An Introduction to Thermal
Field Theory

Abhee K. Dutt-Mazumder

2.1 Introduction

Thermal Field Theory (TFT) is a combination of all three basic branches of
modern physics, namely quantum mechanics, the theory of relativity, and sta-
tistical physics. Therefore one could also call it statistical quantum field theory.

Within TFT, two classes of formalism can be distinguished: one is the
imaginary time (Euclidean) formalism (ITF) and other is the real time formal-
ism (RTF). Matsubara was the first to build a TFT by incorporating a purely
imaginary time variable into the evolution operator. His name is associated
with the discrete energy frequencies. The RTF formulation however is more
appropriate for studying transition processes than ITF since no analytical con-
tinuation is necessary to reach the physical region. The two formalisms agree in
the calculation of the self-energy and the thermodynamic potential with which
we are presently concerned. Though ITF has difficulties, as it involves frequency
summations, whereas RTF is free of such problems, nevertheless, for our pur-
pose here, we restrict our discussion to ITF to calculate thermal self-energies
and thermodynamic quantities.

Another important application of TFT is to study gauge theories at fi-
nite temperature. This has applications both in the context of early universe
cosmology and laboratory based heavy ion collisions where the properties of
Quantum Chromo Dynamics (QCD) at finite temperature can be studied.

We know quantum field theories have difficulties in dealing with loops be-
cause of divergences. At finite temperature no additional ultraviolet divergence
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64 2. An Introduction to Thermal Field Theory

appear as the higher momentum modes are cut off by the distribution func-
tions. However, new infrared divergences do appear in dealing with the massless
bosonic field. In ITF this would correspond to the zero Matsubara mode; in
the RTF formalism this is even easier to understand. In the soft momentum
limit, the Bose distribution brings in a factor of T'/k which cancels one power
of momentum from the numerator. Therefore new infrared divergences may ap-
pear and divergences which were already there might get worse. For instance, a
logarithmic divergence in vacuum may become a quadratic divergence at finite
temperature.

2.2 Green’s Function

The most important quantity in perturbative field theory is the 2-point Green’s
function or propagator. How do propagators looks like at non-zero temperature?
Here we discuss scalar field theory, which we shall use in the following as a
simple model to study the different techniques in TFT. At zero temperature
the bare propagator is given by the vacuum expectation value of the time
ordered product of two fields at different space time points

OIT{o(X)o(Y)}0)

dAK e iK.(X-Y)
N /(27r)4 K2 —m? +in

INX )

(2.1)

where |0) denotes the vacuum state of the non-interacting theory and A de-
scribes the free propagation of a free scalar particle from Y to X for zg > yo
(creation at y, destruction at z) and from X to Y for yo > zo. At finite tem-
perature the vacuum is replaced by a ground state having real particles. Stated
differently, the destruction operator acting on the vacuum at finite tempera-
ture T does not annihilate the vacuum to gives zero. Thus vacuum expectation
values have now to be replaced by quantum statistic expectation values, i.e.

(4)

Te(DA)
1 _
= ETI'(Ae BH)

1 - n
= - Zn:<n|A\n>e AE (2.2)

where A is an arbitrary quantum operator, 5 = %, D is the density operator
and Z is the partition function. Applying eq. (2.2) for non-zero T to the scalar
propagator yields

IAX —Y) = % Y (lT{G(X)G(Y)}n)e  Fn (2.3)

where F,, and |n) are the eigenvalues and eigenstates of the non-interacting
Hamiltonian.
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2.2.1 The Imaginary Time Green’s Function

The non-interacting Hamiltonian operator Hj is usually expressed in terms of
creation and annihilation operator @ and a'. Thus the calculation of Z reduces
to the expectation value of time ordered products of such operators.

The possible propagators ~ (T ag(71) az (12)), (T ar(m)ar(m)) or
(T'al (1) al(r2)) since Hy = Y ealay, and alay = N where A is the num-
ber operator. As Hy commutes with A/, only the first among the three possible
propagators listed above will enter the perturbative expansion. We define time
dependent creation and annihilation operators in the interaction picture as (see
Appendix I)

aL(T)EeTHOa,TC(O)efTHO = eE”al(O) (2.4)
ar(1) = e™Hoay(0)e o = =7 g, (0) (2.5)

The Green’s function or propagator is defined as (to focus on temporal
properties all the spatial coordinates have been suppressed).

