
Chapter 2
Viability Selection

Let’s start you on your journey towards an understanding of the ideas of basic calculus
by just looking at how far we can go with applying algebra alone. We are going to
look carefully at a model of natural selection called viability selection. We are going
to build some nice models using lots of letters to represent things of interest and all
we need to understand this is your basic algebra skills from high school. Now in our
experience, most of you probably dislike mathematical things because they seem so
divorced from something real. So our tact here is to build something useful and along
the way, we have to do various manipulations which will help you gently remember
all your basic skills. Now these discussions come from the first chapter of a great
book on evolutionary biology (McElreath and Boyd 2007) which we encourage you
to pick up and study at some point. We are not going to cover these ideas in the
great detail there; instead we will focus on a few portions. We also use a bit different
language as our target is people who are just seeing calculus perhaps although we are
also hoping to get you to read this as a return to old things. At any rate, remember,
the purpose of modeling is insight into complicated stuff and mathematics is a great
tool to help us achieve that. Now let’s get to it.

2.1 A Basic Evolutionary Model

We are interested in understanding the long term effects of genes in a population.
Obviously, it is very hard to even frame questions about this. One of the benefits of
our use of mathematics is that it allows us to build a very simplified model which
nevertheless helps us understand general principles. These are biological versions
of the famous Einstein gedanken experiments: i.e. thought experiments which help
develop intuition and clarity.

Wewill explicitly use letters to represent quantities in the biologywewant to keep
track of. We will then want to make some assumptions about how these quantities
depend and interact with one another. Of course, in doing so, we always make error
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26 2 Viability Selection

which is called model error as there is no way we can specify everything in a real
biological scenario. We must make assumptions.

We start by assuming we have a population of N individuals at a given time. It
also seems reasonable to think of our time unit as generations. So we would say the
population at generation t is given by N(t). Hence, the number of individuals in our
population is not necessarily fixed but can change from one generation to the next.
To understand this change, we need to know how our population reproduces so as
to create the next generation. We want a very simple model here, so we will also
assume each individual in our population is haploid which means new individuals
are produced without sex or any sort of genetic recombination. Wait a minute, you
say! What could this mean? Usually, an adult has a certain number of chromosomes;
call this number 2P . The gametes are the cells with half of the genetic material
and therefore have only P chromosomes. Then in sexual reproduction there is a
complicated process by which the sperm and the egg interact to create a new cell
called a zygote which has 2P chromosomes. The gametes are considered haploid
as they each have half of the chromosomes of the adult. Sexual reproduction allows
a mixing of the chromosomes from two adults to form a new individual having
2P chromosomes. The cell formed by the union of the sperm and egg is called a
zygote and it is diploid as it has 2P chromosomes. So we are making a very big
simplifying assumption. Essentially we are saying each adult has Q chromosomes
and the reproduction process does not mix genetic information from another adult
and hence the zygote formed by what is evidently some form of asexual reproduction
also has Q chromosomes. Note, calling the cell formed by this reproductive process
a zygote is a bit odd as usually that word is reserved for the cell formed by a sexual
reproduction. So we have a really simplistic population dynamic here! Hence, we
use the term zygote here loosely!

With this said, we also assume in each generation individuals go through their life
cycle exactly the same: all individuals are born at the same time and all individuals
reproduce at the same time. We will call this a discrete dynamic. Note a zygote does
not have to live long enough to survive to an adult.

Since we want to develop a very simple model we assume there are only two
genotypes, type A and type B. We also assume A is more likely to survive to an
adult. We need to start defining quantities of interest: i.e. variables now.

• NA is the number of individuals of phenotype A and NB is the number of individ-
uals of phenotype B in a given generation.

• N is the number of individuals in the population and this number changes each
generation as

N = NA + NB.

This is our first equation and note it is pretty simple. It simply counts things. Now
if we really wanted to be careful, we might let t represent the generation we are
in: i.e we start at generation 0 so t = 0 initially. Then the first generation is t = 1
and so forth. Eventually, we will want to know what happens in the population as
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t increases, but that is for later. So if we wanted to be really explicit, we would
add the variable t to our equation above to get

N(t) = NA(t) + NB(t).

It is a bookkeeping device really and not terribly essential. However, without
adding (t) in there variables, we have to remember that each one does depend on
the generation we are in. Also, note generations here are integers not numbers like
1/2 or 2.4. Nothing but integers for now!

• It is also convenient to keep track of the fraction of individuals in the population
that are genotype A or B. This fraction is also called the frequency of type A and
B respectively. We use new variables for this.

PA = NA

NA + NB

PB = NB

NA + NB

We can also explicitly add the generation variable t to get

PA(t) = NA(t)

NA(t) + NB(t)

PB(t) = NB(t)

NA(t) + NB(t)

• Finally, as we said, individuals of each phenotype do not necessarily survive to
adulthood. We will assume each phenotype survives to adulthood with a certain
probability, VA and VB , respectively.

2.1.1 Examples

Let’s do some calculations.

Example 2.1.1 If NA(0) = 25 and NB(0) = 15, find PA(0) and PB(0).

Solution This is an easy computation.

PA(0) = NA(0)

NA(0) + NB(0)

= 25

25 + 15
= 25

40
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PB(t) = NB(0)

NA(0) + NB(0)

= 15

25 + 15
= 15

40
.

2.1.2 Homework

Exercise 2.1.1 If NA(0) = 35 and NB(0) = 60, find PA(0) and PB(0).

Exercise 2.1.2 If NA(0) = 1500 and NB(0) = 900, find PA(0) and PB(0).

Exercise 2.1.3 If NA(0) = 82 and NB(0) = 47, find PA(0) and PB(0).

2.2 The Next Generation

We now have enough of a setup to look more carefully at how our population moves
from one generation to the next. Let’s do this very carefully. We will keep track of
how the frequency PA changes. Let PA(t) be the frequency for A at generation t .
What is the frequency at the next generation t + 1? Here is how we figure it out.

• The number of zygotes from individuals of genotype A at generation t is assumed
to be z NA(t)where z is the number of zygotes each individual of type A produces.
Note that z plays the role of the fertility of individuals of type A. We will assume
that individuals of type B also create z zygotes. Hence, their fertility is also z. We
could also have assumed these fertilities are different and labeled them as z A and
zB , respectively, but we aren’t doing that here. So the number of zygotes of B type
individuals is z NB(t).

• The frequency of A zygotes at generation t is then

PAZ(t) = z NA(t)

z NA(t) + z NB(t)

where we add an additional subscript to indicate we are looking at zygote fre-
quencies. Note the z’s cancel to show us that the frequency of A zygotes in the
population does not depend on the value of z at all. We have

PAZ(t) = NA(t)

NA(t) + NB(t)
= PA(t).

• But not all zygotes survive to adulthood. If we multiply numbers of zygotes by
their probability of survival, VA or VB , the number of A zygotes that survive to
adulthood is VA NA(t) and the number of B zygotes that survive to adulthood is
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VB NB(t). We see the frequency of A zygotes that survive to adulthood to give the
generation t + 1 must be

PAZS(t + 1) = VA NA(t)

VA NA(t) + VB NB(t)
.

where we have added yet another subscript S to indicate survival. Note we add the
generation label t + 1 to PAZS because this number is the frequency of adults that
start generation t + 1. Also, note this fraction is exactly how we define our usual
frequency of A at generation t + 1. Hence, we can say

PA(t + 1) = VA NA(t)

VA NA(t) + VB NB(t)
.

