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Abstract I begin by reviewing some recent work on the status of the geodesic princi-
ple in general relativity and the geometrized formulation of Newtonian gravitation. I
then turn to the question of whether either of these theories might be said to “explain”
inertial motion. I argue that there is a sense in which both theories may be under-
stood to explain inertial motion, but that the sense of “explain” is rather different from
what one might have expected. This sense of explanation is connected with a view
of theories—I call it the “puzzleball view”—on which the foundations of a physical
theory are best understood as a network of mutually interdependent principles and
assumptions.

1 Introduction

There is a very old question in the philosophy of space and time, concerning how and
why bodies move in the particular way that they do in the absence of any external
forces. The question originates with Aristotle, and indeed, the puzzle is particularly
acute when one thinks of it as the ancients might have. Given some external influence
on a body, itmight seemclearwhy that bodymoves in one fashion rather than another:
the external influence forces it to do so. But when there are no forces present, what
does the work of picking one possible state of motion over any other? Consider
planetarymotion: there are no apparent forces acting on planets, and yet they proceed
along fixed trajectories. Why these orbits rather than others? In Aristotelian terms,
what determines the “natural motions” of a body?

This manuscript was prepared in 2012 and has not been significantly revised since then. I still
hold the philosophical views defended here, but have not attempted to update the manuscript
in light of more recent work by myself or others.
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Themodern answer to the question originateswithGalileo andDescartes, but finds
its canonical form in Newton’s first law of motion, which states that in the absence
of external forces, a body will move in a straight line at constant velocity. This “law
of inertia,” as Newton called it, is preserved, mutatis mutandis, in general relativity,
where inertial motion is governed by the geodesic principle. The geodesic principle
states that in the absence of external forces, the possible trajectories through four-
dimensional spacetime of a massive test point particle will be timelike geodesics—
i.e., bodies will move along “locally straightest” lines without acceleration.

In standard presentations of general relativity, the geodesic principle is stated as a
postulate (cf. [27, 33, 36, 54]), much like Newton’s first law.1 However, shortly after
Einstein presented the theory, he and others began to suspect that one could equally
well conceive of the geodesic principle as a theorem, at least in the presence of other
standard assumptions of relativity theory [17, 19, 20]. This shift from geodesic-
principle-as-postulate to geodesic-principle-as-theorem has led to a widespread and
deeply influential view that general relativity has a special explanatory virtue that
distinguishes it from other theories of space and time. In the words of Harvey Brown,
general relativity “… is the first in the long line of dynamical theories… that explains
inertial motion” [4, pg. 163]. In other words, it may be that Newtonian physics
answers the “how” part of Aristotle’s question, but there is a sense in which only
general relativity answers the “why” part.

Although Einstein’s early attempts to prove the geodesic principle were not unam-
biguously successful, more recent efforts have shown that there is a precise sense in
which the geodesic principle may be understood as a theorem of general relativity
[23].2 However, it turns out that relativity is not unique in this regard. Geometrized
Newtonian gravitation (sometimes, Newton–Cartan theory) is a reformulation of

1For a detailed and enlightening discussion of the status of the first law of motion in standard
Newtonian gravitation, see Earman and Friedman [14].
2There have been several steps along the way to proving the geodesic principle as a rigorous
theorem of general relativity. The most significant early attempt was the work of Einstein and
Grommer [19] and Einstein et al. [20], with subsequent work due to Mathisson [34, 35] (see also
Sauer and Trautman [44]), Taub [50], Thomas [51], and Newman and Posadas [11, 38, 39].Many of
these are described and criticized briefly in Geroch and Jang [23]; for more expansive discussions,
see Blanchet [2] and Damour [10]. This history of Einstein’s efforts in this domain is described by
Havas [26] and Kennefick [28]. There are currently two approaches to the problem that are widely
recognized as successful: the one developed by Geroch and Jang [see also 18], which will be my
focus in the present paper, and one developed by Sternberg [47] and Souriau [45], among others,
which models a massive test point particle as an order-zero distribution with support along a curve.
One can then show that if the distribution is (weakly) conserved, the curve must be a geodesic. Note,
however, that although the Geroch–Jang approach and the Sternberg–Souriau approach are prima
facie different, there is a sense in which they turn out to be equivalent [24]. It is worth observing that,
although modern attempts to derive equations of motion in general relativity may be thought of as
addressing the same problem that Einstein and his contemporaries sought to address, the theorems
have a significantly different form. To give an example, Einstein et al. [20] claimed to show that
the geodesic principle followed from the vacuum form of Einstein’s equation; the Geroch–Jang
theorem,meanwhile, makes no explicit reference to Einstein’s equation, and, as wewill see below, if
it is related to Einstein’s equation at all, it is because the theorem assumes that matter is represented
by a divergence-free energy-momentum field—an assumption that may be thought to follow from
Einstein’s equation with sources, but not the vacuum form of the equation. And so, while I take the
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Newtonian gravitation due to Cartan [5, 6] and Friedrichs [22] that shares many of
the qualitative features of general relativity. In geometrized Newtonian gravitation
one represents space and time as a four-dimensional spacetime manifold, the cur-
vature of which depends dynamically on the distribution of matter on the manifold.
Gravitational influences, meanwhile, are not understood as forces, as in traditional
formulations of Newtonian gravitation; rather, they are a manifestation of the cur-
vature of spacetime. And in particular, inertial motion is governed by the geodesic
principle: in the absence of external (nongravitational) forces, bodies move along the
geodesics of (curved) spacetime. Recently, I have shown that the geodesic principle
can be understood as a theorem of geometrized Newtonian gravitation [55]. Math-
ematically, the Newtonian theorem is nearly identical to the Geroch–Jang theorem.
Moreover, as I have argued elsewhere, when the background assumptions needed to
prove these theorems are examined in the contexts of each theory, one can reasonably
conclude that the geodesic principle has essentially the same status in both cases,
though in neither theory is the situation as simple as one might have hoped [56].

One consequence of this recent work is that Einstein and others’ idea that the
status of the geodesic principle in general relativity distinguishes the theory from
other theories of space and time seems more difficult to hold on to. But it also raises
a related issue. When one attends carefully to the details of these theorems, several
complications arise concerning the strength and status of the assumptions necessary
for proving them. Given these complications, one might reasonably ask, do either of
these theories explain inertial motion? It is this second question that I will take up in
the present paper.3

(Footnote 2 continued)
Geroch–Jang theorem to provide a kind of answer to a problem Einstein recognized, it may be that
the form of the answer is sufficiently different from what Einstein expected that Einstein would
not have found it satisfactory. I am grateful to an anonymous referee for emphasizing this last point
to me.
3The recent literature on whether and in what sense general relativity and Newtonian gravitation
explain inertial motion originates with Brown [4]. Brown is not especially concerned to give an
“account” of the sense of explanation he has in mind, in the sense of providing necessary or
sufficient conditions for when some argument, theorem, etc., is an explanation (nor, I should say,
am I!), though the idea is that the geodesic principle is explained in general relativity because there
is a sense in which it is a consequence of the central dynamical principle of the theory, Einstein’s
equation. Sus [48] has expanded on this view, calling the form of explanation at issue “dynamical
explanation,” and further defending Brown’s claim that general relativity is distinguished from other
spacetime theories with regard to the explanation it provides of inertial motion. Malament [32] and
I [56, 57], meanwhile, have pointed out that the geodesic principle does not follow merely from
Einstein’s equation, and that a strong energy condition is also required; moreover, as I note above,
a theorem remarkably similar to the one that holds in the relativistic case also holds in geometrized
Newtonian gravitation. But these latter discussions largely set aside the question of what sense of
explanation is at issue, if any. More recently, Tamir [49] has pointed out that in general relativity, at
least, the geodesic principle is false for realistic matter. He then considers almost-geodesic motion
as a kind of universal phenomenon in the sense of Batterman [1]. From this latter perspective, these
theorems provide explanations in the sense of showing how certain behavior can be expected to
arise approximately for a wide variety of substances. The remarks in the present paper are of a
rather different character than (most of) this earlier work, and so I will not engage with it closely in
the text.
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I will begin with a brief overview of geometrized Newtonian gravitation, after
which I will review the relevant theorems concerning the geodesic principle in that
theory and general relativity. I will focus on the subtle ways in which the theorems
differ, and on the complications that arise when one tries to interpret them. Once
this background material has been laid out, I will turn to the question at hand. The
starting point for this discussion will be to observe that on one way of thinking about
explanation in scientific theories, the answer to the question is “no”: neither of these
theories explains inertial motion, at least if the assumptions going into the theorems
have the character I describe. I want to resist this view, however, because I think it
takes for granted that one can make clear distinctions between “levels” or “tiers” of
fundamentality of the central principles of a theory. Careful analysis of the geodesic
principle theorems, meanwhile, suggests that there is another way of thinking about
how the principles of a theory fit together. The alternative view I will develop—I will
call it the “puzzleball view” or, perhapsmore precisely, the “puzzleball conjecture”—
holds that the foundations of physical theories, or at least these physical theories, are
best conceived as a network of mutually interdependent principles, rather than as a
collection of independent and explanatorily fundamental “axioms” or “postulates.”
On this view, one way to provide a satisfactory explanation of a central principle of a
theory, such as the geodesic principle in general relativity or geometrized Newtonian
gravitation, would be to exhibit its dependence on the other central principles of the
theory, i.e., to show how the principle-to-be-explained is a consequence of the other
central principles and basic assumptions of the theory. And this is precisely what the
theorems I will describe do. And so, I will argue that there is a sense in which both
theories explain inertial motion, though some care is required to say what is meant
by “explain” in this context.