Gr(r — 1) = (Tar(r)a)(r))
—  e—er(Ti—m) [@(Tl — 7-2)<ak,a;r€> +O(1e — 71)<a,1ak>]
— eer(ni—m2) [@(7—1 — 7'2)<1 + azak) +0O(m — TQ(G%%)}
_ e*Ek(Tl*TZ) [@(7—1 _ 7-2)(1 + Nk) + @(7—2 — Tl)Nk] (2.6)
where + signs are for bosons and fermions respectively. We also have used

[a, a};} =1 for bosons and {ay, aL} =1 for fermions.

1

S
Nie = {arar) = 5o

2.7)

(Here =+ signs are for fermions and bosons respectively ). Using eq. (2.6) for
bosons, with 7 = 71 — 79 we have

Gu(r=p) = e T D[0(r = B)(1+Nio) +O(=7 + BN  (2.8)
When 0 < 7 < 8 we obtain
Gr(r—B) = e Te*BNy

1
_ —€rT €k B
= e KTk (eﬁekl)

= e_EkT(l + Nk)

= Gi(1)
(2.9)
and when—3 < 7 < 0 we obtain
Gr(t+B) = e *Te P14+ Ny)
— TN,

Gr(7) (2.10)
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Thus

Ge(t =) = Gi(r) for 0 <71 <8,

Gp(t+8) = Gg(r) for —3<7<0, (2.11)
or the imaginary time Green’s function obeys the periodicity condition. Since
Gr(t — B) = Gg(7) where (0 < 7 < f3), i.e. the Green’s function is defined

within a finite time interval maintaining the periodicity condition, this allows
us to represent G (7) by a Fourier series:

Gg(r) = %Zefiw"TGk(iwn)

]
Grliw,) = / dre™nT Gy (T) (2.12)

0

where w,, = nn/f with n = 0,£1,42,.... Even though all integer modes
are allowed in the Fourier expansion, because of the periodicity (boson) or
antiperiodicity (fermion) condition satisfied by Gy, only even integer modes
contribute to the bosonic Green’s function while only the odd integer modes
contribute for fermionic Green’s function. This can be easily proved by

Giliw,) = / dre“nT Gy (T /dTe“""TGk T)
1 1
= :I:f/ dre™ TGy (T + B) + /dTe“"“TGk()
2 ), 2
= / dre™"=A G (1) / dre’ "G, (1)
(lzlzefi“’"ﬁ)/ dre“nT Gy (1)
0

B
(1+eimm) / dret ™ Gy (r)
0

NI~ N~ N

—~
—_

g
—1)"}/0 dre* T Gp(T) (2.13)

This shows that Gy (iw,,) contribute for bosons when n is even and contributes
for fermions when n is odd. Thus we conclude that

Gg(r) = %Ze%w”Gk(iwn)

o
Chliwn) = % / dreinT Gl(7) (2.14)
-B
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where
2
Wn = T for bosons
B
2 1
= W for fermions. (2.15)

These are commonly referred to as the Matsubara frequencies.

The spatial coordinates, on the other hand, are continuous just as in the
case of zero temperature field theory and therefore, there is nothing new in
their Fourier decomposition. Thus including all the coordinates we can write
the free propagator as

1 A3k .
_ —i(wpT—k.x) .
Go(T, ) 3 En: / O e Go(iwn, k)

p .
Goliwn, k) = /dT/d?’xe’(“’”_k'w)Go(T,x) (2.16)
0

where we have assumed 4 spacetime dimensions and the allowed frequencies are
as defined in eq. (2.15). Now in the case of Klein-Gordon field theory, the zero
temperature Green’s function satisfies (in Minkowski spacetime with signature

(+7 R _))
(0,0" +m*)Gy(t,z) = —0(t)8*(w)

2
(gﬁ -Vt m2) Go(t,x) = —d(t)o*(x) (2.17)

Going over to imaginary time, ¢ — —i7 (by rotating to Euclidean space or
imaginary time), the above equation leads to

{—(—iwn)2 — (ik)* + m2} Go(r,x) = 6(7)8° ()

1 B3k ,
(wi + K2+ m2) E Z / 7(2@3 e_’(“"'T_k'x)Go(zwn, k)

1 d3k —twnT tk.x
- BZ/ e °

Then

Gol(iwn, k)

w2 + k2 +m?
K2 —m2

= —— 2.18
€ +w? (2.18)
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where K = (iwy, k) and €, = vk? + m?2. This is the momentum space Greens
function or propagator. Here We have also used

5(r) = %Z eTiwnT (2.19)

and

3
53 (x) = / (;17:;3 eth-w (2.20)

The important thing to note is that, unlike the zero temperature case,
here the Green’s function do not have singularities for real values of the energy
and momentum variables. Finite temperature Green’s function calculations are
completely parallel (at least qualitatively) to the zero temperature case. Only
the exact form of the propagator is different from the zero temperature one and
it carries the temperature dependence via the Matsubara frequency (wy,).

