Chapter 1
Basic Aspects of Growth

Growth is a generic term that describes processes in which the mass of a body changes
over time. In biology, the problem of growth is fundamental to all aspects of life, with
realizations as diverse as cell division, morphogenesis, development, maintenance,
cancer, and aging. All life forms experience growth to some appreciable degree
and one of the ultimate challenges of modern biology is to understand the role of
the genetic code in transforming cells into fully mature organisms and explaining
how these organisms manage to regulate shape and function through growth and
remodeling.

Growth processes also appear in some physical processes where new material is
added to an evolving system. For instance, in epitaxial growth, a thin layer of crystal
is produced by depositing raw material on an existing crystalline substrate. Growth
is also associated with phase transition phenomena, where an interface evolves in
time to produce new structures such as crystals [81, 687, 765]. These free boundary
problems are controlled by diffusion and, unlike biological systems, the interface is
a line of discontinuity with no particular material property. The swelling of gels is
arguably the closest nonbiological process that mimics growth as it is non-diffusive
and occurs in the bulk of the material. It can be used as a physical analog to gain
insight into the role of mechanics in biological pattern formation [116, 663, 904].
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Our study of growth will mostly be limited to non-diffusive processes relevant to
biological systems.

1.1 Classification

Aspects of growth and remodeling occur during the entire life of an organism. There-
fore, growth fulfills many purposes and, accordingly, is associated with qualitatively
different processes. Traditionally, a first classification is obtained by considering the
way growth alters a body, either by changing its volume, its material properties, or by
rearranging the relative position of material points. The three main growth processes
are:

e Growth. The term growth by itself refers to a change in mass. It is colloquially
understood as an increase in mass, but the concept extends naturally to describe
mass reduction or shrinking. Change in mass can be created either by addition of
mass at constant density, as found in the development of soft tissues, a change in
density at constant volume, as in the case of bone densification, or both as found
in a developing bone. Mathematically, a theory of growth must allow for changes
in mass, volume, and density and must be flexible to account for mass permeating
through the boundary of the body, accumulating at the boundary, or occurring
within the body itself.

e Remodeling. It is well known that in the process of aging, tissues may become
stiffer or softer. The term remodeling refers to an evolution of material proper-
ties in a system without change of mass such as stiffness, fiber orientation, fiber
strength, and so forth. These remodeling processes are due to a change in the
microstructure that determines the overall behavior of the tissue. For instance, the
typical composition of soft tissues in many animals is a mixture of collagen fibers
within an elastin matrix. Whereas elastin content remains mostly unchanged over
many years, there is a continuous turnover of collagen that depends on the local
biochemical and mechanical stimuli acting on the cells. The relative content of
different types of collagen fibers and elastin determines the overall response of the
tissue [635]. This process can occur without a change of mass, but it is crucial to
understand the response of a tissue under mechanical loads. From a mathematical
perspective, the variation of material properties can either be modeled by consid-
ering a separate evolution of the material parameters of a system or, at a lower
scale, by taking into account the evolution of separate tissue components.

e Morphogenesis. Early in embryonic life, new tissues and organs are formed. In
this process, major reorganization and differentiation of cells take place after cell
division, and, importantly, there is a restructuring of material elements. This reor-
ganization process can only happen if the adhesion between different components
is weak enough so that they can separate and reattach. This simple observation
has important consequences for modeling as tissues undergoing morphogenesis
exhibit rapid elastic stress relaxation and plastic-like flow. Mathematically, this
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Figure 1.1 Growing root as
depicted by Duhamel in
1758 [898].

evolution is often described by modeling tissues as fluid or viscoelastic rather than
elastic, even though these two points of views are equivalent, as we will show.

Growth can be further classified by the location of material addition. It can occur
at the tip, on the surface, or in the bulk. We consider these processes in more detail
next.