I should be clear from the start: the language of explanation is a convenient one, but
I am not ultimately interested in the semantics of the word “explain.” The goal is not
to argue whether one thing or another is really an explanation. The dialectic, rather, is
as follows. Many people have suggested that general relativity provides an important
kind of insight with regard to inertial motion, something to be valued and sought
after in our physical theories. One might call this thing an “explanation,” or not. The
point, though, is that when one looks in detail at just what one gets in relativity theory
(and in geometrized Newtonian gravitation), it seems to work in a different way than
one might have initially guessed it would. One response to this observation would be
to say that we have not actually gotten what we were promised—or, in the language
above, that general relativity does not explain inertial motion. But another response
is to try to better understand what we do get. My principal thesis is that if one takes
this second path, an alternative picture emerges of how the foundations of theories
work. And on this alternative picture, general relativity and geometrized Newtonian
gravitation both do provide an important and very useful kind of insight into inertial
motion, and more, there are clear reasons why one should value and seek out this
sort of insight. Indeed, one might even think that what we ultimately get is what we
should have wanted in the first place. I am inclined to use the word “explanation”
for this sort of insight, but fully recognize that this usage may seem nonstandard or
incorrect to some readers.
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2 Overview of Geometrized Newtonian Gravitation

Geometrized Newtonian gravitation is best understood as a translation of Newtonian
gravitation into the language of general relativity, awayofmakingNewtonian physics
look as much like general relativity as possible, for the purposes of addressing com-
parative questions about the two theories.4 The result is a theory that is strikingly
similar in many qualitative respects to general relativity, but which differs in cer-
tain crucial details. Recall that in general relativity, a relativistic spacetime is an
ordered pair (M, gab), where M is a smooth four-dimensional manifold and gab is
a smooth Lorentzian metric on the manifold. In geometrized Newtonian gravitation,
meanwhile, one similarly starts with a smooth four-dimensional manifold M , but
one endows this manifold with a different metric structure. Specifically, one defines
two (degenerate) metrics. One, a temporal metric tab, has signature (1, 0, 0, 0). It is
used to assign temporal lengths to vectors on M : the temporal length of a vector ξ a

at a point p is (tabξ aξ b)1/2. Vectors with nonzero temporal length are called timelike;
otherwise, they are called spacelike. The second metric is a spatial metric hab, with
signature (0, 1, 1, 1). In general one requires that these twometrics satisfy an orthog-
onality condition, habtbc = 0. It is important that the temporal metric is written with
covariant indices and the spatial metric with contravariant indices: since both metrics
have degenerate signatures, they are not invertible, and so in general one cannot use
either to raise or lower indices. In particular, this means that the spatial metric cannot
be used to assign spatial lengths to vectors directly. Instead, one uses the following
indirect method. Given a spacelike vector ξ a , one can show that there always exists
a (nonunique) covector ua such that ξ a = habub. One then defines the spatial length
of ξ a to be (habuaub)1/2, which can be shown to be independent of the choice of ua .

Given a Lorentzian metric gab on a manifold M , there always exists a unique
covariant derivative operator ∇ that is compatible with gab in the sense that
∇agbc = 0. This does not hold for the degenerate Newtonian metrics. Instead, there
are an uncountably infinite collection of derivative operators that satisfy the com-
patibility conditions ∇atbc = 0 and ∇ahbc = 0. This means that to identify a model
of geometrized Newtonian gravitation, one needs to specify a derivative operator
in addition to the metric field. Thus, we define a classical spacetime as an ordered
quadruple (M, tab, hab,∇), where M , tab, hab, and ∇ are as described, the metrics
satisfy the orthogonality condition, and the metrics and derivative operator satisfy
the compatibility conditions. A classical spacetime is the analog of a relativistic
spacetime. Note that the signature of tab guarantees that at any point p, one can find
a covector ta such that tab = tatb; in cases where such a field can be defined globally,
we call the associated spacetime temporally orientable. In what follows, we will
always restrict attention to temporally orientable spacetimes, and will replace tab
with ta whenever we specify a classical spacetime.

4This brief overview of geometrized Newtonian gravitation is neither systematic nor complete.
The best available treatment of the subject is given in Malament [33]; see also Trautman [52]. My
notation and conventions here follow Malament’s.
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In both theories, timelike curves—curves whose tangent vector field is always
timelike—represent the possible trajectories of point particles (and idealized
observers). And as in general relativity, matter fields in geometrized Newtonian
gravitation are represented by a smooth symmetric rank-2 field T ab (with contravari-
ant indices). In general relativity, this field is called the energy-momentum tensor;
in geometrized Newtonian gravitation, it is called the mass-momentum tensor. The
reason for the difference concerns the interpretations of the fields. In relativity theory,
the four-momentum density of a matter field with energy-momentum tensor T ab is
only defined relative to some observer’s state of motion: given an observer whose
worldline has (timelike) tangent field ξ a , the four-momentum density Pa as deter-
mined by the observer is given by Pa = T abξb. When Pa is timelike or null, one can
define the mass density ρ of the field at a point, relative to the observer, as the length
of Pa . Moreover, the four-momentum field can be further decomposed (relative to
ξ a) as Pa = Eξ a + pa , where E = Pnξn is the relative energy density as determined
by the observer, and pa = Pn(δan − ξ aξn) is the relative three-momentum density.
Thus, the field T ab encodes the relative mass, relative energy, and relative momen-
tum densities as determined by any observer. In geometrized Newtonian gravitation,
meanwhile, all observers make the same determination of the four-momentum den-
sity of a matter field at a point: for any observer, Pa is given by Pa = T abtb. Given a
particular observer whose worldline has tangent field ξ a , though, one can decompose
Pa as Pa = ρξ a + pa , where ρ = Pata(= T abtatb) is the (observer-independent)
mass density associated with the matter field, and where pa = Pn(δan − ξ atn) is the
relative three-momentum density of the matter field as determined by the observer.
Thus in geometrized Newtonian gravitation, T ab encodes the (absolute) mass density
of a matter field, as well as its momentum relative to any observer.5

It is standard in both theories to limit attention to matter fields that satisfy several
additional constraints. In particular, in both cases one assumes that matter fields
satisfy the conservation condition, which states that their energy/mass-momentum
fields are divergence free (i.e.,∇aT ab = 0). One also usually requires that such fields
satisfy various energy conditions. In geometrized Newtonian gravitation, only one
such condition is standard: it is the so-called mass condition.

Mass condition: A mass-momentum field satisfies the mass condition if, at every point,
either T ab = 0 or T abtatb > 0.

Since T abtatb = ρ is themass density, this assumption states that whenever themass-
momentum tensor is nonvanishing, the associated matter field has positive mass. The
situation is more complicated in general relativity, where there are several energy
conditions that one may consider. I will mention a few because they are of particular
interest for present purposes. One, called theweak energy condition, is (at least prima

5Note that is general relativity, one makes a distinction between the mass and energy densities
relative to a given observer, where relative mass density is the length of the four-momentum
density determined by an observer at a point (ρ = (Pa Pa)1/2) and relative energy density is
E = T abξaξb = Paξa , where ξa is the tangent field to the observer’s worldline. In geometrized
Newtonian gravitation, this distinction collapses.
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facie) quite similar to the mass condition. It states that the energy density of a matter
field as determined by any observer is always nonnegative.

Weak energy condition: An energy-momentum field satisfies the weak energy condition if,
given any timelike vector ξa at a point, T abξaξb ≥ 0.

It is also common to consider stronger conditions. For instance, there are thedominant
energy condition and the strengthened dominant energy condition:

Dominant Energy Condition: An energy-momentum field satisfies the dominant energy
condition if, given any timelike vector ξa at a point, T abξaξb ≥ 0 and T abξa is timelike or
null.

Strengthened Dominant Energy Condition: An energy-momentum field satisfies the
strengthened dominant energy condition if, give any timelike covector ξa at a point,
T abξaξb ≥ 0 and either T ab = 0 or T abξa is timelike.

If these two conditions obtain for some matter field, then not only do all observers
take the field to have nonnegative energy density, they also take its four-momentum
to be causal or timelike (respectively). In other words, these latter conditions capture
a sense in which matter must propagate at or below the speed of light.

