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Abstract. Indoor positioning using location fingerprints, which are received
signal strength (RSS) from wireless access points (APs), has become a hot
research topic during the last a few years. Traditional pattern classification based
fingerprinting localization methods suffer high computational burden and
require a large number of classifiers to determine the object location. To handle
this problem, axial-decoupled indoor positioning based on location-fingerprints
is proposed in this paper. The purpose is to reduce the decision complexity while
keeping localization accuracy through computing the position on X- and Y-axis
independently. First, the framework of axial-decoupled indoor positioning using
location fingerprints is given. Then, the training and decision process of the
proposed axial-decoupled indoor positioning is described in detail. Finally,
pattern classifiers including the least squares support vector machine (LS-SVM),
support vector machine (SVM) and traditional k-nearest neighbors (K-NN) are
adopted and embedded in the proposed framework. Experimental results illus-
trate the effectiveness of the proposed axial-decoupled positioning method.

Keywords: Location fingerprint - Axial-decoupled - Indoor positioning -
Pattern classification

1 Introduction

With the popularity of wireless networks, the rapid growth of intelligent mobile phones
and increasing maturity of pervasive computing technology, location based services
(LBS) have attracted more and more attention and shown great popularity in many
applications, such as indoor positioning, tracking, navigation, and location-based
security [1-3]. The common positioning system such as the Global Positioning System
(GPS) doesn’t perform very well in urban settings especially inside buildings with a
limited line-of-sight (LOS) from satellites. Because of the complexity of the indoor
environment, it is usually difficult to provide a satisfactory level of accuracy in most
applications. Therefore, one of the major challenges is to design real-time and accurate
indoor positioning systems that can be easily deployed on commercially available
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mobile devices without any hardware installation or modification. Indoor positioning
systems could be used to give access to an interactive map of a building. For instance,
they could locate a person through an airport to the boarding gate, help a person find
her room or facilitate the way of finding items of a shopping list in a supermarket.

There have been a variety of studies on indoor localization. As far as the indoor
localization method is concerned, it can be categorized by the measurable quantities
obtained from the transmitted signals. Received signal strength (RSS)-based localiza-
tion methods have been extensively studied as an inexpensive solution for indoor
positioning in recent years [4—6]. Compared with other methods based on algorithms
(e.g., time-of-arrival (TOA) or angel-of-arrival (AOA) methods of UWB signals), RSS
can be easily obtained by a Wi-Fi integrated mobile device, without any hardware
installation or modification [7]. Various RSS-based indoor positioning and tracking
algorithms have been proposed using the location information of access points (APs),
which may not be available or hard to obtain in practice [8]. The major challenge for
accurate RSS-based location comes from the variations of RSS due to the dynamic and
unpredictable nature of radio channel by the structures within the building, such as
shadowing, multipath, the orientation of wireless device, etc. [9]. Then, another
approach is to pre-built radio map, termed as fingerprinting, to localize a mobile device
[10], instead of using a propagation model to describe the relationship between RSS
and position [11, 12]. Therefore, an implementation of an indoor positioning system
based on fingerprinting signals of wireless local area networks (WLANs) has been
proposed to estimate a location for indoor areas.

The location fingerprinting technique connects location-dependent characteristics
(e.g. RSS) with grids in the region of interest (ROI) through measuring signals from
available APs without knowing their location in advance, and uses these characteristics
to infer the location [13-15]. At present, the location fingerprint positioning has
attracted great attention of many researchers. The localization problem under this
framework can be modeled as a pattern classification problem since at each time instant
the user is located at a specific point in space [16, 17]. Commonly, the service area is
pre-partitioned into a set of regions (e.g., a grid of cells); each serves as a class and a
multi-class classification tool is used to assign a given fingerprint into one of these
classes. A class of popular localization algorithms is based on pattern classification
techniques including k-nearest neighbors (K-NNs), neural networks (NNs) and support
vector machines (SVMs) etc. To name a few, Zhu et al. [18] introduce grid concept,
changed position matching into multi-class classification problem and obtain the object
location by SVM. Feng et al. [5] propose an accurate RSS-based indoor positioning
system using the theory of compressive sensing, which is a method to recover sparse
signals from a small number of noisy measurements by solving an /;-minimization
problem. In [19], Shin et al. propose a fingerprint positioning multi-classifier model on
WLAN, making use of many results based on Bayesian combination rule [20] and
majority vote [21] to obtain the fingerprint position. In [22], Xiang et al. propose a
scalable semi-supervised learning (3SL) technique for building accurate fingerprinting
from a small portion of labeled samples. Dortz et al. [23] propose a new method that
compares online and offline signal strength probability distributions in order to find the
nearest offline locations.
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Traditional pattern classification based fingerprinting localization methods suffer
high computational burden and require a large number of classifiers to determine the
object location [24-26]. To handle this problem, axial-decoupled classification model
is proposed in this paper for indoor positioning using RSS fingerprinting. The purpose
is to reduce the decision complexity while keeping localization accuracy through
computing the position on X- and Y axis independently, which can reduce the number
of classifiers. Experimental results illustrate the effectiveness of the proposed
axial-decoupled positioning method.