2.3 Thermodynamic Potential and Pressure

In this section we will show how to calculate pressure perturbatively. For a
scalar field theory with a ¢* interaction the dynamics is governed by the fol-
lowing Hamiltonian

I 1

5 T 5(qu)? + %m2¢2 + A Pt (2.21)

H = z
4!

The thermodynamic potential or free energy is given by

Q = —% In Z (2.22)

Since

Z = Zy <Texp{—/06dTH1(T)}> (2.23)

we get

B
Q = Qo—%ln <Texp{—/0 dTHl(T)}> (2.24)

Qg is the thermodynamic potential for the non-interacting fields that we eval-
uate in the following subsection.
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2.3.1 Non-interacting Case

If the Hamiltonian is given the partition function becomes

Zy = Tr e~ PHo

— —38er —Bnrer
[y

r

_18e 1
1:[@ éﬁrnm

T

(2.25)

Then

In ZO

—;BZT:ET - zr:ln(l —e Py

1 1
I - = Buwy
Q = QZwk—l—ﬁZln(l e~y (2.26)
k k
In the continuum limit, Y, =V [ % and the free energy looks like

Q = V/g:)cg Bwk + %111(1 - e—/M)} (2.27)

The first term in the square bracket is temperature independent and leads to
a divergent integral. The infinite result is of course nothing other than the
zero-point energy of the vacuum, which can be subtracted off, since it is an
unobservable constant, although differences in the zero-point energies can be
observed. Ignoring the zero-point energy and setting m = 0, we have

_ 4 - —Bk
Qy = 27T25/o k*dkIn(l — e "%)
Vv /°° (Bk)*d(Bk)
67234 J, efk — 1
Vr?
_ 2.28
9071 (2.28)
The pressure becomes
390 7T2T4
P = - = 2.29
1% 90 ( )

This result for the pressure is that of an ultra relativistic ideal gas of spinless
particles.
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2.3.2 Interacting Case: Perturbative Method

In this subsection we briefly review the formalism of thermal field theory in
equilibrium. We shall in particular recall how perturbation theory can be used
to calculate the partition function

Z =Trexp{—-BH} = Zexp{fﬁEn}, (2.30)

from which all the thermodynamical functions can be obtained.

The simplest formulation of perturbation theory for thermodynamical
quantities is based on the formal analogy between the partition function
(2.30) and the evolution operator U(t,tg) = exp{—i(t — to)H}, where the
time variable t is allowed to take complex values. Specifically, we can write
Z =TrU(tg —iB,t0), with arbitrary (real) to. More generally, we shall define
an operator U(7) = exp(—7H), where 7 is real, but often referred to as the
imaginary time (1 = i(t — to) with ¢ — ¢y purely imaginary). The evaluation of
the partition function (2.30) by a perturbative expansion involves the splitting
of the Hamiltonian into H = Hy + Hy, with H; < Hy.

We then set
U(r) = exp(—7H)
= exp(—7Hy)exp (tHp)exp (—7H)
= Uo(T) U[(T), (231)

where Uy(7) = exp(—Ho7). The operator Uy(7) is called the interaction repre-
sentation of U. We also define the interaction representation of the perturbation
Hl )

Hi(r) = "o Hyem ™Mo, (2.32)

and similarly for other operators. Now

d—UI(T) = eHogye ™ _ grHofre=TH
-
_ eTHO (HO _ H)e—TH
= et (2.33)
Hy(r)Us(r) = e" Mo Hye ™ (2.34)

Thus it is easily verified that Uj(7) satisfies the following differential equation
d
%U](T) + Hyi (1)U (1) =0, (2.35)

with boundary condition

Ur(0) = 1. (2.36)
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The solution of the above differential equation, with the boundary condition
Ur(m1,71) = 1, can be written formally in terms of the time ordered exponential
as

Ur(ri,m) = Trexp (— /:dTﬂl(T)> (2.37)