The curvature of a classical spacetime is defined in the standard way: given a
derivative operator ∇, the Riemann curvature tensor Ra

bcd is the unique tensor
field such that for any vector field ξ a , Ra

bcdξ
b = −2∇[c∇d]ξ a . The Ricci curvature

tensor, meanwhile, is given by Rab = Rn
abn . In both contexts, one says that a space-

time is flat if Ra
bcd = 0; in geometrized Newtonian gravitation, one also says that

a (possibly curved) spacetime is spatially flat if Rabcd = Ra
mnohbmhcnhdo = 0 or,

equivalently, Rmnhmahnb = 0. Given these ingredients, one can state the sense in
which in geometrized Newtonian gravitation, the curvature of spacetime depends
on the distribution of matter: namely, the central dynamical principle of the the-
ory, the geometrized Poisson equation, states that Rab = 4πρtatb, where ρ is the
mass density defined above. This expression explicitly relates the Ricci curva-
ture of spacetime to the distribution of matter. It is the Newtonian analog of
Einstein’s equation, Rab = 8π(Tab − 1

2Tgab), where T = T abgab, or equivalently
8πTab = Rab − 1

2 Rgab, where R = Rabgab.
There are a few points to emphasize here concerning the geometrized Poisson

equation. For one, if the geometrized Poisson equation holds of a classical spacetime
for some mass-momentum tensor T ab, then the classical spacetime is spatially flat,
since Rnmhnahmb = 4πρtntmhmahnb = 0. This fact is a way of recovering a familiar
feature of Newtonian gravitation, namely that space is always flat, even though in the
geometrized theory spacetime may be curved. Second, in general relativity one can
freely think of both the metric and the derivative operator as (systemically related)
dynamical variables in the theory. In geometrized Newtonian gravitation, this is not
the case: instead, the metrical structure of a classical spacetime is fixed, and only the
derivative operator (ormore specifically, theRicci curvature,which is defined in terms
of the derivative operator) is a dynamic variable. Finally, there is a sense in which,
given somematter distribution, the geometrized Poisson equation “fixes” a derivative
operator on a classical spacetime, but one has to be careful, as one can typically only
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recover a unique derivative operator satisfying the geometrized Poisson equation for
a given matter distribution in the presence of additional boundary conditions or other
assumptions.

The geometrized Poisson equation provides the sense in which in geometrized
Newtonian gravitation, spacetime is curved in the presence of matter; the sense in
which gravitational effects may be understood as a manifestation of this curvature
is just the same as in general relativity. That is, a derivative operator allows one to
define a class of geometrically privileged curves, the geodesics of the spacetime,
which consist of all curves whose tangent fields ξ a satisfy ξ n∇nξ

a = 0 everywhere.
I have already said that the timelike curves of a spacetime represent the possible
trajectories for massive particles; the timelike geodesics, meanwhile, represent the
possible unaccelerated trajectories of particles in both theories. The geodesic prin-
ciple then connects these geometrically privileged curves with force-free motion.
Thus, in geometrized Newtonian gravitation, as in general relativity, the distribu-
tion of matter throughout space and time affects the possible trajectories of massive
point particles not by causing such particles to accelerate, but rather by dynamically
determining a collection of unaccelerated curves.

These features of geometrized Newtonian gravitation provide the sense in which
the theory is qualitatively similar to general relativity. But one might wonder what
undergirds the implicit claim that geometrizedNewtonian gravitation is in some sense
Newtonian. One sense in which the theory is Newtonian is immediate: the degenerate
metric structure of a classical spacetime captures the implicit geometry of space
and time in ordinary Newtonian gravitation, where one has a temporally ordered
succession of flat three-dimensional manifolds representing space at various times
(cf. [46]). But there ismore to say. In standard formulations ofNewtonian gravitation,
spacetime is flat. Gravitation is a force mediated by a gravitational potential, which
is related to the distribution of matter by Poisson’s equation. In the present four-
dimensional geometrical language, this can be expressed as follows. We begin with
a classical spacetime (M, ta, hab,∇) as before, but now we require that ∇ is flat,
i.e., Ra

bcd = 0. We again represent matter by its mass-momentum field T ab, defined
just as above, but we also define a scalar field ϕ, which is the gravitational potential.
Poisson’s equation is written as∇a∇aϕ = 4πρ where the index on∇a is raised using
hab, and where ρ = T abtatb. And now the acceleration of amassive test point particle
in the presence of a gravitational potential ϕ is given by ξ n∇nξ

a = −∇aϕ, where
ξ a is the tangent to the particle’s trajectory. In other words, in standard Newtonian
gravitation matter accelerates in the presence of mass.

It turns out that standardNewtonian gravitation (thus understood) andgeometrized
Newtonian gravitation are systematically related [33, ch. 4.2]. Specifically, given
a classical spacetime (M, ta, hab,∇) with ∇ flat, a smooth mass density ρ, and
a smooth gravitational potential ϕ satisfying ∇a∇aϕ = 4πρ, there always exists
a unique derivative operator ∇̃ such that (M, ta, hab, ∇̃) is a classical spacetime,
R̃ab = 4πρtatb, and such that for any timelike vector field ξ a , ξ n∇nξ

a = −∇aϕ if and
only if ξ n∇̃nξ

a = 0. In otherwords, given amodel of standardNewtonian gravitation,
there is always amodel of geometrizedNewtonian gravitationwith precisely the same
mass density and allowed trajectories. Additionally, the derivative operator ∇̃ will
always satisfy two curvature conditions: R̃ab

cd = 0 and R̃a
b
c
d = R̃c

d
a
b. This result
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Fig. 1 In general, it is possible to translate betweengeometrizedNewtoniangravitation and standard
Newtonian gravitation, as depicted in this figure. On the left is a model of standard Newtonian
gravitation: one has a matter field represented by the world tube of some body, such as the sun, and
a curve orbiting this body, representing, say, a small planet. This curve corresponds to an allowed
trajectory insofar as it is accelerating by the appropriate amount. On the right is the corresponding
model of geometrized Newtonian gravitation. One has precisely the same matter distribution, and
the same allowed trajectory (i.e., the same orbit), but nowwe understand this trajectory to be allowed
by the theory because it is a geodesic of a curved derivative operator, with curvature determined by
the matter distribution. Note that both theories have the same metrical structure, represented here
by a succession of flat slices representing space at various times

is known as the Trautman geometrization lemma; it provides the sense in which
one can always translate from standard Newtonian gravitation into the geometrized
theory. One can also prove a corresponding recovery lemma (also due to Trautman),
allowing for translations back: namely, given a classical spacetime (M, ta, hab, ∇̃)

and smooth mass density ρ satisfying R̃ab = 4πρtatb, if R̃ab
cd = 0 and R̃a

b
c
d =

R̃c
d
a
b then at least locally there always exists a flat derivative operator ∇ and a

gravitational potential ϕ such that (M, ta, hab,∇) is a classical spacetime,∇a∇aϕ =
4πρ, and again for any timelike vector field ξ a , ξ n∇nξ

a = −∇aϕ if and only if
ξ n∇̃nξ

a = 0. Note that this recovery result only holds in the presence of the two
additional curvature conditions stated above; moreover, in general the translation
from geometrized Newtonian gravitation to standard Newtonian gravitation will not
be unique. (See Fig. 1.)

3 The Geodesic Principle as a Theorem

With the background of the previous section in place, I can now state the precise sense
in which the geodesic principle may be understood as a theorem in general relativity
and geometrized Newtonian gravitation. I will begin by stating both theorems, and
then double back to the question of how one should interpret them.
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Theorem 3.1 [23]6Let (M, gab) be a relativistic spacetime, and suppose M is ori-
ented. Let γ : I → M be a smooth imbedded curve. Suppose that given any open
subset O of M containing γ [I ], there exists a smooth symmetric field T ab with the
following properties.

1. T ab satisfies the strengthened dominant energy condition, i.e., given any timelike
covector ξa at a point, T abξaξb ≥ 0 and either T ab = 0 or T abξa is timelike;

2. T ab satisfies the conservation condition, i.e., ∇aT ab = 0;
3. supp(T ab) ⊂ O; and
4. there is at least one point in O at which T ab �= 0.

Then γ is a timelike curve that can be reparametrized as a geodesic.

One can prove an almost identical theorem in geometrized Newtonian gravitation.7

Theorem 3.2 [55] Let (M, tab, hab,∇) be a classical spacetime, and suppose that
M is oriented. Suppose also that Rab

cd = 0. Let γ : I → M be a smooth imbedded
curve. Suppose that given any open subset O of M containing γ [I ], there exists a
smooth symmetric field T ab with the following properties.

1. T ab satisfies the mass condition, i.e., whenever T ab �= 0, T abtatb > 0;
2. T ab satisfies the conservation condition, i.e., ∇aT ab = 0;
3. supp(T ab) ⊂ O; and
4. there is at least one point in O at which T ab �= 0.

Then γ is a timelike curve that can be reparametrized as a geodesic.