1.1.1 Tip Growth

In his book, “The Physics of Trees” published in 1758, Duhamel du Monceau
describes the following discovery: “The observations that I made in plants that grow
inwater helped me discover another peculiar phenomenon; that is, roots only grow at
the tip.” [898, p. 83] (see Figure 1.1). Tip or apical growth describes growth processes
that take place in a small region at the tip of a filamentary structure. As shown in
Figure 1.2, it is the main growth mechanism used by many microbial organisms and
plant systems such as fungi, filamentary bacteria, pollen tubes, and root hair [431,
457, 479, 480, 482, 541, 625, 714, 715, 899, 1073]. In these organisms, there is
a small active growing zone located near the tip where the outer shell is constantly
remodeled and new material is consistently added.
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Figure 1.2 Tip growth. A. microbacterial filament, (bar is 1 pm) (Kitasatospora setae source:
Society for Actinomycetes Japan, photograph by Y. Takahashi and Y. Iwai); B. microbacterial
filament (Streptomyces coelicolor A3(2)), (bar is 1 pum); C. Allomyces; D. lily root hair (typical
diameter 15-20 pm) (images courtesy of Jacques Dumais). E. Branching in streptomyces A3(2). F.
First theoretical description of tip growth by Reinhardt in 1892 for the growth of fungus [1073].

For sufficiently small organisms, such as filamentary bacteria, the newly added
material is transported to the tip by diffusion processes whereas for larger organisms,
such as fungi and pollen tubes, active transport processes which require a complex
internal structure are required for propagation.

Typically growth occurs in a region that maintains a constant size. Therefore, the
typical scaling of mass with time is linear, as shown in Section 4.3. However, many
filamentary structures also undergo repeated branching as shown in Figure 1.2E.
These branches allow for one-dimensional structures to explore three-dimensional
volume for nutrients. This branching process transforms the scaling of mass from
being linear to exponential with respect to time since each new branch adds mass
linearly and can branch again, leading to an intricate, fractal-like, geometry.

Tip growth is sometimes referred to as primary growth in plants. Once a stem
or root is large enough, it may also undergo secondary growth, sometimes referred
to as growth in the cambium, by the addition of external layers to thicken itself.
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Cambial growth in trees takes place between the old wood and the bark of the tree,
and seasonal variations lead to the formation of tree rings.

Mechanically, the main issue is to understand the interaction of the tip with its
environment and to determine its shape, internal stresses, and how a filamentary
structure evolves based on different laws for material addition.

1.1.2  Accretive Growth

Accretive, surface, or appositional growth describe mechanisms, such as deposition
in hard tissues, where new material is added to the boundary of an existing body. It
is the typical mechanism responsible for the formation of teeth, seashells, horns, and
corals [4, 914, 915, 1173]. At the microscopic level, surface growth is also found
in bones where changes in bone density occur by deposition or resorption of new
material on the surface of trabeculae, or the walls of canals excavated by osteoclasts
[1230].

Mathematically, many problems in accretive growth can be modeled geometrically
by studying the evolution of the boundary as a function of accreted mass. For instance,
the shell of the ammonite in Figure 1.3 is the result of material being accreted
with different velocities at different points of the opening. This velocity gradient
is necessary for coiling since the outer ridge requires more material than the inner
ridge. In general, if the boundary is known at time #, an accretion vector, giving the
local velocity of material accretion, can be defined at each point on the boundary as
shown in Figure 1.4D. The new boundary is then obtained after a small incremental
time At.

Figure 1.3 The fossil shell

of an ammonite of the genus
Promicroceras [916]. Arrows
denote the accretion vectors.
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Figure 1.4 Accretive growth. ABC. Growth of horns and seashells as described by D’ Arcy Thomp-
son [1230]. D. The theoretical basis of accretive growth. For a given body at time #, a growth vector
is defined at the active growth boundary. At time # + At a new surface is created. E. Different body
forms obtained by different choices for the growth vector (adapted from [914]).

The key question from a modeling point of view is to derive an accretion law
based on the interaction between the soft part of the animal and the new hard accreted
part. Mathematically, the main problem is to understand and classify the shapes and
patterns that emerge through this process [202].
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1.1.3 Volumetric Growth

Bulk, volumetric or interstitial growth all refer to processes in which local volume
elements in the body change over time rather than on its boundary as in accretive or
tip growth. Bulk growth is typical of many developmental, physiological, and patho-
logical processes and has been particularly well documented in arteries, muscles,
solid tumors, and the heart [242, 636, 1206].

