Chapter 2
The Displacement of Atoms

2.1 Elementary Displacement Theory

The struck lattice atom of energy T is referred to as a primary knock-on atom, or
PKA. This atom moves through the lattice encountering other lattice atoms. Such
encounters may result in sufficient energy transfer to displace this lattice atom from
its site resulting in two displaced atoms. If this collision sequence continues,
a series of tertiary knock-ons is produced resulting in a collision cascade. A cascade
is a spatial cluster of lattice vacancies and atoms residing as interstitials in a
localized region of the lattice. Such a phenomenon can have a profound effect on
the physical and mechanical properties of the alloy, as will become evident later.
Here, we are concerned with being able to quantify the displacement cascade. That
is, for a neutron of energy E;, striking a lattice atom, how many lattice atom
displacements will result? We have already discussed in detail the nature of neu-
tron—nucleus and atom-atom collisions. Now, we will develop a model for deter-
mining the number of atoms displaced by a PKA of energy T.

Recall that to quantify radiation damage, we require a solution to the damage
rate equation:

Rd :I\I/Ivf ¢(Ei)JD(Ei) dEi, (21)

where N is the lattice atom number density, ¢ (E;) is the energy-dependent particle
flux, and op (E;) is the energy-dependent displacement cross section. The dis-
placement cross section is a probability for the displacement of lattice atoms by
incident particles:

on(E) = /T o(E,T)v (T)dT, (2.2)
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where o(E;, T) is the probability that a particle of energy E; will impart a recoil
energy T to a struck lattice atom, and v(7) is the number of displaced atoms
resulting from such a collision. Chapter 1 provided the energy transfer cross section
appearing in Eq. (2.2) for various types of particles in various energy ranges. This
chapter will be devoted to supplying the second term in the integrand, v(7), the
number of atom displacements resulting from a primary recoil atom of energy 7,
and the limits of T between which displacements occur. Finally, we will develop the
displacement cross section and an expression for the displacement rate.

2.1.1 Displacement Probability

As a first step, we define Py(7T) as the probability that a struck atom is displaced
upon receipt of energy 7. Clearly, there is some minimum energy that must be
transferred in order to produce a displacement. We will call this energy, E4. The
magnitude of Ey is dependent upon the crystallographic structure of the lattice, the
direction of the incident PKA, the thermal energy of the lattice atom, etc. These
considerations will be discussed in detail later. By definition of Ey, the probability
of displacement for T < Ejy is zero. If Ey is a fixed value under all conditions, then
the probability of displacement for T = Ej is one. Hence, our simplest model for the
displacement probability is a step function:

Pd(T) =0 for T<Ey

(2.3)
=1 for T2>E;,

and is shown in Fig. 2.1. However, E; is not constant for all collisions due to the
factors mentioned earlier. The effect of atomic vibrations of the lattice atoms would
be expected to lower the value of E4 or introduce a natural “width” of the order kT
to the displacement probability. Further, as will be discussed later, the effect of
crystallinity will also contribute strongly to the blurring effect on E;. In fact, the
picture in Fig. 2.1 and Eq. (2.3) is only strictly true for an amorphous solid at 0 K.
A more realistic representation is shown in Fig. 2.2 and is represented as:
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Fig. 2.1 The displacement probability P4(T) as a function of the kinetic energy transferred to a
lattice atom, assuming a sharp displacement threshold
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>» T

Fig. 2.2 The displacement probability as a function of the kinetic energy transferred to the lattice
atom allowing for a blurring of the threshold due to atomic vibrations, impurity atoms, etc.

Pd(T):O for T<Edmin
=f(T) for Eg, <T<E,4

min —

=1 for T>Ey

(2.4)

max

max 7

where f(T) is a smoothly varying function between 0 and 1. Given the displacement
probability, the next task is to find the number of displacements as a function of the
energy transferred. Kinchin and Pease [1] developed a simple theory to find the
average number of displaced atoms initially created by a PKA of energy T in a
given solid lattice. Their analysis is based on the following assumptions:

1. The cascade is created by a sequence of two-body elastic collisions between
atoms.

2. The displacement probability is 1 for 7 > E4 as given by Eq. (2.3).

3. When an atom with initial energy T emerges from a collision with energy 7’ and
generates a new recoil with energy &, it is assumed that no energy passes to the
lattice and T = T" + ¢.

4. Energy loss by electron stopping is given by a cutoff energy E.. If the PKA
energy is greater than E. no additional displacements occur until electron
energy losses reduce the PKA energy to E.. For all energies less than E,
electronic stopping is ignored, and only atomic collisions occur.

5. The energy transfer cross section is given by the hard sphere model.

6. The arrangement of the atoms in the solid is random; effects due to crystal
structure are neglected.

Assumption 1 is fundamental to all theories of a cascade consisting of isolated point
defects. Elimination of this restriction allows the cascade to be represented by a
displacement spike discussed in Chap. 3. Assumption 2 neglects crystallinity and
atomic vibrations, which will add a natural width or “blurring” effect to the dis-
tribution. Later on, we will relax Assumptions 3, 4, 5 and 6.
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2.1.2 The Kinchin and Pease Model for Atom
Displacements

Consider the two moving atoms created when a PKA first strikes a stationary atom.
After the collision, the PKA has residual energy T — ¢ and the struck atom receives
an energy ¢ — E4, giving:

v(T) =v(T — &) +v(e — Eq), (2.5)

where Ej is the energy consumed in the reaction. By neglecting E, relative to ¢, i.e.,
& » Eq4 according to Assumption 3, then Eq. (2.5) becomes:

vW(T) =v(T — &) +v(e). (2.6)

Equation (2.6) is not sufficient to determine v(T) because the energy transfer ¢ is
unknown. Since the PKA and lattice atoms are identical, € may lie anywhere between
0 and T. However, if we know the probability of transferring energy in the range (e,
de) in a collision, we can multiply Eq. (2.6) by this probability and integrate over all
allowable values of ¢. This will yield the average number of displacements.