As a first remark, it may not be obvious that either of these theorems should
be understood to capture the geodesic principle at all, at least in a natural way. A
principal difficulty in trying to derive the geodesic principle as a theorem concerns a
kind of ontological mismatch between the geodesic principle and the rest of general
relativity: namely, general relativity is a field theory, whereas the geodesic principle
is a statement concerning point particles. One strategy for dealing with this problem
is to try to model massive point particles as “small” bits of extended matter, and then
show that under sufficiently general assumptions, the world tubes of such small bits
of matter will contain timelike geodesics. But this turns out to be false in general—
geodesic motion only obtains in the idealized limit where the world tube of a body
collapses to a curve, in which case one can no longer represent matter as a smooth

6This particular statement of the theorem is heavily indebted to Malament [33, Prop. 2.5.2].
7Note that the following theorem may be understood to include inertial motion in standard (i.e.,
non-geometrized) Newtonian gravitation as a special case where the derivative operator associated
with the classical spacetime in the proposition happens to be flat. So the present result may be
taken to show that Newton’s first law can be thought of as a theorem, too. In the case of standard
Newtonian gravitation, however, gravitational interactions are conceived as forces and correspond
to failures of the mass-momentum tensor to be conserved (relative to the fixed background choice
of flat derivative operator), so strictly fewer physical situations correspond to inertial motion. For
this reason, it is more interesting to focus on the geometrized theory, since the result is both stronger
in that case and more directly analogous to the Geroch–Jang theorem.
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field on spacetime.8 The Geroch–Jang strategy, meanwhile, is different. Instead of
starting with some matter and asking what kind of trajectory it follows, one starts
with a curve and asks under what circumstances that curve can be understood as a
trajectory for arbitrarily small bits of extended matter. Both theorems then state that
the only curves along which arbitrarily small bits of matter can be constructed are
timelike geodesics.

Importantly, one represents a “small bit of matter” by a smooth symmetric rank
2 tensor field with support in some neighborhood of the curve. But a curve is not
understood as a possible trajectory for a free massive test point particle if one can
constructany smooth symmetric rank2 tensor field in arbitrarily small neighborhoods
of the curve—rather, one limits attention to fields that satisfy additional constraints.
The claim, then, is that these theorems capture the geodesic principle in both theories
insofar as the additional constraints on the matter fields adequately capture what we
intendby “freemassive testmatter.”Thismeans that the interpretation of the theorems
turns on the status of these conditions. And so, for a comparative study of the status
of the geodesic principle in each theory, one wants to compare the status of each of
these assumptions relative to their respective theories.

Two of the assumptions can be set aside immediately: in both theorems, assump-
tions (3) and (4) play the role of setting up the limiting process implicit in the
theorems. Assumption (3) limits attention to matter fields that vanish outside one’s
chosen neighborhood of the curve (which captures the sense in which one is consid-
ering arbitrarily small bits of matter propagating along the curve), and assumption
(4) indicates that the matter field must be nonvanishing somewhere along curve, rul-
ing out the trivial case. These assumptions are identical in both cases, and neither is
troublingly strong.

There is also an obvious difference that can be safely ignored. In the Newtonian
theorem, we place an additional constraint on the curvature, namely Rab

cd = 0. This
is precisely the curvature condition needed to prove the Trautman recovery theorem,
allowing one to translate from a model of geometrized Newtonian gravitation to a
model of standard Newtonian gravitation. For this reason, the curvature condition is
naturally interpreted as a restriction to models of geometrized Newtonian gravitation
that areNewtonian, in the sense that they admit translations back tomodels of standard
Newtonian gravitation. This presumably is the case of greatest interest, and so I am
inclined to think of the assumption as benign.9 Moreover, there is good reason to
think that this assumption can be dropped, though tomy knowledge, proving asmuch
is still an open (and perhaps interesting) problem.

The most striking difference between the two theorems concerns the respective
assumptions (1).10 In the Newtonian theorem, this is the mass condition, i.e., that
whenever themass-momentumfield is nonvanishing, themass density determined by
any observer must be positive. This is the standard energy condition in geometrized

8This point is emphasized by Tamir [49].
9For another view on this matter, see Sus [48].
10For an enlightening and much more detailed discussion of energy conditions in general relativity,
including the Strengthened Dominant Energy Condition, see Curiel [9].
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Newtonian gravitation, andmore, it is natural in this context, as it captures the sense in
which the bits of matter being represented are massive. In the Geroch–Jang theorem,
meanwhile, one requires the strengthened dominant energy condition, which states
that (a) all observers must assign nonnegative energy density to the matter field (the
weak energy condition) and (b) that if T ab �= 0, then the four-momentum assigned
to the matter field by any observer must be timelike. It seems natural to think that
the weak energy condition, (a), is playing the role played by the mass condition in
the Newtonian case: namely, it captures the sense in which the small bits of matter
are massive, by requiring that they always have nonnegative mass. But from this
perspective, the second part of the condition, (b), is a strong additional requirement.
In Newtonian gravitation, it would seem, one needs only to assume that mass is
always positive to get timelike geodesic propagation, whereas in general relativity,
one also needs to make an assumption about the timelike propagation of energy-
momentum.11

However, the situation is not quite so simple as this. Although the mass condition
appears to be nothing more than an assumption about positive mass, it, too, contains
an implicit assumption about timelike propagation. To see this, consider a different
(nonstandard) Newtonian energy condition, which I will call the weakened mass
condition.

Weakened Mass Condition: A mass-momentum field T ab satisfies the weakened mass
condition if at every point, T abtatb ≥ 0.

The weakened mass condition has a good claim on being the Newtonian analog
of the weak energy condition and might similarly be understood as the claim that
mass/energy density is always nonnegative. But it is strictly weaker than the mass
condition, since the weakened mass condition may be satisfied by mass-momentum
fields that are spacelike, in the sense that T ab �= 0 but T abtatb = 0 (for example,
consider T ab = uaub, with ua a spacelike vector field). In other words, the mass
condition amounts to the weakened mass condition plus the additional assumption
that T ab is timelike. We can make this explicit by defining an equivalent condition,
the modified mass condition.

Modified Mass Condition: A mass-momentum field T ab satisfies the modified mass con-
dition if at every point, T abtatb ≥ 0 and either T ab = 0 or T abta is timelike.

The modified mass condition is equivalent to the mass condition, but would appear
to be the natural translation of the strengthened dominant energy condition.12

11This is precisely how I present the situation in [56, 57]. However, I now think matters are still
more complicated than I indicate there, as I explain in the text. Still, the principal morals of those
previous discussions are unchanged by these additional considerations.
12To see that themass condition andmodifiedmass condition are equivalent, consider the following.
Fix a classical spacetime (M, ta, hab,∇) and a mass-momentum field T ab on M . First suppose
T ab satisfies the mass condition. Then at every point, either T ab = 0 or T abtatb > 0. If T ab = 0
everywhere, then it also satisfies the modified mass condition, so suppose there is a point p such
that T ab �= 0. Thus at p, T abtatb > 0. It follows that the temporal length of T abta is positive, and
thus that the vector T abta must be timelike at p. So T ab satisfies the modified mass condition.
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Table 1 This table summarizes the relationship between the various energy conditions discussed in
the text. Single arrows represent “apparently natural translations”; double arrows represent logical
implications

Geometrized Newtonian
gravitation

General relativity

Modified mass condition ←→ Strengthened dom. energy
condition

� ⇓
Mass condition ←→ Strengthened weak energy

condition

⇓ ⇓
Weakened mass condition ←→ Weak energy condition

Returning to general relativity, one can also consider the strengthenedweak energy
condition.

StrengthenedWeak Energy Condition: An energy-momentum field satisfies the strength-
ened weak energy condition if, give any timelike vector ξa at a point, either T ab = 0 or
T abξaξb > 0.

This condition seems like the natural translation of the (standard) mass condition,
but it is strictly weaker than the strengthened dominant energy condition and strictly
stronger than the weak energy condition!13

This situation is summarized in Table 1. There are thus twoways of thinking about
the relationship between the energy conditions used in these theorems, depending
on which “natural translations” one emphasizes. On one way of thinking, the mass
condition is essentially the same as the strengthened weak energy condition. From
this point of view, then, the strengthened dominant energy condition in the Geroch–
Jang theorem is a strictly stronger assumption than the corresponding assumption in
its Newtonian counterpart, Theorem 3.2. More, one might be inclined to think that
one gets something additional for free in the Newtonian case, since the mass condi-
tion turns out to imply the (apparently) stronger modified mass condition, whereas
the strengthened weak energy condition does not imply the strengthened dominant
energy condition. Meanwhile, on the other way of thinking about things, one argues
that the strengthened dominant energy condition is essentially the same as the mod-
ified mass condition, which is fully equivalent to the mass condition. And so one
concludes that the energy conditions required by the two theorems are essentially
the same.

(Footnote 12 continued)
Now suppose T ab satisfies the modified mass condition. Once again, if T ab vanishes everywhere,
it automatically satisfies the mass condition, so suppose there is a point p such that T ab �= 0. At
that point, we know T abta is timelike, and thus that T abtatb �= 0. But since T abtatb ≥ 0, it follows
that T abtatb > 0. Thus T ab satisfies the mass condition.
13The strengthened weak energy condition is also strictly weaker than the (strict) dominant energy
condition, and so Prop. 4 of Weatherall [57] implies that the strengthened weak energy condition
is not strong enough to prove the Geroch–Jang theorem.
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There is also another possibility, which is to say that one cannot perform simple
translations between the energy conditions in these two theories at all. I am inclined
to endorse this last option, though this raises new questions about how one should
compare the theorems. There are a few things to say. First, irrespective of how
one tries (or does not try) to translate these conditions, there are still two senses in
which the strengthened dominant energy condition is arguably stronger than themass
condition. One is that the timelike propagation clause of the strengthened dominant
energy condition can be understood as the assumption that the instantaneous speed
of matter, relative to any observer, must be strictly less than the speed of light. The
corresponding clause of the (modified) mass condition, meanwhile, amounts to the
assumption that matter cannot propagate at infinite speed relative to any observer.
And the assumption that a number must be less than a fixed finite value is stronger
than the assumption that it must be finite, but not bounded.

