the odd integer modes
contribute for fermionic Green’s function. This can be easily proved by

Gk(iωn) =
1

2

∫ 0

−β

dτeiωnτGk(τ) +
1

2

∫ β

0

dτeiωnτGk(τ)

= ±1

2

∫ 0

−β

dτeiωnτGk(τ + β) +
1

2

∫ β

0

dτeiωnτGk(τ)

= ±1

2

∫ β

0

dτeiωn(τ−β)Gk(τ) +
1

2

∫ β

0

dτeiωnτGk(τ)

=
1

2
(1± e−iωnβ)

∫ β

0

dτeiωnτGk(τ)

=
1

2
(1± e−inπ)

∫ β

0

dτeiωnτGk(τ)

=
1

2
{1± (−1)n}

∫ β

0

dτeiωnτGk(τ) (2.13)

This shows that Gk(iωn) contribute for bosons when n is even and contributes
for fermions when n is odd. Thus we conclude that

Gk(τ) =
1

β

∑
n

e−iωnτGk(iωn)

Gk(iωn) =
1

2

∫ β

−β

dτeiωnτGk(τ) (2.14)
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where

ωn =
2nπ

β
for bosons

=
(2n+ 1)π

β
for fermions. (2.15)

These are commonly referred to as the Matsubara frequencies.
The spatial coordinates, on the other hand, are continuous just as in the

case of zero temperature field theory and therefore, there is nothing new in
their Fourier decomposition. Thus including all the coordinates we can write
the free propagator as

G0(τ, x) =
1

β

∑
n

∫
d3k

(2π)3
e−i(ωnτ−k.x)G0(iωn, k)

G0(iωn, k) =

∫ β

0

dτ

∫
d3xei(ωnτ−k.x)G0(τ, x) (2.16)

where we have assumed 4 spacetime dimensions and the allowed frequencies are
as defined in eq. (2.15). Now in the case of Klein-Gordon field theory, the zero
temperature Green’s function satisfies (in Minkowski spacetime with signature
(+, −, −, −))

(∂μ∂
μ +m2)G0(t, x) = −δ(t)δ3(x)(

∂2

∂t2
−∇2 +m2

)
G0(t, x) = −δ(t)δ3(x) (2.17)

Going over to imaginary time, t → −iτ (by rotating to Euclidean space or
imaginary time), the above equation leads to{−(−iωn)

2 − (ik)2 +m2
}
G0(τ, x) = δ(τ)δ3(x)

(
ω2
n + k2 +m2

) 1

β

∑
n

∫
d3k

(2π)3
e−i(ωnτ−k.x)G0(iωn, k)

=
1

β

∑
n

∫
d3k

(2π)3
e−iωnτeik.x

Then

G0(iωn, k) =
1

ω2
n + k2 +m2

=
−1

K2 −m2

=
1

ε2k + ω2
n

(2.18)
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where K = (iωn, k) and εk =
√
k2 +m2. This is the momentum space Greens

function or propagator. Here We have also used

δ(τ) =
1

β

∑
n

e−iωnτ (2.19)

and

δ3(x) =

∫
d3k

(2π)3
eik.x (2.20)

The important thing to note is that, unlike the zero temperature case,
here the Green’s function do not have singularities for real values of the energy
and momentum variables. Finite temperature Green’s function calculations are
completely parallel (at least qualitatively) to the zero temperature case. Only
the exact form of the propagator is different from the zero temperature one and
it carries the temperature dependence via the Matsubara frequency (ωn).

2.3 Thermodynamic Potential and Pressure

In this section we will show how to calculate pressure perturbatively. For a
scalar field theory with a φ4 interaction the dynamics is governed by the fol-
lowing Hamiltonian

H =
Π2

2
+

1

2
(∇φ)2 +

1

2
m2φ2 +

λ

4!
φ4 (2.21)

The thermodynamic potential or free energy is given by

Ω = − 1

β
lnZ (2.22)

Since

Z = Z0

〈
Texp

{
−
∫ β

0

dτH1(τ)

}〉
(2.23)

we get

Ω = Ω0 − 1

β
ln

〈
Texp

{
−
∫ β

0

dτH1(τ)

}〉
(2.24)