Using the hard sphere Assumption 5, the energy transfer cross section is as
follows:

T T
o(T,¢) = ) = # for like atoms, (2.7)

yT
and the probability that a PKA of energy T transfers energy in the range (¢, de) to
the struck atom is as follows:

, (2.8)

for y = 1 (like atoms). Multiplying the right-hand side of Eq. (2.6) by de/T" and
integrating from O to T yields:

W(T) = — /0 V(T — &) +v(e)|de

:% UOTV(T—s)dg+ /OTv(s)ds}

A change in variables from ¢ to ¢’ = T — ¢ in the first integral in Eq. (2.9) gives:

(2.9)

v(T) :%/o v(e')de + %/0 v(e) de, (2.10)



2.1 Elementary Displacement Theory 81

which is really a sum of two identical integrals. Therefore,

or) =2 /0 v(2) de. (2.11)

Before solving Eq. (2.11), let us examine the behavior of v(¢) near the displacement
threshold, E,. Clearly when T < E4 there are no displacements and:

v(T)=0 for 0<T<Ey. (2.12)

If T is greater than or equal to E4 but less than 2E4, two results are possible. The first
is that the struck atom is displaced from its lattice site, and the PKA, now left with
energy less than E,, falls into its place. However, if the original PKA does not
transfer Ey, the struck atom remains in place and no displacement occurs. In either
case, only one displacement in total is possible from a PKA with energy between Ey4
and 2E,, and:

W(T) =1 for Eg<T<2E,. (2.13)

Using Eqgs. (2.12) and (2.13), we may split the integral in Eq. (2.11) into ranges
from O to E4, E4 to 2Ey, and 2E4 to T and evaluate:

o[ [E 2E, T
vw(T) = T {/0 Ode + /E 1de + /ZE v(s)ds},
d d

yielding:

vw(T) = Z—gd + ;/ZT v(e)de. (2.14)

Eq

We can solve Eq. (2.14) by multiplying by T and differentiating with respect to
T giving:

dv
Td_T =, (2.15)

with the solution:
v =CT. (2.16)

Substituting Eq. (2.16) into Eq. (2.14) gives:

C=— 2.17
= @.17)
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Fig. 2.3 The number of A
displaced atoms in the
cascade as a function of the
PKA energy according to the
model of Kinchin and Pease

T

Number of displaced atoms (v)

0 1 1 >
E; 2E, E,
PKA energy (7)
and therefore:
T
WT) == for2E4<T<E.. (2.18)

~ 2E,

The upper limit is set by E. (Assumption 4). When a PKA is born with 7> E, the
number of displacements is v(T) = E./2E4. So the full Kinchin—Pease (K-P) result is
as follows:

for T <Eq4
1 for Eq <T<2Ey
T
W(T)=<{ — for 2E,<T<E.. (2.19)
2E4
E.
for T>E.
2E,4

Note that if E, is ignored, 7/2E, is a true average since the number of displacements
can range from O (no energy transfers above Ey) to T/Eq — 1 (every collision
transfers just enough), and for large T, T/E4 >>1. So the maximum value of v(T) is T/
E4. The full displacement function described by Eq. (2.19) is shown in Fig. 2.3.

2.1.3 The Displacement Energy

A lattice atom must receive a minimum amount of energy in the collision in order to
be displaced from its lattice site. This is the displacement energy or displacement
threshold, E4. If the energy transferred, 7, is less than Ejy, the struck atom will
vibrate about its equilibrium position but will not be displaced. These vibrations
will be transmitted to neighboring atoms through the interaction of their potential
fields, and the energy will appear as heat. Hence, the potential fields of the atoms in
the lattice form a barrier over which the stuck atom must pass in order to be
displaced. This is the source of the displacement threshold energy.
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Since metals are crystalline, the potential barrier surrounding an equilibrium
lattice site is not uniform in all directions. In fact, there are directions in which the
surrounding atoms will remove large amounts of energy from the struck atom
yielding a high potential barrier. Along directions of high symmetry, there exist
open directions along which the threshold displacement energy is low. Since the
direction of the recoil is determined from the collision event which is itself a
random process, the recoil direction is entirely random. The single value often
quoted for displacement energy in radiation damage calculations then represents a
spherical average of the potential barrier surrounding the equilibrium lattice site.

The value of E4 may be roughly estimated using an argument by Seitz [2]. The
energy of sublimation, E;, for most metals is about 5—6 eV. Since half as many
bonds are broken by removing an atom from the surface of a crystal as opposed to
the interior, the energy to remove an atom from the interior is then 10-12 eV. If an
atom is moved from its lattice site to an interstitial position in the direction of least
resistance and time is allowed for neighboring atoms to relax (an adiabatic
movement), an energy of 2E is needed. Since in reality, the struck atom is not
always projected in the direction of least resistance and time is not allowed for the
relaxation of neighboring atoms, a greater amount of energy (perhaps 4-5 E) is
needed. Thus, we would expect E4 to be 20-25 eV.

Accurate determination of the displacement energy can be made if the interac-
tion potential between lattice atoms is known. This is accomplished by moving the
atom in a given direction and summing the interaction energies between the moving
atom and all other nearest neighbors along the trajectory of the struck atom. When
the total potential energy reaches a maximum, the position corresponds to a saddle
point and the difference between the energy of the atom at the saddle point, E*, and
its energy in the equilibrium position, E., represents the displacement threshold for
the particular direction. Since the interaction energy in these collisions is only tens
of eV, the Born—Mayer potential would be the most appropriate potential to use in
describing the interaction. These calculations can be carried out over all directions
and averaged to obtain a mean Ey4 for a particular solid.

To appreciate the significance of the variation in interaction energies or potential
barriers with crystal direction, we will consider the case of copper. In the cubic
lattice, there are three crystallographic directions that may be considered easy
directions for displacement: (100), {110) and (111). In particular, {110) is the
close-packed direction in the fcc lattice and {(111) is the close-packed direction in
the bec lattice. Figure 2.4 shows how an atom is displaced along each of these
directions in the fcc lattice. In each case, the displaced atom K passes through the
midpoint of a set of “barrier atoms,” B, in the direction of the L atom, with the atom
configuration dependent on the direction. For a K atom displaced in the {110)
direction, the atoms are located at the corners of a rectangle to which the path of K
is perpendicular. When the K atom passes through the barrier, it loses kinetic
energy in glancing collisions, which initially becomes potential energy of the
barrier atoms. The energy need not be shared equally between the four B atoms.
This is illustrated by drawing a set of contours of constant Ey in the place of the B
atoms (Fig. 2.5). Then, if K only receives a quantity of energy E4 (110} in the
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Fig. 2.4 Struck atom, K, and barrier atoms, B, for various directions of the struck atom in the fcc
lattice

Fig. 2.5 Equi-potential
contours in the barrier plane
for a struck atom, K, traveling
close to the <110> direction
and heading toward the
barrier plane defined by the
barrier atoms, B (after [3])

collision event, it will be displaced if its initial direction is contained within a small
cone of solid angle centered about the {110) direction. For small energies, the cone
intersects the B atom plane in a circle, but as the energy transferred increases, the
intersection deviates significantly from a right circular cone (Fig. 2.5). The contours
are in fact generated by the intersection of a complex but symmetrical
three-dimensional surface with a sphere which is described about the atom K as
center. This contour pattern can be constructed by accounting for the interaction
between the K atom and each of the B atoms at every point in time while simul-
taneously accounting for interactions between each of these five atoms and other
atoms in the surrounding region of the crystal. This is a very difficult problem, the
solution of which depends heavily on the interaction potential. In principle, at least,
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Fig. 2.6 Displacement energy as a function of direction in (a) fcc Cu and Au crystal (after [3])
and (b) in copper (after [4])

we can obtain all the information we need about the directional dependence of the
thresholds. Figure 2.6 shows the displacement threshold as a function of direction in
fec copper and gold. Note that displacement threshold energies along (100) and
(110) are low, but the value along {111) is high due to the large distance between
barrier atoms in this direction and the two sets of barriers between the atoms on the
body diagonal of the unit cell.