The second, more significant sense in which the strengthened dominant energy
condition is stronger is that the only way in which matter in Newtonian gravitation
can be “massive” (i.e., have positive mass as determined by some observer) is if it
satisfies the mass condition. Matter that satisfies the weakened mass condition but
not the mass condition will necessarily have zero mass. And so one might argue that
the mass condition is necessary to capture what is meant by “massive” in the context
of Newtonian gravitation. In general relatively, meanwhile, matter can be “massive”
in two senses, without satisfying the strengthened dominant energy condition: it can
be massive in the sense that it has positive energy density (i.e., it satisfies the weak
energy condition), and it can be massive in the sense that some observers will assign
it positive mass density (i.e., the relative four-momentum density as determined by
some observers is timelike). This second sense trades on an important distinction
between some observers assigning positive mass density and all observers assigning
positive mass density. One might have thought that in order for a matter field to be
massive, it would be sufficient if some observers—say, co-moving observers making
determination of “restmass density,”when thatmakes sense—determine that the field
has positive mass density. But the strengthened dominant energy condition requires
considerably more than this. In geometrized Newtonian gravitation, meanwhile, all
of these distinctions collapse. If anyone determines a matter field has positive mass,
then everyone does.

A final remark is that, understood within the context of the respective theories,
the strengthened dominant energy condition is a more surprising assumption to have
to make than the mass condition. One often thinks of relativity theory as forbidding
superluminal propagation of energy-momentum, in the sense that somehow the geo-
metric structure of the theory renders superluminal energy-momentum incoherent.
But here, at least, it seems that we need to rule out superluminal propagation of
energy-momentum as an additional assumption in order to derive the geodesic prin-
ciple. This point can be made precise by asking whether one can drop or weaken the
energy condition in the Geroch–Jang theorem and still derive the geodesic principle.
And the answer is “no.” If one drops the energy condition altogether, it is possible
to construct bits of matter that propagate along any timelike curve [32]. And if one
weakens the energy condition to the weak energy condition or the dominant energy
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condition, one can construct bits of matter that propagate along spacelike or null
curves, respectively [57]. To be sure, in the Newtonian case the mass condition is
similarly necessary (the considerations offered in Weatherall [57] can be adapted to
show that theweakenedmass condition is not enough to get timelike geodesicmotion
in geometrized Newtonian gravitation), but this does not seem as striking, since one
does not expect Newtonian gravitation to imply restrictions on the propagation of
matter (or more specifically, mass-momentum), even if it is standard to assume that
matter cannot propagate instantaneously in the theory.

This leaves the conservation condition, assumption (2) in both theorems. The
statement of the assumption is identical in both cases, namely that the tensor fields
representing matter must be divergence-free. And in both theories, this assumption is
a way of capturing that the bits of matter must be free in the sense of noninteracting.
This interpretation is justified because in both theories there is a standard background
assumption that at every point of spacetime, total energy/mass-momentum must be
divergence free, and more, that a particular energy/mass-momentum field fails to be
divergence free at a point just in case it is interacting with some other such field at
that point. And so, to say that a particular field satisfies the conservation condition
everywhere is to say that that field cannot be exchanging energy/mass-momentum
with any other fields.

So far, it would seem that these assumptions have precisely the same status in both
theorems. But this is too quick. Although the assumptions are equally natural ways of
capturing the desired sense of “free” in both cases, they only have that interpretation
in the presence of the background assumption regarding the local conservation of
total energy/mass-momentum. And there is an argument to be made that this back-
ground assumption has a different status in general relativity than in geometrized
Newtonian gravitation. In general relativity, Einstein’s equation implies the conser-
vation condition, at least for total source matter. This is because the equation can
be written as 8πT ab = Rab − 1

2g
abR, and it is a brute geometrical fact (known as

Bianchi’s identity) that the right-hand side of this equation is always divergence free.
Thus, the left-hand side must also be divergence-free.

The geometrized Poisson equation, however, does not imply the conservation
condition. And so, if one has Einstein’s equation lurking in the background, one
might be inclined to say that the background assumption that matter is conserved
comes for free in general relativity, whereas it is an additional brute assumption in
geometrizedNewtonian gravitation. There is an important caveat here—the argument
that Einstein’s equation implies the conservation condition only applies for source
matter, whereas the geodesic principle is supposed to govern test matter, i.e., matter
that may be neglected as a source in Einstein’s equation. Nonetheless, one might
think that the conservation condition has a special status—even, to anticipate the
discussion in the next section, a privileged explanatory status—in general relativity
because of its relation to Einstein’s equation.14

14I should emphasize: one does not need to think of the conservation condition as having a different
status in general relativity than in geometrized Newtonian gravitation. For instance, I have else-
where argued that one can thinkof the conservation condition as ameta-principle, in the sense that the



28 J.O. Weatherall

In the next section, I will turn to the question of whether either of these theorems
should count as explanations of inertial motion. But before I do so, it will be helpful
to sum up the discussion in the present section. I have now made precise the sense in
which one can prove the geodesic principle as a theorem of both general relativity and
geometrizedNewtonian gravitation. But, as I hope has become clear, interpreting and
comparing these theorems is quite subtle. It is not quite right to say that the theorems
have the same interpretation or significance: on the one hand, there is arguably a sense
in which the conservation condition, necessary for both theorems, has a different
and perhaps privileged status in general relativity; and on the other hand, there are
several senses in which the energy condition required for the Geroch–Jang theorem
is stronger than the condition required for the Newtonian theorem, both in absolute
terms and relative to the respective theories. Despite these differences, however,
there is at least one important sense in which the status of the geodesic principle is
strikingly similar in both theories. In both cases, one can prove the geodesic principle
as a theorem. But to do so, one needs to make strong assumptions about the nature
of matter. The status of these assumptions will play a central role in what follows.

4 Explaining Inertial Motion?

General relativity and geometrized Newtonian gravitation, like any physical theory,
involve a number of basic assumptions and central principles. For instance, general
relativity begins with some background assumptions about matter and geometry:
space and time are represented by a four-dimensional, possibly curved Lorentzian
manifold; matter is represented by its energy-momentum tensor, a smooth symmetric
rank two tensor field on spacetime. One then adds some additional assumptions, as
principles indicating how to interpret and use the theory. One may stipulate that total
energy-momentum at a point must satisfy the conservation condition. One assumes
that matter fields satisfy various possible energy conditions, that idealized clocks
measure proper time along their trajectories, and that free massive test point parti-
cles traverse timelike geodesics. We postulate a dynamical relationship between the
geometrical structure of spacetime and the energy-momentum field, and so on. Some
of these assumptions involve stipulating kinematical structure; others involve basic
constraints and dynamical relationships; others still tell us how to extract empirical
content from the theory. All of them have some claim to centrality or fundamentality
in the theory.

But they are not necessarily independent. For instance, as I mention above, the
conservation condition may be understood as a consequence of Einstein’s equation,

(Footnote 14 continued)
assumption that matter is conserved is expected to hold true in a wide variety of theories, and that
from this perspective the status of the assumption is much the same in both general relativity and
geometrized Newtonian gravitation [56]. (Of course, the assumption that a matter field is divergence
free is not exactly the same as the assumption that total mass or energy is constant over time, but it
does deserve to be called the relativistic version of traditional conservation principles.)
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at least for source matter. And so, at least in some contexts, one might want to think
of the conservation condition as somehow subordinate to Einstein’s equation. One
might even be inclined to say that it is Einstein’s equation that really deserves to be
called the “fundamental principle,” while the conservation condition has some other,
less fundamental status—or, in other words, that Einstein’s equation explains why
matter is locally conserved. We might even say that this is what it means to say that
something like the conservation condition is explained by a theory: it can be derived
from more fundamental principles in the theory.

From this point of view, one might have thought that when Einstein, Eddington,
and others have claimed that general relativity explains inertial motion, in the sense
that one can prove the geodesic principle as a theorem, the claim would have been
analogous to what I have just said about the conservation condition: namely, one
can take some collection of other principles of the theory and use them to derive the
geodesic principle. One might then think that the geodesic principle has the same
subordinate status as the conservation condition. It may be central to the theory, but
not truly fundamental. The fundamental principles are the ones that go into proving
the geodesic principle. On this view, one thinks of the foundations of general rela-
tivity as a two-tiered system. On the top tier are the truly fundamental principles; on
the lower tier are the other central principles that can be derived from the top-tier
principles. Initially, perhaps, one thought that the geodesic principle and conserva-
tion condition were top-tier principles; but the Geroch–Jang theorem and Bianchi’s
identity show that they are really second-tier principles.15

Thinking this way can lead to problems, however. The main moral of the last
section was that although one can prove the geodesic principle as a theorem in
both general relativity and geometrized Newtonian gravitation, to do so requires
strong assumptions about the nature of matter. And so, if we want to move the
geodesic principle to the lower tier, it would seem that we need to understand these
assumptions as top-tier principles. But this raises a question: why should we think
of these principles as the truly fundamental ones? Or more specifically, why should
we think of the conservation condition and the respective energy conditions as more
fundamental than the geodesic principle itself?