Bulk growth encompasses hyperplasia, the increase of volume due to cell pro-
liferation which is typical of many developmental systems; hypertrophy, the change
of volume due to enlargement of its constituents, typical of many physiological
processes; and neoplasia, the abnormal and often unregulated growth or division of
cells found in cancer.

Mathematically, bulk growth offers many outstanding challenges. First, a local
volume element may not remain isotropic during growth which implies that a ten-
sorial description of the deformation is needed. Consider an infinitesimal spherical
volume element extracted from a tissue, as shown in Figure 1.5. In volumetric growth,
this sphere is transformed into an ellipsoid. This deformation is fully captured by the
transformation of three orthogonal vectors into three new vectors along the princi-
pal directions of the ellipsoid. Mathematically, this local mapping is described by a
tensor. Accordingly, the process of volumetric growth assigns a tensor, the growth
tensor G, at each point of the body, describing the change of a local volume element.
A theory of growth is therefore intrinsically rooted in the theory of tensors.

A second challenge in bulk growth is that it is relevant for soft tissues that are
elastic and can also be deformed by the application of loads. When observing the
deformation of a body from an initial state, we must determine whether it is due
to the growth or elastic response of the material, or even a combination of the two
processes. This problem, which will be discussed at length in further chapters, was

Figure 1.5 Volumetric growth. During growth, a local element inside the tissue can expand or
shrink anisotropically. The description of such a process requires the definition of a growth tensor
G, locally transforming an infinitesimal sphere to an infinitesimal ellipsoid.
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first formulated by Hsu in 1968, arguably the first work to address the fundamental
problem of mechanical growth modeling: “If the form to which a body grows under
no applied loads is known, what will be the form of the body if some mechanical
loads are applied during its growth?” [627].

From a modeling perspective, bulk growth can also be used to describe the growth
of filamentary objects, such as neurons or plant stems that have distributed growth,
or surfaces, such as epidermal layers of cells that do not change their thickness.

The classification of growth as tip, accretive, or bulk is descriptive but not formal.
It depends on the scale at which the problem is being studied. Indeed, both tip and
accretive growth can be modeled as bulk growth processes where a thin soft layer,
close to the boundary, expands and stiffens in time. Essentially, tip growth is a bulk
process that is localized at the apical part of the filament. A detailed analysis of
this process requires an understanding of areal growth due to the insertion of new
material. Similarly, bone growth and wound healing can be modeled either as an
accretive process or a localized bulk process where density evolves.

1.2 The Scaling of Growth

The first question about growth is one that is shared by most parents: How does
the size of an organism change in time? The first historical records of growth were
on the height of human beings. In 1759, Count Philibert Gueneau de Montbeillard
started to record the height of his first son on his birth and he continued to do so
every six months until his son reached the age of 18. This record, shown in Figure
1.6, was published in the fourth volume of the supplement to Buffon’s “Histoire
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Figure 1.6 Record of longitudinal growth done by Count Montbeillard from 1759 (data from
[1123]), compared to the height of Zébulon, the author’s first son.
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Figure 1.7 Growth curves obtained from statistical averages (from Stratz’s book published in 1904
[1200]).

Naturelle” [1123]. A quarter of a millennium later, it still captures the essence of
human development from birth to adulthood. Its gross features are similar to the
growth curve of the author’s first son as well as the curves found in modern medical
growth charts, shown in Figure 1.7. These curves are the result of statistical averages
over large populations and show variations over different geographic regions.

The first complete statistical study of the evolution of weight and height in human
beings was conducted by the Belgian polymath, Adolphe Quetelet, and published
in his “Treatise on Man” in 1835 [1053]. In this remarkable book, Quetelet pooled
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and analyzed data from the Belgian population. He considered both general trends
and deviations around the average using the Gaussian distribution. This work is
considered to be the first application of the Gaussian distribution in a statistical
study. Quetelet also suggested a law of growth by fitting the data of height H (¢)
against time ¢

b+t

H(t) =at + .
® 1+ %1

(1.1)

If both mass M (¢) and height H (¢) are known, one can speculate on how these
two quantities might be related to each other. It was again Quetelet who proposed
that, independent of time, weight is related to height by a scaling law of the form
M = cH®, where o = 5/2 during childhood and o = 2 for adults. For o« = 2, the
Quetelet coefficient c becomes the infamous Body Mass Index (BMI), which remains
a critical estimate of fitness and obesity despite its obvious shortcomings and many
criticisms [283]. Historically, Quetelet’s proposal that height scales with respect to
weight is the first case of an allometric law, that is, a power law between a given
physical quantity and the total mass of the organism [649, 816, 1126, 1147] (see
Section 1.3).