Now for the final step. From the way we define stuff, notice that

PA(t) = NA(t)

NA(t) + NB(t)

Now replace the denominator by N(t) and multiply both sides by this denominator
to get

N(t) PA(t) = NA(t).

Then consider the frequency for B. Note

1 − PA(t) = 1 − NA(t)

NA(t) + NB(t)

= 1 − NA(t)

N(t)
.

Getting a common denominator, we find

1 − PA(t) = N(t) − NA(t)

N(t)
.

But we can simplify N(t)− NA(t) to simply NB(t). Using this in the last equation,
we have found that

1 − PA(t) = NB(t)

N(t)

which leads to the identity we wanted: NB(t) = (1 − PA(t)) N(t). This analysis
works just fine at generation t + 1 too, but at that generation, we have
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NA(t + 1) = N(t) VA PA(t)

NB(t + 1) = N(t) VB PB(t)

= N(t) VB (1 − PA(t))

So we can say

PA(t + 1) = NA(t + 1)

NA(t + 1) + NB(t + 1)

= PA(t) N(t) VA

PA(t) N(t) VA + (1 − PA(t))N(t) VB
.

Since N(t) is common in both the numerator and denominator, we can cancel them
to get

PA(t + 1) = VA PA(t)

PA(t) VA + (1 − PA(t)) VB
.

This tells us how the frequency of the A genotype changes each generation.

2.2.1 Examples

Example 2.2.1 Let VA = 0.7 and VB = 0.45 and assume PA(0) = 0.03. Find
PA(1).

Solution We know

PA(1) = VA PA(0)

PA(0) VA + (1 − PA(0)) VB

= 0.7 (0.03)

0.7 (0.03) + 0.45 (0.97)
= 0.0210

0.0210 + 0.4365
= 0.0459.

2.2.2 Homework

Exercise 2.2.1 Let VA = 0.8 and VB = 0.25 and assume PA(0) = 0.02. Find
PA(1).

Exercise 2.2.2 Let VA = 0.6 and VB = 0.1 and assume PA(0) = 0.01. Find PA(1).

Exercise 2.2.3 Let VA = 0.85 and VB = 0.3 and assume PA(0) = 0.05. Find
PA(1).
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2.3 A Difference Equation

We can also derive a formula for the change in frequency at each generation by doing
a subtraction. We consider

PA(t + 1) − PA(t) = VA PA(t)

PA(t) VA + (1 − PA(t)) VB
. − PA(t).

Now the algebra gets a bit messy, but bear with us. Get a common denominator next.

PA(t + 1) − PA(t) = VA PA(t)

PA(t) VA + (1 − PA(t)) VB
. − PA(t)

PA(t) VA + (1 − PA(t)) VB

PA(t) VA + (1 − PA(t)) VB
.

Multiply everything out and put into one big fraction.

PA(t + 1) − PA(t) =
VA PA(t) − PA(t)

(
PA(t) VA + (1 − PA(t)) VB

)

PA(t) VA + (1 − PA(t)) VB

=
VA PA(t) − (PA(t))2 VA −

(
PA(t) (1 − PA(t)) VB

)

PA(t) VA + (1 − PA(t)) VB
.

Whew! Messy indeed. Now factor a bit to get

PA(t + 1) − PA(t) =

(
PA(t) − PA

2(t)

)
VA −

(
PA(t) (1 − PA(t)) VB

)

PA(t) VA + (1 − PA(t)) VB
.

Almost done.As a final step note that PA(t)− PA
2(t) is the same as PA(t)(1− PA(t)).

So in the numerator of this complicated fraction, we can factor that term out to give

PA(t + 1) − PA(t) =

(
PA(t) (1 − PA(t))

) (
VA − VB

)

PA(t) VA + (1 − PA(t)) VB
.

This is what is called a recursion equation. It is called that because it gives us a
formula which tells us how to find the next generation results give the previous
generation’s frequency. For example, if the frequency of A in the population started
at P(0) = p0, the change in frequency of A in the next generation is given by

PA(1) − PA(0) =

(
PA(0) (1 − PA(0))

) (
VA − VB

)

PA(0) VA + (1 − PA(0)) VB
.
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Substituting in the value p0 we find we can solve for PA(1) as follows:

PA(1) = p0 +
p0 (1 − p0)

(
VA − VB

)

p0 VA + (1 − p0) VB

and continuing in this vein, the frequency at generation 2 would be

PA(2) = p1 +
p1 (1 − p1)

(
VA − VB

)

p1 VA + (1 − p1) VB

where we denote PA(1) more simply by p1. We can then continue and calculate
as many of these as we want. Note, this will give us a table of numbers: for each
generation t , we calculate a frequency of A in the population PA(t). We can then
plot these ordered pairs on a standard set of axis: the horizontal generation axis and
the vertical frequency of A axis. Of course, these means a lot of computation! So
as time goes on, we will use a tool called MatLab to do this more easily. We also
notice that an interesting question is what happens to this frequency as the number of
generations increase? Doe the frequency plateau at some level or does it rise forever?
A little thought should show you that the frequency can’t go above 1 as frequency is
a fraction between 0 and 1 at each generation. So the question is does the frequency
plateau at 1 or something less? With this question, we are really asking about what
is called the limiting behavior of our frequency model. Our studies in Calculus will
give us a variety of tools and ideas to let us handle this question, but already you
should see that it is an important thing to think about.

Another important thing to notice is that the idea of generation is a fluid concept
as generation means very different things in different species. So when we use t
to represent a generation, the time interval to get to generation t + 1 can be years,
months, days, hours and even less. Our severely odd thought experiment creature of
this model can be replaced by other creatures with sexual reproduction and all sorts
of other more accurate assumptions. But the basic questions will still be the same.
We use our model to find how the frequencies change in each generation and we use
calculation to generate plots so we can see the behavior visually. And we ask the big
question: what is the limiting behavior?

2.3.1 Examples

We should do some examples of how to use these ideas. First, some computations.

Example 2.3.1 Find the frequency of type A individuals at generation 1 given that
initially the frequency of A individuals is p0 = 0.01 and the probabilities of A and
B are VA = 0.8 and VB = 0.3.
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Solution We use the equation above. We have

PA(1) = p0 +
p0 (1 − p0)

(
VA − VB

)

p0 VA + (1 − p0) VB

= 0.01 + 0.01 (0.99) (0.8 − 0.3)

0.01 (0.8) + 0.99 (0.3)

= 0.01 + 0.00495

0.305
= 0.01 + 0.01623 = 0.0262.

So the change in frequency of A is PA(1) − PA(0) = 0.0262 − 0.01 = 0.0162 with
the new frequency given by PA(1) = 0.0262. We can clearly calculate as many of
these as we wish.

2.3.2 Homework

Exercise 2.3.1 Find the frequency of type A individuals at generation 1 given that
initially the frequency of A individuals is p0 = 0.02 and the probabilities of A and
b are VA = 0.85 and VB = 0.25.

Exercise 2.3.2 Find the frequency of type A individuals at generation 1 given that
initially the frequency of A individuals is p0 = 0.03 and the probabilities of A and
b are VA = 0.75 and VB = 0.45.