If one were committed to the idea that the geodesic principle is a second-tier
principle in one or both of these theories, perhaps one would be willing to include
the assumptions needed to prove the geodesic principle among the truly fundamental
principles of that theory.But it is hard to see how this is an appealingmoveon indepen-
dent grounds. Even if one were to argue that dynamical principles such as Einstein’s
equation and the geometrized Poisson equation are clearly more fundamental than
the geodesic principle, it remains the case that the strong energy condition needed
to prove the Geroch–Jang theorem is entirely independent of Einstein’s equation.
(And neither the conservation condition nor the mass condition follows from the
geometrized Poisson equation.)

15Indeed, it seems Einstein originally did think of the conservation condition as a top-tier principle,
in the sense that he thought it was an independent assumption that any realistic field equation would
need to be compatible with. See Earman and Glymour [15, 16].



30 J.O. Weatherall

More, there is a sense in which one can draw all of the inferential arrows in
the opposite direction, at least in one important case. Consider an energy/mass-
momentumfield of the form T ab = ρξ aξ b, for some smooth scalar fieldρ and smooth
vector field ξ a . An energy/mass-momentum field of this form is the natural way
of representing a matter field composed of mutually noninteracting massive point
particles (at leastwhenρ is nonnegative).And so, since the geodesic principle governs
the behavior of freemassive test point particles, we can use it to derive features of this
matter field: specifically, the geodesic principle implies that the flow lines of the field,
which represent the trajectories of each speck of dust, must be timelike geodesics.
These flow lines are just the integral curves of ξ a , and so it follows that ξ a must
be timelike and geodesic (i.e., ξ n∇nξ

a = 0). But if ξ a is timelike, then T ab satisfies
the strengthened dominant energy condition (or respectively, the mass condition in
geometrized Newtonian gravitation). And if it is geodesic, then T ab is divergence
free. Thus the geodesic principle allows us to derive that matter fields consisting of
noninteracting massive test point particles satisfy precisely the two conditions we
need to assume in order to prove the geodesic principle.16

So perhaps we should not be so quick to declare the conservation condition and
energy conditions top-tier in either theory. At the very least, it is not perfectly clear
that these assumptions are more fundamental than the geodesic principle. But think-
ing in this way might lead one to conclude that neither of the geodesic principle
theorems has much explanatory significance, since (the intuition might go) expla-
nations always proceed from more fundamental or basic facts to less fundamental
facts. Here, meanwhile, the arrows of fundamentality are muddled. And this would
mean that not only is general relativity not special with regard to its explanation of
inertial motion—it does not explain inertial motion at all!

5 The Puzzleball Conjecture

I do not find the argument I offer in the previous section compelling. It rests on
a basic intuition: to explain something like the geodesic principle, one must begin
with some truly fundamental principles and then provide an argument for why the
principle-to-be-explained must follow from these more fundamental ones. This intu-
ition takes for granted that we can make sense of a distinction between different tiers
of fundamentality among the central principles of a theory like general relativity or
geometrized Newtonian gravitation. And I think that this is a mistake—or at least,
that there is a more compelling way of thinking about things.

Consider what the geodesic principle theorems do accomplish. In both of these
cases, the theorems show how in the presence of other basic assumptions of the
respective theories, the geodesic principle follows. Or in other words, they show
that given that one is committed to the rest of (say) general relativity, one must

16Of course, the present argument does not imply that the conservation condition and energy con-
ditions hold for all matter—just for the type of matter directly governed by the geodesic principle.
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Fig. 2 One way of thinking about the foundations of physical theories would have it that some of
the central principles of a theory have a distinguished status as the “truly fundamental” principles.
An alternative view, which I describe and advocate here, is that the foundations of a theory are
better thought of as a network of mutually interdependent principles, interlocking like the pieces
of a spherical puzzle. On this view, one would tend to expect that any of the central principles of a
theory should be derivable from the rest of the theory with that principle removed, much like the
overall shape of a puzzleball constrains the shape of any individual piece

also be committed to the geodesic principle. One cannot freely change the geodesic
principle without also changing the rest of general relativity: one cannot “fiddle”
with the theory by (merely) replacing the geodesic principle with the assumption
that free massive test point particles traverse some other class of curves—uniformly
accelerating curves, say, or spacelike curves. The geodesic principle is not modular,
in the sense that one cannot construct a collection of perfectly good theories that
differ only in how they treat inertial motion. More, the theorems clarify precisely
how it is that the geodesic principle “fits in” among the other central principles of
general relativity.

It seems to me that these reflections suggest a proposal. Instead of thinking of
the foundations of a physical theory as consisting of a collection of essentially inde-
pendent postulates from which the rest of the theory is derived, one might instead
think of the foundations of a theory as consisting of a network of mutually interde-
pendent principles—a collection of interlocking pieces, as in the spherical puzzle in
Fig. 2.17 The idea is that, as with the geodesic principle, one should generally expect

17Feynman [21] makes a distinction between two ways of understanding physical theories that is
similar to the one I make here. On the “Greek” view of theories, one begins with a collection of
fixed fundamental axioms or postulates. Feynman does not like this way of thinking about theories.
Instead, he endorses the “Babylonian” view, on which one observes that the principles of a theory
are more richly connected: perhaps it is sometimes convenient to take certain principles of a theory
as axioms and others as theorems, but one needs to recognize that in other cases one might want to
switch this around and think of your theorems as the axioms, and use them to prove your former
axioms. He then observes that “If all these various theorems are interconnected by reasoning there
is no real way to say ‘These are the most fundamental axioms,’ because if you were told something
different instead you could also run the reasoning the other way. It is like a bridge with lots of
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that many of the central principles of a physical theory may be proven as theorems,
given the rest of the theory. Trying to make a distinction between the top-tier princi-
ples and the second-tier principles of a theory is not fruitful, then, since most, or even
all, of the principles can be understood equally well as either postulate or theorem,
and indeed, in different contexts it may well be desirable to think of them in different
ways. Importantly, theories are not modular, in the sense described above.We cannot
simply replace any given principle with some other one, at least not without changing
the rest of the theory in possibly dramatic ways. And theorems such as the Geroch–
Jang theorem and its Newtonian counterpart are of interest because they exhibit the
details of these interdependencies. They show just how the pieces interlock.

To be sure, nothing I have said thus far should count as an apodictic argument
for the view I have described (call it the “puzzleball view”). Nor will I give such an
argument—indeed, I am not sure what an argument for the claim that there are no
truly fundamental principles of general relativity would look like. Instead, I merely
offer the view as an alternative way to think of the kinds of interrelations between
the principles of physical theories on display with theorems like the Geroch–Jang
theorem. Perhaps the proposal is best conceived as a conjecture, albeit one with some
compelling early evidence, for the following reason: while the senses in which, for
instance, the conservation condition and the geodesic principle follow from other
standard assumptions of general relativity are now established, the senses in which
other principles, such as Einstein’s equation or various energy conditions, are deriv-
able from or constrained by the rest of the theory are less clear.18 And so we have
the skeleton of a mathematical question: are all of the central principles of relativity
theory and geometrized Newtonian gravitation (or other theories still) indeed mutu-
ally interderivable in the way that I have suggested? Most or many of them? Or are
the geodesic principle and conservation condition anomalies?

Some important work has already been done on this topic: Dixon [12] has shown
a sense in which the geometrized Poisson equation is the unique dynamical principle
compatible with a collection of natural assumptions in Newtonian gravitation; simi-
larly, Sachs andWu [43] and Reyes [42] have shown that there is a sense in which the
(vacuum form of) Einstein’s equation can be derived from (in effect) the geodesic
principle, among other assumptions, and Lovelock [30, 31], Navarro and Sancho
[37], and Curiel [8] have argued for various senses in which the Einstein tensor is
the unique tensor that can appear on the left-hand side of Einstein’s equation, even
in the non-vacuum case.

Meanwhile, Duval andKünzle [13] andChristian [7] have argued that even though
the conservation condition in geometrized Newtonian gravitation does not follow
from the geometrized Poisson equation, one can nonetheless derive it from other
principles, at least if one considers Lagrangian formulations of the theory. Onemight

(Footnote 17 continued)
members, and it is overconnected; if pieces have dropped out you can reconnect it another way”
(pg. 46). The view I describe here is firmly in Feynman’s Babylonian tradition. I am grateful to Bill
Wimsatt for pointing out this connection.
18Indeed, it would seem that there are no known nontrivial derivations of energy conditions from
other central principles of relativity theory. See Curiel [9].
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even understand Newton’s argument for universal gravitation as a kind of heuristic
argument that the inverse square law of gravitation is the unique dynamical principle
compatible with certain other central principles of standard Newtonian gravitation
(including generalized empirical facts, such as Kepler’s Harmonic Law). Results
such as these provide tentative evidence for my basic hypothesis, that one should
expect many or all of the central principles of these spacetime theories to be mutually
interdependent.