This dependence will be further illustrated in an example using the fcc lattice and
a parabolic repulsion function. Figure 2.7 shows a lattice atom on the face of a unit
cell in an fcc crystal receiving energy from a collision. Its flight trajectory is in the
(110) direction, which is equidistant from four atoms located on the faces of the
unit cell. In an fcc lattice, each atom is surrounded by 12 nearest neighbors.
Displacement will be dependent on several important factors. They are the number
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Fig. 2.7 Displacement of a lattice atom along the <100> direction in the fcc lattice and the
variation of energy of the atom with position along its path (after [S])

Table 2.1 Parameters used for the determination of Ey in the fcc lattice

Direction # B atoms Impact parameter, z Distance to barrier, y
(100) 4 a a
2 2
(110) 4 V6 V2
4 4
(111) 3 a a
V6 3

of barrier atoms, B, the impact parameter, z (the distance of closest approach to the
B atoms), and the distance from the K atom in its lattice site to the barrier, y. These
quantities are given in Table 2.1 for the fcc lattice. The energy required to displace
an atom will increase with B and y and decrease with z. Since z is smallest for the
(110) direction, this will be the most difficult to penetrate. Also z199 < Z;10 and
Y100 > Y110, SO both factors will make displacement along (110) easier than along
(100). Let us take the specific example of displacement in the (100) direction of the
fcc example and calculate a value for Eg.
The energy of a single atom in a normal lattice site is as follows:

Eeq = —12U, (2.20)

where U is the energy per atom of the crystal. Since only half as many bonds are
broken in the sublimation process, this energy is just:

E, ~6U, (2.21)

and since E;, ~ 4-5 eV, U is about 1 eV.

To describe the interaction of the lattice atoms as they are pushed together in the
solid, we will use a simple parabolic repulsion as opposed to the Born—Mayer
potential:
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(2.22)

where k is the force constant characterizing the repulsive position of the potential.
The force constant can be expressed as [5]:

ka® = % (2.23)
where

k force constant

a lattice constant

v a’/4 = specific volume of an atom

S compressibility

In our example, the equilibrium spacing of the struck atom and the four atoms
forming the square barrier is r.q = a//2. When the atom is at the center of the square,
it interacts with the four atoms at the corners a distance a/2 away. Hence, the energy
at the saddle point is as follows:

a
E = 4V(—) —4
2

U+1(k ?) L1y (2.24)
- —(ka”)|—=—%) |. .

2 N

The displacement energy in the {100) direction is then:

Eq(100) = & — e = 8U +2(ke?) (% - %)2 (2.25)

Typical values for ka” and U for metals are 60 and 1 eV, respectively, yielding Eq
(100) 2 13.1 eV. This value is in reasonable agreement with that given in Fig. 2.6.
Table 2.2 gives values of E, for various metals [6]. Note that for the transition
metals, the accepted value of Ey is 40 eV.

2.1.4 The Electron Energy Loss Limit

Now that we have established a lower limit on the energy transfer necessary to cause
a displacement, Ey, let us turn our attention to the high-energy regime of collisions.
Recall that at low energies (T < 10°eV), S, > S., and we may assume that nearly all
of the energy loss of the PKA goes toward elastic collisions (Fig. 1.18). However, as
the PKA energy increases, the fraction of the total energy loss that is due to electron
excitation and ionization increases until above the crossover energy, Ey, Se > S..


http://dx.doi.org/10.1007/978-1-4939-3438-6_1

88

Table 2.2 Recommended
values of the effective
displacement energy for use
in displacement calculations
(from [6])

2 The Displacement of Atoms

Metal Lattice (c/a) E4, min (eV) Eq (eV)
Al fec 16 25
Ti hep (1.59) 19 30
\% bee - 40
Cr bee 28 40
Mn bce - 40
Fe bee 20 40
Co fec 22 40
Ni fec 23 40
Cu fcc 19 30
Zr hep 21 40
Nb bee 36 60
Mo bee 33 60
Ta bee 34 90
w bee 40 90
Pb fec 14 25
Stainless steel fcc - 40

Our expression for v(7) in Eq. (2.19) must therefore be modified to account for this
variation in the amount of kinetic energy available for displacement collisions.
Figure 2.8 shows (dE/dx), for carbon recoils in graphite using Eq. (1.163) and
Lindhard’s Thomas—Fermi result, the latter showing that Eq. (1.163), which pre-
dicts a constant value of 250 eV/nm, is a good approximation for energies up to at
least E,. Note that at high energies (T > E)), electronic energy losses predominate
by several orders of magnitude. However, at low energies (7 K E,), the situation is

reversed.

Fortunately, because of departures from the hard sphere model, the primary
recoil creates secondaries with average energies far below T/ 2. These will almost

Fig. 2.8 Energy loss from
electronic and nuclear
stopping as a function of
energy (after [7])

(eV/nm)

10° 10° 10* 10° 10° 107
Recoil energy, T (eV)
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always be in the range where electronic excitation can be neglected. To obtain
v(T) to a fair approximation, we calculate the energy E., dissipated in elastic col-
lisions by the PKA:

[T (dE/dx),dE
E = /0 ( (2.26)

dE/dx), + (dE/dx),

We can then use Eq. (1.190) for (dE/dx), and Eq. (1.130) for (dE/dx), with T' = E,.
The modified damage function is the original Eq. (2.19) with T replaced by E.:

— EC
C2E,;’

W(T) (2.27)

As an estimate of E., we can use the maximum energy a moving atom (of energy E)
can transfer to an electron as

4me
M

E, (2.28)

and equating this with the ionization energy of the struck electron belonging to the
target atom, we have:

M
E. =

T dm,

(2.29)

Kinchin and Pease [1] equated E.. and E,, implying that all energy above E, is lost
in electron excitation, and displacements account for all the energy loss below E..
Figure 2.9 shows w(7) for graphite using Lindhard’s (dE/dx),. Note that for recoils
with energy below E, the simple theory gives a fair description, but for 7 > E,, the
losses in electron excitation are important.