Ω0 is the thermodynamic potential for the non-interacting fields that we eval-
uate in the following subsection.
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2.3.1 Non-interacting Case

If the Hamiltonian is given the partition function becomes

Z0 = Tr e−βH0

=
∏
r

{
e−

1
2βεr

∑
nr

e−βnrεr

}

=
∏
r

e−
1
2βεr

∏
r

1

1− e−βεr

(2.25)

Then

lnZ0 = −1

2
β
∑
r

εr −
∑
r

ln(1− e−βεr )

Ω0 =
1

2

∑
k

ωk +
1

β

∑
k

ln(1− e−βωk) (2.26)

In the continuum limit,
∑

k → V
∫

d3k
(2π)3 and the free energy looks like

Ω0 = V

∫
d3k

(2π)3

[
1

2
ωk +

1

β
ln(1− e−βωk)

]
(2.27)

The first term in the square bracket is temperature independent and leads to
a divergent integral. The infinite result is of course nothing other than the
zero-point energy of the vacuum, which can be subtracted off, since it is an
unobservable constant, although differences in the zero-point energies can be
observed. Ignoring the zero-point energy and setting m = 0, we have

Ω0 =
V

2π2β

∫ ∞

0

k2dk ln(1− e−βk)

= − V

6π2β4

∫ ∞

0

(βk)3d(βk)

eβk − 1

= − V π2

90β4
(2.28)

The pressure becomes

P = − ∂Ω0

∂V
=

π2T 4

90
(2.29)

This result for the pressure is that of an ultra relativistic ideal gas of spinless
particles.
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2.3.2 Interacting Case: Perturbative Method

In this subsection we briefly review the formalism of thermal field theory in
equilibrium. We shall in particular recall how perturbation theory can be used
to calculate the partition function

Z ≡ Tr exp {−βH} =
∑
n

exp {−βEn} , (2.30)

from which all the thermodynamical functions can be obtained.
The simplest formulation of perturbation theory for thermodynamical

quantities is based on the formal analogy between the partition function
(2.30) and the evolution operator U(t, t0) = exp{−i(t − t0)H}, where the
time variable t is allowed to take complex values. Specifically, we can write
Z = TrU(t0 − iβ, t0), with arbitrary (real) t0. More generally, we shall define
an operator U(τ) ≡ exp(−τH), where τ is real, but often referred to as the
imaginary time (τ = i(t− t0) with t− t0 purely imaginary). The evaluation of
the partition function (2.30) by a perturbative expansion involves the splitting
of the Hamiltonian into H = H0 +H1, with H1 � H0.

We then set

U(τ) = exp (−τH)

= exp (−τH0) exp (τH0) exp (−τH)

= U0(τ)UI(τ), (2.31)

where U0(τ) ≡ exp(−H0τ). The operator UI(τ) is called the interaction repre-
sentation of U . We also define the interaction representation of the perturbation
H1,

H1(τ) = eτH0H1e
−τH0 , (2.32)

and similarly for other operators. Now

d

dτ
UI(τ) = eτH0H0e

−τH − eτH0He−τH

= eτH0(H0 −H)e−τH

= −eτH0H1e
−τH (2.33)

H1(τ)UI(τ) = eτH0H1e
−τH (2.34)

Thus it is easily verified that UI(τ) satisfies the following differential equation

d

dτ
UI(τ) +H1(τ)UI(τ) = 0, (2.35)

with boundary condition

UI(0) = 1. (2.36)
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The solution of the above differential equation, with the boundary condition
UI(τ1, τ1) = 1, can be written formally in terms of the time ordered exponential
as

UI(τ1, τ2) = Tτ exp

(
−
∫ τ1

τ2

dτH1(τ)

)
(2.37)

The symbol Tτ implies an ordering of the operators on its right, from left to
right in decreasing order of their imaginary time arguments. For our case

e−βH = e−βH0e−βH1

= e−βH0 Tτ exp

{
−
∫ β

0

dτH1(τ)

}
= e−βH0UI(β, 0) (2.38)

Now

d

dτ
UI(τ, 0) = H1(τ)UI(τ, 0) (2.39)

Integrating from τ = 0 to τ = β we obtain

UI(β, 0)− UI(0, 0) = −
∫ β

τ=0

dτH1(τ)UI(τ, 0)

