
Chapter 2
Iterative Measurement-Feedback Procedure
for Large Deviation Statistics

2.1 Introduction

In the last two decades, large deviation functions in time-series statistics have gath-
ered attention in thefield of nonequilibriumphysics. The beginning is the discovery of
the fluctuation theorem, which is the symmetry property of the large deviation func-
tion of the time-averaged entropy production rate [1–6]. After that, several results
for the large deviation functions have followed, such as an additivity principle for
driven diffusive systems [7–12], generalised Onsager–Machlup approach [13, 14],
dynamical phase transitions of kinetically constrained models [15–17], a Lyapunov
function for non-equilibrium steady states without relying on entropy production
[18], exact results for the current statistics of lattice gas models [17, 19].

Also, with these developments, there were some studies that focused on the ther-
modynamic structure in time-series statistics [20–26]. Especially in these analysis,
a technique to map a biased ensemble to another steady state ensemble has been
utilised. This mapping is well defined in mathematical sense, however, in order to
construct this mapping, we need pre-information for generating a special external
force added. That requires to solve eigenvalue problems of a matrix in a large dimen-
sion: the degrees of freedom of the system, which is demanding in computational
point of view. For overcoming this difficulty, we proposed a variational principle
constituted of observable quantities to determine that external force [24–26]. Since
the variational parameter of this variational principle was an external field of the
system, it offers a simple method for determining that external force without solv-
ing any mathematical largest eigenvalue problems. However, there is still a problem
for large size systems, because the domain of the variational functional increases
exponentially as the system size becomes larger in general.

Here in this chapter, we propose a new computational method for large deviation
statistics. This exploits a property in time-series statistics, which is an additive prop-
erty of the rareeventness with a special measurement and feedback.: By iterating
a procedure constituted of measurements and feedbacks, we gradually renormalise
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the system, and let the obtained modified systems attain the rare-event property. We
stress that this method is constituted of measurements and feedbacks. Thus, it can
be implemented in real experiment in principle. Furthermore, by combining it with
an idea of effective description of exponential family, we show a good numerical
performance of the method. Indeed, as a demonstration, we apply this method to
many-body systems, and obtain some non-trivial features of the rare fluctuations in
those systems.

The construction of this chapter is as follows. In Sect. 2.2, we show some prelim-
inaries. In Sect. 2.2.1–2.2.4, we give the definition of the model and some basics of a
large deviation principle. Then, in Sect. 2.2.5, we show and prove a mapping method
from a biased ensemble to the steady state dynamics, which is the key formula
to construct the phenomenological structure in time-series statistics. In Sect. 2.3,
we explain our computational method. From Sect. 2.3.1–2.3.3, we explain the idea
behind themethod, and in Sect. 2.3.4,we showexplicitly the procedure of themethod.
Section2.4 is devoted to the application of themethod to non-equilibriummany-body
lattice gas models. In particular, in Sect. 2.4.1, we introduce an effective description
of the exponential family, and in the following subsections, with the effective descrip-
tion,we analyse thesemany-body systems. Finally, in Sect. 2.5,wemake a conclusion
of this chapter. This chapter is based on the paper published in [27].

2.2 Preliminary

2.2.1 Model

The state space� is a finite set.On�,we consider continuous timeMarkovprocesses.
For n, n′ ∈ �, we define a transition rate w(n → n′) as an irreducible matrix that
satisfies w(n → n) = 0 and w(n → n′) �= 0 if w(n′ → n) �= 0. The escape rate is
defined as

λ(n) ≡
∑

n′∈�

w(n → n′). (2.1)

We start with an initial distribution function P0(n). Then, the distribution function of
n at time t , P(n) ≡ 〈

δn(t),n
〉
, is determined from the following Master equation [28]:

∂

∂t
P(n, t) =

∑

n

P(n)w(n → n′) − δn,n′λ(n). (2.2)

We denote the history of states during a time interval t by ω, which is specified
by the total number of transitions n, a collection of transition times (ti )n

i=1, and a
sequence of states (ni )

n
i=0, where ni = n(t) for ti ≤ t ≤ ti+1 with t0 ≡ 0, tn+1 ≡ t .

See Fig. 2.1 for the schematic diagram explaining this definition. We denote the path
probability density with an initial condition n0 by P(ω|n0). It becomes
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Fig. 2.1 The schematic
diagram to explain the
definition of the history of
states, ω

P(ω|n0) = e−λ(n0)t1
N∏

i=1

[
w(ni−1 → ni )e

−λ(ni )(ti+1−ti )
]

(2.3)

or equivalently,

P(ω|n0) = e− ∫ t
0 dt̃λ(n(t̃))

N∏

i=1

[
w(ni−1 → ni )

]
(2.4)

For the sake of completeness, we show a simple derivation of the path probability in
AppendixA.1.

2.2.2 Cumulant Generating Function

For each transition ni → ni+1, we define a quantity α(ni → ni+1). Then, we
consider the corresponding time-averaged value A(ω), which is defined as

A(ω) = 1

τ

n−1∑

i=0

α(ni → ni+1). (2.5)

Since the system is Markovian, A(ω) has a large deviation principle in the limit of
τ → ∞. That is, with a probability density for A(ω), p(A), shows the following
asymptotic form:

p(A) ∼ e−τ I (A), (2.6)

where I (A) is a large deviation function. We note that the expected value or typical
value of A(ω), 〈A(ω)〉 is determined by a variational principle

〈A(ω)〉 = Argmin
A

[I (A)] . (2.7)
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Here, we introduce a scaled cumulant generating function defined by

G(h) ≡ lim
τ→∞

1

τ
log

〈
ehτ A(ω)

〉
, (2.8)

where h is called a biasing parameter. It resembles the definition of the Helmholtz
free energy in equilibrium statistical mechanics, so that this function is called a
dynamical free energy. Similar to equilibrium thermodynamics, the large deviation
function I (A) and the cumulant generating function is connected through Legendre
transformation:

I (A) = max
h

[h A − G(h)], (2.9)

or
G(h) = max

A
[h A − I (A)]. (2.10)

We should mention that we are now considering the case that I (A) is a concave
function. Otherwise, this relationship can be broken. See Ref. [29] for the explanation
of the example.