Quetelet’s book prompted similar studies and, by the end of the nineteenth cen-
tury, there was a flurry of activity dedicated to understanding growth in humans,
animals, and plants [292]. The idea emerged that growth in different biological organ-
isms could follow some universal laws that would determine sizes and forms. This
research program was presented in the seminal book “On Growth and Form” by
D’ Arcy Thompson, first published in 1917 [1230]. This monumental book remains
a reference and a source of inspiration for many researchers to this day.

Bogin reports that, by 1972, no less than 200 different models or fitting functions
had been proposed to describe the evolution of human growth [110]. The modeling
of growth as a slow continuous process is only valid on the long-time scale of months
or years. A detailed daily recording and analysis of height in infants between the age
of one and two shows that growth mostly occurs through discontinuous aperiodic
saltatory spurts [ 759, 760] of about 0.5 to 2.5 centimeters separated by long intervals
typically lasting between 2 to 63 days, where no growth takes place as shown in Figure
1.8. Jumps and oscillations during growth are also encountered in other biological
systems including fungi [799], pollen tubes [188, 360, 590], plants [354, 728], and
invertebrates [78].

The first attempt to model the evolution of the total mass from physical principles
was based on an idea by Piitter, first published in 1920 [1048]. Piitter proposed that
animal growth can be seen as a balance between addition and removal of building
materials in the body. Growth proceeds as long as new material is added faster than
it is removed, and stops when both processes are balanced.

Typically, in such models, the rate of material removal is assumed to be propor-
tional to the mass M (¢) itself, as in a standard exponential decay problem, whereas
the rate of addition of new material is proportional to a power of the mass. Combining
these two effects leads to [1285]
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Figure 1.8 Daily measurements of the height in a boy between the age of 90 to 218 days show
discontinuous growth spurts separated by periods of no growth (data from [760]).

M= M@M™" — b), (1.2)

where M = dM /dt denotes the time derivative of M (¢) and ab > 0. The solution
of this equation for p = 0 describes a simple exponential process

M(t) = Mpe“ ", (1.3)

where My = M(t = 0) is the mass at birth.
For p # 0, Equation (1.2) is a Bernoulli equation [460, p. 232] whose general

solution is given by
M)\’ My \"
oy @)
Mo Mo

where My, = (a/b)"/? is the asymptotic mass. Figure 1.9 shows examples of mass
evolution as a function of time for various values of the parameters.

Equation (1.2) also contains the classic logistic model [1255] obtained for p = —1
with a and b negative, and the Richards model [1078], defined by p < —1, used to
model the growth of plants.

While this general approach is appealing, the choice for the exponent p is prob-
lematic. A typical argument is to assume that the addition of new material is limited
by energy input and metabolic rates. If the energy intake and growth rate are directly
proportional to the weight itself, we have M = oM for acertain & % 0. This behavior
is recovered with @ > b > 0, p = 0, and exponential unlimited growth is observed.



14

1 Basic Aspects of Growth

.
>

4

Figure 1.9 Examples of growth curves given by Equation (1.4) for various values of the exponent p.

Figure 1.10 Example of
data fitting with p = 1/4 by
von Bertalanffy [1285]
(Abramis brama is the
common bream).

100

% of final weight

80

60

40

20

s il

Man o
0 5 10 yeors
Mouse x
0 0 5 10 weeks
‘ Abramis  brama o
.’.‘ L L 1 1 1 ‘r|> L] L1 | I0
0 1
I T('J years
L)
ol ]/
1.
Time in days

This behavior, observed in the early developmental stages of insects, is only valid
until a new phase of growth takes place.

