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Abstract. In this paper, a novel multi-task learning (MTL) framework
for a series of Gabor features via joint probabilistic outputs of support
vector machines (SVM), abbreviated as GF-MTJSVM, has been pro-
posed for Hyperspectral image (HSI) classification. Specifically, we firstly
use a series of Gabor wavelet filters with different scales and frequencies
to extract spectral-spatial-combined features from the HSI data. Then,
we apply these Gabor features into the multi-task learning framework via
joint probabilistic outputs of SVM. Experimental results on two widely
used real HSI data indicate that the proposed GF-MTJSVM approach
outperforms several well-known classification methods.

Keywords: Hyperspectral image classification · Multi-task support vec-
tor machines · Gabor features

1 Introduction

Hyperspectral sensors collect information as a set of images. Each image repre-
sents a narrow wavelength range of the electromagnetic spectrum, also known as
a spectral band. Each pixel in a hyperspectral image (HSI) is a high-dimensional
vector whose entries are the spectral responses of various spectral bands. The
very informative spectral information of the HSI pixels can be utilized to distin-
guish objects in the image scene. As a major application of hyperspectral data
analysis, pixel-oriented classification has been widely adopted [6,22,26]. In the
hyperspectral supervised classification case, the class label of each pixel, denoted
by a vector whose entries correspond to the narrow spectral band responses, is
determined by a given training set from each class [5,7,13,17]. To tackle the prob-
lem, many classifiers have been employed, including K-nearest neighbors (KNN)
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[9], support vector machines (SVM) [8], sparse representation-based classifica-
tion (SRC) [33]. However, due to the high dimensionality in spectral domain of
HSI, finding optimal parameters for the supervised classifiers is time-consuming.
Meanwhile, due to the extremely high spectral dimensionality of the data, the
small sample size scenario (it is very difficult and time consuming to collect
sufficient training samples in practice) is one crucial problem that limits the
performance of many existing classification methods [18,27].

Recently, many spectral-spatial classification methods in HSI have been pro-
posed to improve the accuracy further. The spectral-spatial classification meth-
ods can be roughly divided into two categories. The first one is that the spectral
and spatial contextual information is exploited separately, that is, the spatial
dependencies are extracted through various spatial filters (such as morphological
[3,11,14,20], range [24], entropy [32], low-rank representation [36]) in advance,
and then combined with the spectral features (or dimension reduced ones) to
perform pixel-wise classification, or the spatial information is used to refine the
classification results through a regularization process in the postprocessing stage
[31], including Markov random field [30] and graph cuts [19]. However, a large
number of training samples is generally required to adequately characterize the
large variability of the objects, which is difficult to meet in most circumstances.
The second one is that the spatial information is directly fused with the spec-
tral features to produce joint features [21]. For example, a set of filters (such
as wavelets [28], Gabor wavelets [2,29]) can be applied on the hyperspectral
data to extract spectral-spatial-combined features. Meanwhile, in recent years,
multiple features combines to design a classifier has been a growing trend for
the hyperspectral classification. It is obvious that multiple features can provide
diverse information in characterizing object from different viewpoints. So it is
always can achieve a better classification accuracy through combination of a set
of modalities of features [35]. Several methods, such as Multiple Kernel Learning
(MKL, in which the similarity functions between images are linearly combined)
[15,16], SVM ensemble (inspired by linearly programming Boosting) [12], have
been developed for multi-class object classification. Zheng et al. [37] applied the
multi-task joint sparse representation classification (MTJSRC) proposed in [35]
with spatial filtering postprocessing into large-scale satellite image annotation
and obtained excellent results. These methods all can obtained excellent results,
but require either a large amount of computation time, or very complex model
to construct a multi-task learning framework.

In this paper, a novel and simple multi-task learning (MTL) framework for
a series of Gabor features via joint probabilistic outputs of SVM, called as GF-
MTJSVM, was proposed for HSI classification. Firstly, a series of Gabor features
were extracted by applying a set of predefined Gabor filters (with different scales
and orientations) on the original hyperspectral data, which contains the wealth
of information about signal changes in the local area, and provide an important
classification identification information. Then, the multi-task learning via joint
probabilistic outputs of SVM was applied for material identification. In the GF-
MTJSVM framework, we simply combined category probabilistic outputs for the
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SVM of each Gabor cube features as the final category probabilistic outputs.
Experimental results on two real hyperspectral data with different spectral and
spatial resolutions demonstrated the effectiveness of the proposed Gabor feature-
based multi-task joint support vector machines Framework for hyperspectral
image classification.