Exercise 2.3.3 Find the frequency of type A individuals at generation 1 given that
initially the frequency of A individuals is p0 = 0.04 and the probabilities of A and
b are VA = 0.65 and VB = 0.2.

Exercise 2.3.4 Find the frequency of type A individuals at generation 1 and gen-
eration 2 given that initially the frequency of A individuals is p0 = 0.02 and the
probabilities of A and b are VA = 0.75 and VB = 0.3.

Exercise 2.3.5 Find the frequency of type A individuals at generation 1 and gen-
eration 2 given that initially the frequency of A individuals is p0 = 0.01 and the
probabilities of A and b are VA = 0.6 and VB = 0.2.

2.4 The Functional Form of the Frequency

Let’s derive a functional form for PA(t). We will start with the number of A in
the population initially, NA(0). From our discussions, we know that at the next
generation, the number of A is
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NA(1) =
(
Fertility of A

)
×

(
The number of A at generation 0

)

×
(
The probability an A type lives to adulthood

)

= z NA(0) VA.

Then, it is easy to see that NA(2) is given by

NA(2) =
(
Fertility of A

)
×

(
The number of A at generation 1

)

×
(
The probability an A type lives to adulthood

)

= z NA(1) VA = z (z NA(0) VA) VA = NA(0) (z VA)
2.

We can do this over and over again. We find

NA(3) = NA(0) (z VA)
3

NA(4) = NA(0) (z VA)
4

...

We can easily extrapolate from this to see that, in general,

NA(t) = NA(0) (z VA)
t

and a similar analysis shows us that

NB(t) = NB(0) (z VB)
t

We are now ready to figure out a functional form for PA(t). From the definition of
the frequency for A, we have

PA(t) = NA(t)

NA(t) + NB(t)
.

Now divide top and bottom of this fraction by NA(t) to get

PA(t) =
NA(t)
NA(t)

NA(t)+NB(t)
NA(t)

= 1

1 + NB(t)
NA(t)

.
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Now plug in our formulae for NA(t) and NB(t). Note the fraction

NB(t)

NA(t)
= NB(0) (z VB)

t

NA(0) (z VA)t

= NB(0)

NA(0)

(
VB

VA

)t

.

Using this in our frequency formula, we have

PA(t) = 1

1 + NB(0)
NA(0)

(
VB
VA

)t .

2.4.1 Examples

Let’s redo our previous example using this new formula.

Example 2.4.1 Find the frequency of type A individuals at generation 1 given that
initially the frequency of A individuals is p0 = 0.01 and the probabilities of A and
B are VA = 0.8 and VB = 0.3.

Solution Since p0 = 0.01, we can use that to find the initial values of NA(0) and
NB(0). We have

PA(0) = 0.01 = NA(0)

NA(0) + NB(0)
.

Now rewrite this as by dividing top and bottom of the fraction by NA(0) to get

PA(0) = 0.01 = 1

1 + NB(0)
NA(0)

.

We can then solve for

1

1 + NB(0)
NA(0)

= 0.01

1 + NB(0)

NA(0)
= 1

0.01
= 100

NB(0)

NA(0)
= 99.
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Using the probabilities, we thus have

PA(1) = 1

1 + NB(0)
NA(0)

VB
VA

= 1

1 + 99.0 ( 0.30.8 )
1

= 1

1 + 99.0 3
8

= 1

38.125
= 0.0262

So the change in frequency of A is PA(1) − PA(0) = 0.0262 − 0.01 = 0.0162
with the new frequency given by PA(1) = 0.0264. This is just like we calculated
before. However, this formula makes it easy for us to find out what happens after
many generations! Note, PA(5) would be

PA(5) = 1

1 + 99.0 ( 0.30.8 )
5

and PA(15) would be

PA(15) = 1

1 + 99.0 ( 0.30.8 )
15

2.4.2 Homework

Now use our new frequency formula to find some frequencies of A in the population.
Note how, although we are not doing it yet, we can now do all the calculations to
generate a plot of PA(t) versus generation t!

Exercise 2.4.1 Find the frequency of type A individuals at generation 5 given that
initially the frequency of A individuals is p0 = 0.02 and the probabilities of A and
b are VA = 0.85 and VB = 0.25.

Exercise 2.4.2 Find the frequency of type A individuals at generation 6 given that
initially the frequency of A individuals is p0 = 0.03 and the probabilities of A and
b are VA = 0.75 and VB = 0.45.

Exercise 2.4.3 Find the frequency of type A individuals at generation 10 given that
initially the frequency of A individuals is p0 = 0.04 and the probabilities of A and
b are VA = 0.65 and VB = 0.2.
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Exercise 2.4.4 Find the frequency of type A individuals at generation 5, generation
10 and generation 20 given that initially the frequency of A individuals is p0 = 0.02
and the probabilities of A and b are VA = 0.75 and VB = 0.3. What do you think is
happening as the number of generations increases?

Exercise 2.4.5 Find the frequency of type A individuals at generation 10, and gen-
eration 20 and generation 30 given that initially the frequency of A individuals is
p0 = 0.01 and the probabilities of A and b are VA = 0.6 and VB = 0.2. What do
you think is happening as the number of generations increases?

2.4.3 Biology and the Model

Let’s step back a minute and ask what we are doing. We have been interested in
exploring how a population of two phenotypes spread throughout a population. Since
the size of the population can change at each generation, it is much more useful to
look at the frequencies of each phenotype in the population. We have developed a
model that gives us insight into how this happens. Recall our recursion equation for
the change in frequency for type A:

PA(t + 1) − PA(t) =

(
PA(t) (1 − PA(t))

) (
VA − VB

)

PA(t) VA + (1 − PA(t)) VB
.

It is traditional in evolutionary biology to look at the denominator term PA(t) VA +
(1− PA(t)) VB and try to understand what it means biologically. A common way to
interpreting it is to tag the term PA(t) VA as the fitness of type A in the population
and the other term, (1− PA(t)) VB as the fitness of type B. Hence, the denominator
term is like a weighted or average fitness of the entire population. We often use a
bar above a variable to indicate we are looking at that quantities average value. The
fitness is usually denoted by the variable w and hence, this denominator term is w̄.

To get additional insight, let’s let the symbol �PA represent the change PA(t +
1) − PA(t); we read the symbol � as change in. And let’s drop all the (t) labels so
we can rewrite our recursion as

�PA = PA (1 − PA) (VA − VB)

w̄
.

Finally, we could do this sort of analysis for any phenotype not just type A. So let’s
replace the specific term PA by just p. Also the term VA − VB is the difference in
fitness between A and B. Let’s denote that by � f where f represents fitness. Then
we can rewrite our recursion again as

�p = p (1 − p)
� f
w̄

.
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Fig. 2.1 The product p (1 − p)

If we assume the difference in fitness is constant, then the amount of change in the
frequency of A is determined by the leading term p (1− p). To see what this means,
consider the graph of p on the interval [0, 1]. We don’t need to use any other values
of p as it is a frequency as so ranges from 0 to 1. This graph is shown in Fig. 2.1.