2.2.3 Biased Ensemble

In the analysis of a large deviation principle, a class of modified pass probability
measure called an exponential family or a biased ensemble, P(ω; h), is often studied.
With a parameter h representing how much the system is biased, P(ω; h) is defined
as

P(ω; h) = 1

Z(τ , h)
P(ω)ehτ A(ω), (2.11)

where Z(τ , h) is the normalisation constant defined by Z(τ , h) = 〈
ehτ A(ω)

〉
. In this

biased ensemble, rare trajectories characterised by the large deviation principle of
A(ω) has a large (or small) probability compared with the one in the original ensem-
ble. Indeed, by denoting the probability density of A(ω) in the biased ensemble by
p(A; h), we obtain

p(A; h) = 1

Z(τ , h)
p(A)ehτ A ∼ 1

Z(τ , h)
e−τ (I (A)−h A). (2.12)

for large τ , where we used the large deviation principle of A(ω). We first notice that
the large deviation function of A(ω) in the biased ensemble is given as I (A) − h A.
Then, the following result directly yields: the expected value (or typical value) of A
in the biased ensemble is determined by the variational principle
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〈
A(ω)ehτ A(ω)

〉

Z(τ , h)
= Argmin

A
[I (A) − h A] . (2.13)

The typical value is thus deviated from 〈A(ω)〉. Furthermore it is connected to the
cumulant generating function through

∂G(h)

∂h
= lim

τ→∞

〈
A(ω)ehτ A

〉

Z(τ , h)
. (2.14)

Therefore, due to the equivalence between G(h) and I (A), we find a relation con-
necting the expected value in the biased ensemble with the large deviation function:

I (A) = max
h

⎡

⎣h A −
∫ h

0
dh̃ lim

τ→∞

〈
A(ω)eh̃τ A(ω)

〉

Z(τ , h̃)

⎤

⎦ . (2.15)

2.2.4 Revisit of the Phenomenological Structure for the Large
Deviation Principle in Equilibrium Statistical Mechanics

Here, let us revisit the phenomenological structure for the large deviation principle
in equilibrium statistical mechanics with a viewpoint of biased ensemble. The biased
ensemble (2.11) reminds us of the canonical distribution function (given in (1.6)).
We here show that this similarity leads to the key of the phenomenological structure
for the large deviation principle in equilibrium statistical physics.

In the system considered in the introduction 1.2, we define the biased ensemble
p(�; h) by

p(�; h) = 1

Z(h)
p(�)eh H(�). (2.16)

Then, we obtain the distribution function of U in the biased ensemble as

p(U ; h) = 1

Z(h)
�(U )e−(β−h)U ∼ 1

Z̃(h)
eN [s(u)−(β−h)u]. (2.17)

Because no β dependence appears here in the first term s(u) of this exponential func-
tion, this equation indicates that the biased ensemble is the equilibrium distribution
function of the systemwith temperature β−h. Thus the biasing parameter h is renor-
malised as the temperature of the system in another equilibrium system. The same
structure, namely the correspondence between biasing parameters and equilibrium
intensive parameters, is true not only for the energy density discussed here, but also
for the density of general thermodynamic extensive quantities.

This is the key for the phenomenological structure in equilibrium statistical
mechanics. Indeed, from this relation, we can connect the large deviation function

http://dx.doi.org/10.1007/978-981-287-811-3_1
http://dx.doi.org/10.1007/978-981-287-811-3_1
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I (U ) with the expected value of U in another equilibrium system, which has a new
temperature β′ = β − h. Indeed, by denoting this expected value by 〈U 〉β′=β−h̃ and
using the corresponding equation to (2.15) in equilibrium statistical mechanics, we
have

I (U ) = max
h

[
hU −

∫ h

0
dh̃ 〈U 〉β′=β−h̃

]
. (2.18)

In short, the key to the phenomenological structure for the large deviation principle
is the physical correspondence of the biased ensemble. Because the biased ensem-
ble corresponds to another equilibrium system, we can construct a large deviation
function from expected values.

2.2.5 Steady Dynamics Corresponding to Biased Ensemble

The phenomenological structure for the large deviation principle in equilibrium sta-
tistical mechanics is clarified in the previous subsection, where we found what we
need to construct the same structure in time-series statistics: It is the construction of a
physical system corresponding to the biased ensemble (2.11) in time-series statistics.
Now, in order to achieve this construction, we follow the following strategy:

1. We define a new transition rate

wh(n → n′) ≡ w(n → n′) f h(n → n′) (2.19)

with an unknown function f h(n → n′) that depends on h. Then, the new path
probability Ph(ω|n0) is given as

Ph(ω|n0) = e− ∫ t
0 dt̃λh(n(t̃))

N∏

i=1

[
w(ni−1 → ni )

] N∏

i=1

[
f h(ni−1 → ni )

]
, (2.20)

where we defined λh(n) ≡ ∑
n′ wh(n → n′).