The rest of the paper is organized as follows. In Sect. 2, we introduce the basic
Gabor filters and the classical support vector classification is described later on.
Section 3 presents the proposed GF-MTJSVM approach, in detail. Experiment
was run on two real hyperspectral data set and the results are shown in Sect. 4.
Section 5 concludes the paper with a summary of the proposed work.

2 Related Work

2.1 Gabor Functions and Wavelets

Texture analysis has a long history and texture analysis algorithms range from
using random field models to multiresolution filtering techniques such as the
wavelet transform [23]. A two dimensional Gabor function Ψ = (x, y) can be
written as:

Ψ(x, y) =
(
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Gabor function form a complete but nonorthogonal basis set. Expanding a
signal using this basis provides a localized frequency description. A class of self-
similar functions, referred to as Gabor wavelets in the following discussion, is
now considered. Let Ψ(x, y) be the mother Gabor wavelet, then this self-similar
filter dictionary can be obtained by appropriate dilations and rotations of Ψ(x, y)
through the generating function:

Ψmn (x, y) = a−mΨ (x′, y′) , a > 1, m, n = integer

x′ = a−m (x cos θn + y sin θn) , and y′ = a−m (−x sin θn + y cos θn) .
(2)

Where θn = nπ/K and K is the total number of orientations. The scale factor
Sm = a−m in (2) is meant to ensure that the energy is independent of m.
Through change the scaling size and the direction of rotation, we can get a
group of Gabor wavelets.

2.2 Classical Support Vector Classification (C-SVC)

Given training vectors xi ∈ R
n, i = 1, ..., l, in two classes, and an indicator

vector y ∈ R
l such that yi ∈ {1,−1}, C-SVC [4,10] solves the following primal

optimization problem:

min
w,b,ξ

1
2
wTw + C

l∑
i=1

ξi

subject to yi

(
wT φ (xi) + b

) ≥ 1 − ξi,

ξi ≥ 0, i = 1, ..., l.

(3)
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Where φ (xi) maps xi into a higher-dimensional space and C > 0 is the regular-
ization parameter. Due to the possible high dimensionality of the vector variable
w, usually we solve the following dual problem:

minα
1
2αTQα − eT α

subject to yT α = 0, 0 ≤ αi ≤ C, i = 1, ..., l.
(4)

Where e = [1, ..., 1]T is the vector of all ones, Q is an l by l positive semi-definite
matrix, Qij ≡ yiyjK (xi,xj) ≡ φ (xi)

T
φ (xj) is the kernel function.

After problem 4 is solved, using the primal-dual relationship, the optimal w
satisfies:

w =
l∑

i=1

yiαiφ (xi) (5)

Then we can get the threshold output of a vector x:

f (x) =
l∑

i=1

yiαiK (xi,x) + b. (6)

And the decision function is:

h (x) = sgn (f (x)) . (7)

3 Gabor Feature-Based Multi-task Joint Support Vector
Machines for Hyperspectral Classification

After introducing the basic Gabor function and classical support vector classi-
fication in the previous section, a novel multi-task framework for hyperspectral
classification, which is named the GF-MTJSVM, is proposed in this section. The
framework GF-MTJSVM consists of two main steps, Gabor features extraction
and combine the probabilistic outputs of SVM for each Gabor features. Figure 1
illustrates the schematic diagram of the proposed strategy.