But I do not think these results are yet conclusive. Specifically, what has not been
done is to systematically study such results in order to try to characterize, in the
way that has now been done for the geodesic principle theorems, (1) just what the
assumptions going into these theorems are, (2) how natural the assumptions are in
the contexts of the relevant theories, and (3) how these assumptions, in turn, depend
on the other central principles of the theories (if they do). And the attractiveness of
the proposal presented here turns on the answers to these questions. It is only after
a project of this form has been carried out that one can fully evaluate whether the
central principles of these theories are really as tightly intertwined as the puzzleball
view would have it.

That said, if a careful study of this sort reveals that only some of the central
principles of a theory are interconnected, it may still be fruitful to think about the
foundations of theories in theway I proposehere, since the discovery that somecentral
principles of a theory (say, energy conditions in general relativity) aremore peripheral
than others neednot imply that one canmake sense of a unique or privileged collection
of the most fundamental or basic principles. Much will depend on just what the
structure of the situation turns out to be.

It isworth emphasizing thatmapping out these kinds of relations among the central
principles of a physical theory is of some independent interest, since understanding
the extent to which the central principles of general relativity in particular are mutu-
ally interdependent could play an important role in the construction of future theories
(and in some ways, it already has).19 The reason has to do with the idea of “fiddling”
with physical theories. There is a long tradition of attempting to modify general
relativity with small changes: for instance, in Brans–Dicke theory, one modifies Ein-
stein’s equation to include an additional scalar field; in TeVeS gravitational theories,
one also considers vector fields. In still other cases, one modifies general relativity
by allowing derivative operators with torsion. In each of these examples (and many
others), one makes what appears to be a local change in the central principles of
general relativity.

19Feynman makes a related point about the practical importance of his Babylonian approach to
theories. He writes, “If you have a structure that is only partly accurate, and something is going to
fail, then if you write it with just the right axioms maybe only one axiom fails and the rest remain,
you need only change one little thing. But if you write it with another set of axioms they may all
collapse, because they all lean on that one thing that fails. We cannot tell ahead of time, without
some intuition, which is the best way to write it so that we can find out the new situation. We must
always keep all the alternative ways of looking at a thing in our heads; so physicists do Babylonian
mathematics, and pay but little attention to the precise reasoning from fixed axioms” [21, pg. 54].
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But these small changes can have dramatic consequences: for instance, in
Einstein–Cartan theory, a modification of general relativity with torsion, the con-
servation condition does not generally hold. One does not have a geodesic principle,
at least in the ordinary sense, since in general the collection of self-parallel curves
picked out by the derivative operator do not agree with the collection of extremal
curves picked out by the metric, and free massive test point particles need not propa-
gate along either class of curves. Thus, apparently small tweaks can lead to a dramati-
cally different theory, conceptually speaking. A clearer picture of just how the central
principles of general relativity do fit together and constrain one another may provide
important clarity into just what the consequences of these “small” modifications to
the theory are, and more, may help guide us in the search for alternative theories
of gravitation, by indicating which principles are more or less tightly connected to
which others. Indeed, for this reason there is a sense in which the situation I describe
above, where some principles are very tightly interlocking and others turn out to be
more loosely connected (for instance, some principles play a role as assumptions in
some theorems, but cannot be proved in complete generality themselves) is the most
interesting from the practical perspective of mapping out the space of possible future
theories.

In the next section, I will return to the question of explanation, now from the
perspective of the present view.But before I do so, Iwant to clarify the puzzleball view
slightly, as the language I have used to describe it may call to mind two other well-
known ideas. It seems tome that the view I have described is distinct from both. First,
note that the present proposal involves a picture of theories on which one emphasizes
the ways in which the principles cohere with one another. This way of thinking may
be reminiscent of coherentism in epistemology, a variety of anti-foundationalism that
holds that to justify a belief is to showhow it cohereswith one’s other beliefs (cf. [29]).
But there is at least one major difference. Coherentism takes the coherence of one’s
beliefs to be a form of justification for those beliefs. Nothing about the puzzleball
view should be taken to suggest that the justification for general relativity comes
from the apparent fact that one can derive certain central principles from others—
rather, the justification for the theory is based on its empirical successes. Or perhaps
more precisely, our justification for general relativity is essentially independent of the
relationship between the theory’s central principles. To see the pointmost clearly, one
mightwell expect both general relativity andgeometrizedNewtoniangravitation to be
coherent, in the sense of having mutually interdependent central principles. But this
does not imply that they are equally well justified—indeed, general relativity is better
justified than geometrized Newtonian gravitation even if the pieces of geometrized
Newtonian gravitation are more tightly interlocking.20

20The suggestion of a connection to coherentism raises a second, related issue. Even if we do
not take the coherence of a body of beliefs as justification for any particular belief, one might
nonetheless think of coherence as a virtue for a body of beliefs: all else being equal, one might tend
to prefer to hold coherent beliefs than not. Should one say the same thing about physical theories?
All else being equal, should one prefer a theory whose pieces interlock? I am not sure that anything
in the body of the paper depends on this, but I am inclined to say “yes,” for several reasons. First,
as I argued above, when the central principles of theories are (partially) mutually interdependent,
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Another view that the puzzleball view may be reminiscent of is some variety
of Quinean holism (cf. [40]). Quine famously used the “web of belief” metaphor
when arguing for the interdependencies of our scientific beliefs, and against the
analytic/synthetic distinction. One might worry that the puzzleball picture above is
just an alternative metaphor used to make a strikingly similar point—indeed, the
claim that we cannot make a fruitful distinction between top-tier and second-tier
principles sounds like an argument against an analytic/synthetic distinction, at least
in the narrow domain of the foundations of certain physical theories. And perhaps it is
right that I have recapitulated Quine here, though if it is, I think the point deserves to
be made again since it is relevant for the present discussion of the geodesic principle.
Still, while this article is not the occasion for detailed Quine exegesis, I will point to
two ways in what I have proposed is prima facie different from Quine’s holism, at
least on the web-of-belief version.21

The first difference concerns just what the holism is supposed to be doing. Quine
uses the interdependencies between beliefs as an argument for a radical form of
conventionalism: when faced with evidence that conflicts with our beliefs, we have
considerable leeway in choosing which parts of the web of beliefs to revise. Indeed,
theweb image is supposed to support a distinction between “central” or “core” beliefs
and “peripheral” beliefs such that we can always accommodate challenges to our full
collection of beliefs by modifying only the peripheral beliefs and leaving the core

(Footnote 20 continued)
the theory provides a guide for the building of future related theories in a way that may be helpful
for scientific practice. Second, principles that are mutually interdependent are protected against
claims of being ad hoc. A particular principle cannot be considered arbitrary or unmotivated if
it is derivable, perhaps in multiple ways, from one’s other principles. To put this point in a more
experimentally oriented way, if the pieces of a theory are mutually interdependent, then testing
any one principle can be understood as an implicit test of the other principles of a theory [25].
A third reason comes from Wimsatt [58], who argues that interderivability (or rather, multiple
interderivability) is an indication of theoretic robustness and confers a kind of stability under theory
change.
21My goal in the text is to distinguish the puzzleball view fromweb-of-belief holism. But this should
not be taken to imply that Quine does not come much closer to the puzzleball view in other parts
of his opus. For instance, Quine [41, Sec. V] distinguishes “legislative postulates” from “discursive
postulates.” “Legislative postulation,” he writes, “institutes truth by convention …” whereas “…
discursive postulation is mere selection, from some preëxisting body of truths, of certain ones for
use as a basis from which to derive others, initially known or unknown” [41, pg. 360]. He then goes
on to argue that “conventionality is a passing trait, significant at the moving front of science but
useless in classifying the sentences behind the lines. It is a trait of events and not of sentences.”
In other words, one might, when first developing a new scientific theory, begin with some bare,
legislative postulates. But as the theory develops, these truths “… become integral to the corpus of
truths; the artificiality of their origin does not linger as a localized quality, but suffuses the corpus.
If a subsequent expositor singles out those once legislatively postulated truths again as postulates,
this signifies nothing; he is engaged only in discursive postulation. He could as well choose his
postulates from elsewhere in the corpus, and will if he think this serves his expository ends” [41,
pg. 362]. The idea, I take it, is that once one has a well-developed scientific theory—such as general
relativity—one often identifies postulates for the purposes of deriving new facts about the theory,
but these are always discursive, and more, which facts or statements of the theory one will take to
be the postulates in any given case will depend on one’s purposes. This picture seems quite close
to the puzzleball view, indeed. I am grateful to Pen Maddy for pointing out this connection to me.
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beliefs intact. But this is precisely the opposite of what I have argued here, at least
with regard to the foundations of spacetime theories. Instead, the idea is supposed to
be that the foundations of physical theories are not modular, and that in general one
has remarkably little latitude in how one revises a theory in light of new evidence.
And this, I take it, is a desirable feature, since it provides a way out of the radical
conventionalism I just described. Since the various principles of a physical theory
constrain one another, we have very few degrees of freedom for enacting minor
changes in theories in light of new evidence.