2. We consider the ratio between this new path probability density and the biased
path probability density P(ω; h|n0),

Ph(ω|n0)
P(ω; h|n0) = e− ∫ t

0 dt̃
[
λh(n(t̃))−λ(n(t̃))

] N∏

i=1

[
f h(ni−1 → ni )e

−hα(ni−1→ni )
]

Z(t, h).

(2.21)

Then, we determine f h(n → n′) so as to make the right-hand side of (2.21)
a constant. This construction leads to the conclusion that the new system char-
acterised by wh(n → n′) has the same path probability density as the one
in this modified dynamics. In the following part, we show how to determine
f h(n → n′).
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3. First, we look at the product part (
∏[· · · ]). For obtaining a benefit from this

product structure, we set

f h(n → n′) = ehα(n→n′) φ(n′)
φ(n)

(2.22)

with an unknown function φ(n). In the product from i = 1 to i = N , a ratio in
this right-hand side will be canceled each other in total. Indeed, the total product
becomes

N∏

i=1

[
f h(ni−1 → ni )e

−hα(ni−1→ni )
] = φ(nN )

φ(n0)
. (2.23)

Since this right-hand side is small compared with the other parts in large τ limit,
we can neglect it in (2.21).
Second, we determine the unknown function φ(n) so as to make the first expo-
nential part in (2.21) a constant. For this purpose, we set a condition to φ(n)

as
λh(n) − λ(n) = const. ≡ K , (2.24)

which indeed ensures that that first exponential part a constant e−t K . This equa-
tion can be rewritten as an eigenvalue problem of an irreducible matrix

Lh
n′,n = w(n → n′)ehα(n→n′) − δn,n′λ(n). (2.25)

Indeed, we rewrite (2.24) as

∑

n′
w(n → n′)ehα(n→n′)φ(n′) − λ(n)φ(n) = Kφ(n), (2.26)

which is equivalent to ∑

n′
φ(n′)Lh

n′,n = Kφ(n). (2.27)

Here, we remember that we need to impose a condition that the eigenfunction
φ(n) is a positive vector, because the transition matrix wh(n → n′) can not take
a negative value. We thus find that the K is the largest eigenvalue of Lh

n′,n due to
Perron-Frobenius theory [30]. Also, we note that the largest eigenvalue K and
the corresponding left-eigenvector φ(n) surely exist and are unique, due to this
theory.

Therefore, by choosing φ(n) as the left-eigenvector of the largest eigenvalue of
Lh

n′,n, we will reach the desired result.

Many formulas similar to this have been derived [20–26]. Exactly the same
form as this result was reported in the paper by Jack and Sollich in [23]. For
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Langevin systems, the corresponding formulaswere also derived independently by us
[24, 25] and Chetrite, Touchette [20, 21]. Mathematically, the formula is regarded as
the generalisation of Doob’s h-transform. See Ref. [21] for the details of the expla-
nation.

Wemention that the corresponding system is characterised by a variational princi-
ple [24–26]. With a variational functional Ṽ (n), we introduce a variational transition
rate w̃Ṽ

h (n → n′) as

w̃Ṽ
h (n → n′) = w(n → n′)ehα(n→n′)−(1/2)Ṽ (n′)+(1/2)Ṽ (n). (2.28)

Also, we denote the expected value in the stationary state generated by 〈 〉Ṽ
h , and

the escape rate in the system w̃Ṽ
h (n → n′) by λ̃Ṽ

h . Then, that variational principle is
written as

wh(n → n′) = Argmax
Ṽ

〈
λ̃Ṽ − λ

〉Ṽ

h
(2.29)

and the maximum value gives the cumulant generating function itself

G(h) = max
Ṽ

〈
λ̃Ṽ − λ

〉Ṽ

h
. (2.30)

This variational principle was studied by us with a motivation to construct the cor-
responding steady state from observable quantities of the system [25]. Indeed, if
we apply it to Langevin equation, the escape rate is replaced by an entropy produc-
tion rate and the variational potential corresponds to the real potential added to the
Brownian particle. The mathematical origin of the variational principle is different
from the thermodynamic one. Rather, that variational principle is related to Donsker–
Varadhan formula for empirical measure [31]. See AppendixA.2 for the derivation
of the variational principle from Donsker–Varadhan formula. Furthermore, when the
system satisfies detailed balance condition, the variational principle can be connected
to the one in quantum mechanics. This is explained in the Chap.3, where we apply
the variational principle to a kinetically constrained model for deriving a scaling
function around the phase transition.

Here, we alsomention that there is the case that the derivation above is not correct,
where the boundary term φ(nN )/φ(n0) in (2.23) can not be neglected. This problem
is one of the origin of the extended fluctuation theorem of heat dissipation, reported
by van Zon and Cohen [32, 33]. In Chap.4, we discussed this connection explicitly.

As a corollary of this formulation, we obtain an equivalence between the largest
eigenvalue K and the cumulant generating function G(h):

K = G(h). (2.31)

Indeed, by using (2.23) and (2.24) in (2.21), we have

http://dx.doi.org/10.1007/978-981-287-811-3_3
http://dx.doi.org/10.1007/978-981-287-811-3_4
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Ph(ω|n0) = P(ω; h|n0)e
−K t φ(nN )

φ(n0)
Z(t, h) (2.32)

By taking the sum with respect to ω and considering only the dominant term in large
t limit, we obtain

K = lim
t→∞

1

t
log Z(t, h), (2.33)

which is (2.31). The cumulant generating function is obtained from the largest eigen-
value problem of Lh

n,n′ , and then the result is connected to the large deviate function
through Legendre transformation (2.9). Because it is easier to deal with the largest
eigenvalue problem than the large deviation principle itself, this structure has been
used in many situation for mathematically rigorous analysis in large deviation theory
[34]. Furthermore, the relation has been used for analysing non equilibrium systems.
The example includes the fluctuation theorembyLebowitz and Spohn [5], where they
found a symmetry property in cumulant generating function of entropy production
rate due to the fluctuation theorem.

