Special Conformal Transformations
and Contact Terms

Loriano Bonora

Abstract In this contribution I construct the Ward identity of special conformal
transformations in momentum space and discuss some of its consequences on con-
formal field theory correlators. I show a few examples of covariant correlators in
dimension 2 and 3 dimensions and in particular of those made of pure contact terms.
I discuss in some detail the odd parity correlator in 3d and its connection with the
gravitational Chern—Simons theory in 3d.

1 Introduction

Correlators in conformal field theories can be formulated both in configuration space
and, via Fourier transform, in momentum space. In the first form they may happen to
be singular at coincident insertion points and in need of regularization. In coordinate
space they are therefore simply distributions. In the simplest cases such distributions
have been studied and can be found in textbooks. But in general the correlators of
CFT are very complicated expressions and their regularization has to be carried out
from scratch. It is often convenient to do it in momentum space, [1] via Fourier trans-
form, and regularize the Fourier transform of the relevant correlators. This procedure
produces various types of terms, which we refer to as non-local, partially local and
local terms. Local terms, a.k.a contact terms, are represented by polynomials of the
external momenta in momentum space, or by delta functions and derivatives of delta
functions in configuration space. The unregularized correlators will be referred to as
bare correlators; they are ordinary regular functions at non-coincident points and are
classified as non-local in the previous classification. While regularizing the latter one
usually produces not only local terms, but also intermediate ones, which are product
of bare functions and delta functions or derivatives thereof. These are referred to as
partially local.
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Many general results are known nowadays about bare correlators in CFT, [2, 3].
But a complete analysis of the contact terms permitted by conformal symmetry in
various dimensions is still lacking. In this contribution I would like to argue that such
an analysis is possible and can be conveniently carried out in momentum space. The
basic tool for this analysis is the special conformal transformation Ward identity in
momentum space. The paper is intended to be an introduction to the subject and is
mostly pedagogical. I start with some basic definitions about the conformal alge-
bra in momentum space. Then I formulate the Ward Identities of special conformal
transformations in momentum space and their consistency conditions, which lead to
the corresponding cohomology, or K-cohomology. Finally I show a few examples of
covariant correlators in 2 and 3 dimensions and in particular those made of pure con-
tact terms. I discuss in some detail the odd parity correlator in 3d and its connection
with the gravitational Chern—Simons theory in 3d.

2 The Conformal Algebra and SCT’s

In this section we briefly introduce the conformal transformations in d dimensions,
in particular the special conformal (SCT) ones, which are the main subject of this
presentation. The conformal group is made of the usual Poincaré transformation plus
dilatations x# — Ax*, with generator D, and special conformal transformations with
generator K. A special conformal transformation (SCT)

, Xt 4 ptx?

=
1+2b-x + b%x2

~ xM 4+ btx? — 2b-x x*,

for b small, can be seen as a diffeomorphism x* — x* 4 £ where & = btx? —
2b-x x*. Introducing a metric 7, this implies a transformation 1, — 1., + 6¢Mu,
where

O0enuw = 0y + 0,6 = —4b-x Ny, (1)
which is a Weyl rescaling. On the other hand the square line element
dx? — x> (1 — 4b-x)
which confirms that SFT’s are Weyl rescaling, because this can be viewed as a

transformation 7, — 7, (1 — 4b-x).
The conformal generators are

L, =i(x,0, —x,0,)
K, =—i(2x,x"0, — x20p)
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They form the Lie algebra

[L/u/a L)\p] =i (7]/1,)\Lup - 77/1,/)L1/)\ - 771/)\L/1,p + 771/le1,)\)
[P*, P"]=0

[L;w’ P\l=i (WAPV - 771//\P;1)

[PH,D]=iP"

[K", D] = —iK"

[PH, K"] =2in""D + 2i L™

[K,u,’ KI/] — O
[L", D] =0
(L, KM = i K" — i K" @)

which is isomorphic to the Lie algebra of SO(d,2).