If we assume that the metabolic rate follows a scaling law based on geometry by
postulating that energy intake is proportional to surface area, we have M = aM?/3,
which corresponds to the choice p = 1/3. This power law was originally proposed in
1839 by Sarrus and Rameaux [1118]. Based on the same general ideas, Ludwig von
Bertalanffy [1285] suggested that most biological systems grow in an intermediate
regime with exponent 0 < p < 1/3 and suggested p = 1/4 as suitable to fit different
data sets, as shown in Figure 1.10.
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Figure 1.11 Kleiber’s law: metabolic rate as a function of mass [704]. The experimental data for
the variation shows a 3/4 power law. It is compared with a scaling with respect to surface area (2/3)
and weight (1).

More recently, it was proposed [1316] that the production of new material should
be related to Kleiber’s law [704], which states that the metabolic rate of an organism,
defined as the energy expended by an organism per unit time, scales as the three-
fourth power of the total mass as shown in Figures 1.11 and 1.12. This assumption
also leads to von Bertalanffy’s choice of p = 1/4.

It has been argued that this power law for the metabolic rate is widely applicable
to biological systems from bacteria to whales and even plants and forests [957],
spanning 27 orders of magnitude in mass. However, some authors have criticized
the validity of this statistical analysis and have argued for exponents closer to two-
third [572, 1126]. The problem is that the arguments used to derive such laws are
inevitably vague and based on a number of simplifying assumptions that neglect many
well-established physiological processes. Unfortunately, the absence of a theory for
growth linking mass to size leaves room for endless discussions, controversies, and
grandiose teleological theories with very little scientific content and no mathematical
foundation. As a result, the general field of scaling laws for growth remains in its
infancy [287, 1315].

For any choice of exponent p € (0, 1], the growth curves show a sigmoidal
behavior observed in many organisms as shown in Figure 1.9. A slow initial phase is
followed by quick maturation, that slows down after the reproductive age, eventually
reaching an asymptotic limit.

Humans have evolved and adapted in such a way that they cannot be simply
described by many of the power laws applicable to other species. However, these
animal models can still be used to described human growth if pre- and post-pubertal
periods are considered independently [106].
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Figure 1.12 Scaling and data analysis based on Kleiber’s law [1316]. Here M /M, is plotted
against the dimensionless time 7 = bpt — In(1 — (My/Mso)?) as described by Equation (1.4) with
p=1/4

The key feature of this simple power-law model is that it identifies the specific
growth rate, defined as the growth rate per unit mass, M /M, as a central quantity.
The basic idea in all models showing a sigmoidal behavior is that a proportion of new
tissue generated by growth is capable of growing itself, but as time goes by, this ability
is reduced. These two typical trends were first presented as fundamental principles
for growth by Peter Medawar in 1941 [856] when he wrote: “What results from
biological growth is itself, capable, of growing” and “Under the actual conditions of
development, the specific acceleration of growth is always negative.”

Another model that has been used in the context of growth is the so-called Gom-
pertz’ law, first introduced in 1825 [455] for the evolution of human populations.
It was subsequently used in actuarial sciences as a modified compound law, then
rediscovered as a suitable growth law for organisms [244, 1329]. The Gompertz law
is obtained as the solution of a Malthusian equation of growth, M = KM, with
a growth rate K decaying exponentially in time, following Medawar’s principles.
Choosing K = a exp(—kt) with a, k > 0, we have

) M
M=ae "M, a=kin(=—), (1.5)
My
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This equation, whose solution contains the exponential of an exponential and two
characteristic time scales (1/a and 1/k), has been shown to be a particularly good
fit for bacterial and tumor growth, among others [37, 965, 1090, 1341, 1369], and
remains widely used for the purpose of fitting experimental growth data as illustrated
in Figure 1.13.

1.3 Relative Growth

Extensive psychological studies have demonstrated that children and puppies are
cute and lovable [20, 727]. It has been argued that this cuteness factor, a propen-
sity or desire to cuddle or defend a person, is due in part to our perception of the
relative size of body and facial features in children versus adults [110, 803]. As
shown in Figure 1.14, the skull of babies is proportionally larger than those of adults
[159]. Further, the relative dimensions of the skull, such as height versus diameter
or roundness, are also different. Our ability to distinguish almost instantaneously
children from adults independently of their size implies that no adult organism is
simply a pure dilation of itself at birth.