2.3 Main Result

In the previous subsection, we finally understood how we could create the cor-
responding system to the biased ensemble, where we needed to solve the largest
eigenvalue problem of Lh

n′,n. For many body systems, however, it is demanding and
almost impossible to solve the corresponding largest eigenvalue problem because
the number of the degrees of the freedom in these systems increases exponentially
with the system size. Here in order to overcome this difficulty, we propose a method
to obtain the corresponding system with measurements and feedbacks.

2.3.1 Measurement Formula of φ(n) in Monte-Carlo
Simulations

Because the direct diagonalisation of the largest eigenvalue of Lh
n′,n is hopeless, we

rely on Monte-Carlo simulations instead. First, we show a method to obtain φ(n)

from Monte-Carlo simulations.
First, we define ψ̃(n, t |n0) obtained from the following initial condition and evo-

lution equation:
ψ̃(n, 0|n0) = δn,n0 (2.34)

∂ψ̃(n, t |n0)

∂t
=

∑

n′
ψ̃(n′, 0|n0)Lh

n,n′ . (2.35)
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Then, ψ̃(n, t |n0) equals to
〈
δn(t),neht A(ω)

〉
n0
, where 〈 〉n0

is the expected value with
respect to the Monte-Carlo simulation with an initial condition n(0) = n0:

ψ̃(n, t |n0) = 〈
δn(t),neht A(ω)

〉
n0

. (2.36)

The way to prove this is to show that
〈
δn(t),neht A(ω)

〉
n0
also satisfies (2.34) and (2.35).

This is done inAppendixA.3.Next, since Lh
n′,n is irreducible, the large timebehaviour

of ψ̃(n, t |n0) is
ψ̃(n, t |n0) ∼ φ(n0)ψ(n)et K . (2.37)

with a definition ofψ(n) as the right-largest eigenvector of Lh
n′,n. Thus, by combining

(2.36) with (2.37), we arrive at

φ(n) ∝ 〈
eht A(ω)

〉
n (2.38)

for large t . This is a basic result that directly came from the largest eigenvalue
analysis. Thanks to (2.38), we can reach φ(n) just by using aMonte Carlo simulation
in principle, however, we will face a difficulty with this formula soon, which is
explained next.

2.3.2 Rare Events Required for Measurement of
〈
ehT A(ω)

〉
n

Even though we obtain (2.38), it is easy to show that the dominant contribution of
the ensemble to obtain

〈
eht A(ω)

〉
n is rare, which is characterised by a large deviation

principle. With the large deviation principle p(A) ∼ e−t I (A), we can show that the
dominant path takes a value of A(ω) close to

A∗(h) ≡ Argmin
A

[I (A) − h A] . (2.39)

Then, the probability taking A∗(h) is exponentially small:

p(A∗) ∼ e−t I (A∗(h)) (2.40)

with I (A∗(h)) �= 0. This means that we need the rare events characterised by a large
deviation principle, in order to obtain the information of the large deviation principle
itself. We thus conclude that the direct application of (2.38) is not useful. We need
some ideas to overcome this difficulty.
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2.3.3 Renormalisation of Rare-Eventness via Measurements
and Feedbacks

Now, we explain the key idea of our method. It is composed of two parts: Firstly,
we consider small values of h in (2.40), more precisely, sufficiently small so that it
satisfies

ta I (A∗(h)) = O(1), (2.41)

where ta is the correlation time of α(n → n′). Then, we can easily say that the dom-
inant contribution to obtain

〈
eht A(ω)

〉
n is not rare, which is, in other words,

〈
eht A(ω)

〉
n

is measurable for sufficiently small h. Secondly, the exponentially biased measure
P(ω; h|n0) has a renormalisable structure with respect to the biasing with exponen-
tial function. That is,

P(ω; h + h′|n0) ∝ P(ω; h|n0)e
h′t A(ω). (2.42)

These two ideas lead to a method of the rare event sampling method. First, for suffi-
ciently small h, we measure

〈
eht A(ω)

〉
n. Then, by using the obtained result, we modify

the transition rate to create the (probability preserving) system corresponding to the
biasedmeasure P(ω; h|n0). Then, again in the new system, wemeasure

〈
eht A(ω)

〉
n for

sufficiently small h. Thanks to the property (2.42), the obtained result will lead to the
next system corresponding to the biased ensemble P(ω; 2h|n0). In this method, just
with measuring eht A(ω), we could reach the biased ensemble P(ω; 2h|n0). This is the
important property in the rare events of the large deviation principle in time-series
statistics. This property can be phrased as follows: Rare events characterised by the
large deviation principle of time-averaged quantity is additive in a sense of measure-
ment. The rare-eventness can be renormalised during the measurements through a
feedback (or a modification) to the system. See Fig. 2.2 for the schematic diagram of
this structure.

Fig. 2.2 The schematic
diagram for renormalisability
of rare-eventness
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2.3.4 Rare-Event Sampling Method Constituted of an Iterative
Measurement-and-Feedback Procedure

Byusing the property explained above,we propose amethod for rare-events sampling
method constituted of an iterative measurement-and-feedback procedure.