The largest value the product p (1 − p) can be seen by looking at the plot. This
maximum value occurs at p = 0.5. Hence, the change in fitness is largest when the
product p (1− p) is largest. If p is small or close to 1, the product p (1− p) is also
small. We usually interpret our equation

�p = p (1 − p)
� f
w̄

.

as the magnitude of natural selection acting on our population. Hence, we can
see that natural selection is made largest (we say maximized) when the product
p (1− p) is maximized. It turns out the product p (1− p) is known as the variance
in genotypes in the population which is why we used the term variance in the title of
Fig. 2.1! So our thought experiment has shed light on an interesting principle: fitness
is maximized when the variance of the genotypes in the population is maximal!!

Remember, our goal with the mathematics and the computations we do is to gain
insight into how to understand biological processes.
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2.5 A Gentle Introduction to MatLab

In this book, we will use a computational tool called MatLab (see http://www.
mathworks.com/) so that you can learn a little about a typical interactive program
that many scientists use for their work. Once you have it installed, if you are using
your laptop or computer, just click on the Matlab icon to get started. Next, create
a folder or directory on your laptop for your work in this book. Something like
neanderthal. All of our stuff for this book will then go into that folder. When you
start up MatLab, you see the command screen shown in Fig. 2.2. You screen image
might be a bit different but it will be similar.

Next, we have to set your path. With Matlab running do this:

• On the left, there is a File option you can click on. Click on that and go to the Save
Path option.

• When the program Matlab is searching for its instructions on how to do things, it
first looks for them in all of the folders that were setup for Matlab as part of its
installation. We don’t want to put any of our stuff in those folders.

• We want our stuff in our personal folder neanderthal. So scroll down to find this
folder, choose it and then click on the Add Path button to add this folder to the
search path. Then choose Save and you are done.

Fig. 2.2 The MatLab startup screen

http://www.mathworks.com/
http://www.mathworks.com/
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• Now at the top of the running Matlab, choose the folder neanderthal so that
Matlab is running in that folder. You can check this by typing pwd in the big
middle window. It should spit back this folder name.

2.5.1 Matlab Vectors

First, set up our function. MatLab allows us to define a function inside the MatLab
environment as follows

Listing 2.1: Defining a Matlab Function

f = @( x ) ( x . ˆ 2 ) ;

This defines the function f (x) = x2. If we had wanted to define g(x) = 2 ∗ x2 + 3,
we would have used

Listing 2.2: Defining a second Matlab Function

g= @( x ) (2∗ x . ˆ 2 + 3 ) ;

In MatLab, variables that have columns are what in mathematics are called vectors.
We will talk about vectors, matrices and so forth in Chap.18 a bit later in this book.
For now, consider this example. Set up the variable X as one that has columns. The ;
between the numbers let MatLab know we want each number to start a new row. So
X is a variable which has 3 rows and 1 column.

Listing 2.3: A column vector

X = [ 1 ; 2 ; 3]

X =
4

1
2
3

Note there is no semicolon at the end of the line below so Matlab displays what
X is after we type the command. Adding the ; turns off the display.

Listing 2.4: A column vector with no display

X = [ 1 ; 2 ; 3 ] ;

If we had used , between the numbers instead of the ; we would have made a variable
which consists of 1 row and 3 columns:

http://dx.doi.org/10.1007/978-981-287-874-8_18
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Listing 2.5: A row vector

Y = [ 1 , 2 , 3 ]
Y =

4 1 2 3

Adding the ; turns off the display.

Listing 2.6: A row vector with no display

Y = [ 1 , 2 , 6 , −8];

Now let Z be another column vector the same size as X.

Listing 2.7: New Vector Z

Z = [4 ; −2 ;6]

Z =
4

4
−2

6

The MatLab notation X.*Z means to multiple the components of X and Z as follows

⎡
⎣1
2
3

⎤
⎦ · ∗

⎡
⎣ 4

−2
6

⎤
⎦ =

⎡
⎣ (1)(4)
(2)(−2)
(3)(6)

⎤
⎦ =

⎡
⎣ 4

−4
18

⎤
⎦

So in MatLab, we have

Listing 2.8: Component wise Multiplication of Vectors

X. ∗Z

3 ans =

4
−4
18

If wewanted to square everything inX, wewouldwrite X.2 to square each component
creating a new vector with each entry squared.
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Listing 2.9: A Vector Squared

X. ˆ 2
ans =

3

1
4
9

The way we set up the function

Listing 2.10: The function f(x)

f = @( x ) ( x . ˆ 2 ) ;

makes use of this.We don’t know if the variable x is a vector or not. Sowewrite x .2 so
that if x is a vector, we handle the squaring of each component properly. Otherwise,
MatLab ignores the extra . in front of the multiplication symbol * when the variable
x is just a number. So for our function, to find f (2), we just type

Listing 2.11: f(2)

f ( 2 )

ans =
4

4

as the argument sent into f is just a number. But if we had sent in a vector, like X, it
would still be handled properly because of the way we wrote the code for f. So for
our function, to find f for all the values in X, we just type

Listing 2.12: f(X)

f (X)
ans =

1
4

5 9

2.5.1.1 Examples

Example 2.5.1 Let’s set up some vectors. Write the Matlab code to set up the row
vector A = [1, 2,−5, 8] and the column vector

B =

⎡
⎢⎢⎣

−4
2

−5
10

⎤
⎥⎥⎦
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Solution We write

Listing 2.13: Set up some vectors

A = [1 ,2 , −5 ,8 ]
B = [ −4;2; −5;10]

2.5.1.2 Homework

Exercise 2.5.1 Write the Matlab code to set up the row vector A = [−2, 4, 3,−18]
and the column vector

B =

⎡
⎢⎢⎣
6
10
7
1

⎤
⎥⎥⎦

Exercise 2.5.2 Write the Matlab code to set up the row vector A = [4, 0,−50, 80]
and the column vector

B =

⎡
⎢⎢⎣

−40
22
35
8

⎤
⎥⎥⎦

Exercise 2.5.3 Write the Matlab code to set up the row vector A = [1, 2, 0,−28]
and the column vector

B =

⎡
⎢⎢⎣

−6
−32
43
1

⎤
⎥⎥⎦

2.5.2 Graphing a Function

To graph f we need to set up a variable which tells us how many data points to
use in the plot. This variable is different from our partition variable. The linspace
command below sets up a variable y to be a vector with 21 points in it. The first point
is 1 and the last point is 3 and the interval [1, 3] is divided into 20 equal size pieces.
So this command linspace(1,3,21) creates y values spaced 0.1 apart:

{y1 = 1, y2 = 1.1, y3 = 1.2, . . . , y20 = 2.9, y21 = 3.0}.
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We use the pairs (yi , f (yi )) to make a plot by connecting the dots determined by the
pairs using lines. To do the plot in Matlab is easy

Listing 2.14: Setting up a function plot

y = l i n spa c e ( 1 , 3 , 2 1 ) ;
p l o t ( y , f ( y ) ) ;

We can add stuff to this bare bones plot.

Listing 2.15: Adding labels to the plot

x lab e l (’x axis’ ) ;
y lab e l (’y axis’ ) ;

3 l egend (’xˆ2’ ,’location’ ,’best’ ) ;
t i t l e (’Plot of f(x) = xˆ2 on [1,3]’ ) ;

where

• xlabel sets the name printed under the horizontal axis.
• ylabel sets the name printed next to the vertical axis.
• legend sets a blurb printed inside the graph explaining the plot. Great when you
plot multiple things on the same graph.

• title sets the title of the graph.

