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Abstract. In this paper we propose a Language-Extension-based Vectorizing
Compiling Scheme (LEVCS) for a newly developed DSP. The DSP is mainly
designed for Software-Defined Radio (SDR) and is called SDR-DSP. The SDR-
DSP architecture mixes the styles of VLIW (Very Long Instruction Word) and
SIMD (Single Instruction Multiple Data). To explore the potential of SDR-DSP
and achieve high performance, vectorization is one of the must equipped critical
methods. Because auto-vectorization techniques cannot satisfy the requirements
of the typical application, LEVCS is used to direct the vectorization. The C-
extending programming language used in LEVCS is called SDR-DSP-C. LEVCS
uses flexible data reorganization to make vectorization on SDR-DSP more effi‐
cient. We use LEVCS to vectorize five benchmark kernels: Fast Fourier Trans‐
form (FFT), Finite Impulse Responsefilter (FIR) and Infinite Impulse Response
filter (IIR), Dot product implementation (Dotprod), Sum of vectors (vecsum).
Experiment results show that LEVCS is functional correct and can achieve 2.883–
8.074 speedups comparing to TI-DSPs.
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1 Introduction

With the development of wireless communication techniques, the performance require‐
ment of DSP becomes higher and higher. Software-defined radio (SDR) is a new
communication technique, which implements radio functions in software. SDR becomes
popular because it meets the trend for better flexibility and scalability [1]. To meet the
requirements of high-throughput and low-power, SDR processor requires more compli‐
cated architecture than traditional digital signal processor [2]. SIMD processing
becomes one of the main architecture of DSP to meet real-time performance require‐
ments of SDR solutions [4]. We design and develop a new DSP architecture for high
performance applications, which is named SDR-DSP. It has a new instruction set and it
is based on VLIW [6] and SIMD [7]. It includes two processing units, which are called
SU (scalar unit) and VU (vector unit). SDR-DSP also has FPU (floating point units) and
it can support single floating-point and double floating-point efficiently.

Today most DSP applications is implemented using a combination of both C code
and assembly code. For the critical code which is important to performance, DSP

© Springer Nature Singapore Pte Ltd. 2016
W. Xu et al. (Eds.): NCCET 2016, CCIS 666, pp. 15–23, 2016.
DOI: 10.1007/978-981-10-3159-5_2



programmers use highly optimized assembly code [11]. The DSP compilers always
supply libraries written in assembly code to support SIMD application.

The CEVA-X C family of DSP cores features acombination of VLIW and Vector
engines that enhance typical DSP capabilities with advanced vector processing. The
CEVA-XC4000 is the third generation of the CEVA-XC family [9]. Its VLIW archi‐
tecture shares many similarities with TI (TexasInstrument)’ C64x DSP family [8] but
only supports fixed-point computation. The lack of FPU implies that the CEVA-dsp
cannot efficiently support floating-point applications [10]. CEVA-DSP compiler uses
the mode of combining C code with assembly code. It mainly uses assembly intrinsic
for SIMD operations [11].

The C6678 DSP is a high-performance fixed/floating-point DSP based on TI’s
Keystone multi-core DSP architecture C66x. The C66x Digital Signal Processor (DSP)
extends the performance of the C64x+ and C674x DSPs through enhancements and new
features. Many of the new features target increased performance for vector processing
[12]. TI’s C66x compiler also uses the mode of combining C code with assembly code.
It supports SIMD by using the mode of interfacing C and C++ with assembly
language [13].

Writing assembly code is difficult and time consuming. The assembly programmer
has to handle time consuming machine-level issues such as registers allocation and
instruction scheduling. The work on vectorization must be done manually by assembly
programmers. It will be more convenient if these issues can be taken care of by the
compiler [11]. If compiler supports high-level vectorized language, programmers can
utilize architecture characteristics by using high-level language.

SDR has a large amount of frequently changing radio communication algorithm [3],
the high-level language developing environment for SDR-DSP is urgent. The architec‐
ture of SDR-DSP requires more complicated compiling techniques to develop data
parallelism and instruction parallelism. SDR-DSP has special VU to support SIMD.
Making good use of the SIMD architecture characteristics of SDR-DSP is critical to the
performance. So the support to vectorization of SDR-DSP compiler is very important.

Today the techniques of autovectorization of compilers are not mature. Saeed Maleki
et al. evaluate the vectorization capabilities of today’s most popular compilers [14]: GCC
(version 4.7.0), ICC (12.0) and XLC (11.1). They use different benchmarks which include
a set of synthetic benchmarks, two applications from PACT and the Media Bench appli‐
cations. The results of the evaluation show today’s compilers can at most vectorize 45–71%
of the loops in the synthetic benchmark and only 18–30% in the collection of application.
Today’s popular compilers are not effective in autovectorization and it is difficult in
compiling field. It needs long time and large amount of research to find scientific opti‐
mized ways to solve this problem. SDR-DSP is designed for wireless communication and
the requirement to develop high performance applications is urgent. It is essential for us
to find a new scheme of vectorizing compiling for SDR-DSP.