The symbol T implies an ordering of the operators on its right, from left to
right in decreasing order of their imaginary time arguments. For our case

e—BH _  ,—BHo,—BH:
_ BT exp {_ /0 ’ dTﬂl(T)}
= e PHOL(B,0) (2.38)
Now
LUr0) = Hi(n)U(r,0) (2.39)

dr

Integrating from 7 = 0 to 7 = 8 we obtain

B
U;(5,0) —U;(0,0) = —/_0 drHq(T)U;(7,0)

B
Ur(8,0) = 1—/ drH,(1)U;(7,0) (2.40)

=0

To solve this we substitute the equation itself inside the integral on the right
hand side to yield,

B
TTeXp{—/O dTHl(T)}
Ur(B,0)

1-— /B drHy (1) {1 - / drng(rg)Uz(rz,O)]

= 1—/ drHy (T /dﬁ/ dro Hy(m1)Hy(m2) +

B
1—/0 drH (1) + 5/0 dridr T Hi(m)Hi(m)] + -+ (2.41)

Due to the presence of time ordering we have to include % outside the second
integral.
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Using eq. (2.38), one can rewrite Z in the form

Z

Tr (e PH)

e PHO T exp {—/6 dTHl(T)}]
0
B
Zy <T(7') exp{—/o dTHl(T)}>, (2.42)

where, for any operator O,

= Tr

(0) = Tr (6_;:0 o) . (2.43)

2.4 ¢* Theory at Finite Temperature

2.4.1 One Loop Mass Correction

We have already seen that in the imaginary time formalism the only differ-
ence between the zero temperature and the finite temperature field theories
lies in the form of the propagator which carries all the temperature depen-
dence. The vertices at finite temperature are exactly the same as those at
zero temperature. Thus, given any quantum field theory, we can carry out cal-
culations of thermodynamic variables perturbatively by calculating Feynman
diagrams.

Let us consider a self-interacting ¢* theory described by the Lagrangian
density

1 1 A
_ - w022 4
L = 5 . POM b 2m 10) —4!¢> (2.44)

According to our discussion, if we want to calculate quantities at finite tem-
perature, we should treat time as an imaginary parameter in which case the
theory becomes a Euclidean theory Lg = L.

1 1 A
Ly = iamam + §m2¢2 + I¢4 (2.45)

The diagrammatic calculation is analogous to that of the zero temperature
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case; the only difference is that since the energy values are now quantized,
the intermediate energy integrals have to be replaced by sums over discrete

values

[

d3k
-3 Z / (2.46)

The mass correction becomes

—iIl = —1

IT

II

. 3 .
%;Z/ o 3wl :—ek
5/ %A(iwn,m
52/ &k /OB dre™nT A(T, k)
;/(S:;/ﬂdmv k)= Ze“"”

3 B
%/%/ dr A7, k)o(T)

A [ A3k
S / 2 AOR) (2.47)

In the above 2! is due to the symmetry factor at the vertex.

From eq. (2.8)we have

p p

Figure 2.1: One loop mass correction

=D [O(7)(1 + Ni) + O(~7)Ni]

1
5 (12N (2.48)

A / Bk [14 2N,
2] @3 | 2wy
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The first term corresponds to the zero temperature part and the second term
represents explicit temperature dependence. For m = 0, the second term is

A 4drk? dk A k A
2 / PR —1] © (an) / k1 =y 2

The total self energy or mass correction at finite temperature thus becomes

A B3k 1 AT?
A N 2.
4 / (2m)3 wy, + 24 (2:50)

The divergences in the expression for the mass correction is entirely contained
in the zero temperature part. The temperature dependent part is free from
ultraviolet divergences. Therefore the zero temperature counterpart is sufficient
to renormalize the theory. We see here that temperature induces a mass for the
bosons analogous to a particle moving in a medium and the mass is positive.

Figure 2.2: Mass counterterm

In eq. (2.50) the first term is temperature independent but ultraviolet
divergent. To avoid this divergence one uses the mass counterterm in the La-
grangian, %6m2¢>2; this is known as mass renormalization.

A 1
sm?2+25"— — o
m+2zk:2wk

2.5 Pressure in ¢* Theory

We have shown that the pressure for the scalar field is given by eq. (2.29). But a
well known problem at high temperatures is the breakdown of the conventional
perturbative expansion at some order in the coupling constant (A). Therefore,
to compute consistently to a given order in A\, we have to take into account all
the relevant higher loop graphs— these usually form an infinite set.