2.1 Momentum Space Algebra

If we Fourier transform the generators of the conformal algebra we get (a tilde
represents the transformed generator and 0 = 8%)

D=i(d+k"d,)
Ly = i(k,0, — k,0,)
K, =2dd, + 2k,9"d, — k,]
Notice that 15# is a multiplication operator and K 1 18 a quadratic differential operator.

The Leibniz rule does not hold for K . and ﬁu with respect to the ordinary product.
However it does hold for the convolution product:

K.(fx8) =K, ) xg+ f*(K, )

where (f * @) (k) = [dp f(k — p)g(p).
Nevertheless these generators form a closed algebra under commutation

3

[D,P,]=iP,

[D,K,]1=iK,

[K,,K,]=0

[K.. P =i(nuwD — L)
[Kx. L] = i, Ky — K,
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[ﬁ)\v Zuu] = i(n)\upz/ - 77/\1/Pu)
[lN'uz/s lN‘/\p] = i(nl//\l:up + nupiln\ - n;L/\I:Vp - nupiﬂx\

One should however remember that they do not generate infinitesimal transformation
in momentum space.

Our purpose is to use this formulation in momentum space to study the coho-
mology of SCT’s, referred to as K-cohomology, and in particular the polynomial
K-cohomology. As explained in the introduction polynomials in momentum space
represent contact terms in field theory and the latter are important in two respects,
as action terms and as anomalies. To arrive at the cohomology corresponding to a
given symmetry one needs the Ward identities of that symmetry. So the next step is
to formulate the Ward identities of SCT’s (the WI’s of the scaling transformation is
rather trivial and is understood to be always satisfied).

2.2 Ward Identities for SCT’s

Since currents and energy-momentum tensor will play the main role in the sequel,
we start with their transformation properties under SCT’s

i[Ky, Ju] = (2(d — Dxy+2xyx-0 — xza)\) J,+2 (x“]an,\u — x#J,\) 3)
i[Ky, Tyl = (deA +2x\x-0 — xzﬁ,\) T,
+2 (-xaT(wn/\u + -xaTuozn)\l/ - xpT)\V - xl/Tu)\) (4)

In momentum representation they are given by

K, J\(k) = (=20, — 2k-0 8, + k, ) Jy + 20 Jumyr — I J,) (5)
K, Try(k) = (—2k-09), + k,,i)fx,,
+ 2(8 T(ypnu)\ - 8)\ 1p + 8 T)\anup - apT/\u) (6)

where T,L,, k), f# (k) denote the Fourier transforms of 7}, (x), J,,(x), respectively.

In order to formulate Ward Identities (WI) on correlators let us couple 7}, to
an external source £, (this will eventually be identified with the background met-
ric fluctuation: g, & 1,,, + h,,), [6]. The generating function of connected Green
functions is

n+1

Wiy ] = Zzn , / de B9 (3) O1T Ty (1) - Ty i) 0.

In order for W to be invariant under SCT’s the external source £, must transform
as 6hhp,1/ = [b/\K)\()C), h/u/(x)] = [bK()C), h/“/(X)], where



Special Conformal Transformations and Contact Terms 27

i[K/\(x)’ hul/(x)] (7)
= (2x,\ x-0— xzak) hy +2 (xahm,m# + XMy — Xl — x,,hu,\)

Invariance of W[h] leads to
0=0,W = /ddx%éh“” = /ddx [b-K, b ()T (x))
_ / dx W () [b-K . (T, ()] = 0 (®)

where

0
(T, (X)) = 251‘2[(}3) = % ;/dxl . ./dxnhmw (1)« ()
X(OIT ATy, (x1) - - - Ty, (xn) }0)e ©)
Differentiating twice (8) with respect &, and integrating by parts we get
(b+K (x) + b K (1)) (01T T, (¥) T, (1)) [0) = 0 (10)
Differentiating three times (8)

(b-K(x) +b-K(y) +b-K(@)OIT T (x) T2, (y) Tap(2))[0) = 0 (1)

In both equations it is understood that the Lorentz part of b- K (x) acts on the indices
v only, b- K (y) on the indices Ap and b- K (z) on o alone.