The pure dilation of an organ or organism from birth to adult life, is referred
to as isometric growth, as shown in Figure 1.15, whereas the relative growth of an
organ with respect to the total weight of the organism is known as allometric growth.
Therefore, the second fundamental problem of growth is to understand how organs,
limbs, or tissues grow with respect to the total body mass. This is the general topic
of the theory of relative growth [648, 649, 857].

The subject of relative growth was first discussed by Galileo in 1638 when he
considered the relative size of bones in animals [414]. He writes: “Nature cannot
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Figure 1.14 Relative proportion in the growth of man (adapted from Stratz [1200]).

Figure 1.15 Isometric . Ll
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produce a horse as large as twenty ordinary horses or a giant ten times taller than an
ordinary man unless by miracle or by greatly altering the proportions of his limbs and
especially of his bones.” That is, the same bones in larger animals are comparatively
thicker than those in smaller animals, as illustrated in Figure 1.16B. The discussion
on giants by Galileo is based on the common belief at the time that large fossil bones
of dinosaurs or large mammals belonged to giants of the past. The biggest giant in
Figure 1.16A, next to an “ordinary man”, is based on bones discovered in Sicily.
Through simple scaling arguments, Galileo correctly concluded that if giants did
exist they would not be a simple dilation of an ordinary man.
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Figure 1.16 A. Improbable giants from “Mundus subterraneus” by Athanasius Kircher (1678)
[697]. BC. In his “Discoursi”, published in 1638, Galileo noted that bones are subject to allometric
growth and, therefore, giants could not have the same bones or proportions as ordinary humans.

Galileo used the physical analogy that to support increasing loads, a column must grow thicker
[414].



20 1 Basic Aspects of Growth

A systematic study of relative growth began at the end of the nineteenth century
with the work of Dubois and Lapicque, who compared brain sizes within and between
species [308, 309, 770]. Their work follows an early observation from Cuvier that
bigger mammals have relatively smaller brains [127, 141, 489]. Based on extensive
research, D’ Arcy Thompson reflected on the inevitability of differential growth in this
passage [1230, p. 205]: “An organism is so complex a thing, and growth so complex
a phenomenon, that for growth to be so uniform and constant in all the parts as
to keep the whole shape unchanged would indeed be an unlikely and an unusual
circumstance. Rates vary, proportions change, and the whole configuration alters
accordingly.” The theory was further expanded on and applied to many different
biological systems by Julian Huxley. In his book, “Problem of Relative Growth”, he
coined the word allometry to describe relative growth that follows a power law with
respect to mass [647].

The central idea in Huxley’s work is that the mass m or length / of an organ scales
as a power of the total mass M of the organism, that is

m=kM". (1.7)

By expressing m as a function of M, the explicit dependence on time is removed
enabling the comparison of the relative sizes of m and M at given points in devel-
opment for different animals. The case o = 1 corresponds to isometric growth, and
any other value of o characterizes relative or allometric growth. If a fixed exponent
a holds during growth (that is, when k and « are time-independent), allometry is
equivalent to the statement that the specific growth rates of an organ and an organism
are proportional:

m=kM® —= =L _aZ. (1.8)
m

Starting in the 1920s, this simple, but fundamental, power law has played the role
of an ordering principle in comparative biology and evolution [488—490, 1321]. The
possibility for applications appears endless, as the size of any organ in a given species
can be compared to any other species at any point in its development as illustrated
in Figure 1.17. Generations after generations, students and researchers, ecologists
and biologists, have combed the beaches, swept the forests, and fished the seas to
gather data on size and weight in the hope of recovering existing laws or uncovering
new ones. Depending on the data and the scientific question, one compares either the
relative size of different organs in one species (intraspecific allometry), the relative
sizes of one organ within different species (interspecific allometry), or the relative
size of one organ to different organs, at different points in development for a given
species (dynamic allometry).

A typical allometric study proceeds with the following steps [849, 958, 1037]:

e Gather experimental or bibliographic data on a given physical quantity g and the
corresponding weight M of the animal. For instance, g can be the size or weight



1.3 Relative Growth 21

A.