UI(β, 0) = 1−
∫ β

τ=0

dτH1(τ)UI(τ, 0) (2.40)

To solve this we substitute the equation itself inside the integral on the right
hand side to yield,

Tτ exp

{
−
∫ β

0

dτH1(τ)

}
= UI(β, 0)

= 1−
∫ β

0

dτH1(τ)

[
1−

∫ τ1

0

dτ2H1(τ2)UI(τ2, 0)

]
= 1−

∫ β

0

dτH1(τ) +

∫ β

0

dτ1

∫ τ1

0

dτ2 H1(τ1)H1(τ2) + · · ·

= 1−
∫ β

0

dτH1(τ) +
1

2

∫ β

0

dτ1dτ2 Tτ [H1(τ1)H1(τ2)] + · · · (2.41)

Due to the presence of time ordering we have to include 1
2 outside the second

integral.
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Using eq. (2.38), one can rewrite Z in the form

Z = Tr (e−βH)

= Tr

[
e−βH0 Texp

{
−
∫ β

0

dτH1(τ)

}]

= Z0

〈
T(τ) exp

{
−
∫ β

0

dτH1(τ)

}〉
, (2.42)

where, for any operator O,

〈O〉 ≡ Tr

(
e−βH0

Z0
O
)
. (2.43)

2.4 φ4 Theory at Finite Temperature

2.4.1 One Loop Mass Correction

We have already seen that in the imaginary time formalism the only differ-
ence between the zero temperature and the finite temperature field theories
lies in the form of the propagator which carries all the temperature depen-
dence. The vertices at finite temperature are exactly the same as those at
zero temperature. Thus, given any quantum field theory, we can carry out cal-
culations of thermodynamic variables perturbatively by calculating Feynman
diagrams.

Let us consider a self-interacting φ4 theory described by the Lagrangian
density

L =
1

2
∂μφ∂

μφ− 1

2
m2φ2 − λ

4!
φ4 (2.44)

According to our discussion, if we want to calculate quantities at finite tem-
perature, we should treat time as an imaginary parameter in which case the
theory becomes a Euclidean theory LE = L.

LE =
1

2
∂μφ∂μφ+

1

2
m2φ2 +

λ

4!
φ4 (2.45)

The diagrammatic calculation is analogous to that of the zero temperature
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case; the only difference is that since the energy values are now quantized,
the intermediate energy integrals have to be replaced by sums over discrete
values ∫

d4k

(2π)4
→ i

β

∑
n

∫
d3k

(2π)3
(2.46)

The mass correction becomes

−iΠ ≡ −iΠ =
iλ

2!

i

β

∑
n

∫
d3k

(2π)3
i

ω2
n + ε2k

Π =
λ

2β

∑
n

∫
d3k

(2π)3
Δ(iωn, k)

=
λ

2β

∑
n

∫
d3k

(2π)3

∫ β

0

dτeiωnτΔ(τ, k)

=
λ

2

∫
d3k

(2π)3

∫ β

0

dτΔ(τ, k)
1

β

∑
n

eiωnτ

=
λ

2

∫
d3k

(2π)3

∫ β

0

dτΔ(τ, k)δ(τ)

=
λ

2

∫
d3k

(2π)3
Δ(0, k) (2.47)

In the above 2! is due to the symmetry factor at the vertex.

Figure 2.1: One loop mass correction

From eq. (2.8)we have

Δ(τ, k) = e−εk(τ) [Θ(τ)(1 +Nk) + Θ(−τ)Nk]

Δ(0, k) =
1

2ωk
[1 + 2Nk] (2.48)

Π =
λ

2

∫
d3k

(2π)3

[
1 + 2Nk

2ωk

]
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The first term corresponds to the zero temperature part and the second term
represents explicit temperature dependence. For m = 0, the second term is

λ

2

∫
4πk2 dk

(2π)3k[eβk − 1]
=

λ

(4π)2

∫
dk

k

eβk − 1
=

λ

24β2
(2.49)

The total self energy or mass correction at finite temperature thus becomes

Π =
λ

4

∫
d3k

(2π)3
1

ωk
+

λT 2

24
(2.50)

The divergences in the expression for the mass correction is entirely contained
in the zero temperature part. The temperature dependent part is free from
ultraviolet divergences. Therefore the zero temperature counterpart is sufficient
to renormalize the theory. We see here that temperature induces a mass for the
bosons analogous to a particle moving in a medium and the mass is positive.