First we set a measurement time t to be much larger than the correlation time of
α(n → n′), tα. Then, we define a small increment δh from the condition (2.41), or
more precisely,

taδh2σ = O(1), (2.43)

where σ is a scaled variance of A(ω) defined as

σ = lim
t→∞ t

〈
A(ω)2 − (〈A(ω)〉)2〉 . (2.44)

With this δh, the procedure is defined as follows:

1. For the first step, wemeasure
〈
eτδh A(ω)

〉
n as a function of n in the original system.

Here, we remind us that the measurement is not hard because of the condition
(2.43).

2. Then, depending on the value of
〈
eτδh A(τ )

〉
n, we modify the transition rate to

wδh(n → n′) = w(n → n′)eδhα(n→n′)

〈
eτδh A(ω)

〉
n′〈

eτδh A(ω)
〉
n

. (2.45)

3. Next, in the created modified system, wemeasure the expected value of the same
quantity eτδh A(ω). We denote the obtained expected value by

〈
eτδh A(ω)

〉δh

n .
4. Again, we define the second modified transition rate as

w2δh(n → n′) = wδh(n → n′)eδhα(n→n′)

〈
eτδh A(ω)

〉δh

n′
〈
eτδh A(ω)

〉δh

n

. (2.46)

5. We iterate this procedure for many times. Then, we obtain a set of transition
rates

wlδh(n → n′) = w(n → n′)elδhα(n→n′)
l−1∏

k=0

〈
eτδh A(ω)

〉kδh

n′
〈
eτδh A(ω)

〉kδh

n

(2.47)

with l = 0, 1, 2, . . . .
6. Our computational method is based on the following formula. We denote by

〈 f 〉h the expected value of time-extensive quantities f (ω) in the system with
the modified transition rate wh (h = 0, δh, 2δh, . . .). Then, 〈 f 〉h equal to the
expected values by biased ensemble P(ω; h). That is,
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〈 f (ω)〉h �
〈
f (ω)ehτ A(ω)

〉
〈
ehτ A(ω)

〉 . (2.48)

Here and hereafter in this chapter, � represents the asymptotic equality when
τ � τα.

7. From the formula, we obtain the expected value of any quantity in biased ensem-
ble. For example, for the large deviation function of A(ω), by combining (2.48)
with (2.15), we reaches a formula

I (A) = max
h

[
h A −

N−1∑

k=0

〈 f (ω)〉h̃ δh

]
+ O(δh2) (2.49)

with h = Nδh. We write this formula as

I (A) = max
h

[
h A −

∫ h

0
dh̃ 〈 f (ω)〉h̃

]
, (2.50)

which shows the correspondence to the formula (2.18) in equilibrium statistical
mechanics.

We showed the basic strategy to derive (2.48) in the previous subsection. For a
mathematically rigorous derivation, see AppendixA.4.

2.4 Applications

As a demonstration, we apply our method to non-equilibrium many-body lattice
gas models. The first example is an asymmetric simple exclusion process (ASEP)
with non equilibrium open boundary conditions, and the second one is Fredrickson–
Andersen (FA) model, which is one of kinetically constrained models.

2.4.1 Effective Descriptions of Exponential Family

Before going to the demonstration, we here introduce a strategy to approach many
body systems. That is, effective descriptions of the exponential family.

The rare trajectories most contributing to G(h) are generated by the modified
transition rate wh(n → n′) in (2.47). Then, the modification rate

∏l−1
k=0

〈
eτδh A(ω)

〉kδh

n
in (2.47) is a function of the configuration of the system. Thus, it may be difficult to
apply the method to many-body systems, because the degree of the freedom in them
exponentially increases and the computation time for obtaining wh(n → n′) does as
well.
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Fig. 2.3 Schematic picture
explaining the effective
description of exponential
family

However, we expect that there are many physical examples that allow us to use
the effective description of the exponential family. It is to introduce an effective
transition rate with K unknown parameters for each value of h, where these unknown
parameters are determined by employing (2.47). We then assume that these effective
descriptions describe very well the statistical property of the rare trajectories. See
Fig. 2.3 for the explanation of this effective description. The system that we are going
to analyse in this section has indeed these effective descriptions.

2.4.2 Asymmetric Simple Exclusion Process (ASEP)

Definition of the Model

Let us consider a one dimensional lattice of size L with open boundary condi-
tions. Each site accommodates one particle at most. The configuration of the par-
ticles is denoted by n ≡ (ni )

L
i=1, where ni takes a value of 1 (occupied) or 0

(empty). The transition rate w(n → n′) is defined as follows: For a configuration
n = (n1, n2, n3, . . . , ni , ni+1, . . . , nL), we define an exchange operator Fi,i+1 as

Fi,i+1n = (n1, n2, n3, . . . , ni+1, ni , . . . , nL). (2.51)

Also we define a removing, or filling operator F1 and FL for the boundaries as

F1 = (1 − n1, n2, n3, . . . , ni , ni+1, . . . , nL) (2.52)

and
FL = (n1, n2, n3, . . . , ni , ni+1, . . . , 1 − nL). (2.53)

Then, by using these operators, we define w(n → n′) as

w(n → Fi,i+1n) = δni ,0δni+1,1q + δni ,1δni+1,0, (2.54)

w(n → F1n) = δn1,0α + δn1,1γ, (2.55)
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Fig. 2.4 Schematic picture representing the definition of ASEP

w(n → FL n) = δnL ,0δ + δnL ,1β, (2.56)

and
w(n → n′) = 0 (2.57)

for any other transition that cannot be expressed by using the operators Fi,i+1, F1,
and FL . Equation (2.54) means that a particle moves to the left empty site with a
rate q and to the right empty site with a rate 1, when the target site is not occupied.
Equation (2.55) and (2.56) represents the injection and the remove of a particle: A
particle is injected into the boundary site i = 1 (i = L) with a rate α (δ) and the
particle at the boundary site i = 1 (i = L) is removed with a rate γ (β). See Fig. 2.4
for the schematic picture to explain these transitions. This model is called ASEP and
has been studied as a cornerstone of non-equilibrium physics. See the introduction
of Ref. [17] and also Ref. [35] for the review.