Due to translational invariance we can set y = 0 in (10) and z = O in (11). These
equations become

b-K(x)(0|TT,,(x)Ty,(0))|0) =0 (12)
and
(b-K(x) +b-K ()07 T, (x)T,(y)To3(0))[0) =0 (13)

In these equations K ,(-) is understood as the differential operator at the RHS’s of
(3), (4). So far the results are classical. But we know that a SCT produces a conformal
factor ~ b-x. Therefore the RHS of (10) and (11) may no vanish if we take the trace
of the e.m. tensor:

(b-K(x) +b-K(Y)OITT; ()T, (3))10) = A, (x, y) (14)
(b-K(x) +b-K(y) +b- K@) OITT) (x)Th, (1 Tap(2))0) = Arpap(x, v, 2)
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The RHS’s are linear in b. They are unintegrated anomalies. Using translational
invariance we can set

b-K(x)(OIT T (x)T),(0))[0) = Aj,(x) s)

(b-K(x) +b-K()OITT; ()T (N Tap(0))10) = Aypap(x, y)  (16)
As is well known the above anomalies have to satisfy consistency conditions, which
we are going to derive next.

Coupling the current J,,(x) with a background gauge field A*(x), it is easy to
derive similar WI’s also for current correlators.

2.3 Consistency Conditions

Let us start again from W[k] and perform two SCT’s on a row. We get

5b26b1 W= 5b2 / ddx (5blh‘“’(x)

0
OhH (x)

:/ﬁﬁ/ﬁ” W (8 )
Shv (x)6h M (y) " :
SW 86, hM (x)

Shiv(x)  Sh(y)

d d 177 A 62W
=/d y/d x 1 [b1-K(x), " (xX)][ba- K (), b7 (y)]
14

&m”wﬂ

ShH (x)0h™ (y)

+ Sy 01K 056 = b K ). hf“’(y)]]

2

_ d d . Y A v
—/dy/ﬁx[le@xm(@Wnkoxw<w§ﬁqaﬁwg

- |:bl K (x), ] §(x —y) [b2- K (y), h“”(y)]]

oW
ohH (x)

after integration by parts in x. Integrating over y and integrating again by parts one
finally gets

Op, 06, W Z/ddy/ddx [[bl-K(X),h””(X)][bz-K(y),h”"(y)] x

2w
X —_—
ShH (x)0hN (y)

+ [b1-K (), [b2- K (x), b (0)]] 7)

OhH (x)
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Making the transformations in reverse order and taking the difference one gets

ow
0= 6b26le _ (5b16b2W = /ddx th(x) [[bll((x), |:b2~K(X)7 6h#y(x)i|:|

ow
_ I:bz.K(x), I:bl.K(x), 5h/“’(x)j|i|] (18)

This is equivalent to promoting b to an anticommuting parameter and writing

d ng 5W _
/d x ' (x) [b-K(x), [b~K(x), (Wl#—”(x)iH =0 (19)

In fact differentiating (18) with respect to b and b4 and (19) first with respect to b*
and then wrt to b” one gets the same result. From now on we will use the second
formulation, i.e. b anticommuting.

Differentiating (19) wrt to & several times one gets the consistency conditions for
(10) and (11). For instance

b-K (x) b-K (x){(O1T T}, (x) T, ())10) +
+b-K(y) b-K(y)(01T T, (x)T5,())[0) = 0

The RHS is strictly 0 even in the quantum theory. Due to translational invariance we
can rewrite this equation as
b-K(x)b-K(x)(07T,,,(x)T»,(0))10) = 0 (20)
and (14) becomes the consistency condition
b-K(x) Ayy(x) =b-K(x) Ay, (x) =0 2n
We can Fourier transform this equation and obtain
b-K (k) Ay, (k) =0 (22)

where K (k) is given by Eq. (6).