Fig. 2.9 Number of
displaced atoms per primary
recoil compared to the simple
K-P result of T/2E, (after [7])

v(T) (atoms per primary recoil)

Recoil energy, T (eV)
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2.2 Modifications to the K-P Displacement Model

2.2.1 Consideration of E; in the Energy Balance

Snyder and Neufeld [8] make the assumption that an energy Ej is consumed in each
collision such that the relation in Assumption 3 of the K—P displacement model will
read:

T=T +¢+Ey, (2.30)

and both atoms move off after collision, no matter how small their energy. When
compared with the Kinchin—Pease model, it may be expected that v(7) would
decrease since an energy loss term is added. However, because atoms are allowed to
leave the collision with energy less than Ey4, an increase in v(T) will occur. Since
these two changes to w(7) nearly cancel, the result is very similar to the K—P model:

T
v(T) = 0.56(1 + E_) forT > 4Ey. (2.31)
d

2.2.2 Realistic Energy Transfer Cross Sections

The weakest point of the K—P displacement model is the assumption of hard sphere
collisions (Assumption 5). In fact, more realistic energy transfer cross sections can
be used while still maintaining the proportionality of Eq. (2.19). Sanders [9] solved
Eq. (2.5) using an inverse power potential (+ ) to obtain:

i T
T) = (2ﬁ— 1) - 232
W1 =s(2-1) 5 (232)
which for the inverse square potential becomes:
(T)=0.52 T (2.33)
v(T) =052 — .
2E,’

reducing the Kinchin—Pease result by a factor of 2.

However, the use of this potential has its shortcomings because it is applied to all
collisions in the cascade, while its region of validity is limited to those values of
T such that p < 5a. Physically, the effect of realistic scattering is to make a larger
number collisions generate 7T in the subthreshold regions below E4 where they are
removed from multiplication chain.

For many years, investigators have been intrigued that Eq. (2.19) appears to
overestimate v(7) in metals by a factor of 2—10 [10] and yet attempts to measure the
energy dependence of v(T) over a large energy range (50-200 keV recoil atoms in
gold) gave a quadratic rather than linear relationship. In 1969, Sigmund [11] took a
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different approach to this problem by considering the recoil density F(T, ¢) de
defined as the average number of atoms recoiling with an energy in (g, ¢ + de) as a
consequence of a primary ion slowing down from T to zero energy. The recoil
density can be expressed in a form that uses the power law approximation of the
Thomas—Fermi differential cross section [12]:

o(T,e) occ T g 17, (2.34)
where 0 < m < 1, giving:

m T
Y(1) =Yl —m) (e Uy)' et +m’

F(T,e) = (2.35)

for T > ¢ > U,, where
Y(x) = d[InI"(x)]/dx, (2.36)

U, is the binding energy lost by an atom when leaving a lattice site, and /(x) is the
gamma function or the generalized factorial function. Since a recoiling atom is
displaced when ¢ > E4 we obtain

W(T) = /E REGEE % (Ul}) (237)

for T >> E4 >> U,. The value of m is chosen in such a way [13] that o(7, €) describes
collisions at low energies, i.e., 2Eq < T < 100Ey4. This constrains m < 1/4. For m =0,
Eq. (2.37) reads:

W(T) = %Uibm(l Uy JEy). (2.38)

This is an upper limit for displacement processes since loss of defects by
replacement collisions has been neglected.

A characteristic feature of displacements in metals is the large recombination
volume of an isolated point defect, of the order of 100 atomic volumes or more.
Hence, E4 is the energy lost to the environment by an atom trying to escape the
recombination volume. This has the consequence that in cascades, many defects are
lost by replacement collisions [14]. The binding energy U, is only a few eV and
thus negligible as compared to Ey4, reducing Eq. (2.38) to:

6T T
T)=—— =122 —— 2.
W(T) =—5 E, (2Ed>’ (2.39)

which is about 22 % greater than the result of Eq. (2.19) which accounted for
replacement collisions.
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2.2.3 Energy Loss by Electronic Excitation

Even for E > E,, collisions of the PKA with electrons compete for energy loss
against collisions with lattice atoms. These two processes can be treated indepen-
dently, and each can be represented by separate energy transfer cross sections. The
formulation originally presented by Lindhard et al. [15] is summarized here as
presented by Olander in [5] as a more realistic treatment of energy loss by electronic
excitation (Assumption 4).

As a PKA traverses a distance dx of a solid, three things may happen: (1) It
collides with an electron, (2) it collides with an atom, or (3) nothing. Let p. de, be
the probability that a collision between the PKA and an electron in the interval
dx transfers energy in the range (., de.) to the electron:

pedee = Noo(T, & )de.dx, (2.40)

where o.(7, &) is the energy transfer cross section from the PKA to the electron.
Similarly, for a PKA and lattice atom:

pade, = Noy(T, g,)de,dx, (2.41)

and the probability that nothing happens in dx is as follows:

_ 1 _ /'eAmax dg _ /'aAmax dS
Po ) Pedée ) Padéy (242)

=1 —Ndx[ae(T) - Ua(T)L

and €e,max and &,,max are the maximum energies transferable to an electron and
atom, respectively, by a PKA of energy 7. We rewrite the conservation equation for
v(T) by weighting with the appropriate probability for the process by which it is
created and integrating over the permissible ranges of energy transfers:

W(T) = /0 (T — &) + v(ea)] pa dea

oo (2.43)
+ / V(T — & )pe dée + pov(T).
0
Substituting for p., p, and pg yields:
€a,max
(0a(T) + 0e(T)W(T) = / (T — £2) + v(ea)]0a(T, £a) de
0 (2.44)

£e,Max
+ / V(T — &)0.(T, &) dee.
0
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Since the maximum energy transferred to an electron is very small compared to T, v
(T — &) can be expanded in a Taylor series and truncated after the second term:

WT — &) = W(T) — %ge, (2.45)

and the last term in Eq. (2.44) can be written as:

/‘7 W(T — &) 0e(T, & )de. = v(T)/‘“ 0e(T, &) dee
0 0

dv £e,Max

AT o

(2.46)
&e0e(T, &) dée.

The first integral on the right of Eq. (2.46) is the total cross section for collisions of
the PKA with the electron and cancels the corresponding term on the left in
Eq. (2.44). The second integral on the right of Eq. (2.46) is the electronic stopping
power of the solid divided by the atom density. Combining Eqgs. (2.46) and (2.45),
we have:

i+ [SL o= [Thr-o e[t e e

where the subscript “a” on T and o has been dropped with the understanding that
these quantities refer to atomic collisions. Equation (2.47) can be solved using the

dE dE
hard sphere assumption, but where (—) is given by Eq. (1.190), i.e., <—> =
dx /. dx /.

kE'/? | giving:

2B 2 [T kT'/? d
WT) =22+ = / v(e)de — iy (2.48)
T ' T )y, oN dT

After simplification, the final result is as follows:

4k

]
oN(2Ey)"?