The rest of the paper is organized as follows. In Sect. 2, the problem of fingerprint
based indoor localization framework is formulated. In Sect. 3, the proposed axial-
decoupled method for localization is given, which followed by experimental results on
both small-size and large-size dataset are included in Sect. 4. Section 5 concludes the
paper with future researching directions given.

2 Problem Formulation

Considering a typical indoor positioning scenario, where a user carries a mobile device
equipped with a WLAN adapter, using only RSS measurements from available APs.
The location of these APs is unknown. The main task of the positioning system is to
estimate the user’s current location and illustrate it on a map (floor plan) on the device.

The location of the mobile is estimated by comparing the current RSS reading with
a restored database called fingerprints, which is a table of measured RSS form a similar
device over a grid of points. Several methods can be adopted to compare the RSS
reading with the fingerprints. In this paper, axial-decoupled indoor positioning based
on location-fingerprints is proposed. As depicted in Fig. 1, the proposed positioning
system of axial-decoupled consists of two stages: offline phase (also known as training
phase) and online phase (also known as positioning phase). In the offline phase,
according to the site-surveying, the RSS from multiple APs at different grid points are
collected and stored in a fingerprint database. The vector of mean RSS values at point
on the grid is called the location fingerprint of that point. The fingerprint sample is then
compared with fingerprints stored in the radio map for determining the location of the
mobile devices on the grid.

Offline phase includes the following steps:

I. Partition the ROI into a grid of cells, each cell receives RSS samples from
wireless APs in order to build RSS feature vectors, and the sample is divided
into X- and Y-axis training samples;

II. Using a normalized X- and Y-axis training sample to train classifier indepen-
dently and obtained X-axis and Y-axis classifier.

Online phase includes the following steps:

III. A user carries a mobile device equipped with a WLAN adapter and enters the
ROI, collecting RSS sample from wireless APs at the current position. Then,
using the collected RSS sample as offline trained X- and Y-axis classifier input.
Therefore, the X- and Y-axis decision results are obtained independently;

IV. Combining the X- and Y-axis decision results to locate mobile device.
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Fig. 1. Axial-decoupled for indoor positioning classification model based on location
fingerprints

3 Axial-Decoupled Positioning

3.1 Offline Phase

During the offline phase, the samples of RSS readings are collected from known
locations, referring to the reference points (RPs), by pointing the mobile device to
different orientations. When considering an indoor positioning system covered with a
WLAN in a single floor inside a building, we assume that there are N APs in the area
and they are all visible throughout the area under consideration. A ROI is defined over
the two dimensional floor plan. Assuming the ROI is partitioned as a [, x [, grid
according to the X- and Y-axis, we have [ = [, - [, grids in the area.

In each grid, the mobile users collect the RSS fingerprints from different APs and

represented as a vector {f; = (rssi, rss}, .. .rss\, ... rssi)}._, consisting of w finger-
prints sample at location with known coordinates, where rss’ is a RSS value corre-
sponding to the i-th sample of the n-th AP’s RSS value and N is the total number of
available wireless APs. The sample of RSS feature vectors is denoted as
Sy = (f;, m;, n;), where m; and n; are respectively corresponded to the i-th sample of
the grid in the X- and Y-axis of the class number, and m;=1,2,..., [, n;=1,2,.. .1,
The sample fingerprint collection of the X- and Y-axis, i.e. fy, = (fi,m:), £, = (i, 1)
Next, using the above two kinds of samples to train the multi-classifier respectively,
and the axial-decoupled indoor positioning classification model is obtained. This lays a

foundation for the online positioning phase.