3.1 Gabor Features Extraction for Hyperspectral Image

The nonorthogonality of Gabor wavelets implies that there is redundant informa-
tion in the filtered images. In order to reduce this redundancy, B.S. Manjunathi
et al. [23] proposed an effective strategy to design the Gabor filter dictionary.
From the design of the Gabor filter dictionary, we can get a series of Gabor
wavelet filters with different scales and frequencies. Denoted a set of 2-D Gabor
filters as {Ψi, i = 1, 2, ..., I} (I is the number of Gabor filters) and the origi-
nal hyperspectral data as R ∈ R

X×Y ×B . For each Ψi at each spectral band
λ, the magnitude Mi (x, y, λ) = | (R ∗ Ψi) (x, y) | contains rich signal change
information around location (x, y), where ∗ is the convolution operation, and
Mi (x, y) = [Mi (x, y, 1) ,Mi (x, y, 2) , ...,Mi (x, y,B)] is the responses of the i-th



18 S. Jia and B. Deng

Fig. 1. Framework of GF-MTJSVM

Gabor filter at all bands. Through applying Ψi on all pixels of the hyperspec-
tral image data, a Gabor cube Mi ∈ R

X×Y ×B can be obtained, which has the
same size as the original hyperspectral data R. Further, after each Gabor filter
Ψi, i = 1, 2, ..., I has been convolved with the hyperspectral image data, a total
of I Gabor cubes Mi, i = 1, 2, ..., I were extracted.

3.2 Combine Probabilistic Outputs of SVM for Gabor Features

Given k classes of hyperspectral data R ∈ R
X×Y ×B , and its corresponding i-th

Gabor cube Mi ∈ R
X×Y ×B from Sect. 3.1. For each pixel x ∈ R

B need to predict
class label in the hyperspectral data R, and the x(i) ∈ R

B is it corresponding
i-th Gabor feature from Gabor cube Mi, our first goal is to estimate

p(i)m = P
(
y = m|x(i)

)
, m = 1, ..., k. (8)

Following the setting of the one-against-one approach for multiclass classifi-
cation, we first estimate pairwise class probabilities

r(i)mn ≈ P
(
y = m|y = m or n,x(i)

)
(9)

If fi is the decision value at x(i) from the formula 6, then we assume

r(i)mn =
1

1 + eafi+b
(10)

where a and b are estimated by minimizing the negative log likelihood of training
data (using their labels and decision values) [25].
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After collecting all r
(i)
mn values, Wu et al. [34] propose two approaches to

obtain p
(i)
m ,∀m. we consider their second approach and solve the following opti-

mization problem.

min
p(i)

1
2

k∑
m=1

∑
n:n�=m

(
r(i)nmp(i)m − r(i)mnp(i)n

)2

subject to p(i)m ≥ 0,∀m,

k∑
m=1

p(i)m = 1

(11)

Finally, the class label of x is predicted to the class with the biggest total
probability over all the I tasks, i.e.,

Class(x) = arg max
m

I∑
i=1

p(i)m (12)

Where I is the total number of the Gabor cubes.

4 Experimental Results

In this section, the performance of the proposed GF-MTJSVM method is tested
in classification of two real hyperspectral imagery. The classification results are
compared with state-of-the-art methods, i.e., support vector machines (SVM),
sparse representation-based classification (SRC), and extended morphological
and attribute profiles (EMAP) [11]. In the experiments, the Homotopy method
is used to recover the sparse signals [1], the parameter of sparsity factor in SRC
was set to be 0.01, while rbf-kernel and one-against-all scheme in SVM was used
for the remaining methods. Besides, the C parameter of SVM is estimated by
ten-fold cross validation. After the training set has been randomly partitioned
into ten groups, nine groups are used to train a set of models that are evaluated
on the remaining group. This procedure is then repeated for all ten possible
choices for the held-out group, and the performance scores from the ten runs
are then averaged. The performance of the compared techniques is evaluated
with different samples (i.e., 5, 6, 7, . . . , 15) are selected from each class to form
the training set. And the remaining samples are then used as the test set for
evaluation. Each experiment is repeated ten times with different training sets
to reduce the influence of random effects, and both the mean and standard
deviation are reported. In the experimental results, overall accuracy (OA) and
kappa coefficient (κ) are used as measures of accuracy.