The graph pops up in a separate window as you can see. Using the file menu, select
save as and scroll through the choices to save the graph as a .png file—a Portable
Network Graphics file. You’ll need to give the file a name. We chose graph1.png
and it is shown in Fig. 2.3.

Fig. 2.3 Graph of f
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2.5.2.1 Examples

You should type in these commands inMatlab on your laptop or some other computer
and make sure you know how to do all the steps. To turn in the homework, make a
screen print of your Matlab session. Later we will take the session and put it into a
word document but that is to come.

Example 2.5.2 Let’s plot f (t) = t3 + 2t + 3 on the interval [−1, 1].
Solution Type in these commands to see the plot—we don’t show it here but you
should see it!
Listing 2.16: Graphing f (t) = t3 + 2t + 3

1 f = @( t ) ( t . ˆ 3 + 2∗ t + 3 ) ;
T = l in s p a c e ( −1 ,1 ,41) ;
p l o t ( T , f ( T ) ) ;
x l a b e l (’t axis’ ) ;
y l a b e l (’y axis’ ) ;

6 l egend (’tˆ3+2t=3’ ,’location’ ,’best’ ) ;
t i t l e (’Plot of f(t) = tˆ3+2t+3 on [-1,1]’ ) ;

2.5.2.2 Homework

Graph the following functions on the given interval nicely with labels and so forth.
You’ll probably have to play with the linspace command to get a nice plot.

Exercise 2.5.4 Graph f (x) = 2x + x4 on the interval [−2, 3].
Exercise 2.5.5 Graph f (t) = 2t − 5t2 on the interval [−1, 2].
Exercise 2.5.6 Graph h(y)) = 12y − 6y3 on the interval [−4, 4].

2.5.3 A Simple Virus Infection Model

Let’s look now at a sample use of MatLab to plot some data. We will use some data
arising from computational models of West Nile Virus infection. West Nile Virus is
in the Flavivirus family which is a family of viruses transmitted by mosquitoes and
ticks with an impact that is important for varied sociological and economic reasons.
These diseases include dengue, yellow fever, tick-borne encephalitis and West Nile
fever. They are widely distributed throughout the world with the exception of the
polar regions, although a specific flavivirus may be geographically restricted to a
continent or a particular part of it. With global warming, these single-stranded RNA
viruses are entering the radars of more regions of the world than ever. West Nile
virus, for example, has emerged in recent years in temperate regions of Europe and
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North America, presenting a threat to public and animal health. The most serious
manifestation of the West Nile virus infection is fatal encephalitis (inflammation
of the brain) in humans and horses, as well as mortality in certain domestic and
wild birds. The virus is maintained in nature through a transmission cycle involving
mosquitoes and birds. Children will usually experience an apparent or a mild febrile
illness. Adults may experience a dengue-like illness while the elderly may develop
an encephalitis which is sometimes fatal. The diagnosis is usually made by serology
although the virus can be isolated from the blood in tissue culture. No vaccine for
the virus is available and there is no specific therapy. The West Nile Virus infections
feature a substantial up-regulation of cell surface molecules of a variety of cell types
which are in the G0 resting state of cell division. Curiously, cells that are dividing (i.e.
in the G1 state) do not have this up-regulation. Althoughmany cell surfacemolecules
are expressed at a much higher rate in the quiescent cells, the model developed in
Peterson et al. (2015) so far focuses primarily on the increase in theMHC-I complex.
A simulation model was built as closely tied to the epidemiological and biological
literature as possible (although there is a mathematical framework as well). The
model was then used to run simulations to help us understand the data on West Nile
Virus infections that have been collected by cellular biologists that involve multiple
hosts. In a survival experiment, a population of mice of size N are all infected with
the same amount of antigen. In the laboratory, the level of antigen used is measured
in pfu or plaque forming units. This level is actually measured visually by looking
at a slide infected with antigen and seeing how many “plaques” form when the virus
is exposed to a phage. Hence, it is a somewhat imprecise measurement even in the
cell biologist’s laboratory setting. After these N mice are infected, we wait to see
howmany die. We then repeat the experiment using N mice for a reasonable number
of different pfu levels. Say we did this for 12 pfu levels on 12 different populations
of size N . We could then graph the number of mice that survive versus the pfu
level. This is called a survival experiment and as you can see, it is fairly expensive
to mount, requiring 12N mice. If we used N = 100, this would be 1200 mice at
perhaps $20.00 per mouse. The experiment thus costs over $24,000 for the mice
alone. Needless to say, this is costly. Now a traditional survival experiment gives a
survival plot which smoothly decays down to a survival of 0 at high pfu level. West
Nile Virus has a peculiar survival curve which is shown in Fig. 2.4. Note that survival
actually increases sometimeswith increasing pfu. This is quite different from the data
that we see in other viral infections. The computer simulations are used to generate
this kind of survival data for 10 hosts infected at 18 different pfu levels. This data is
shown in Fig. 2.6b and has been entered into a file called survival.dat (Fig. 2.5). We
want to generate a plot of the number of mice that survive versus the logarithm of
the pfu level. We can use MatLab to do this easily.

We want to load the information contained in the file survival.dat into a MatLab
variable. You want to make sure the file is a simple text file—in aWindows machine,
use Notepad and in a Mac, use textedit. Just make sure you save the file in a text
format. Also, as we said above, make sure you set the path inMatLab so that MatLab
can find your data file. Now, note that we have entered the data in a three column
format.
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Fig. 2.4 Actual survival curve

Surviving Infection Surviving Surviving Infection Surviving
Mice Level Fraction Mice Level Fraction
10 100 0.999990 4 25000 0.439213
10 250 0.999982 2 50000 0.358584
10 500 0.808539 2 75000 0.367035
8 750 0.589315 3 90000 0.379991
10 1000 0.739119 4 120000 0.359158
8 2500 0.497502 0 360000 0.296874
5 5000 0.454120 1 600000 0.301097
3 7500 0.425226 2 900000 0.356034
3 10000 0.370141 0 1200000 0.297576

Fig. 2.5 Simulation WNV survival data

The numbers in each row are entered separated by spaces. You can’t use comma’s
in numbers here. For example, if you entered 25000 as 25,000, the, would be inter-
preted in MatLab as the second entry in the row is 25, the third entry in 000 and the
fourth entry is 0.439213. Of course, there should be only 3 entries in each row, so
this would cause MatLab to get very confused. To load the data in this file, we use
the following command.

Listing 2.17: Loading Data From a File

> Data = load (’survival.dat’ ) ;

The information in the file is now placed into a MatLab variable called Data which
consists of 18 rows with 3 columns each. We take all the numbers in column one and
store them in a new variable called Survival with this line.
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Listing 2.18: Putting Survival Data into a Matlab Variable

Surv iva l = Data ( : , 1 )

Surv iva l =

5 10
10
10
8

10
10 8

5
3
3
4

15 2
2
3
4
0

20 1
2
0

You see the data is echoed to your screen. This is because we did not put a final ; after
the line. If we had, there would have been no additional output. Note the syntax here.
The command Data(:,1) tells MatLab to use all the data in column 1 to load into
the variable Survival. We could also have used the command Data(1:18,1),
but this is a little more work as we need to know exactly how many rows of data
there are. The first way, using a : is a lot easier! Next, we load the second column of
data into a variable called Pfuwhere we have the ellipsis to indicate data we are not
showing because it takes up so many lines! Of course, in the MatLab environment,
you would see all the data printed out.