3.2 Online Phase

During the online phase, a user carries a mobile device equipped with a Wi-Fi adapter
and enters the ROL collecting RSS sample from wireless APs at the current position.
The online RSS reading is compared with fingerprints stored in the database to
determine the current localization by X- and Y-axis classifier independently. Following
the positioning result of the X- and Y-axis is obtained jointly by the classifying
decision.



Axial-Decoupled Indoor Positioning Based on Location Fingerprints 17

For example, at the current position (xz, yx), the collected RSS fingerprint is
fi = (rss1,rssa, .. .rss,, .. .rssy). The RSS fingerprints as the input of the trained offline
on X- and Y-axis classifier, and to become the decision result on X- and Y-axis
respectively. Next combine the results on both axes to locate the mobile device. The
procedure steps are as follows:

(i) The predicted class (m’;, n;‘) of the test sample f; is obtained by X- and Y-axis
classifiers, which are trained in the offline phase.
(i) The grid is determined by predicted class and the grid centroid is the predicted
coordinate Py, Py = (%, Vi)-
(iii) Adopting the 2-norm to calculate the deviation between prediction coordinate
and the actual coordinate. The location accuracy A is denoted as:

A= [P =P (1)

where P, means the actual coordinates of the k-th test sample, Py=(x, yx); ||| means a

Py — P = \/(Xk —x)? 4 G — )’

vector of 2-norm, |

3.3 Procedure of the Proposed Axial-Decoupled Method

The procedure of the proposed axial-decoupled positioning method can be presented as
follows:

I. Firstly, partitioning ROI into a grid of cells, then collecting RSS data in each cell
and decomposing into X- and Y-axis training samples. Lastly, determining the X-
and Y-position according to decomposed samples (in terms of Step 2-5),
respectively.

II. Preprocessing: Normalizing the training samples to the [—1, 1].

II1. Training phase: (i) classifier parameters: when using LS-SVM, SVM, first select
the parameters (c, g) by grid search method; (ii) train classifiers by One-
Against-All (OAA) [27] or One-Against-One (OAO) [28] approach indepen-
dently.

Axial-decoupled positioning technique classifies the fingerprint samples of X- and
Y-axis with OAO or OAA independently to locate the target. One of the differ-
ences of OAO and OAA approaches lies in the required classifiers [27, 28]: as for
k class problem, k(k — 1)/2 binary classifiers are needed for OAO approach;
however, OAA approach requires k binary classifiers.

IV. Online phase: normalizing the test samples and obtaining the X- and Y-axis
categories according to classifier results in the Step 3.
V. Calculating the positioning output according to IV.
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3.4 Performance Analysis

The common pattern classifier based fingerprint approach is to partition the ROI into a
number of regions, each representing a class. Typically, grid partitioning is used, a unit
cell of this partition is chosen as one class. If the 2D positioning area is portioned as
Iy x I, grids, each being a cell of size 1/1, x l/ly. Thus, there are I, - I, classes. Using a
multiclass classifier, a fingerprint can be classified into one of these classes and the
center of the corresponding cell is the location estimate. It refers to grid method.
However, rather than estimating both X- and Y-coordinate simultaneously, the pro-
posed axial-decoupled method estimates the coordinates independently. For the X-axis,
the area is partitioned into I, column stripes, each serving as a class. Therefore there are
I, classes for the X-axis. Using a multiclass classifier, we can classify the X-coordinate
into one of these stripes. Similarly, in a separate classification procedure, [, classes are
obtained by partitioning the area into row stripes and used to estimate the Y-coordinate.
It can be seen from the above analysis, this method uses only [, 4 I, classes, which is
much fewer than [, - [, (commonly for multi-label classifier based indoor positioning,
Iy, I, > 1). The corresponding training time is reduced because the number of classifier
decreased.

4 Experiment and Discussion

4.1 Test Dataset and Model Parameter Selection

To evaluate the performance of our axial-decoupled positioning method, we conduct
experiments using two benchmarks:

(a) Small-size dataset: This dataset is from an indoor experiment used in [25]
(University of Trento), containing a collection of 257 RSS fingerprints at 257
sample locations in a WLAN with 6 APs (Fig. 2). The sample locations are
regular-grid points of the floor. Each fingerprint is measured at a sample location
by a person carrying a personal digital assistant (PDA), as a receiver receiving
signals from the APs. The PDA always points at north. A random 90 % of this
collection (232 samples) is used for training and the rest of the samples (25
samples) are for testing.