Figure 2.2: Mass counterterm

In eq. (2.50) the first term is temperature independent but ultraviolet
divergent. To avoid this divergence one uses the mass counterterm in the La-
grangian, 1

2δm
2φ2; this is known as mass renormalization.

δm2 +
λ

2

∑
k

1

2ωk
= 0

2.5 Pressure in φ4 Theory

We have shown that the pressure for the scalar field is given by eq. (2.29). But a
well known problem at high temperatures is the breakdown of the conventional
perturbative expansion at some order in the coupling constant (λ). Therefore,
to compute consistently to a given order in λ, we have to take into account all
the relevant higher loop graphs— these usually form an infinite set.

First order correction: To go beyond leading order, one must compute two loop
(and higher) diagrams in the effective expansion.

Figure 2.3: First order correction to pressure
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λ

4!
3

[∫
d3k

(2π)3
Δ(0, k)

]2
=

3λ

4!

[∫
d3k

(2π)3
1

2ωk
+

∫
d3k

(2π)3
Nk

ωk

]2
=

3λ

4!

[{∫
d3k

(2π)3
1

2
√
k2 +m2

}2

+

{∫
d3k

(2π)3
1

ωk

1

eβωk − 1

}2

+ 2

∫
d3k

(2π)3
1

2ωk

∫
d3k′

(2π)3
1

ωk′

1

eβωk′ − 1

]
(2.51)

The first term is the zero temperature contribution having an ultraviolet diver-
gence and the second term is the temperature dependent part. The third term
is potentially dangerous; it is divergent and temperature dependent.

Figure 2.4: Counterterm contribution to the pressure

The counterterm contribution to the pressure is obtained by folding
fig. (2.2) as shown in fig. (2.4). Mathematically this is given by

1

2
δm2

(∑
k′

1 + 2Nk′

2ωk′

)

=
1

2

(
−λ

2

∑
k

1

2ωk

)(∑
k′

1 + 2Nk′

2ωk′

)

= −λ

8

∑
k

1

2ωk

∑
k′

1

ωk′
− λ

4

∑
k

1

2ωk

∑
k′

Nk′

ωk′
(2.52)

Thus the mass renormalization term cancels the potentially dangerous term
in the first order correction to the pressure in eq. (2.51) which is temperature
dependent and also ultraviolet divergent. After cancellation of that term there
is still the first term of the above equation which is ultraviolet divergent. But
this is temperature independent and thus harmless. One elegant way to avoid
this term is to define the renormalized free energy

ΩR(T,m
2, λ) = Ω(T,m2, λ)− Ω(T = 0,m2, λ) (2.53)
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From this renormalized potential one obtain the correction of order λ to the
pressure of the ideal gas in the m = 0 case

P = − 1

β

∫
d3k

(2π)3
ln(1− e−βωk)− λ

8

(∫
d3k

(2π)3
Nk

k

)2

(2.54)

The first term (already calculated) equals π2T 4

90 and the second term is
π2T 4

90 (− 5λ
64π2 ). Thus the pressure up to first order in λ is

P =
π2T 4

90

(
1− 5λ

64π2

)
(2.55)

Second order correction: Mathematically the second order correction to the
pressure is given by{

λ

2

∫
d3k′

(2π)3
Δ(0, k′)

}2∑
k,n

{Δ(iωn, k)}2

=
λ2

4

(∑
k′

1

2ωk′
+

Nk′

ωk′

)2∑
k,n

(
1

ω2
k + ω2

n

)2

(2.56)

Now the second factor can be written as

Figure 2.5: Second order correction to the pressure

∑
k,n

(
1

ω2
k + ω2

n

)2

=
∑

k,n=0

1

ω4
k

+
∑
n�=0

∑
k

(
1

ω2
k + ω2

n

)2

(2.57)

where we have separated the n = 0 and n �= 0 terms. For the m → 0 case

(ω2
k → k2), and defining

∑
k

= V

∫
d3k

(2π)3
, we get

∑
k

1

ω4
k

→
∫

d3k

(2π)3
1

k4
→

∫
dk

k2
→ ∞ for k → 0 (2.58)

i.e. this term has an infrared divergence. From eq. (2.56) the first term is the
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same as that obtained in the first order correction. Thus, as the n �= 0 term is
non-divergent, the divergence becomes worse and worse as we go to higher and
higher order.