This paper gives a Language-Extension-based Vectorizing Compiling Scheme for
SDR-DSP. For convenience, we call it LEVCS. We design a C-extending programming
language called SDR-DSP C and develop a vectorizing compiler to support SDR-DSP
C. LEVCS can support SDR-DSP C and flexible data reorganization. In this paper,
Sect. 2 describes the architecture of SDR-DSP. Section 3 introduces LEVCS, including
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language extending for vectorization and Data reorganization for vectorization.
Section 4 gives the results of the experiment and performance analysis.

2 Architecture of SDR-DSP

As shown in Fig. 1, SDR-DSP consists of two processing units: SU (scalarunit) and VU
(vectorunit). SDR-DSP can issue ten instructions per clock cycle. It supports instruction-
level parallelism based on VLIW and data-level parallelism based on SIMD.

• SDR-DSP includes unified instruction-fetch unit and instruction-dispatch unit. The
dispatch unit issues instructions for SU and VU simultaneously.

• SU performs scalar tasks and controls the flow of the execution of VU. VU performs
computation-intensive parallel tasks.

• SDR-DSP has a vector memory (VM) to store vector data. Vector Data Accessing
Unit is used to load and store vector data. It supports efficient data supply and trans‐
port for wide vector computation.

• VU includes a set of isomorphic VEs and the number of VEs is configurable. Each VE
has local register file, accumulators and parallel functional units (MAC, ALU and
BP). The parallel functional units support fixed-point and floating-point operations.

Fig. 1. Architecture of SDR-DSP

A lot of applications need to reorganize data within VEs in VU. To support shuffle
operation, SDR-DSP has data-shuffling unit to exchange data among different VEs.
There is a special shuffle-modes memory which is separate from vector memory (VM).
It contains various shuffle modes. Shuffle operation permutes data among local registers
in various VEs by byte, half word or word. The shuffle operation among VEs can make
data exchange more efficient.
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3 Introduction to LEVCS

Because of the SIMD characteristics of SDR-DSP architecture and the data-intensive
characteristics of SDR applications, the efficient vectorizing compiler of SDR-DSP is
very important.

Language Extending for Vectorization. For some C programs, SDR-DSP compiler
uses autovectorization to analyze the parallel parts in the programs. Then the parallel
parts which satisfy the conditions to be vectorized will be recognized and transformed
to the vectorized code running on VU.

Because of the limitation of autovectorization we have described in Sect. 1, lots of
complex C programs cannot be vectorized automatically. Some programs include
complex loops which are very difficult to be analyzed and vectorized. Some programs
benefit from complex SDR-DSP instructions, such as saturation arithmetic, reduction,
shuffle and soon. These instructions cannot be mapped easily from high level language
[5] and autovectorization for them is more difficult. To compensate the lack of the auto‐
vectorization of compiler, we put forward LEVCS for SDR-DSP. In LEVCS, we design
and implement a C-extending programming language for SDR-DSP which is called
SDR-DSP C.

SDR-DSP C is designed according to the instruction set and architecture of SDR-
DSP. It provides support to vectorization on SDR-DSP and programmers can use SDR-
DSP C to write vectorized programs conveniently. SDR-DSP C extends standard C
language with some pragmas and intrinsics. SDR-DSP C extends standard C language
with vector data types and vector instructions for SDR-DSP. The main vector data types
are shown in Table 1.

Table 1. Vector data-types.

Data types Machine mode Signification
vec double V8DI A vector consisted of 8 doubles
vec float V16SF A vector consisted of 16 floats
vec int V16SI A vector consisted of 16 ints
vec short V32HI A vector consisted of 32 shorts
vec char V64QI A vector consisted of 64 chars

SDR-DSP has some complex vector instructions, such as multi-mode shuffle, multi-
width reduction, complex multiplication and soon. Using these instructions effectively
can greatly improve applications’ performance. So we design new syntax corresponding
to all of these instructions in SDR-DSP C. For example, to implement shuffle instruc‐
tions, we add v_vshufw, v_vshuff, v_vshufh and v_vshufb in SDR-DSP C, to implement
reduction instructions, we add v_reduc2, v_reduc4, v_ reduc8 and v_reduc16 in SDR-
DSP C. SDR-DSP C adds several pragmas to direct compiling optimization, such as:
#pragma vect, #pragma novect, #pragma unroll(n).