(b) Large-size dataset: This dataset is from a real-world large-scale RSS dataset (From
Xiangtan University Building of College of Information Engineering). The ROI is
aroom with an area of 14 m x 6 m. In this room area, 84 partitioned grids of size
I m x I m are used. A fully regular grid could not be followed due to the
presence of various obstacles such as tables and other furniture. RSS fingerprints
are collected from 84 grids in a WLAN with twelve APs. It should be pointed out
that only 4 of APs’ positions are given previously. Measurements on some grids
are in NLOS condition due to the obstacles such as wall, desk and other devices
while others are in LOS condition. For each grid, we collect 40 RSS measure-
ments from all APs by a person carrying a PDA, and the PDA points at four
different heading orientations (east/west/south/north). This results totally 3360
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Fig. 2. The small-size dataset’s map: 30 m x 25 m (after [25]); the blue diamond represents the
position of the six access points

samples, from which we randomly use 90 % dataset as the training set (3024
samples) and the rest of the samples (336 samples) for testing.

The experimental operation environment is Windows XP operating system, CPU
G645, 3.47G RAM, MATLAB R2009a. In order to compare the advantages of the
axial-decoupled indoor positioning method to traditional indoor positioning method,
pattern classifiers like LS-SVM, SVM, and K-NN are applied to location fingerprint
positioning framework. When using LS-SVM and SVM, we need to choose kernel
function of the condition to satisfy Mercer [29]. There are a variety of kernel functions
such as polynomial functions, radial basis functions (RBF) and sigmoid kernel. We
take RBF as kernel function in the all experiments. Before the application of LS-SVM
and SVM classification, the regularization and kernel parameter (c,g) should be
determined. Regularization parameter ¢ affects the generalization ability of the classifier
by controlling the misclassification rate. Parameter ¢, which is too high, will cause the
fact that the accuracy of training set classification is too high while the accuracy of test
set classification is too low. Parameter g determines the complexity of sample feature
subspace distribution. Therefore, the parameter ¢ and g jointly influence classifier
generalization ability and the final location accuracy. In this section, the apartments are
determined through grid searching from [271° 2!%]. For K-NN, K (e.g., 1, 3 or 5)
represents the number of nearest-neighbor fingerprints used to estimate the unknown
location, while distance-type can be “E” and “M” that presents Euclidean distance and
Manhattan distance, respectively.

For ease of presentation, classifiers under axial-decoupled framework are denoted
as AD-LS-SVM, AD-SVM, AD-INN(E), AD-INN(M), AD-3NN(E), AD-3NN(M),
AD-5NN(E), AD-5NN(M), respectively.
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4.2 Results and Discussion

A. Small-size Dataset

In the small-size dataset experiment, the grid size parameter is I, x [, € {7 x 7,
8 x 8,...,15 x 15}. To compare the proposed method with traditional method, we use
LS-SVM, SVM and K-NN classifier for the positioning of axial-decoupled or tradi-
tional grid method. Figure 3 is the experimental result (various cases of LS-SVM and
SVM adopts OAO combination approach) of LS-SVM and SVM classifier under the
condition of decoupled and non-decoupled in the different grid size.

From Fig. 3, we can see that the following conclusions:

(1) Decoupled vs. Non-decoupled: For LS-SVM and SVM, location accuracy and
computation time of the decoupled are obviously better than the non-decoupled.
In terms of location accuracy, the grid size shows slightly influence on decou-
pled positioning method. With the successive increase of grid density, location

* —A— AD-LS-SVM
P —8— LS-SVM
»* AN - @ - AD-SVM
12 5 N Yy —¥-svm
/ \ N
*o Ve N RN e
SS ’ N, 4 A -
~ois N \ "
g0 X 7
2 \ L
3 \
Z NP
- .
1 *
S 8
3
P
1)
&
£
s
2
< 6
"I'\'
— ]
4
?u‘l—————-—‘l——-‘._*_‘ Q- —@-———O
2 i i
X7 8x8 99 10x10  11x11 12x12 13x13 14x14 15x15
Grid Size

(a) Location accuracy

60

—&— AD-LS-SVM e
—— LS-SVM -7
50 = @ - AD-SVM <
¥ -svm -7

40 <

Time(s)
g
\
AY
\

P G SR S
Tx7 8x8 9x9 10x10 11x11 12x12 13x13 14x14 15x15
Grid Size
(b) Time complexity