T
— forT > E, 2.49
<2Ed> ’ oril > Ly, ( )

where k is a constant depending on the atom number density, N, and the atomic
number. The term o is the energy-independent hard sphere collision cross section.
Note that when electronic stopping is properly accounted for in the basic integral
equation, the entire concept of a definite energy, E., separating regimes of elec-
tronic energy loss from atomic collisions can be dismissed.

However, Eq. (2.49) is still plagued by the use of the hard sphere assumption.
Lindhard realized that in order to ensure that reliable predictions are obtained, a
realistic energy transfer cross section must be used. Lindhard also realized that the
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parameter v(T) need not be interpreted solely as the number of displacements
produced per PKA, but could be taken to be that part of the original PKA energy,
which is transferred to the atoms of the lattice (rather than the electrons) in slowing
down. In reality, collisions of the PKA with atoms compete with collisions with
electrons. But the processes can be treated as independent events. Nevertheless, the
expression for v(T) needs to be reformulated.

In 1975, Norgett, Robinson, and Torrens [17] proposed a model to calculate the
number of displacements per PKA according to:

_KkEp k(T —n)

T) =
") =55 = o8

, (2.50)

where T is the total energy of the PKA, # is the energy lost in the cascade by
electron excitation, and Ep, is the energy available to generate atomic displacements
by elastic collisions and is known as the damage energy. The displacement effi-
ciency, x, is 0.8 and is independent of M,, T, and temperature. The quantity Ep is
defined by:

T

o = T kgle)’

(2.51)

and inelastic energy loss is calculated according to the method of Lindhard using a
numerical approximation to the universal function, g(€):

g(€) =3.4008 €'/% +0.40244 ¥ + €

7\ 1/2 (2.52)
ky = 0.13372]/6 <A‘) :
1

where € is the reduced energy given by:

AQT a
e =
A] +A2 Z]ZQSZ

9n2\ '/? 23 | 2/3\-1)2
a = (fg) Llo(Zl +Z2 ) ;

(2.53)

ap is the Bohr radius, and ¢ is the unit electronic charge. If E4 ~40 eV, then
v = 10Ep, where Ep is in keV.

The displacement function can also be written as the Kinchin—Pease result
modified by a damage energy function, &(T), given by:

v(T) = &(T) (2—;) (2.54)
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Fig. 2.10 The effect of electronic energy losses on the energy available for atomic displacements
(after [16])

where

ée) = ! . (259)

7\ /2
140.13372,/° <A—1> (3.4008 €1/ + 0.40244 €3/4 + €)
1

and giving the same result as in Eq. (2.50) except for the exclusion of the dis-
placement efficiency, x. Figure 2.10 shows the effect of accounting for damage
efficiency in the Kinchin—Pease result. Note that the function approaches 1.0 as the
recoil energy is reduced. As energy increases, the damage efficiency drops faster for
light materials.

2.2.4 Effects of Crystallinity

The analysis thus far has assumed that the cascade occurs in a solid composed of a
random array of atoms. However, when the order of a crystal structure is imposed
(Assumption 6), two important effects occur that can alter the number of dis-
placements produced by a PKA; focusing and channeling. Focusing is the transfer
of energy and/or atoms by near head-on collisions along a row of atoms.
Channeling is the long-range displacement of atoms along open directions (chan-
nels) in a crystal structure in which an atom travels by making glancing collisions
with the walls of the channel which are just rows of atoms. Both processes can
result in long-range transport of interstitials away from the initial PKA or the
cascade. Both processes also reduce the number of displacements per PKA, w(T), as
calculated from the simple Kinchin—Pease model.
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Focusing

The effects of focusing were first seen in the directional dependence of the threshold
energy, Eq. In an fcc lattice, for example, displacements occur in the (100) and
(110) directions with the lowest energy transfer of any crystalline direction. Since
the direction of the primary knock-on is random, focusing must be possible for a
sizable range of polar angles off the close-packed direction. If exact head-on col-
lision were required to produce a linear collision chain, the phenomenon would be
of little practical significance since this probability is extremely low.

Focusing along an atomic row can be analyzed using the hard sphere approxi-
mation. The distance between atoms along a particular crystallographic direction is
denoted by D. Figure 2.11 shows two atoms of such a row in which a collision
sequence is initiated by the atom which was initially centered at A. This atom
receives energy T and moves off at an angle 6, to the atomic row. The dashed circle
shows the atom position at the instant it strikes the next atom in the row. The radius
of the colliding sphere, R, is obtained from the Born—-Mayer potential. The impact
transfers some of 7 to the second atom, which then moves off in the direction of the
line joining P and B at an angle 8, to the row. From Fig. 2.11, we can also show that:

APsin 0y = PBsin 0;. (2.56)
If 6y and 6, are small, Eq. (2.56) can be approximated by:
AP0, ~ PBO,, (2.57)
and if 6, and 6; are very small, then:

AP ~AB — PB =D — 2R, andsince PB = 2R (2.58)
(D —2R)0y = 2RO, '
and

0(D — 2R) = 0,(2R). (2.59)

Fig. 2.11 The simple
focusing effect assuming hard
sphere collisions
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If we further define a focusing parameter:

f=01/bo, (2.60)
then by Eq. (2.59):
D
f= R 1. (2.61)

This permits us to write the following inequalities:

for f > 1,D > 4R and |6y| < 6|

(2.62)
for f<1,D < 4R and |0y| > |0y].

Considering further collisions, by the time the momentum pulse reaches atom 7, the
relation between angles is given by:

9,1 :fgn—l
:fzgn—2
=130,
’ (2.63)
D n
— "0 = (ﬁ— 1) 0o,
or finally:
n D !
0= (17t = (55-1) oo (.64)

This last relation shows that if D > 4R, the focusing parameter fis greater than unity
so that the angles 6, will increase in successive collisions. Conversely, if D < 4R, f
is less than unity and the angles 8, converges to zero.