Listing 2.19: Loading data into MatLab variables

Pfu = Data ( : , 2 )

Pfu =

5 100
250
500
. . .

900000
10 1200000

Finally, we load the last or third column into a variable called HealthyPercent.
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Listing 2.20: Loading Healthy Percent

Hea l thyPercent = Data ( : , 3 )

Hea l thyPercent =

5 1 .0000
1 .0000
0 .8085

. . .
0 .3560

10 0 .2976

Now we will look at plots involving the logarithm of the data. You have seen the
logarithm function in high school and we are going to explain what logarithms are
very carefully in a bit, but for now, let’s assume you know about them. So, if we
wanted to graph Survival versus the logarithm of Pfu, we first compute the
natural logarithm of each number in Pfu with the line

Listing 2.21: Logarithm of Pfu

logPfu = l og ( Pfu ) ;

This takes the column of information in the variable Pfu and applies the natural loga-
rithm to each entry. Now we haven’t discussed natural logarithms yet, but you prob-
ably remember them from high school classes. Our discussion will be in Chap.10.
But you should be able to remember enough to get the gist of what we are doing
here. Now we put the ; on the end of this line and so the new variable logPfu is not
printed out. If we had left off ;, we would have seen

Listing 2.22: Listing logPFU Values

logPfu = l og ( Pfu )

logPfu =
4

4 .6052
5 .5215
6 .2146
6 .6201

9 6 .9078
7 .8240
8 . 5172
8 . 9227
9 .2103

14 10 .1266
10 .8198
11 .2252
11 .4076
11 .6952

19 12 .7939
13 .3047
13 .7102
13 .9978

The plot is then generated with the lines

http://dx.doi.org/10.1007/978-981-287-874-8_10
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Listing 2.23: Simple logPfu versus Surviving Hosts Plot

p l o t ( logPfu , Surv iva l ) ;
x lab e l (’Logarithm Of PFU Level’ ) ;

3 y lab e l (’Surviving Hosts’ ) ;
ax i s ( [ 4 . 0 1 4 . 5 −0.5 1 0 . 5 ] ) ;
t i t l e (’Survival Experiment: 10 Hosts, final time = 960’ ) ;

The plot command here will use default colors and will be generated with no axis
labels, title and so forth. The xlabel, ylabel commands above set the axis labels
to the string we want to use. The title command allows us to pick the title for
our graph. Finally, the axis command allows us to override the default minimum x,
maximum x, minimum y and maximum y values used in the plot. MatLab automat-
ically chooses these for you, but the axis command lets you choose more pleasing
settings if you want. The first line, plot, generates the figure right away and you
will see it pop up. As each of the other lines is typed and you hit the carriage return
key, the strings are added to the existing figure. When all is done, you can go to the
figure and save it as a graphics file with an appropriate extension. For us, since we
want to add these files to word or open office documents, we choose .png or .jpg
files. You will have to choose where you save the file also before you save it.

A similar set of lines generates the plot of HealthyPercent versus logPfu.

Listing 2.24: Healthy Percent versus logPfu Plot

p l o t ( logPfu , Hea l thyPercent ) ;
x lab e l (’Logarithm Of PFU Level’ ) ;
y lab e l (’Percentage of Healthy Cells Left’ ) ;
ax i s ( [ 4 . 0 1 4 . 5 −0.5 1 0 . 5 ] ) ;

5 t i t l e (’Survival Experiment: 10 Hosts, final time = 960’ ) ;

The plots we have generated are shown in Fig. 2.6a, b.
Note, that the simulated survival curve is qualitatively similar to the real data shown
in Fig. 2.4. To end this section, note that the entire MatLab session to build both plots
is quite compact. Here it is without commentary.

Listing 2.25: Entire Matlab Survival Data Session

Data = load (’survival.dat’ ) ;
Surv iva l = Data ( : , 1 ) ;
Pfu = Data ( : , 2 ) ;
Hea l thyPercent = Data ( : , 3 ) ;

5 logPfu = l og ( Pfu ) ;
p l o t ( logPfu , Surv iva l ) ;
x lab e l (’Logarithm Of PFU Level’ ) ;
y lab e l (’Surviving Hosts’ ) ;
ax i s ( [ 4 . 0 1 4 . 5 −0.5 1 0 . 5 ] ) ;

10 t i t l e (’Survival Experiment: 10 Hosts, final time = 960’ ) ;
p l o t ( logPfu , Hea l thyPercent ) ;
x lab e l (’Logarithm Of PFU Level’ ) ;
y lab e l (’Percentage of Healthy Cells Left’ ) ;
ax i s ( [ 4 . 0 1 4 . 5 −0.1 1 . 0 5 ] ) ;

15 t i t l e (’Survival Of Healthy Cells : 10 Hosts, final time = 960’ ) ;

Not bad, eh?
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Fig. 2.6 Survival experiment results for 10 hosts and 18 fpu Levels. a Healthy cells left in survival
experiment: we infect 10 hosts with 18 different pfu levels. The simulation is run for 960 time units.
b Survival curve: we clearly see up and down variability in survival as pfu levels increase

2.6 Long Term Consequences

Now, let’s go back to our original question about long term behavior of the frequency
ofA. Let’s generate the plot inMatlab. Recall the frequency formula forA is given by

PA(t) = 1

1 + NB(0)
NA(0)

(
VB
VA

)t .

So we need to setup variables in Matlab for various parameters. We will use

• VA to represent VA.
• VB to represent VB .
• p0 to represent p0.
• r to represent the ratio NB(0)/NA(0). It is easy to see that when we solve for
this ratio, we find r = 1 − 1/p0 = (1 − p0)/p0. In Matlab, this is r =
(1-p0/p0) also!

• v to represent the ratio VB/VA.
• N to represent the last generation we are interested in looking at.

We set up these initializations like this
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Listing 2.26: Initialize our constants

VA = . 8 ;
VB = . 3 ;
p0 = 0 . 0 1 ;
r = (1−p0 ) / p0 ;

5 v = VB/VA;
N = 25 ;

We then define the P function. Since Matlab starts everything at the counter 1, we
will use t − 1 in our formula to make sure the Matlab P(1) corresponds to the
mathematical P(0). The Matlab line is

Listing 2.27: Setting up the frequency function

P = @( t ) 1 . / ( 1 + r∗v . ˆ ( t −1) ) ;

Note we use the Matlab ./ and .^ to allow our function to deal with data that is a
vector (we talked about this!). Then, we set up our linspace to give us generations
0 to 25 and generate the plot. We add labels and a title too.

Listing 2.28: Plotting the frequency of A

T = l i n spa c e ( 0 ,N,N+1) ;
p l o t (T , P (T) ,’o’ ) ;
x lab e l (’Generation’ ) ;
y lab e l (’Frequency of A’ ) ;

5 t i t l e (’The Frequency of Genotype A vs Generation’ ) ;

This shows an open circle at each generation. We could let Matlab connect the
open circles to show a plot that is smooth, but of course, this plots data points for
generations like 2.75 which don’t really make sense. Still, generalizing from data
points each generation to data points at in between times is something we often do.
We show the generated plot in Fig. 2.7.