Fig. 3. Location accuracy and time complexity of different methods



Axial-Decoupled Indoor Positioning Based on Location Fingerprints 21

accuracy changes in positioning method based on decoupled classifier relatively
tends to be slow, while the change of the non-decoupled classifier is much more
severe. As we can see from Fig. 3(a), When the grid size is 15 x 15,
AD-LS-SVM will get a relatively good location accuracy (2.1071 m), it is a half
of LS-SVM (5.1051 m). When it comes to computational costs, the time needed
for decoupled classifier is far less than non-decoupled classifier. As the grid
density increased, time needed for two kinds of classification methods is also
increased accordingly. But the growing speed in non-decoupled is much faster
than the decoupled positioning technique proposed in this paper. It is observed
from Fig. 3(b), the time of LS-SVM (30.62 s) needed is 80 times longer than
that of AD-LS-SVM (0.38 s) in the grid size of 15 x 15. Therefore, the location
fingerprint positioning method of axial-decoupled has higher location accuracy
and a lower computational cost than non-decoupled.

(i) LS-SVM vs. SVM: In non-decoupled, LS-SVM and SVM differ largely both in
location accuracy and computation time. When concerning location accuracy,
LS-SVM is higher than SVM, the location error of which is almost twice than
that of the former. As the increase of grid density, LS-SVM location accuracy is
relatively stable, while the SVM is volatile. In terms of computation time,
LS-SVM under the same grid is much lower than SVM, the cost of which is
almost twice to three times than that of the former. It is observed that the time of
SVM method increase faster when the grid becomes denser, the time of SVM is
even longer than that of LS-SVM. Because the number of classes in each method
increases with the grid becomes denser. Therefore, LS-SVM has both a better
positioning effect and a lower time complexity than SVM in non-decoupled.

(iii) AD-LS-SVM vs. AD-SVM: For the evaluation, the AD-LS-SVM is comparable
to AD-SVM both in location accuracy and computation time. When the grid
becomes larger, the location accuracy of AD-SVM is slightly higher than
AD-LS-SVM. In the case (I,[,) = (10,10), where the location accuracy
remains the same. With the grid density increased, not only the location accuracy
of AD-LS-SVM is slightly better than AD-SVM but also the computation time
needed for AD-LS-SVM in any grid density is less than AD-SVM.

In order to further analyze the decoupled positioning technique. Figure 4 shows the
average location accuracy and time complexity varying with the grid density. Here we
adopt OAO and OAA approach for AD-LS-SVM and AD-SVM classifier.

From Fig. 4, we can see that the following conclusions:

(i) Location accuracy of OAO and OAA: For a specific classifier (e.g., LS-SVM or
SVM), positioning accuracy of the classifier based on OAO approach is slightly
higher than that of OAA approach. With the increase of grid density, the posi-
tioning accuracy changes of OAO and OAA is similar, in other words, the
location accuracy is worse with the grid density increased. But when the grid
density reaches a certain value (e.g., 11 x 11 for AD-SVM-OAA, 12 x 12 for
AD-SVM-OAO), the Ilocation accuracy becomes rather poor (except
AD-LS-SVM-OAO).



22 W. Yanhua et al.

35

—A— LS-SVM-0A0
—#— LS-SVM-0AA
=¥ -SVM-0A0

— @ - SVM-0AA *

- N *b--___**

. @
¥
1
I
1
|
*
\
%
*
\,
\

»

Average accuracy(m)

> o
e
2.5 ~y
A—ua
\x
2
77 8x8 9x9 10x10  1ixi1 12x12 13x13 14x14  15x15
Grid Size
(a) Location accuracy
3 I T
—A— LS-SVM-0AO s
—— LS-SVM-0AA e
=¥=-SVM-0A0 4
251
— @ -SVM-0AA [ - 4
R 1
/
/
/
2 5
! e
_ A
e ¥
£ 15 T oL
= -~
e v
L -
. -
7
[ e
05
3
- I
-
0 i i i i
7 88 99 10x10 11x11 12x12 I3xI3 14x14 15x15
Grid Size

(b) Time complexity

Fig. 4. AD-LS-SVM, AD-SVM: OAO vs. OAA

(i) Computational complexity of OAO and OAA: For LS-SVM, we can see that the
time of OAO approach increases faster when the grid becomes denser, especially
when the grid increases to a certain extent (e.g., 11 x 11 or 12 x 12) or more, the
time of OAO is even longer than that of OAA. Because classification function
increases with classes, and lower its speed in the decision-making process.
Similarly, the same conclusions can be obtained as for SVM.