Gadl

Figure 1.17 Isometric and allometric scaling. A. Six species of salamanders in the genus Desmog-
nathus retain their proportions despite being of different sizes (reproduced from [681]). B. Different
males in the beetles Dynastes showing the relative increase of horns as a function of size (1924
illustrations from Champy [182], reproduced from [427]). C. Allometric scaling for the claw of the
fiddler crab in the genus Uca (adapted from [1192]).
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of an organ, the metabolic rate of an organism, the growth rate, or the number of
cells;

e Plot log(g) against log(M), so that a law of the form ¢ = kM"” would be repre-
sented as a line of slope 3 on this plot;

e From the plot, find the best linear fit and extract the slope [;

e Find a rational number, «, preferably with a small denominator, close to (3;

e Justify, using arguments from geometry, physics, mechanics, or thermodynamics,
that this exponent « can be obtained from first principles;

e Discuss the relevance of this law in the context of physiology, pathology, ecology,
evolution, or optimal design;

e Discuss why some species or organs may not follow the expected law. This last
step provides a falsidical justification of the law through its exceptions.

This approach is illustrated in Figure 1.18 which demonstrates allometric growth in
plants. These studies, despite their obvious shortcomings from an epistemological
point of view, have been extremely successful, as power laws have been shown to
hold across diverse organisms [957, 1303]. As such, allometry remains a favorite
tool and provides a methodological framework for comparative biology [136, 446,
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Figure 1.18 Allometry in plants. An interesting example of a possible allometric law for growth
arises in plants when the growth rate G 7 is plotted against the weight M7 in a log-log plot (adapted
from [957]).

956, 1320]. These studies clearly demonstrated that aspects of sizes, growth rates, or
metabolic rates tend to cluster in a linear fashion against total weight when expressed
in log—log coordinates. Therefore, the mere existence of observed scaling laws sug-
gests that critical aspects of size and growth rate are governed or constrained by
geometry, mechanics, and physics. This fundamental observation was already put
forward by Medawar in 1941 [856]. However, Medawar believed that growth is
dominated and limited by diffusion, which turns out to be relevant only at the micro-
scopic scale.

At the organ or body level, relative growth can be tracked by simple external
measurements. However, different regions of an organ may experience different
growth rates. The skull of mammals elongates after birth, brains in humans fold
onto themselves during development [466], and roots tend to lengthen by limiting
their expansion in a small region at the tip. Typically, growth is neither isometric
nor homogeneous. Therefore, different points on the growing body may expand at
different rates creating, in the words of Huxley, growth gradients and growth sources
[647], or in the terminology preferred by nineteenth century plant physiologists,
differential growth [1107]. Differential growth is central to all aspects of growth
mechanics; it is responsible not only for shaping an organism, but also for creating
stresses through geometric incompatibility. However, to capture its key features, new
experimental and mathematical methods are needed.
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1.4 The Kinematics of Growth

The third fundamental problem in the modeling of growth is to track growth processes
both spatially and temporally. It implies that the expansion and relative deformation
of different points in an organ must be followed during growth.

This idea can be illustrated in one dimension. Initially at time t = 0, we paint
a number of marker points, say Ay and By, on a filament as shown in Figure 1.19.
During growth, we record the position of these marks as a and b, respectively. The
problem is then to extract information from the dynamics of these material points,
such as the growth rate or the region where expansion takes place. For instance, the
stretch of the initial segment from Ay and By is the ratio of the lengths Ax/AXj. In
general, we want to define the stretch at a single point by taking the limit AX, — O.
To do so, we denote by Sy the initial position of a material point from one end, labeled
So = Oattimer = 0. The position of this point at time 7 is denoted s = 5(Sy, ¢). Then,
assuming that there is no other stretching process, the local stretch at the material
point Sy and time ¢ due to growth is given by

S0y = 2 (1.9)
Y90, _850. .

In particular, if growth is taking place independently of the position, we would have
simply v = [/ Ly, the ratio of the two lengths.