2.7 The Domestication of Wheat

Have you ever thought about how the varieties of wheat we use today came about?
We are going to tell you a plausible story which we found in the fantastic book by
Steve Mithen on what we know about humanity in the post ice age time (Mithen
2004). Here is the tale paraphrased from Mithen’s words—you should really read
his book though!

In wild wheat the ear that contains the spikelets is very brittle and when ripe, the
ear falls apart spontaneously. This scatters the seed on the ground and it is difficult
to harvest it from there. However, about 1 or 2 out of a million wheat plants are



2.7 The Domestication of Wheat 53

Fig. 2.7 The frequency of A

genetic mutants whose ears are not very brittle. When ripe, these ears do not shatter
spontaneously and so they are easier to collect. As Mithen says on pp. 37–38

Imagine the situation in which a small party of Natufians [the people Mithen is talking
about here] arrived to begin cutting a stand of wild cereals. If the wheat was already ripe,
then much of the grain from the brittle plants would already have been scattered. But the
rare non-brittle plants would still be intact. So when the stalks were cut, the grain from those
plants would still be intact. So when the stalks were cut, the grain from those plants would
have been relatively more abundant within the harvest than it had been in the woodlands
or on the steppe. … The next step is to imagine what would happen if the Natufian people
began to reseed the wild stands of cereal by scattering grain saved from a previous harvest....

When this began to happen, the frequency of the non-brittle variant would have
been enhanced. Over many generations, this frequency would have continued to
climb until eventually the non-brittle variety was dominant. This was a fundamental
change in how humans lived for many reasons. One is that the wheat now required
human intervention to grow as the non-brittle ears. We are going to use our nice
viability model to understand how this might happen. If you look at Hillman and
Davies (1990), you can find out a lot more about how to make educated guesses
about how long it might take for the domesticated (i.e. the non-brittle variety) wheat
to become dominant. Hillman and Davies suggest somewhere between 20 and 50
cycles of sowing and harvesting for this to happen.
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Our model will work like this.Wewill let theA variant correspond to the domesti-
cated wheat variety and start its probability as VA = 1.0e−6 which corresponds to 1
non-brittle wheat plant per onemillion brittle plants. Thismatches the frequencieswe
think are realistic.Wewon’t assume theNatufians planted their ownwheat plots every
year. They might have harvested wild stands and every few years planted their own
stands because they had settled down to one region for awhile.Whenever they planted
their own stands, the probability of the domestic variety would go up a bit. So wewill
let domfrequency be our MatLab variable which tells us how often the Natufians
planted their own wheat; perhaps every 5 years or so. So if we had 20 Nautifian
plantings, we would be looking at a total of 5 × 20 = 100 harvestings, 90 of which
are wild and only 10 are human planting events. We will let Vdom be the probability
that the wild wheat generates the domesticated wheat mutant: we typically set this as
Vdom = 1.0e-6 and then set the probability of the domesticated varietyVB to be a
multiple of Vdom. We will keep our model simple: every domfrequency harvests,
we reset the domesticated probability to be VB = Vdom * (1+ epsilon)^j
where j is our counter which tells us how many Nautifian plantings there have been.
So for example, if the Natufian plant every 5 years, for the first 5 years, the domesti-
cated variety has probability VB = Vdom * (1+ epsilon) where epsilon
is the amount the domesticated probability goes up each planting. A typical value
might be epsilon = 0.8 in which case the domesticated probability is Vdom for
the first 5 years, is Vdom*1.8 for the next 5, Vdom*1.8^2 for the next five and
so on. Even though Vdom is very small—say 1.0e−6, after 20 Nautifian plantings,
the probability is Vdom * 1.8^(20)= 0.127. We reset the probability for the
brittle variety to be 1 - VB at each planting so after 20 plantings, the probability
of brittle has fallen to 0.873. And of course, we use a given domesticated probability
for say 5 years, so it increases for 5 years following our usual PA equation during
those years.

When we do this simulation, eventually, Vdom*(1+epsilon)^j will exceed
thewild probability. For example, after a number of Nautifian harvests, wemight find
Vdom*(1+epsilon)^j = 0.51.At that point,VA = 0.51 andVB = 0.49.
The ratioVB/VA > 1 and in the PA equation, the value of PA rapidly switches from
0 to 1! This switch point is what we are looking for as it tells us when the domes-
ticated variety becomes dominant. So we will implement this with a while loop
like this:
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Listing 2.29: Finding the switching point

% s e t our s imu la t i on c oun t e r t o 1 : t h i s i s our f i r s t ha r v e s t ing
i = 0 ;
% as long as qu i t l o o p i s 0 , we w i l l keep going .
% in the c a l c u l a t i o n s in s i d e the loop as soon

5 % VAnew exc e e d s VBnew , we know d om e s t i ca t e d
% whea t i s dom inan t . So we s e t qu i t l o o p = 1
% so we w i l l s t o p our c a l c u l a t i o n s th e r e .
qu i t l o op = 0 ;
whi le qu i t l o op < 1

10 % f ind the p r o b a b i l i t y r a t i o
v = VBnew / VAnew ;

pr o b ra t i o ( i ) = v ;
% now c a l c u l a t e the new Pdom
% un t i l a Nau t i f ian p lan t ing i s done which

15 % w i l l in c r e a s e the d om e s t i ca t e d p r o b a b i l i t y
% t h i s l oop i s f o r dom frequency h a r v e s t s

f o r j = 1: domfrequency
k = i ∗domfrequency + j ;
PWild ( k ) = P ( k , v ) ;

20 Pdom( k ) = 1− PWild ( k ) ;
i f (Pdom( k ) > PWild ( k ) )

% p r in t ou t some v a r i a b l e s
v
VAnew

25 VBnew
k
i
% s e t t i n g qu i t l o o p = 1 here w i l l s t o p our
% c a l c u l a t i o n s once we go t o the t o p

30 % and s e e the t e s t wh i l e qu i t l o o p < 1
qu i t l o op = 1 ;
break ;

end
end

35 % As long as we are ok t o c on t inue
% we r e s e t the p r o b a b i l i t i e s because o f the
% Nau t i f ian p l an t ing
VBnew = VBnew∗(1+ ep s i l o n ) ;
VAnew = 1−VAnew ;

40 % we in c r e a s e the c oun t e r f o r the number of
% Nau t i f ian p l an t ing s
i = i +1;

end

Now we want to wrap all this up into a function and do some plots to, so we
take the basic loop we just looked at and at some stuff. The basic code as a function
returns a number of things: Pdom, the vector of the domesticated variety frequencies,
PWild, the vector of brittle variety frequencies, VDom, the vector of domesticated
probabilities, VWild, the vector of brittle variety probabilities and two more. For
convenience, we return the ratio of the domesticated and brittle variety probabilities,
probratio and the vector of harvest times T so we can construct additional plots
easily.
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Listing 2.30: Our domesticated wheat model

fun c t i o n [ probra t io , Pdom , PWild , VWild , Vdom, T] = domest ica tedwhea t (Vdom, domfrequency
, ep s i l o n )

%
% Vdom = p r o b a b i l i t y of d om e s t i ca t e d whea t
% dom frequency = how o f t en ha r v e s t s t r a t e g y l ead s t o

5 ytilibaborptaehwcitsemodniesaercnina%
% e p s i l on = the change in the p r o b a b i l i t y of d om e s t i ca t e d whea t which i s