A set of conditions also exist under which the scattering angle 6, will neither
diverge nor converge after successive collisions. These are the conditions for
critical focusing (6, = 6,, . 1 = ...) which can be determined as follows. The recoil
angle of atom B can be related to the initial direction of atom A by applying the law
of sines to triangle APB:

sin(t —60p—6,) D

= 2.
sin O 2R’ (2.65)
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which simplifies to:

sin(@o + 01) D
U= 2.
sin 0 2R (2.66)

The condition for critical focusing is €, = 8,. Applying this equality in Eq. (2.66)
gives:

sin 20, D
m = 2cos 60 = ﬁ’ (267)
and
D
cos bty = cos 0. = iR’ (2.68)

D
or focusing will occur when cos 0y < iR and:

cosl, = — (2.69)

4R’
Equation (2.60) also shows that focusing of momentum is favored along rows of
atoms in the {hkl) directions for which the separation distance D™ is a minimum,
or the close-packed directions.

If we treat the atoms as having an energy-dependent radius, we can determine
the maximum possible energy for focusing at any given collision angle. The key is
to allow the potential between atoms to vary with separation. The critical focusing
energy, EM is defined as that energy below which f< 1 and D < 4R, and focusing
is possible. In the hard sphere model, the relation between kinetic energy, E, and

1
potential energy V(r) for a head-on collision is given by Eq. (1.80) as V(2R) = EE .

If V(r) is described by the Born—-Mayer potential, Eq. (1.47), then V(r) = A exp
(—Br), and:

E =2Aexp(—2R/B). (2.70)
.. D
For a head-on collision, 6, = 0, so cos 0, = iR = 1, and we have:
-D
Efc =2A exp (E) . (271)

This means that any angle greater than zero will result in defocusing for E = Ey. or
that focusing at an energy Ef. can only occur for § = 0°. Clearly then, the critical
focusing angle depends on the energy of the projectile. The relation between angle
and energy is developed by writing the expression for Ef, in terms of D:
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D =2BIn (z—A> (2.72)

fc

Now, for any atom of energy T reaching a separation of 4R:
2A
4R =2BIn <7) (2.73)

Combining these equations gives:

D  In(24/Ex)

2 - MEAER) R 2.74
4R~ % T AT fe (2.74)

Note that the condition of critical focusing can be expressed in two ways:

-D
1. Ey =2Aexp (E) : This condition gives the energy Ef. for which focusing

occurs for a head-on collision (6, = 0).
In(2A/Ex.)
In(24/7T)
a head-on collision 6., at which a PKA of energy 7 can initiate a focused
sequence.

2. cosl, = : This condition gives the maximum angular deviation from

From the first expression, it should be apparent that focusing is a function of
crystallographic direction since D is a function of crystal structure. That is,

i _ thl
EM™ — 24 . 2.7
f eXp( 2B > (2.75)

For example, in the fcc lattice, we have:

pi1ooy _

pio) _ Qa
2

DM = /34

therefore, since D<”0> < D<100) < D(m>, we have E§”0> > E§100> > Eélm.

Typical values for Ef<“0) are 80 eV in copper and 600 eV for gold. In any case,
E¢ is much less than initial PKA energies.

From the preceding discussion, it should be apparent that focusing is only
applicable if a scattered atom is within an angle 6, of an atomic row. Then, a focused
sequence can result. It is therefore important to determine the probability that the
initial direction of a struck atom is within a cone of apex 6, about an atomic row.
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For a random starting direction, the probability of generating a focused collision
sequence at energy 7 is as follows

>

2
P(T) = Zc (2.76)
Expanding cos 6. in Eq. (2.69) gives:
1 D
1—- 592 ~ AR’ for small .. Substituting from Eq. (2.76) gives:

Pi(T) = % (1 - ﬁ)’ (2.77)

or

1
2" In(2A/T)
1 In(2T /Ex,) }

(2.78)
2 Ln(EfC/ZA) + In(T/Ex.)

Pt = - [1 ln(2A/EfC)]

Since E;/2A K 1 and T/E;. ~ 1, then:

1In(T/E.
_ LIn(T/Ee) g

21n(E JA) (2.79)
=0 T >Eg

Py(T)

For n equivalent directions in the crystal:

) = 2 o0

For example, in copper, Ei, ~ 80 eV, and for A ~ 20,000 eV,
P60 eV) ~ 0.026n. For n = 12, then Py ~ 0.3 or 30 %. Focusing refers to the
transfer of energy by elastic collisions along a line, but without involving the
transfer of mass. We will next discuss replacement collisions in which both energy
and mass are transferred.

Replacement Collisions

In addition to energy transfer, mass can be transferred by replacement of the struck
atom with the striking atom if the center of the first atom moves beyond the
midpoint of the two atoms as they reside in the lattice. In our analysis of focusing,
we assumed hard sphere collisions. However, if we assume that there is a softness
to the atom, three things occur:

1. The hard sphere model overestimates the angle of scattering for a particular
impact parameter, and hence, the amount of focusing must be overestimated.
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Fig. 2.12 Head-on collisions in a focused chain when the interaction potential acts continuously
during the collision. (a) Atom positions during the collision initiated by the atom on the /eft.
(b) Separation of atoms A, and A,, , ; during the collision (after [5])

2. Atoms in the row feel the influence of the oncoming disturbance long before it
gets there so the atom is already moving. Since D is decreased, focusing is
enhanced.

3. Replacement becomes possible.

Referring to Fig. 2.12, as the collision proceeds, the distance x between atoms A,
and A, decreases continuously. The velocity of the center of mass (CM) is as
follows:

v M, (M
= ——— | — | U
M= \Mm my) T\ M, )

where v;andv, are in the laboratory system. The relative speed, defined by
g = b] — Ly, gives:

Vew + (=2
D = _—
PEYeM T\, )8

v M,
D — + —
: o™ M, +M, &
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and the total kinetic energy of the two particles is as follows:
KE = 1/2Mv? +1/2M,v3,
and in terms of g and V- is as follows
KE = 1/2(M, + M)V}, +1/2u8%,

MM,
M, +M,
two parts: one due to the motion of the system and another due to the relative
motion of the two particles. Conservation of total energy is given as E, + V(x) = E,
where V(x) is the potential energy at a head-on separation distance of x, E, is the
relative kinetic energy at infinite (initial) separation, and E. is the relative kinetic
energy at any point. Rewriting the kinetic energy in terms of g gives:

where y is the reduced mass = ( ) . The total kinetic energy is divided into

1 1
SHg” +V(x) =5 ugy

and

80=DY10,

where g is the initial speed. This equation should be recognizable from our earlier
analysis in Chap. 1, Sect. 1.2.2. Recall that at x = Xpin, V(Xmin) = 1/24g3, and for
M, = M,, then gy = v;g and V = E/2.