First order correction: To go beyond leading order, one must compute two loop
(and higher) diagrams in the effective expansion.

k k

Figure 2.3: First order correction to pressure
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3 2 3 1 3L N2
ig/dk‘A(O’k) _ Q/dki_F/ko
4! (2m)3 4! (27)3 2wy, (27)3 wy
3) / &k 1 ?
T (27)3 2V/k2Z + m2
N / #ek 11\
(2m)3 wy, eBwr — 1

Jr2/d3k1/d3k’1 1
(2m)3 2wy, f (2m)3 wy eBer — 1

(2.51)

The first term is the zero temperature contribution having an ultraviolet diver-
gence and the second term is the temperature dependent part. The third term
is potentially dangerous; it is divergent and temperature dependent.

Figure 2.4: Counterterm contribution to the pressure

The counterterm contribution to the pressure is obtained by folding
fig. (2.2) as shown in fig. (2.4). Mathematically this is given by

1 1+ 2Ny
5(5”’12 (Z 2w;€/ )
1{ X 1 1+ 2Ny
-3 (T ()
A 1 1 A 1 N/
- _§Zk:ﬁzwk/_lzk:m;wk/ (2.52)

Thus the mass renormalization term cancels the potentially dangerous term
in the first order correction to the pressure in eq. (2.51) which is temperature
dependent and also ultraviolet divergent. After cancellation of that term there
is still the first term of the above equation which is ultraviolet divergent. But
this is temperature independent and thus harmless. One elegant way to avoid
this term is to define the renormalized free energy

Qr(T,m*\) = QT,m* \) — QT =0,m? \) (2.53)
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From this renormalized potential one obtain the correction of order A to the
pressure of the ideal gas in the m = 0 case

A e

The first term (already calculated) equals ”Zg‘l and the second term is
”254( 5 47r2) Thus the pressure up to first order in A is

w274 5
= 1—-——= 2.
90 < 647T2) (2:55)

Second order correction: Mathematically the second order correction to the
pressure is given by

(o s o
_ %2 (; Qik/ + Z’:) > (M)Q (2.56)

k,n

Now the second factor can be written as

K

k K k

Figure 2.5: Second order correction to the pressure

() - AT (an) e

k,n k,n= O n#0 k

where we have separated the n = 0 and n # 0 terms. For the m — 0 case

3k
(wi — k?), and defining Z = V/ ((;w)?” we get
k

1 Bk 1 dk
;T;i — /(2w)3ﬁ_> 7 % for k=0  (2.58)

i.e. this term has an infrared divergence. From eq. (2.56) the first term is the
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same as that obtained in the first order correction. Thus, as the n # 0 term is
non-divergent, the divergence becomes worse and worse as we go to higher and
higher order.

2.5.1 Infrared Divergence and resummation of ring diagrams

In order to see if the perturbation series is well behaved, it is necessary to look
at higher orders. In the previous section we have seen that higher order rings,
as in fig. (2.5), are infrared divergent as in eq. (2.58). In scalar field theories,
it is known that the dominating infrared contributions to the self energy come
from the so-called ring diagrams. Ring diagrams consist of loop diagrams of
various orders forming an infinite series, and each of them is infrared divergent.
When summed over, this series gives us a finite result as shown in eq. (2.62).
It is to be noted here that the entire sum for the n = 0 mode contributes to
the order A3/2, while each term is of higher order in A. Thus higher order loops
contribute to the pressure at lower order in coupling after summing the series. In
effect, this implies a reorganization of the perturbation series where a particular
class of diagrams are summed over in a definite way. This reorganisation of the
perturbation series is known as resummation.

For two loops with two propagators the renormalized free energy is given
by

Qp =-— 2522{ (i, k) A(iwy,, k) (2.59)

Here the first 2 factor in the denominator is the symmetry factor at each vertex
and the second 2 arise from 2 loops. For the ring diagrams, the renormalized
free energy is given by

Figure 2.6: Ring diagram

QR = Zzi{ szna ) (anak)}N

k,n N=2

25 Z {In[1 + H(iwy,, k). A(iwn, k)] — (iwn, k).A(iw,, k)
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The factor of % is a symmetry factor which can be understood in the following
way: there is a factor of 3! for connecting two lines at each vertex, a factor of
2 for how the remaining two lines at each vertex are connected to the adjacent
vertices, a factor of $(N — 1)! for the number of ways of ordering the vertices
along the circle, and a factor of - from the expansion of the exponential of the
interaction in the partition functlon. The summation over N begins at N = 2
because in case of the single loop (N = 1) the self energy contribution from the
temperature dependent part, A\T?/24, is already calculated as part of the first
order correcion.