In LEVCS, we develop a high-level language developing environment for SDR-
DSP. It includes a vectorizing compiler which support SDR-DSP C. It also includes
assembler, linker, debugger and simulator. Programmers can use SDR-DSP C to develop
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vetrorized programs for SDR-DSP and use SDR-DSP compiler to parse and translate
these programs into intermediate language and then output the optimized assemble code.
Then the code can be assembled and linked. It supplies a friendly and convenient envi‐
ronment for programmers to develop applications for SDR-DSP.

Data Reorganization for Vectorization. The data-level parallelism in the applications
of wireless communication, video and image processing always include regular data-
level parallelism and irregular data-level parallelism. An application with regular data
access can be considered to have regular data-level parallelism. If it has irregular data
access and complex control flow, such as data-dependent control flow, the data-level
parallelism is considered to be irregular. For regular data-level parallelism, vectorization
on SIMD architecture always can get good effect. But for irregular data-level parallelism,
the result of vectorization is always not satisfied. In such cases, the performance cannot
get improved, and sometimes may be reduced. When the SIMD width is more wide, this
problem becomes more serious. So based on maintaining the high effeciency of regular
data-level parallelism, the supporting to irregular data-level parallelism is very impor‐
tant. Flexible and efficient data reorganization is essential.

Traditional SIMD architecture uses guarded instructions to support data-dependent
controlflow [16]. This method uses masks to disable some SIMD lanes. But for complex
branches, this method will waste computing resources and becomes inefficient. Woop
[17] uses the scheme of branch fusion. SIMD lanes on different branch paths are executed
sequentially and are synchronized in the branch joint. The efficient utilization of
SIMDlanes are still not good.

Maven VT microarchitecture [18] uses a unique lane buffering equipment. When
meeting branch, the simd lanes on various branch paths will be buffered and will be
executed sequentially. In the buffering equipment, SIMD lanes with the same executing
paths can be merged to improve the utilization of SIMD lanes. In this method, extra
hardware is needed and the hardware cost increases.

Vector Thread Architecture [19] configures an instruction cache for each SIMD
lanes. Each simd lanes can fetch instruction independently (threadfetch). This method
can support data-dependent control flow effectively but the expansibility are not good.
Each SIMD lanes need an instruction buffer, the hardware cost will be into lerable when
SIMD width becomes more and more wide.

Dynamic Wrap [20, 21] can support branches efficiently in GPUs. It reorganizes the
threads executing various branch paths in multiple wraps in to newwraps, each wrap
includes threads executing the same branch path. This methods needs to allocate regis‐
ters for each wrap to implement the reorganization of abundant wraps and it brings heavy
register costs.

Instruction shuffle scheme is a new mechanism that can handle control-flow effi‐
ciently [22]. It stores instructions on various branch paths into a unified instruction buffer
array. Instruction shuffle unit issues corresponding instructions to the SIMD lanes for
various branch paths. This mechanism can implement parallel execution of various
branch paths, But extra instructions are needed to support instruction shuffle and the
hardware cost also increased. The reorder of the output data is still a problem.
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Conditional Stream [23] supports irregular data-level parallelism on IMAGINE
processor. It classified the data streams and put the data of the same operations together.
The original kernel with control flow is departed into multiple kernels without control
flow. This method destroys the original order of data. Many applications in communi‐
cation, video and image processing are data-order dependent so there covery of data
order are more complex.

Most applications of wireless communication, video and image processing are
written in high-level language and the source codes in these applications are always
complex and flexible. Efficient High-level language compiling is essential. It is very
difficult and time consuming to do data reorganization manually. It will be more conven‐
ient if these issues can be solved by the compiler. If compiler supports data reorgani‐
zation, programmers can focus on the algorithms by using high-level language.

Data reorganization is critical to vectorization, so it is essential for us to implement
flexible and efficient data reorganization in the compiler for wide SIMD Architecture.

Implementing flexible and efficient data reorganization in the compiler of wide
SIMD architecture is essential. LEVCS can do data reorganization for wide SIMD
architecture. It implements flexible data reorganization for wide SIMD. It mainly has
three modules to implement data reorganization for various requirements: Data reor‐
ganization based on Multi-Modulo, Data reorganization for wide vector filling and Data
reorganization for Branch.

Many algorithms in wireless communication require complex data exchange, such
as FFT [15], FIR, IIR, Hartley transform, Discrete Cosine Transform, Viterbi Decoding
and soon. In such algorithms, there are many irregular access to vectors which is a
problem to performance. There alparts and imaginary parts of complex numbers are
always stored continuously. But in some algorithms, the real parts and imaginary parts
always participate in different vector computing, or are different operators of one vector
computing. In order to utilize the SIMD architecture efficiently, data reorganization is
required.