In this model, we study the fluctuation of time-averaged bulk current. We first
define an instantaneous current at i th site as ji (n → n′) = ±1, which takes the
value 1 (or −1) when a particle moves from i to i + 1 (i + 1 to i). By using this
instantaneous current, we then define the bulk current as

α(n → n′) = 1

L − 1

L−1∑

i=1

ji (n → n′). (2.58)

The time-averaged bulk current A(ω) is defined as the time-averaged quantity of this
α(n → n′). See Sect. 2.2.2 for the definition or A(ω).

Numerical Check of Our Formulation

We first verify our formulation numerically. On one hand, we evaluate

l−1∏

k=0

〈
eτδh A(ω)

〉kδh

n (2.59)

for a integer l, which is the modification factor appeared in (2.47). On the other hand,
with a Monte Carlo simulation, we evaluate the left-eigenvector φ(n) corresponding
to the largest eigenvalue of Lh

n′,n defined in (2.25). According to our formulation,
(2.59) is proportional to φ(n), which can be seen by comparing (2.22) with (2.47).
See Fig. 2.5 for the examples of the obtained results.
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Fig. 2.5 Numerical check of our formulation for the open boundary ASEP.We set q = 0.5, L = 8,
α = 0.8, β = 0.8, γ = 0.2, and δ = 0.2. We perform our computational method on Monte Carlo

simulations with setting l = 100 and 300 with δh = −0.02. The obtained
∏l−1

k=0

〈
eτδh A(ω)

〉kδh
n

are plotted on a (for l = 100) and b (for l = 300) labeled as our method. In the figure, the x
axis represents m(n) = ∑L−1

i=0 nL−i2i , which is the decimal value of the binary number n. On the
same figures, we also plot φ(n) that is the left eigenvector corresponding to the largest eigenvalue
of Lh

n′,n defined in (2.25) for h = −2 and h = −6 (Exact). In these two figures, we can see

the coincidence very well between
∏l−1

k=0

〈
eτδh A(ω)

〉kδh
n and φ(n). Reprinted with permission from

Ref. [27]. Copyright 2014 by American Physical Society

The Effective Description

Next, we study an effective description of the exponential family. First, we define an
effective transition rate wh

eff(n → n′) with L + 1 unknown parameters (ψh,i )
L
i=0 as

wh
eff(n → Fi,i+1n) ≡ w(n → Fi,i+1n)e(ni −ni+1)h/(L−1)

(
ψh,i+1

ψh,i

)ni −ni+1

. (2.60)

For the left and right boundary transitions, we also define

wh
eff(n → F1n) ≡ w(n → F1n)(ψh,1/ψh,0)

1−2n1 (2.61)

and
wh

eff(n → FL n) ≡ w(n → FL n)(ψh,L/ψh,0)
1−2nL . (2.62)

Here, we note that this new transition rate corresponds to anASEP that has a spatially
varying transition rate as shown in Fig. 2.6. Furthermore, in a sense of local detailed
balance condition [1], the effective transition rate represents the system, where a
one-body external potential is applied.

Fig. 2.6 An example of an effective description for ASEP. In this figure, each transition rate is
given as follows: qleft(i, h) = qe−h/(L−1)ψh,i−1/ψh,i , qright(i, h) = qeh/(L−1)ψh,i+1/ψh,i ,α(h) =
αψh,1/ψh,0, γ(h) = γψh,0/ψh,1, β(h) = βψh,0/ψh,L and δ(h) = δψh,L/ψh,0
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We determine the values of the parameters (ψh,i )
L
i=0 from our computational

method as follows:

1. For l = 0 (h = 0), we have ψh,i = 1 for i = 0, . . . , L .
2. For given (ψlδh,i )

L
i=0, we determine the next (ψ(l+1)δh,i )

L
i=0 from the following

procedure: We measure
〈
eτδh A(ω)

〉lδh

n for L + 1 different configurations n = n j

( j = 0, 1, 2, . . . , L). Especially, here, we choose (n j )i = δi j as the simplest
choice.

3. Next, by applying (2.47) to the effective transition rate (2.60), we obtain

ψ(l+1)δh,i = ψlδh,i
〈
eτδh A(ω)

〉lδh

ni
(2.63)

for i = 0, . . . , L . Thus, we obtain the next parameters (ψ(l+1)δh,i )
L
i=0 from

(ψlδh,i )
L
i=0.

4. By iterating this procedure, we obtain the effective description of the exponential
family.

Now, we apply our computational method toMonte-Carlo simulations. We calcu-
latedG(h), then plot it in Fig. 2.7.On the samefigure, for the comparison,we also plot
the largest eigenvalue of Lh

n,n′ , K , because it is equal to G(h) as shown in (2.31). For
further comparison, we also plot the truncated cumulant expansions up to the second
order: G2(h) = hg1+h2g2 and the fourth order: G4(h) = hg1+h2g2+h3g3+h4g4,
where the coefficients gi are defined as (1/ i !)∂i G(h)/∂hi |h=0. These coefficients
are calculated from the exact formula in Refs. [17, 19]. Even though one can see a
small deviation between our result (red dotted line) and the exact result (green dashed
line) around h = −7, the accuracy of our one is considerably better than the one
for the truncated cumulant expansions (blue and yellow solid lines). We thus claim
that rare fluctuations of the ASEP in a sense of the large deviation of the current
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Fig. 2.7 G(h) in the open boundary ASEP obtained from our effective description.We set q = 0.5,
L = 8, α = 0.8, β = 0.8, γ = 0.2, and δ = 0.2. Following the procedure for the effective
description described in the text, we performMonte Carlo simulations with fixed δh = −0.02. The
result is labeled as Eff. desc. For comparison, we also plot the largest eigenvalue of Lh