We also assume that the interaction energy at the initial separation is V(D) <
%ug%. The time rate of change of the separation distance is equal to the relative
speed:

% = —g. (2.81)

Taking the collision time as twice the time needed to reach the distance of closest
approach:

Xm dx V(xm) dV
t=—2[] == —2/ , (2.82)
D & V(D) gdV/dx

where x,, is the distance of closest approach.
Since V(x) = A exp(—x/B), then:

dv A Vv
— = —Zexp(—x/B) = —— 2.
=~ Zexp(—a/B) = — 5 (283)
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and:

- { [’; - v] ;}1/2 (2.84)

where p = MJ/2 for like atoms and 1/2ug3 = 1/4Mv?, = E/2. Substitution of
Egs. (2.83) and (2.84) into Eq. (2.82) yields:

oM\ V/? [E2 av
=B 7 T Ao 2 (285)
v(ip) V(1 —2V/E)
1/2 1/2
= 2B (2—M) tanh~! {1 — 2‘/—@} . (2.86)
E E

Note that the definition of a hard sphere radius has been used for the upper limit,
i.e., Xy, is taken to be 2R(E). For V(D)/E K 1,

2M\'? [ 2E
tt=B|— ] In|—|. (2.87)
E V(D)
V10 E\'?
Since the speed of the center of mass is - = (ﬁ) , the distance moved by the

CM during the collision time, f., is as follows:

£\

If x> D/2, atom A, will end up to the right of the initial halfway point and replacement
will occur, and A,, will occupy the lattice site occupied by atom A, . . Relating the
distance x to energy by substituting for 7. from Eq. (2.87) into Eq. (2.88) gives:

%: In (ﬁg))) (2.89)

For x = D/2:

(P 2
*P\2B) ~ Aexp(—D/B)’
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Fig. 2.13 Energy scale for focused energy transfer and focused replacement sequence

and the replacement energy becomes:

A -D

According to the above arguments, and comparing to Eq. (2.71), focused
replacement is possible when the energy transported in the collision chain satisfies:

1 D\ 1
E>E —~Aexp( =) = = E. 291
Z =3 exP(w) 4 (291)

Therefore, we get focused replacement, or:
E¢ /4 < T < Eg. focused replacement
T < E¢ /4 focused momentum/energy packet

Hence, mass transfer can occur when E is between E, = E;./4 and E., which from
our previous example is about the same or slightly less than the displacement
energy, Ey. Figure 2.13 shows where focusing and replacement collisions fall on the
energy spectrum of the PKA.

Assisted Focusing

In our analysis of focusing, we have not accounted for the effects of surrounding
atoms or nearest neighbors. Due to their repulsion of the moving atom, they tend to
act as a lens and aid in the focusing process. The net result of this assisted focusing is
to increase the critical energy for focusing, E;., rendering focusing more probable.
Second, the ring of atoms surrounding a focusing event also tends to dissipate energy
by glancing collisions. This effect is augmented by the vibrational motion of the atom
rings, which can be increased with temperature. The length of the replacement chain
and the number of collisions in the chain decrease as the temperature increases. The
increased motion of the surrounding atoms increases the energy loss from the col-
lision sequence. Other effects that destroy the sequence are alloying elements and
defects such as interstitials, vacancies, and dislocations. Figure 2.14 shows the
number of collisions in a focused chain of initial energy E in room temperature copper
along with the focusing probability. Table 2.3 from Chadderton [18] gives the
focusing and replacement energies in various directions in fcc and bcec lattices as
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Table 2.3 (a) Equations for Ef* in the fcc and bec lattices considering assisted focusing
(after [18]). (b) Equations for replacement energies (E™) in the fcc and bec lattices (after [18])

(@)
{hkl) Face-centered cubic Body-centered cubic
(100) A(D'10)? plioy ! ( 111)
pi et =z 2Aexp| ———=
282 CXP( 43) B3
110
(1107 2Aexp<*D‘ ) w1y [ piys\"
exp| —
2B 1582 2v/3B

(111) i 1/2A(D110)2 _im
19 B P\ 2B

19
12

)

piit
2A exp (7 ﬁ)

®

(hki) Face-centered cubic Body-centered cubic
(100) srep( -2 A (2"
(o) (%)
( 11 0) A plo plo
5 %*p (* E) 3Aexp <7 ﬁ)
(1) 4Aexp(—ﬂ) Mexp(—i“)
B3 2B

1 In the (110) plane only
™ Assisted focusing

modified by surrounding atoms (assisted focusing). Note that in all cases, the
focusing energies are larger when the surrounding atoms aid in the focusing process.

Channeling

Channeling is the long distance displacement of energetic knock-on atoms down an
open direction in the crystal lattice. Figure 2.15a shows a schematic of an atom
spiraling down an open channel in a crystal lattice, and Fig. 2.15b shows axial and
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Fig. 2.15 (a) Schematic of an atom moving in a channel in a crystal lattice (after [19]), and
(b) axial and planar channels in the fcc lattice (after [20])
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Fig. 2.16 Trajectory of a channel wall
channeled atom (after [5]) l
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planar channels along specific crystallographic directions in the fcc lattice. The
walls of the passageway consist of atomic rows. If the rows surrounding the channel
are close-packed, discrete repulsive forces between atoms are “smeared out” and the
atom appears to be traveling in a long cylindrical tube with radius R.,. The value of
R, can be determined by equating ©R?, with the cross-sectional area of the channel.
If the amplitude of the lateral oscillations of the moving atom is small compared to
R.p, the potential well provided by the channel wall is roughly parabolic in the
direction transverse to the channel axis.

The interaction of the moving atom with a channel wall (Fig. 2.16) can be
described by a harmonic channel potential:

Ven(r) = kr?, (2.92)

where r is the lateral distance from the axis, and & is the force constant that depends
on the potential function describing atom—atom repulsion and channel dimension
R Using the Born—-Mayer potential to describe atom—atom interactions in this
energy regime, k becomes:

A (27R R
o= (ZENeh ) exp( et ) (2.93)
DB\ B B

where D is the atom spacing in the rows forming the channels. Moving atoms enter
the channel with a velocity component along the channel axis (Fig. 2.16) given by:

2B\ 12
Vo = (ﬁ) cos 6y, (2.94)
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where (2E/M)"? = V,. The axial velocity is gradually reduced by inelastic energy
loss to the electron cloud. The moving atom undergoes simple harmonic motion in
the r direction with period 7 given by:

M\ 12
T=2n (ﬂ) , (2.95)

and the initial wavelength of the oscillation is equal to V,qt for 8, = 0 or:

1/2
A=2n (%) . (2.96)

The amplitude of lateral oscillation is determined by the injection angle, 8, and the
kinetic energy of the injected atom, E. The r component of the atom velocity as it
enters the channel is as follows:

2ENV2 2B\ 12
Vo = (ﬁ) sin 0y (M) 0o. (2.97)

So the radial component of the kinetic energy is E()(z), which is equal to the potential
energy at the transverse amplitude, k2, . Equating kinetic and potential energies
and solving for rp,,, gives:

12
Tmax = (;) 0o, (298)

and the trajectory of the channeled atom is as follows:

O e

The critical angle below which channeling can occur, 6., is obtained by equating
the transverse amplitude, r,,x, and the channel radius, R.,:

0\ /2
Bch—RCh<E) : (2.100)

Note that 8, decreases as E increases, as expected. When the mean free path between
collisions is of the order of a few atom spacings, large-angle collisions become
probable and channeling dissipates. The channeling probability is difficult to deter-
mine since an atom must be knocked into the channel, but there are no atoms near the
channel axis. The event probably starts with an impact on an atom forming the
channel wall. If the entrance angle is small enough, it may begin to channel.