2.5.1 Infrared Divergence and resummation of ring diagrams

In order to see if the perturbation series is well behaved, it is necessary to look
at higher orders. In the previous section we have seen that higher order rings,
as in fig. (2.5), are infrared divergent as in eq. (2.58). In scalar field theories,
it is known that the dominating infrared contributions to the self energy come
from the so-called ring diagrams. Ring diagrams consist of loop diagrams of
various orders forming an infinite series, and each of them is infrared divergent.
When summed over, this series gives us a finite result as shown in eq. (2.62).
It is to be noted here that the entire sum for the n = 0 mode contributes to
the order λ3/2, while each term is of higher order in λ. Thus higher order loops
contribute to the pressure at lower order in coupling after summing the series. In
effect, this implies a reorganization of the perturbation series where a particular
class of diagrams are summed over in a definite way. This reorganisation of the
perturbation series is known as resummation.

For two loops with two propagators the renormalized free energy is given
by

ΩR = − V

2β

1

2

∑
k,n

{−Π(iωn, k)Δ(iωn, k)}2 (2.59)

Here the first 2 factor in the denominator is the symmetry factor at each vertex
and the second 2 arise from 2 loops. For the ring diagrams, the renormalized
free energy is given by

Figure 2.6: Ring diagram

ΩR = − V

2β

∑
k,n

∞∑
N=2

1

N
{−Π(iωn, k)Δ(iωn, k)}N

=
V

2β

∑
k,n

{ln[1 + Π(iωn, k).Δ(iωn, k)]−Π(iωn, k).Δ(iωn, k)}
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The factor of 1
N is a symmetry factor which can be understood in the following

way: there is a factor of 3! for connecting two lines at each vertex, a factor of
2 for how the remaining two lines at each vertex are connected to the adjacent
vertices, a factor of 1

2 (N − 1)! for the number of ways of ordering the vertices
along the circle, and a factor of 1

N ! from the expansion of the exponential of the
interaction in the partition function. The summation over N begins at N = 2
because in case of the single loop (N = 1) the self energy contribution from the
temperature dependent part, λT 2/24, is already calculated as part of the first
order correcion.

ΩR =
V

2β

⎡⎣∑
k,n

Π(iωn, k).Δ(iωn, k)− 1

2

∑
k

(
λ

2

nk

ωk

)2∑
k,n

(Δ(iωn, k))
2
+

· · · − ∑
k,n Π(iωn, k).Δ(iωn, k)

⎤⎦ (2.60)

Now

∑
k,n

(Δ(iωn, k))
2 =

∑
k,n

(
1

ω2
k + ω2

n

)2

=
∑
k

1

ω4
k

+
∑
n�=0

∑
k

(
1

ω2
k + ω2

n

)2

(2.61)

The separated n = 0 term is infrared divergent for m = 0 and the n �= 0 term
is proportional to 1/

(
k2 + 4n2π2T 2

)
and is non-divergent for k → 0 due to the

existence of the 4n2π2T 2 term. Thus divergences become worse and worse as
we go to higher and higher order terms. Since the n �= 0 term does not diverge,
we only consider the n = 0 term for the m → 0 case (see Appendix II).

ΩR =
V

2β

∫
d3k

(2π)3)

[
ln

(
1 +

λT 2

24

1

k2

)
− λT 2

24

1

k2

]
= − V

2β

1

6πβ3

(
λ

24

) 3
2

P =
1

12πβ4

(
λ

24

) 3
2

(2.62)

Thus the correction is of order λ
3
2 , not of order λ2 as would have been expected.