3 Examples

We consider now a few simple examples of the approach outlined above. Here we
limit ourselves 0-cocycles (i.e. invariants) of the K-cohomology. The analysis of
1-cocycles, i.e. anomalies, requires additional tools and will not be considered here.
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In momentum representation the CFT correlators must be annihilaged by b-K.
For instance the 2-pt function of a scalar field of weight A is ~ (k*)4~7 and

R, (k)2 =QA—d)-0- (k> ' =0 (23)

in any dimension. A less trivial, but still simple, example is the 2-pt function of two
currents in 3d

5,k — kik;

(Ji (k) J; (—k)) = 7 24)

Working out the expression

(2(19-5) — (b-kC] — 2k.5b-5)) (Ui (k) J (=)

+200'0; — b0V 1) T (=) +2('0; — b;0) (T () Ti(—k))  (25)
one can check that it is 0.

The 2-pt function of the energy momentum tensor in 3d has three possible (con-
served) tensorial structures, which are given by the expression

(T () Ty (=) = —jk—j (kik — 1k®) (kpks — 1p0k?)

",
- % [(k#k/) - nuﬁkz) (ka(f - nuakz) + 1< l/] (26)
+ To5m Lok (koko = 10k?) + €4 k” (k= k) + > v] 27)

where 7, 7/, k are (model-dependent) constants, [4, 5].
Let us show that these structures satisfy the SCT Ward identities. We have

I% kp,kyk)\kp _ b/Lka/\kp + kpbuk)\kp + k/z,kub)\kp + k/l,kl/k)\bp

— -3
k| |k|
kK, kk
_(d_g)b.kﬁT;‘P (28)
-k k, k? b-k
b-K #|k| = (d = 3)(buky, + kub,) k| + (d — 3)mkﬂku (29)

and

b-K |k|* =3(d — 3)b-k |k| (30)
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Therefore the even (nonlocal) tensorial structures (26) satisfy the SCT WI.
The third tensorial structure in 3d is parity-odd, traceless and local

< v
A<p

(T ()T (=k)) ~ €unok® (kik, — mypk?) + ( ) = Fuk) (3

Acting on it with b- K we find

b-K Fuuny = (~2k-0b-0 -+ b-k0) Funy + 20,0” = "8 Fro,
+2(b, 0" — b79,) Furrp
= —2(d — 2) b-k €7k, — 267 €0 (ki Ky — 1)k
+2(d — DK €gurbik, + 257k €xro (ks + Kutup)

T1.0 /’L <>V
DK €rroky Ty + ( ol p) (32)

This vanishes thanks to the identities

baﬁaukku - bue‘m/\kT + bTeT)\Uk”n}lV - bTe'r;wk(rnw\ =0 (33)
D7 ek + BB eonrk kT — b cpprkiks — b kK ey =0 (34)

which are consequences of

Nuv€xpe — Nur€vpo + Nup€vre — Nuo€vrp = 0

Therefore also the parity-odd structure satisfies the SCT Ward identity. Actually the
two terms in the RHS of (31) are separately invariant under a SCT. What determines
the relative — sign is the em tensor conservation.

4 Massive Fermions and Chern-Simons Theory in 3d

The examples of CFT correlators we have met before (31) were polynomials of the
coordinates divided by powers of the relative distances between the insertion points
(or their Fourier transforms). Equation (31) represents a new kind of correlator, which
corresponds in momentum space to a polynomial of the momenta. By Fourier anti-
transforming it we get,

-~ o _ By _ K<V
Ful/)\p(xs y) eu)\aa (81/ap 771/;)[') o (x y) + ()\ N p) (35)

This expression is completely localized in coordinate space, that is made solely of
delta functions and derivative of delta functions. Such expressions are called contact
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terms. The previous ones, like the even parity structures in 3d, are nonlocal terms.
It is interesting to dwell on (31) and (35) for several reasons. These formulas are
a 2-point correlator of the e.m. tensor, which has been derived only on the basis of
conformal symmetry properties. One question we may ask is whether, like in other
cases, this correlator can be obtained from the regularization of a bare one. Another
question is whether this may come from some free matter field theory, as it often
happens in other cases. The answer is negative for both questions. So it is legitimate
to ask: what is the conformal theory that supports such correlator? Well, in a sense
(31) can indeed be obtained from a free field theory, but not in the usual way, and in
another sense there is a theory that supports such correlators, but it is not free. Let
us see how.