AV)nolispe+1(sadeledom%
%
% s e t the i n i t i a l d om e s t i ca t e d p r o b a b i l i t y

10 VA = 1−Vdom;
% s e t the i n i t i a l b r i t t l e p r o b a b i l i t y
VB = Vdom;
% s e t the i n i t i a l f re queny of the d om e s t i ca t e d v a r i e t y
p0 = VA;

15 % f ind r = NB( 0 ) /NA( 0 ) = ( 1− p0 ) / p0
r = (1−p0 ) / p0 ;
r
% d e f in e the p o pu la t i on fun c t i on f o r d om e s t i ca t e d whea t
P = @( t , v ) 1 . / ( 1 + r∗v . ˆ ( t −1) ) ;

20 %
% e v e r y dom frequency g en e r a t i on s , the p r o b a b i l i t y of
% d om e s t i ca t e d whea t i s in c r ea s e d by the mu l t i p l i e r 1 + e p s i l on
%
% s e tup v e c t o r s t o hold w i l d and d om e s t i ca t e d p r o b a l i t i e s

25 % as w e l l as the r a t i o s VB/VA a t each s t e p
PWild = [ ] ;
Pdom = [ ] ;
pr o b ra t i o = [ ] ;
% i n i t i a l VAnew and VBnew

30 VAnew = VA;
VBnew = VB;
% we s t a r t our model w i th c oun t e r i = 1
i = 0 ;
%

35 qu i t l o op = 0 ;
whi le qu i t l o op < 1

v = VBnew / VAnew ;
pr o b ra t i o ( i ) = v ;

f o r j = 1: domfrequency
40 k = ( i −1)∗domfrequency + j ;

PWild ( k ) = P ( k , v ) ;
Pdom( k ) = 1− PWild ( k ) ;
VWild ( k ) = VAnew ;
Vdom( k ) = VBnew ;

45 i f (Pdom( k ) > PWild ( k ) )
k
i
qu i t l o op = 1 ;
break ;

50 end
end
VBnew = VBnew∗(1+ ep s i l o n ) ;
VAnew = 1−VBnew ;
i = i +1;

55 end
% c l e a r any o l d p l o t and p l o t the r e s u l t s
c l f ;
N = k ;
T = l i n spa c e ( 0 ,N,N) ;

60 p l o t (T , PWild ,’o’ ) ;
x lab e l (’Generations’ ) ;
y lab e l (’Frequency of Wild Wheat’ ) ;
t i t l e (’The Frequency of Wild Wheat vs Generation’ ) ;
end
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Fig. 2.8 Domesticated wheat dominance: Nautifian harvests every 5 years, domesticated wheat
probability multiplier is 0.4 and the initial domesticated wheat probability is 1.0e−6

Now let’s try a simulation. Let’s set epsilon = 0.4 and domfrequency
= 5 and use an initial domestic wheat probability Vdom = 1.0e-6. Then in
MatLab run this:

Listing 2.31: Sample Domesticated Wheat Simulation

[ probra t io , Pdom , PWild , VWild , Vdom, T] = domest ica tedwhea t ( 1 . 0 e −6 , 5 , . 4 ) ;

This returns the plot we see in Fig. 2.8. If you look at this graph, you’ll see all the
points are at the top—where the frequency of the brittle variety is 1. It isn’t until you
get to harvest 200 that you see the jump down to 0.
So we can clearly see that the switch occurs after k = 200 harvests; i.e about 200
years which matches well what Himman and Davies say in their paper. However, It
is even easier to see the switch if we plot the domesticated wheat probability versus
harvests. This is easily done as shown below.
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Fig. 2.9 Domesticated wheat probabilities: Natufians plant every 5 years, domesticated wheat
probability multiplier is 0.4 and the initial domesticated wheat probability is 1.0e−6

Listing 2.32: The Domesticated Wheat Probability versus Harvests

p l o t (T , Vdom) ;
x lab e l (’Harvest’ ) ;
y lab e l (’Domesticated Wheat Probability’ ) ;

4 t i t l e (’Domesticated Wheat Probability vs Harvests’ ) ;

We can see the resulting plot in Fig. 2.9. Again, it is easy to see the domesticated
wheat variety becomes dominant at harvest 200. Note how the probability of our
domesticated variety jumps up every 5 years as that is the interval between the
Nautifian plantings. We could do a similar graph for the probability for the brittle
variety too. Cool beans!

2.7.1 Project

Your project is do use our viability models to develop a domesticated wheat domi-
nance model just as we have done in this section. First, download the MatLab code,
domesticatedwheat.m from the course website as usual. Make sure you start up
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MatLab in your working directory and, if you do, after you download the file, you
will see it in the left panel when MatLab is up and running. For our project, use the
following basic template for our simulations: in this template, we are showing the
same values we used in the example we worked out above.

Listing 2.33: Sample Domesticated Wheat Simulation

1 % t h i s i s the ba s i c s imu la t i on
Vdom = 1 . 0 e −6;
domfrequency = 5 ;
ep s i l o n = 0 . 4 ;
[ probra t io , Pdom , PWild , VWild , Vdom, T] = domest ica tedwhea t (Vdom, domfrequency , ep s i l o n )

;
6 % t h i s i s the p l o t f o r the d om e s t i ca t e d whea t v a r i e t y p r o b a b i l i t i e s

p l o t (T , Vdom) ;
x lab e l (’Harvest’ ) ;
y lab e l (’Domesticated Wheat Probability’ ) ;
t i t l e (’Domesticated Wheat Probability vs Harvests’ ) ;

Then, all you have to do is plug in the values you are supposed to use for the project.
This is what we want from you. The project report is in Word using singlespaced
format. This is a 50 Point project.

Introduction: We want three pages on a careful discussion of wild versus domes-
ticated wheat using primary sources. Make sure you reference them using any
standard scheme: i.e. reference them in the text with a number and list them at
the end of the report in a section called References. This is 12 Points.

Annotated discussion of the code domesticatedwheat.m: Here you explain very
carefully what the code domesticatedwheat.m is doing. Think of explaining this
code to a literate person who does not knowMatLab—a friend or family member.
We are not interested in you simply rehashing the explanations in the text. Try to
be fresh and original. MatLab code should be bold font and explanations should
be in italic font prefaced by the usual % sign. This is 10 points.

Simulation One: Use Vdom = 9.0e-7, domfrequency = 6 and epsilon
= 0.6. Generate two plots: one is the frequency of wild wheat and the other is
the domesticated wheat probabilities. Write a short introduction to the simulation
problem and then insert the MatLab code to run the simulation. Just annotate this
code lightly as the other section did the main work. Then insert the two plots and
comment on what they show. This is 10 Points.

Simulation Two: Use Vdom = 1.5e-6, domfrequency = 4 and epsilon
= 0.3. Generate two plots: one is the frequency of wild wheat and the other is
the domesticated wheat probabilities. Organize the simulation results just like the
first one. This is 10 Points.

Conclusion: Here explain what the simulations are showing. Go back to how we
derive the viabilitymodel and discusswhy it is reasonable to use thismodel for this
problem. For example, the viabilitymodel assumes the fertility of both phenotypes
is the same. Is that reasonable? Think carefully about all the assumptions! This is
8 Points.



60 2 Viability Selection

References: This will show the references you used to prepare your report; make
sure you reference this text as you use the code and so forth from it.
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