4.1 Indian Pines Data Set

The first real-world data set to be used is the commonly used Indian Pines data
set acquired by the AVIRIS instrument over the agricultural area of Northwest-
ern Indiana in 1992, which has a spatial dimension of 145× 145 and 224 spectral
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Table 1. Land cover classes with number of samples for the Indiana Pines data

Class Land cover type No. of samples

C1 Alfalfa 54

C2 Buildings-grass-trees-drives 380

C3 Corn 234

C4 Corn-min till 834

C5 Corn-no till 1434

C6 Grass-pasture-mowed 26

C7 Grass/pasture 497

C8 Grass/trees 747

C9 Hay-windrowed 489

C10 Oats 20

C11 Soybean-clean till 614

C12 Soybean-min till 2468

C13 Soybean-no till 968

C14 Soybean-steel-towers 95

C15 Wheat 212

C16 Woods 1294

Total 10366

bands. The spatial resolution of the data is 20 m per pixel. After discarding 4
zero bands and the 35 lower SNR bands affected by atmospheric absorption, 185
channels are preserved. The data set contains 10366 labeled pixels and 16 ground-
truth classes, most of which are different types of crops (see Table 1). Figure 2
shows the ground-truth map containing 16 mutually exclusive land-cover class.

Stone−Steel−Towers
Hay−windrowed
Corn−mintill
Soybean−notill
Alfalfa
Soybean−clean
Grass−pasture
Woods
Buildings−Grass−Trees−Drives
Grass−pasture−mowed
Corn
Oats
Corn−notill
Soybean−mintill
Grass−trees
Wheat

Fig. 2. Ground-truth map of the Indian Pines data set (sixteen land cover classes).
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Fig. 3. Overall accuracy and kappa coefficient of the Indian Pines data set.

Figure 3 displays the overall accuracy (OA) and kappa coefficient measure as
functions of the number of training samples per class (5, 6, 7, . . . , 15). From the
figure we can see, the performance of the GF-MTJSVM method is significantly
higher than those methods (SVM, SRC, EMAP), demonstrating the superiority
of the GF-MTJSVM framework.

Table 2. Land cover classes with number of samples for the Kennedy Space Center
data

Class Land cover type No. of samples

C1 Scrub 761

C2 Willow swamp 243

C3 Cabbage palm hammock 256

C4 Cabbage palm/oak hammock 252

C5 Slash pine 161

C6 Oak/broadleaf hammock 229

C7 Hardwood swamp 105

C8 Graminoid marsh 431

C9 Spartina marsh 520

C10 Cattail marsh 404

C11 Salt marsh 419

C12 Mud flats 503

C13 Water 927

Total 5211
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Scrub
Willow swamp
Cabbage palm hammock
Cabbage palm−oak hammock
slash pine
Oak−broadleaf hammock
Hardwood swamp
Graminoid marsh
Spartina marsh
Cattail marsh
Salt marsh
Mud flats
Water

Fig. 4. Ground-truth map of the Kennedy Space Center data set (thirteen land cover
classes).
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Fig. 5. Overall accuracy and kappa coefficient of the Kennedy Space Center data set.

4.2 KSC Data Set

The second data set that we used in our experiments was acquired by the AVIRIS
sensor over the Kennedy Center (KSC), Merritt Island, FL, USA, on March 23,
1996. Figure 4 depicts the ground-truth map of the land covers. In the original
224 bands, 48 bands are identified as water absorption and low-SNR bands
(numbered 1–4, 102–116, 151–172, and 218–224), which are discarded, and only
176 bands remain. The spatial resolution of the data is 18 m per pixel. For
classification purposes, 13 classes representing the various land-cover types that
occur in this environment were defined for the site (see Table 2).

Figure 5 displays the overall accuracy (OA) and kappa coefficient measure as
functions of the number of training samples per class (5, 6, 7, . . . , 15). Same
as the first experiment, the results obtained by our GF-MTJSVM method are
more accurate than those of the other three ones. For these two experimental
both demonstrating the superiority of the GF-MTJSVM framework.
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5 Conclusion

In this paper, we propose the GF-MTJSVM framework for hyperspectral image
classification. We observe that the multi-task joint support vector machines is
a simple yet effective way to fuse multiple complementary Gabor features to
improve the classification accuracy for the small training sample classification
task. Experiments on two real-world hyperspectral data show that our method
performs quite competitive to several representative state-of-the-art methods. In
summary, we can conclude with observations that Gabor feature-based multi-
task joint support vector machines is an effective method for hyperspectral image
classification with small training sample.
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