Consider the theory of a massive fermion in 3d, minimally coupled to a metric
8uv ~ ym + h;w:

Stgl = [ dxe [i0EL9, 0~ miu]. (36)
=0 l be be __ 1 b ¢
V# = Uy + wubcz ) X7 = [’Y » Y ] .
2 4
The corresponding energy momentum tensor
I - <~ <~
T;w = Zq;b (’Yﬂ Vo + V,u,) 1;0 (37)

is covariantly conserved on shell as a consequence of the diffeomorphism invariance
of the action.

VAT, (x) =0 (38)

The presence of a mass term breaks parity. From (7), the lowest term of the effective
action in an expansion in /,, comes from the two-point function of the e.m. tensor.
So let us compute the two-point function of the e.m. tensor in this theory with
the Feynman diagram technique. The corresponding contribution comes from the
bubble diagram (one graviton entering and one graviton exiting with momentum k,
one fermionic loop):

7~-‘uz/)\p(k) = (39)
- | d3p 1 1 n <> v
= a W [Tr (p_—m(ZP - k);/%/p_k—_m(zp B k))"yf’) + (/\ <~ p):|

Working out the calculations involved (which requires also subtracting a divergent
term) yields
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K (kz/mz) - W< v
(T (k) Trp(—k))p—odd = ng €ovp k7 (kyky — KP1p0) + Ao p (40)
with
3 k? — 4m? k
/fg(kz/mz) = 2m + - arctan u , k| = v —k2 41
k2 |k| 2m

It is worth recalling that (40) is conserved and traceless.
Now let us take the IR limit of kg, i.e. the limit in which the energy |k| = VA?
becomes much smaller than the mass |m|. We get

. m
Kig = lim kg =k = — (42)
‘:7‘—>O |m|

Therefore we recover the form of (31) with a precise coefficient in front, which is
the same as in (27) with x = *1. It is remarkable that also in the UV there exists a
similar limit, [8].
Now let us Fourier anti-transform (31)
K

(T/W(X)T)\p(y))P—odd = Ee/v\o’ag (allap - 771/[)[') 5(3) ()C - y) +

+ (‘; e Z) 43)

Saturating it with 2" (x) and 2" (y) and integrating over x and y (according to the
formula (2.2), one gets

K

— / 6 (87 18,0,0 — 07 OY) (44)
T

This represents, to lowest order of approximation, the 3d CS action. It can in fact be
obtained from

K

CS=——
967

2
d3x G/W/\ (auwzhw)\ba + gwuahwubcw)\ca) (45)

by expanding the spin connection w in terms of h,,,, [7].

5 Comments

In this paper I have defined K-cohomology, and discussed some of its 0-cocycles,
i.e. correlators that satisfy the WI of special conformal transformations. It is inter-
esting to find out that there are correlators made out only of contact terms, that is



34 L. Bonora

corresponding to local action terms. I have shown the well-known example of 3d,
where there exists a two-point function of the e.m. tensor, which is of this type, and
corresponds to the lowest order expansion of the gravitational CS action. What is not
so well-known, perhaps, is that the higher order terms of the CS action correspond
to three, four, ... -point functions of the e.m. tensor. However these correlators are
not included in the usual classification of the conformal correlators, because the lat-
ter are only required to be naively conserved, i.e. in momentum representation they
are required to be transverse to the total momentum, or in configuration space to
divergenceless. Such a requirement is totally adequate for the bare correlators, but
not for correlators containing contact terms, such as (31). For the latter the usual
requirement of transversality is only adequate for two-point functions, not for higher
order ones. For instance for a three-point e.m. tensor correlator, its divergence does
not vanish but satisfies an equation that involves also the two-point correlators, and
so on, [6]. To be more concrete we show the example of 2- and 3-point function for
a current Jij. Their conservation laws takes the form

kI k) =0 (46)

v
—ig" T (ki ko) + fUTE ) + FOlT () = 0 47)

where ¢ = ki + k and J. ;f,f’ (k) and fl‘jf; (ky, k») are Fourier transform of the 2- and

3-point functions, respectively. A similar relation holds for the e.m. tensor. This part
of the research program on conformal correlators is still largely unexplored, [8].
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