n,n′ (Exact),

the truncated cumulant expansions up to the second order: G2(h) = hg1 + h2g2 (2nd) and the
fourth order: G4(h) = hg1 + h2g2 + h3g3 + h4g4 (4th), where the coefficients gi are defined as
(1/ i !)∂i G(h)/∂hi |h=0. These coefficients are calculated from the exact formula in Refs. [17, 19].
Reprinted with permission from Ref. [27]. Copyright 2014 by American Physical Society
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with this parameter set are well described by the effective transition rate (2.60).We
expect that there are somemathematical formulas related to this observation.For this,
we mention a variational principle determining the large deviation function of the
current in lattice gas models in thermodynamic limit (infinite size limit), which was
proposed in [7, 8]. In the paper, Bodineau and Derrida derived the formula from a
phenomenology called an additivity principle. If we restrict ourselves to the system
of SSEP or (WASEP), this variational principle, on the other side, can be derived
from the general variational principle given as (2.30). In the derivation,we assume the
effective transition rate in thermodynamic limit [36]. We need further investigation
for clarifying the applicability of this effective-description approach upon general
lattice gas models.

2.4.3 Fredrickson–Andersen (FA) Model

Definition of the Model

Next, we consider a Fredrickson–Andersen (FA) model [37, 38]. This is an example
of kinetically constrainedmodels (KCMs), which has been studied for understanding
the glassy features from the dynamical aspect of the system.We define an occupation
variable ni = 1 or 0 on each site of a one-dimensional lattice. The size of the lattice
is L , and the boundary condition is periodic. For a configuration n = (n1, . . . , nL),
we define a flipping operator Ci as

Ci n = (n1, . . . , 1 − ni , . . . , nL). (2.64)

Then, from a configuration n to Ci n, we define the corresponding transition rate as

w(n → Ci n) = [(1 − c)ni + c(1 − ni )] fi (n), (2.65)

with the definition of fi (n) as

fi (n) ≡ ni−1 + ni+1. (2.66)

See Fig. 2.8 for the schematic picture explaining the definition of this FA model. The
transition rate is a product of two parts. The one is a part without any interaction
[(1−c)ni +c(1−ni )], and the other one is a part for the kinetically constraint fi (n).
Only the first part takes responsibility for the stationary state. Indeed, if we consider
the detailed balance condition, fi (n) is canceled out. Then the stationary probability
p(n) is just determined from this non interacting part [(1− c)ni + c(1− ni )], which
leads to

p(n) =
L∏

i=1

[cni + (1 − c)(1 − ni )]. (2.67)
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Fig. 2.8 Schematic picture
explaining FA model

The second part fi (n) actually represents a kinetic constraint. For example, we look
at the configuration, where i th site is surrounded by unoccupied site. In this case,
the flipping is indeed blocked due to fi (n). Although the stationary state is trivial,
the system shows the same features as the one in glassy systems, due to this kinetic
constraint. See Ref. [15, 39] for this review. Recently, for studying these features,
the approach using a large deviation principle gathered attention. In 2007, Garrahan,
Jack, Lecomte, Pitard, van Duijvendijk and van Wijland considered a dynamical
activity defined as

α(n → n′) = 1, (2.68)

which represents how often the state of the system changes. Then, in several KCMs,
they numerically calculated the cumulant generating function of this time-averaged
activity, and found the singularity in it in L → ∞ [15, 16, 40]. This represents a
dynamical phase transition of the system,which is believed to be related to dynamical
heterogeneities. After the finding, the finite size effect of the singularity has been
studied by Bodineau, Lecomte and Toninelli [41, 42]. Since the system that we
can simulate is always finite, the study to extract the property of dynamical phase
transition from finite-size systems is important. In this section, we approach to this
problem with our formulation, especially, by looking at the effective description of
the system.

The Effective Description

First, we define the effective transition rate as

wh
eff(n → Ci n) ≡ w(n → Ci n)eh[Ch((ni± j )

r
j=1)]1−2ni , (2.69)

where r is a truncating number of the interaction range and the function
Ch((ni± j )

r
j=1) is an unknown function of local variables. See Fig. 2.9 for the

schematic picture explaining this effective transition rate. This is defined for investi-
gating howmuch the long-rang interactions can affect the dynamical phase transition.
The transition rate becomes more accurate as r increases up to r � L/2. For fixed r ,
like the application to ASEP in the previous subsection, we determine the function
Ch((ni± j )

r
j=1) as follows:
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Fig. 2.9 Schematic picture explaining an example of the effective description in FA model

1. For l = 0 (h = 0), we have Ch((ni± j )
r
j=1) = 1.

2. For given Clδh((ni± j )
r
j=1), we determine the next C (l+1)δh((ni± j )

r
j=1) with the

following procedure: We measure
〈
eτδh A(ω)

〉lδh

n for 22r+1 different configura-
tions n = n j ( j = 1, 2, . . . , 22r+1). Here, we choose n j = (0, n2, . . . , nr+1,

0, . . . , 0, nL−r+1, . . . nL) with ni = 1 or 0 (i = 2, . . . , r + 1, L − r + 1 . . . , L)

and n j = (1, n2, . . . , nr+1, 0, . . . , 0, nL−r+1, . . . nL) with ni = 1 or 0 (i =
2, . . . , r +1, L −r +1 . . . , L). Because the system has translational invariance,
we can regard the site i = 1 as the centre of the systemwithout loss of generality.