To implement efficient vector data exchange, LEVCS supports data reorganization
based on multi-modulo. According to the requirement of the algorithms, when data is
loaded from VM to VR (vector reigister) or is stored from VR into VM, data need to be
shuffled based on various modulos. The multiple modulos are designed to direct data
reorganization. For each kind of modulo, there is a corresponding item in SMT.

The data are loaded from VM into VRs which will participate in vector operations.
In some applications, the data loaded are not long enough to fulfill the vector. In some
applications, the data loaded into 16 VEs as a vector includes data for various vector
operation or various sources vectors of one vector operation. In these cases, if the data
are not reorganized, these data cannot be operated in parallel, some VEs will be idle
when the vector operation is executed. The wide simd architecture cannot be fully
utilized. LEVCS implements Data reorganization for wide vector filling using inner
reorganization, horizontal reorganization and vertical reorganization.

LEVCS identifies loops that can be simdized. Firstly, inner reorganization is used.
Inner reorganization is used for one vector operation in inner loops. If the effective vector
length is less than simdwidth, some VEs will be idle without data. In such case, short
vectors will be combined into wide vector to let more VEs to work in parallel. If vector
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length still cannot fulfill the requirements of simd width, the loops will be unrolled. After
loop unrolling, more data will be reorganized to do vector filling. The compiler should
find enough parallel computation and the stride of various short vectors needs to be
appropriate. If the data stride is too big, the cost of loading these data will be too higher
to be accepted.

If inner reorganization still cannot fulfill the requirements, horizontal reorganization
is used. Horizontal reorganization is for multiple irrelevant vector operations in inner
loops. Suppose a vector includes several groups of elements. Various groups contain
various sources for various vector operations and each group is not wide enough for the
vector width. If such vectors are not reorganized, while one group of elements participate
in one vector operation, the VEs corresponding to the other groups of elements will be
idle. In such case, LEVCS does horizontal reorganization. The horizontal reorganization
combines various groups of multiple vectors together to form new vectors.

If data reorganization of inner loops cannot fulfill the requirements, LEVCS will
take outer loops into consideration and do vertical reorganization. Vertical reorganiza‐
tion is for multiple irrelevant vector operations in various layers of loops. Multiple
irrelevant vector operations are reorganized together to form wide vectors. LEVCS will
continue to unroll outer loops to get enough data for vectors when needed.

For the wide SIMD architecture, the problems brought by branches become more
serious. In order not to increase the cost of hardware, Data Reorganization for Branch
solves this problem in compiling. LEVCS can do flexible data reorganization according
to various cases of branches. All VEs in VU can work in parallel and need not to process
various branch paths redundantly. The execution efficiency of loops with branches can
be improved.

4 Results and Discussion

In the experiment, we use LEVCS to vectorize FFT,FIR, IIR, dotprod and vecsum
programs. The programs are compiled with the vetorizing compiler of SDR-DSP. After
being assembled and linked, we get the executable program and run it on the cycle
accurate simulator. We use TSDR−DSP to represent the cycle counts of the kernel in the
program.

We also execute floating-point FFT program on TMS320C66X simulator in CCS5.1.
We can get same result with the result on SDR-DSP. We use optimization level -O3 to
compile the C program [24] and get the cycle counts TC66X. Comparing the two experi‐
ment results, we can get the speedup from Eq. (1)

speedup = TC66X

/
TSDR−DSP (1)

From that, we can see the vectorized program using LEVCS can get correct result
and achieve higher performance than C program running on TI-DSP. The result of the
experiment (Table 2) shows: developing vectorized program with SDR-DSP C and using
the vectorizing compiler of SDR-DSP can make good use of the SIMD characteristics
of SDR-DSP. We can achieve with TI-DSP. The experiment proves that LEVCS
designed in this paper has validity and efficiency.

Language-Extension-Based Vectorizing Compiling Scheme on SDR-DSP 21



Table 2. Experiment result

TSDR−DSP TC66X Speedup
FFT_float (1024) 14608 117940 8.074
FIR_float (1024 ∗ 16) 29493 85019 2.883
IIR_float (1024) 6159 29722 4.826
vector_dotprod_float
(1024)

675 4131 6.828

vector_sum_float (1024) 526 4131 7.854

5 Conclusion

In order to explore the performance of digital signal processor SDR-DSP, this paper
designs and implements LEVCS, a Language-Extension-based Vectorizing Compiling
Scheme for SDR-DSP. This design provides a vectorized programming method with a
new C-extending programming language named SDR-DSP C. The corresponding vecto‐
rizing compiler is developed for SDR-DSP, including the support for SDR-DSP C and
flexible data reorganization. The result of experiment shows that we can implement
vectorizationon SDR-DSP correctly and can get good speedups by using LEVCS. In
practice, LEVCS can be used to vectorize the computing kernels of the applications on
SDR-DSP.
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