This arises from the infrared singular behavior of the propagator.
The expression for the pressure considering upto the ring diagram is

P =
π2T 4

90

[
1− 5λ

64π2
+

90

12π3

(
λ

24

) 3
2

+ · · ·
]

=
π2T 4

90

[
1− 15

8

(
λ

24π2

)
+

15

2

(
λ

24π2

) 3
2

+ · · ·
]

(2.63)
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The first term is the pressure for a free boson gas. The second term is from
the first order correction and the third term is from the ring diagram. Thus if
one restricts oneself to the n = 0 term, i.e. the static mode, the total result
exhibits a breakdown of perturbation theory due to the infrared divergence.
Infrared divergences come from the static modes only, as ωn = 2πnT acts as
a mass term in the propagator for n �= 0. Thus the results obtained in naive
perturbation theories can be incomplete in the order of the coupling constant
since higher order diagrams after resummation can contribute to lower order
in the coupling constant.

2.6 Appendices

2.6.1 Interaction picture creation and annihilation operators

a†k(τ) ≡ eτH0a†k(0)e
−τH0 (2.64)

ak(τ) ≡ eτH0ak(0)e
−τH0 (2.65)

These give

d

dτ
ak(τ) = eτH0H0ak(0)e

−τH0 − eτH0ak(0)H0e
−τH0

= eτH0 [H0, ak(0)]e
−τH0

= [H0, ak(τ)]

=
[∑

εk′a†k′(τ)ak′(τ), ak(τ)
]

= −εk′δk′kak′(τ)

= −εkak(τ)

ak(τ) = e−εkτak(0) (2.66)

Similarly

a†k(τ) = eεkτa†k(0) (2.67)

2.6.2 Ring diagram calculation for zero Matsubara frequency

For the ring diagram calculation the actual equation is

ΩR =
V

2β

∫
d3k

(2π)3

[
ln

(
1 +

λ

24

1

β2k2

)
− λ

24

1

β2k2

]
(2.68)
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To solve the above we solve the equation below,

I =

∫
dx x2

(
ln

(
1 +

λ

x2

)
− λ

x2

)
=

1

3
ln

(
λ

x2
+ 1

)
x3 − λ x

3
− 2

3
λ

3
2 tan−1

(
x√
λ

)
(2.69)

lim
x→∞ I = −1

3
λ

3
2π +

λ2

2x
− 1

9
λ3

(
1

x

)3

+O

{(
1

x

)4
}

� −1

3
λ

3
2π (2.70)

lim
x→0

I = −λx+

(
ln λ

3
− 2 ln λ

3
+

2

9

)
x3 +O(x4)

� 0 (2.71)

Thus using eq. (2.70) and eq. (2.71),we get

I =

∫ ∞

0

dx x2

(
ln

(
1 +

λ

x2

)
− λ

x2

)
= −1

3
λ

3
2π (2.72)

Thus

ΩR = − V

2β

(
λ

24

) 3
2 1

6πβ3
(2.73)

2.6.3 Problems

1. (a) Define the creation and annihilation operator in the interaction picture
as

a†k(τ) ≡ eτH0a†k(0) e
−τH0

ak(τ) ≡ eτH0ak(0) e
−τH0

Then show that

ak(τ) = e−εkτak(0)

a†k(τ) = e+εkτa†k(0)

(b) The non-interacting partition function for bosons is given by Z0 =
Tre−βH0 where H0 = n1ε1 + n2ε2 + ..... Prove the following identities:

(i) 〈a†sas〉 = f(εs)

(ii) 〈(a†sas)2〉 = f(εs)[f(εs) + 1] + [f(εs)]
2

where f(εs) is the Bose distribution function.
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2. Prove that

(i)

∫ ∞

0

dx
xn

eβx − 1
=

1

βn+1
ζ(n+ 1)Γ(n+ 1) (for bosons)

(ii)

∫ ∞

0

dx
xn

eβx + 1
=

1

βn+1

(
1− 1

2n

)
ζ(n+ 1)Γ(n+ 1)) (for fermions)

3. Prove the Kubo-Martin-Schwinger condition

〈A(t)B(t′)〉 = 〈B(t′)A(t+ iβ)〉

Here the angular brackets represent thermal averages.

4. Prove that for a free gas the pressure becomes

P =

(
nB +

7

8
nF

)
π2T 4

90

where nB and nF are the degeneracies for bosons and fermions.
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