3. Next, by applying (2.47) to the effective transition rate (2.60), we obtain

C (l+1)δh((n1± j )
r
j=1) = Clδh((n1± j )

r
j=1)

〈
eτδh A(ω)

〉lδh

C1n〈
eτδh A(ω)

〉lδh

n

(2.70)

for i = 1, . . . , 22r+1. Thus, we obtain the next parameters C (l+1)δh((n1± j )
r
j=1)

from Clδh((n1± j )
r
j=1).

4. By iterating this procedure, we obtain the effective description of the exponential
family.

First, we check the validity of our formulation by launching Monte Carlo simula-
tions for small system sizes. We diagonalise the matrix Lh

n′,n defined in (2.25), then
we calculate

φ(C1n)/φ(n) (2.71)

with n = (0, n2, . . . , nr+1, 0, . . . , 0, nL−r+1, . . . nL), which corresponds to
Ch((n1± j )

r
j=1) in our formulation. The examples of this result are shown inFig. 2.10a.

Next, we investigate the long-range nature of the dynamical phase transition. We
fix relatively large values of L , where the direct diagonalization of the matrix Lh

n′,n
is too demanding. Then, we launch the Monte Carlo simulations and obtain G(h) for
several values of r . On the other hand, we apply the population dynamics method
to the same system, which is a numerical technique to calculate large deviation
functions [43, 44]. We plot all the obtained results in Fig. 2.10b. In the figure, we can
see that the curves obtained r = 3, 4 shows the convergence, especially for the region
h < 0. Since this part h < 0 takes responsibility for the dynamical phase transition
explained above [41, 42], this result suggests that the long-range interactions for the
modified transition rate is not relevant to it. We mention that the long-range nature of
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Our method
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Fig. 2.10 Statistical properties of an activity for the FAmodelwith c = 0.3. aWeset L = 10, r = 4,
l = 40 and δh = −0.0025, then we perform our formulation. We plot obtained Clδh((n1+ j )

r
j=1)

(Our method), where the x axis represents m(n) = ∑r−1
i=0 nL−i2i +∑2r−1

i=r n2r+1−i2i . On the same
figure, we also plot φ(C1n)/φ(n) with n = (0, n2, . . . , nr+1, 0, . . . , 0, nL−r+1, . . . nL ) obtained
from the left eigenvector corresponding to the largest eigenvalue of Lh

n,n′ for L = 10 with h = −0.1
(Exact). b We set L = 30 and δh = −0.0025, and we perform our formulation for several r . The
obtained G(h)/L are plotted on the figure. At the same time, we also perform the population
dynamics method [43, 44] for obtaining G(h)/L . The obtained result is plotted as a black dashed
line (P. D.) in the figure. Reprinted with permission from Ref. [27]. Copyright 2014 by American
Physical Society

the effective interactions has also been studied very recently in Ref. [45] for the East
model. They solved analytically a variational principle that characterises modified
systems (which is the same as the one that we explained in Sect. 2.2.5). Then, they
focused on the part h > 0 and concluded that the long range interaction could not
be negligible. This result is not contradictory to ours, because they focused on the
different region of h, and also, they measured different quantities from ours. Indeed,
in Fig. 2.10b for h > 0, we can see a small difference between results with effective
interactions and the one with population dynamics.

In this system, for investigating the singular behaviour of G(h) more precisely, a
scaled biasing parameter h̃ ≡ hL has been introduced by Bodineau, Lecomte, and
Toninelli [41, 42]. They proved that

G̃(h̃) = G(h̃/L) (2.72)

is not an analytic function in the limit L → ∞. However, the nature of the singularity,
for example how the singularity arrises as the systemsize becomes larger, has not been
understood yet. The problem was in the numerical study of it because the population
dynamics method does not exhibit good convergence of G̃(h̃) for relatively large
values of L [41]. In AppendixA.5, we show that our method can also be applied for
obtaining the reliable L dependence of G̃(h̃) even in this situation.
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2.5 Conclusion

In this chapter, we studied the phenomenological structure for the large deviation
principle in time-series statistics. By using this structure, we proposed a rare-event
sampling method composed of a measurement and feedback, which produced a
set of transition rates that had the same statistical properties as those in the biased
ensemble of large deviation statistics. For applying the method to spatially extended
many-body systems, where the number of degrees of freedom increased exponen-
tially, we also proposed a method to construct an effective description of the biased
ensemble. The example of the effective description is as follows: For the case of
ASEP, spatially varying one-body potentials instead of many-body potentials can be
this effective description. For FA model, the finite-size effect of dynamical phase
transition appearing in G(h) is well described by the effective description without
long-range interactions.

Here, we mention a future possibility related to this effective description. In order
to get a good effective description, physical intuition and some efforts with trial-and-
error are needed. But once after we get a good effective description, the computation
time of large deviation statistics will be shortened very much.What we need to know
now is the theory to determine such effective descriptions automatically if a system
is given. For constructing this theory, we need many examples of effective descrip-
tions in many systems. We start with a simple problem such as heat conduction, then
increase the complexity of the problem gradually. One of the challenging goals to
achieve is to find an effective description of fully-developed turbulence. (See Con-
clusion for the detail.) Since there is an important problem related to rare-events in
turbulence, such a description, if it is found, will certainly promote the understanding
of turbulence, especially from a viewpoint of rare-event sampling application to real
experiments.
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