The second difference is related (and relates, too, to coherentism as described
above). Quine’s web of belief is supposed to be a (descriptive) metaphor for the sum
total of one’s beliefs. The view I have described here is much narrower in its scope.
I do not claim that all of one’s beliefs interlock in the way described; nor do I claim
that scientific knowledge as a whole can be characterized by a puzzleball. The view
does not even hold that particular scientific theories have this feature. The suggestion
is that the central principles of some scientific theories are mutually interderivable,
or in other words, that the foundations of some physical theories should be thought
of in a certain way. I have been deliberately vague about just what is supposed to
count as a central principle, in large part because I think that trying to list these
principles in advance, even for well-understood theories such as general relativity
or geometrized Newtonian gravitation, would be unproductive. In fact, one might
expect that a full account of just what the central principles of a theory are may
have to wait until one sees just what assumptions are necessary nodes when trying
to map out the network of interconnected principles at the heart of a given physical
theory. What I have done so far—and what I think can be done at this stage—is
give examples of central principles of particular theories. And so one can say that
among the central principles of general relativity, for instance, are things such as
the conservation condition, Einstein’s equation, the geodesic principle, and various
energy conditions. But the point is that a claim about a collection of principles of
this specific character is quite different from a claim about human knowledge quite
broadly.

Note that this last point means that there is still a robust sense in which one can
think of some parts of a theory as having a special “fundamental” status, even on the
puzzleball view. Specifically, onemight take all of the central principles of a theory to
be fundamental. This leaves quite a bit of a theory as non-fundamental—for instance,
particular predictions of a theory would not be among the central principles, and so
these would not count as fundamental. If the puzzleball view is to be viewed as anti-
foundational, then, it is only with regard to determinations of relative fundamentality
among the central principles of a theory.22

22Feynman, and Wimsatt [58], argue that in cases where some principles can be proved in many
different ways and others cannot be proved or can be proved from fewer starting cases, one can
recover a different sense of “fundamental” principles, namely that the principles that can be proved
in the most different ways should be understood as the most fundamental. Note that this turns the
idea discussed above—where the most fundamental principles were the top-tier principles from
which other principles would be derived, not the ones most often derived themselves—on its head.
This idea is intriguing, but I mention it only to set it aside as it plays no role in the present discussion.
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6 Explaining Inertial Motion, Redux

Now that I have described the puzzleball view in some detail, I can return to the ques-
tion of principle interest in this paper: namely, is there a sense in which we should
understand theGeroch–Jang theorem and its Newtonian counterpart as explanations?
As a first remark, let me reiterate that in the context of the puzzleball view, it does not
make sense to think of theories as based on “top-tier” principles and other, derived
principles: in short, there is no way to make the distinction, at least among the central
principles of the theory. None of the assumptions of a theory are distinguished as
the truly basic or fundamental ones. And if this is right, then the kind of explanation
that we apparently cannot get of the geodesic principle in general relativity and in
geometrized Newtonian gravitation is uninteresting. No, we cannot derive the geo-
desic principle in either theory frommore fundamental principles, but that is because
it does not make sense to talk of unambiguously “more fundamental” principles in
the first place.

Instead, what we can do is show how the geodesic principle in both of these
theories fits into the rest of the puzzle (as it were). This, too, may be understood
as an answer to the question, “Why do bodies move in the particular way that they
do in the absence of an external force?” These theorems reveal that in the absence
of an external force, in the context of their respective theories, bodies must move
along timelike geodesics. In other words, the other basic assumptions of the theory
constrain the motion of (small) bodies. Why timelike geodesic motion rather than
any other? Because in general relativity, we understand matter to be conserved, and
to be such that observers always attribute instantaneous subluminal velocities to it at
every point. And it turns out that these assumptions, in the presence of the rest of the
theory, imply that the only curves along which free massive test point particles can
propagate are timelike geodesics. If we are committed to the rest of general relativity,
then there is only one candidate principle for inertial motion.

So do general relativity and/or geometrizedNewtonian gravitation explain inertial
motion? Given the considerations just mentioned, I think the answer in both cases
is “yes,” so long as one understands “explain” in the right way. At the very least,
these theorems provide deep insight and understanding into why bodies move in the
particular way that they do in the absence of any external force—which is precisely
what we were after when we asked the question. Moreover, the insight provided is
that, in the context of the other central principles of the theories, the geodesic principle
is necessary, the only principle governing inertial motion that is compatible with our
other principles. It is a demonstration of precisely theways inwhich theworking parts
of general relativity and geometrized Newtonian gravitation respectively constrain
one another.

That said, this kind of explanation differs in some important ways from other
kinds of explanations that one may be accustomed to thinking about. In particular,
if the puzzleball view is correct, the kind of explanation I have just described need
not be asymmetrical. That is, if general relativity might be said to explain inertial
motion in the present sense by appealing to the fact that one can derive the geodesic
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principle from various other assumptions in the theory, one should not conclude
that the geodesic principle cannot play a role in other derivations that should also
count as explanatory—even derivations of the assumptions going into the Geroch–
Jang theorem or its Newtonian counterpart. Indeed, one should expect that just as
the geodesic principle is constrained by the other central assumptions of general
relativity, so too are the conservation condition, the strengthened dominant energy
condition, and even Einstein’s equation constrained. And by the same reasons I have
offered above for the view that one might justly call the Geroch–Jang theorem an
explanation of inertial motion, one might also say that explanations can be given for
the conservation condition or Einstein’s equation, by showing how these principles of
general relativity are derivable from the other central principles of the theory. In other
words, general relativity explains inertialmotion by appeal to Einstein’s equation, but
it may equally well explain Einstein’s equation by appeal to the geodesic principle
and other central assumptions of general relativity.

This observation may give some readers pause. There is, by now, a long tradition
of philosophers of science worrying about the so-called “problem of explanatory
asymmetry” (cf. [3]): intuitively, explanations appear to run in one direction and
only one direction. The trajectory of a comet may explain why we see a bright light
in the nighttime sky once every few hundred years, but a bright light in the nighttime
sky cannot explain the trajectory of a comet; the height of a flagpole may explain
the length of its shadow at sunset, but the length of the shadow does not explain
the height of the flagpole. And so, many philosophers have argued, an account of
explanation that allows symmetrical explanations—situations where A explains B
and B explains A—is prima facie unacceptable.

A few remarks are in order. First, van Fraassen [53] has argued, I think correctly,
that explanation should be understood as essentially pragmatic—and in particular that
explanations should only be understood as responses to certain classes of question. To
determine whether or not some particular response to a why question (say) should
count as a satisfactory explanation depends on the context in which the question
was asked and the particular demands of the questioner. While in some contexts we
might want to say that a particular explanation runs in only one direction, there may
well be other contexts in which the explanation would run in the other direction.
If one is thinking in this way then the present example is simply a special case: if
the question “why do bodies move in the particular way that they do in the absence
of an external force?” is understood as “does general relativity require us to adopt
the geodesic principle as the central principle governing inertial motion?”, then one
is rightly satisfied by a response along the lines of the Geroch–Jang theorem, even
if in other contexts—i.e., in response to other questions—one might appeal to the
geodesic principle to explain (say) Einstein’s equation.

But there is also a more important point to make, here: I do not claim to be
offering an “account of explanation,” or anything like it. I have not suggested that a
necessary or even sufficient condition for being an explanation is to show how the
thing to be explained “fits in” with the rest of a physical theory, in the sense that it
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is derivable from other central principles of a theory. The point, rather, is to try to
spell out the sense in which a particular class of theorems that show how the central
principles of a spacetime theory fit together might be understood as explanatory—to
say what, precisely, the theorems are doing, and why one might think of this as a
kind of explanation, at least on the puzzleball view. Not all explanations work this
way, nor do they need to in order for the story I have told here to be correct. And so,
the fact that in some cases, we would want to say that if A explains B then B cannot
explain A in no way undermines the claim that the present explanations simply do
not work that way.

This point can be made most starkly by pointing to various other questions one
can ask about inertial motion, even in general relativity, whose answers would be
quite different from the Geroch–Jang theorem. Consider, for example, a question
concerning a particular instance of inertial motion. Why, one might ask, does the
perihelion of Mercury’s orbit precess? One would answer this by appealing to some
particular initial state of Mercury and features of spherically symmetric solutions to
Einstein’s equation to show that Mercury’s orbit is the only allowed trajectory for a
body with certain properties in a solar system like ours. The geodesic principle may
play a role in this argument, insofar as one might idealize Mercury as a free massive
test point particle, and Einstein’s equation may play a role, insofar as one would
want to consider a spacetime that is a solution to the equation, but the argument
would have nothing to do with the Geroch–Jang theorem. And moreover, one would
expect this sort of explanation to be asymmetric: Einstein’s equation and the geodesic
principle, along with some details concerning the state of the solar system and initial
conditions for Mercury, explain the precession of the perihelion of Mercury; the
precession of the perihelion of Mercury does not explain Einstein’s equation or the
geodesic principle.

But this is just the point. If the Geroch–Jang theorem and its Newtonian counter-
part should be countenanced as explanations, it is only because they are satisfactory
answers to particular questions, and they are only explanatory in the context of those
demands for explanation. A question concerning the orbit of Mercury is quite dif-
ferent from a question concerning the nature of inertial motion generally. And these
theorems answer only the most general version of the question: why this principle
as opposed to any other? This is no mean task, but it is a specific one, and it needs
to be treated with care.
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