From the above analysis, we can see that the positioning precision of OAO
approach is superior to OAA for a specific classifier. The computation time has rela-
tionship with the size and class of training samples. When the grid density is small, the
computation time is lower than that of OAA. When the grid density is increased to a
certain extent, costs of the former will surpass the latter, and both computational costs
are increasing. Figure 5 shows the average location accuracy of K-NN classifier in
decoupled and non-decoupled conditions when the grid parameter is 7 X 7.
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Fig. 5. K-NN’s location accuracy varying with different K under decoupled and non-decoupled
conditions

From Fig. 5, it is clearly see that the location accuracy of decoupled K-NNs is
superior to non-decoupled ones, but both of them are worse than AD-LS-SVM and
AD-SVM. Furthermore, the number of neighbors also affects the performance of
technique and the value of K must be chosen carefully. When K = 3, the location
accuracy is commonly superior to K = 1 and K = 5, whether using Euclidean distance
or Manhattan distance. In addition, we can see that the precision is higher in using
Euclidean distance when K = 3. It is because that taking only one neighbor into
consideration may obtain a good accuracy but poor robustness. On the other hand,
considering too many neighbors, even if it limits the risk of wrong neighbor, widens
the potential area for the estimate location and thus leads to a lower accuracy.

B. Large-size Dataset

To show how our algorithm is also suitable for large-size dataset, the following
experiment is made. In the large-size dataset experiment, the grid size parameter is
I, x I, = 14 x 6. When comparing the proposed method with traditional method, we
also use LS-SVM, SVM and K-NN classifier for the positioning of axial-decoupled and
traditional grid method. Figure 6 is the experimental result (various cases of LS-SVM
and SVM adopts OAO combination approach) of LS-SVM and SVM classifier under
the condition of decoupled and non-decoupled.

Figure 6 shows the average localization accuracy and time complexity varying in
decoupled and non-decoupled conditions. As noticed, the location accuracy and
computation time of proposed decoupled method are obviously better than traditional
grid method. Comparing four methods in the Fig. 6, we observe that AD-LS-SVM is
the one with the best location accuracy (1.7217 m) and the lowest computational
burden (0.4649 s), while SVM is the contrary. As we can see from Fig. 6, it’s obvious
that LS-SVM has a better location accuracy and the lowest time compared with the
SVM. This experiment strongly indicates that, for the large-size dataset, our proposed
method is substantially better than traditional grid methods.

Figure 7 shows the average location accuracy of K-NN classifier in decoupled and
non-decoupled when the grid parameteris 14 x 6. From Fig. 7, we can clearly see that the
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location accuracy of decoupled K-NNs is superior to non-decoupled ones. Both can
obtain similar accuracy with decoupled LS-SVM and decoupled SVM. It is observed that
the Euclidean distance and Manhattan distance provide similar results. In addition, the
number of neighbors also affects the performance of technique and the value of K must be
chosen carefully. Figure 7 shows that for K-NNs a smaller K corresponding to better
location accuracy. The best location accuracy (1.6288 m) is achieved by 1NN(E).

C. Remarks

Our experiment with the small and large datasets has shown that: (1) axial-decoupled
method is much better than traditional grid method, both in location accuracy and
computation complexity; (2) AD-LS-SVM and AD-SVM are comparable with each
other, the former is slightly more accurate and faster; (3) Among the traditional grid
methods, LS-SVM is obvious better than SVM and with the best location accuracy and
the lowest computational burden; (4) LS-SVM and SVM are substantially less accurate
than K-NN in the traditional grid methods; (5) The location accuracy of OAQO approach
is superior to OAA for a specific classifier.
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5 Conclusion and Future Work

Axial-decoupled indoor positioning based on location fingerprints is proposed. The
experiment results of traditional methods such as LS-SVM, SVM and K-NN show that
axial-decoupled ones are much better than traditional grid ones, both in location
accuracy and computation complexity. In the near future, we would focus on studying
the feature selection of RSS and the dynamic target tracking that based on the
axial-decoupled indoor positioning.
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