Op = % ;H(iwn,k).A(iwn,k) - ;zk: (; Z:) 3" (Aliwn, k) +

k,n

© = D g Hiwn, k). A(iwy, k) (2.60)
Now
w 2= ; ’ = i ?
%(A( o) §<w2+w%) Ek: o g;(waer) (2.61)

The separated n = 0 term is infrared divergent for m = 0 and the n # 0 term
is proportional to 1/(/{2 + 4n27r2T2) and is non-divergent for £k — 0 due to the
existence of the 4n?m2T? term. Thus divergences become worse and worse as
we go to higher and higher order terms. Since the n # 0 term does not diverge,
we only consider the n = 0 term for the m — 0 case (see Appendix II).

o - / o gﬁg ATt
S Y] 24 k2 24 k2
N 25 67rB3 24

1 /(A)?

Thus the correction is of order /\%, not of order A2 as would have been expected.
This arises from the infrared singular behavior of the propagator.
The expression for the pressure considering upto the ring diagram is

po_ T 5 9 i%-i-
90 6472 1273 \ 24
T [ 15 A 15/ A \?
— el (AN 2.63
90 ) (247r2) + 2 (247T2) + ( )
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The first term is the pressure for a free boson gas. The second term is from
the first order correction and the third term is from the ring diagram. Thus if
one restricts oneself to the n = 0 term, i.e. the static mode, the total result
exhibits a breakdown of perturbation theory due to the infrared divergence.
Infrared divergences come from the static modes only, as w,, = 2anT acts as
a mass term in the propagator for n # 0. Thus the results obtained in naive
perturbation theories can be incomplete in the order of the coupling constant
since higher order diagrams after resummation can contribute to lower order
in the coupling constant.

2.6 Appendices

2.6.1 Interaction picture creation and annihilation operators
CLL(T) = eTH"aE(O)e*THO (2.64)
arp(t) = e Hogy(0)e "Ho (2.65)
These give
—ap(t) = e Hyay(0)e ™o — e™Hog, (0)Hye THo
= e™[Hy, ap(0)]e”"Ho
= [H07a'k(7—)]
= Y eval (Daw(n), ax(r)
= —Gk/(sk/kak/(T)

= —Gkak(T)

ar(7) = e *Tai(0) (2.66)
Similarly

al(t) = e*Tal(0) (2.67)

2.6.2 Ring diagram calculation for zero Matsubara frequency

For the ring diagram calculation the actual equation is

Vv d3k A 1 A 1
% = 5 @n) {1“ (”24 ﬂ2k2> " ﬁk} (2.68)
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To solve the above we solve the equation below,

1

I
—
o,

&

8l\.’)
/3
=
I/~
—

+
| >
S~
RM‘ o
N

1 A 3 Az 2. _, (=

1.s A2 1 1\° n\*
1. I = —— )2 Z 232 —
Jim 3)\ 7T+2x 9)\ (x) +O{<x>

~ —é)\%w (2.70)
. B In A 2In A 2\ 4 4
il_r)%l = )\x+(3 3 +9> + O(z*)
~ 0 (2.71)
Thus using eq. (2.70) and eq. (2.71),we get
I = / dr x? <1n<1—|—/\2> —)\2>
0 x x
= _%A%W (2.72)
Thus
3
V /A2 1

2.6.3 Problems

1. (a) Define the creation and annihilation operator in the interaction picture
as

a;i(T) = eTHOaL(O) e~ THo
ap(1) = eTHog(0) e o
Then show that

ar(7) = e *Tai(0)

a,t (r) = eJ““a}LC (0)

(b) The non-interacting partition function for bosons is given by Zy =
Tre—P#Ho where Hy = ni€q + noes + ... Prove the following identities:

i) ({alas) = f(e)
(i) ((alas)®) = fles)f(es) + 1] + [f(es))?

where f(e) is the Bose distribution function.
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2. Prove that

o0 n 1

(1)/ dxeﬂf T = 5n+1<(n+ DI'(n+1) (for bosons)
0 _
oo xn

(ii)/0 dxeﬂz — = 5n1+1 <1 - ;ﬁ) Cn+1DI'(n+1)) (for fermions)

3. Prove the Kubo-Martin-Schwinger condition
(AB)B([)) = (BE)A(t+ip))

Here the angular brackets represent thermal averages.

4. Prove that for a free gas the pressure becomes

7 T2
pP= f
(nB + 8nF) 90

where np and np are the degeneracies for bosons and fermions.
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