Borrowing basic concepts from continuum mechanics, we define the Lagrangian
growth velocity V (So, t) as the velocity of a material point and the Eulerian growth
velocity, v(s, t) as the velocity at a spatial point s as

V(So, t) = %(So,t), v(s, 1) = V(So(s, 1), 1). (1.10)

Then, the Lagrangian growth rate +y defines a local growth rate in terms of the initial
material coordinate Sy, which is given by

ov O%s
(S0, 1) = m

1= o5 (S0, 1). (1.11)
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Figure 1.19 Kinematics of growth in one dimension. Two arbitrary points Ao and By are marked
initially and tracked through growth. Of particular interest is the evolution of the relative distance
between these points (the increments A Xy).
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Figure 1.20 Tracking growth. Initial marker points are placed on the stem (A) and root (B) and
are followed during growth (from Miiller’s textbook [924]).

In terms of Eulerian properties, one can define the Eulerian growth rate I, as the
spatial gradient of the Eulerian velocity, that is

lo(s, 1) = aﬁsv(s, 1). (1.12)

This quantity expresses the rate of change of length of an infinitesimal element
located at position s. By the chain rule, the Lagrangian and Eulerian growth rates are
related by

5=l (1.13)

For problems where growth is localized in space, such as tip growth, an Eulerian
description may be advantageous since the function /,(s, ) describes the growth
experienced by a material point located in the growth region. If growth depends on the
cells, and not on their spatial position, a Lagrangian description may be more appro-
priate. This description is particularly convenient in certain developmental stages
when cell division dominates the growth process.
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This approach was already used by plant physiologists of the nineteenth century
to quantify the growth of stems [1159, 1182] and roots [187] and identify regions of
active growth, as shown in Figure 1.20. The function -y is an important quantifier; it
identifies spatial locations where growth takes place and is referred to as the relative
elemental growth rate [193, 236, 444, 1158, 1181], a term coined by Erickson and
Sax [344, 345]. To obtain this elemental growth rate in an experiment, the position
of initial markers is followed over time and interpolated to obtain an estimate for
both a discrete version of the Eulerian velocity and for its gradient [1157, 1302].

The analysis of growth kinematics in higher dimensions [1127, 1334] follows
the same principle. In the case where growth is considered as the only possible
deformation, we consider a body in an initial configuration By C R? with coordinates
Xy denoting the position of material points in the body. The same body at a later
time ¢ is in the current configuration, denoted 5,. We will assume that the current
configuration is related to the initial configuration by a smooth invertible map x :
By — B, such that a material point located at X, in 53y is mapped to a point x(7) =
X Xo, t) in ;. In this case, the Lagrangian and Eulerian growth vectors are defined

as
Ix(Xo, 1)

Vo (Xo, 1) = R

Vo(x,1) = Vo (Xo(x, 1), 1). (1.14)
The vector field defined by these growth vectors creates growth lines that indicate
the direction in the body where expansion takes place, as shown in an experiment on
rabbit ears in Figure 1.21.
Assuming that the density remains constant, the evolution of the mass density
p(X, t) is governed by
Op+ pdivvy(x,t) = pv, (1.15)

where pv is the local growth rate (see Section 13.2 for a derivation). Therefore,
once the growth vectors are known, the computation of the divergence provides
information on the local growth rate through (1.15), as shown in Figure 1.22C.

1=15 days 1=28 days 1=49 days 1=87 days

Figure 1.21 Tracking growth on rabbit ears. Streamlines and equipotential lines for the growth of
a New Zealand white rabbit ear from day 15 to day 87 [249].
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Figure 1.22 Tracking growth on leaves. A. Initial marker points are placed on the leaves and
tracked through time (from Miiller’s textbook [924]). B. Tobacco leaves from Avery [48]. C. Digital
analysis of growth. Starting from an original time lapse sequence (a), the displacement vectors are
calculated (b), a mask of nonmoving points is evaluated (c), and used to correct the displacement
vector (d). A smooth interpolation of the displacements (e) provides a way to compute the divergence
of the displacement giving the local rates of growth (f) (reproduced from Schmundt et al. [1127]).

The local mass density p is only related to the volumetric change of a volume
element, without giving any information on the local direction of the deformation;
that is, the anisotropy of growth. This information is contained in the gradient of the
deformation and will be discussed in Chapter 12.
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