2.2 Modifications to the K—P Displacement Model 109

There is no upper limit on energy for channeling. Instead, 6., just becomes smaller
as E increases. The minimum channeling energy occurs when the wavelength is ~nD
or a few atom spacings (n ~ 2). Essentially, there develops a resonance between
impulses from channel walls and transverse oscillations. The trajectory terminates in
a violent collision. Recall that our treatment is only valid if A >> D. Solving for E in
Eq. (2.96) and letting A=2D yield E;, ~ 0.1 kD?. For copper, E, is about 300 eV. E,
is larger for large mass because k increases with mass. Channeling is a high-energy
phenomenon and is most significant for light atoms, while focusing is a low-energy
phenomenon that is most significant for heavy atoms.

Effect of Focusing and Channeling on Displacements

The probability of a crystal effect is a function of recoil energy. P(7) is used for
either Py or Py, but since Er ~ 100 eV, Py is quite small. The equation governing
cascade effects can be modified to account for crystal effects by modifying
Eq. (2.14):

W(T) = P(T) +[1 — P(T)] F?‘ + % /2 ) v(e)ds} . (2.101)

The first term on the right of Eq. (2.101) represents the lone displaced atom, which
results if the PKA is channeled or focused on the first collision. The second term
gives the number of displacements created by a PKA that makes an ordinary
displacement on the first collision. Assuming P # P(T), Eq. (2.101) is differentiated
with respect T to yield:

dv
T—=(1-2P P. 2.102
= (1=2P)y+ (2.102)
Integration gives
CT(I—ZP) )
T)=——FFF— 2.103
WT) = S (2.103)

and the constant, C can be found by substitution into Eq. (2.102):

1-P
(2Ed)(172P) ’

resulting in the final solution:

1—p T\ p
T) = — - . 2.104
=73 <2Ed) 1_2pP (2.104)
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For small P, v (T) can be approximated by:
(T) r e (2.105)
% = | = . .
2E4

It should be noted that the most important crystal effect is channeling, which is most
important at high energies. For example, for P = 7 %, a 10 keV PKA in iron
produces 100 displacements or about half the amount with P = 0. Figure 2.17 shows
where channeling occurs on the PKA energy scale. Note that channeling is a
high-energy phenomenon and that there is a gap between the replacement energy,
below which replacements or focused energy transfer occurs, and the channeling
energy, above which channeling occurs. Given the K-P model for displacement and
the various modifications to the basic model, we now turn to the determination of
the number of displaced atoms.

2.3 The Displacement Cross Section

The results of previous sections may now be used to define the displacement cross
section as:

op(E) = /TT v(T)o(E;, Q;,T) dT, (2.106)

where v(T) is the number of displacements caused by a PKA of energy 7, o(E;, O;, T)
is the general form of the energy transfer cross section, and 7and T are the minimum
and maximum transfer energies. This quantity was first presented in Eq. (2.2) and
gives the average number of displacements produced by an incoming neutron of
energy E;. We can apply this expression to the various regimes of scattering in order
to determine their individual contributions to the total number of displacements.
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We will first determine op(E;) for each type of interaction using the basic K—P result
and then go back and add in the modifications.
2.3.1 Elastic Scattering

Consider ay(E;, T) for elastic scattering. From Eq. (1.19),

4
Js(Eia T) = VEO—S(Ei, ¢)

In the case of isotropic scattering:

ag Ej o, (E;
oy(E, §) = Sin); (. T) /(E)
therefore,
E; VE;
ops(Ei) :M/ v(T)dT. (2.107)
VE; Eq

Should we wish to consider anisotropic elastic scattering in systems such as fast
reactors, the angular dependence of the elastic scattering cross section can be
written in a series of Legendre polynomials:

os(E;)
47

io: ay(E;)Py(cos @), (2.108)

=0

(EH (,‘b

where oy(E;) is the total elastic scattering cross section for incident neutrons of
energy E;, P, is the (th Legendre polynomial, and values of a, are the
energy-dependent coefficients of the cross section expansion. At neutron energies
encountered in thermal or fast reactors, it is sufficient to retain only the first two
terms, £ = 0 and ¢ = 1. Since Py = 1 and P, = cos ¢:

GS(Ei)
4n

os(E;, ¢) = [1+4a;(E;)cos ¢]. (2.109)

Also, given that cos ¢ = 1-2T /yE; and substituting Eq. (2.109) into Eq. (2.106)
gives:

ons(Ei) = asy(g) /EdE v(T) {1 +a(E) <1 - f;ﬂ dr. (2.110)


http://dx.doi.org/10.1007/978-1-4939-3438-6_1
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2.3.2 Inelastic Scattering

Since inelastic scattering is isotropic in the center-of-mass system:

si Eia .
a5(Ei, 0 §) ZW- (2.111)

Equation (1.30) gives the energy transfer cross section for inelastic scattering in the
resonance region as:

(E.. O ‘ “1/2
st(Ean,T)=M{1+%<—I+A)} ,

'))Ei Ei A
so that
a(Ei, ) (L+A\] T T
(E)y=) Q2= Z (o / T)dT 2.112
oou(B) = 7 25N e e
where the minimum and maximum values of T(E;, Q; ¢) are given by Eq. (1.27),
and setting cos ¢ = —1 and 1, respectively, gives:
A_yEi l—|—1+AQ]+ 1+QJ1+A 12
T2 2A E E A
1/2
. VE; 1+AQ; 0i1+A
Ti=—\1+—=—-(1+=— .
N EY E; * E A

2.3.3 (n, 2n) and (n, y) Displacements

The displacement cross section for (n, 2n) reactions can be written as:

T

E—E],
O'D(n,Zn) (E,) = /O a(n,2n) (Ei, T) Z—EddT, (2 1 13)

where o, on) (Ei, T) is given by Eq. (1.40).
The displacement cross section due to (n, y) reactions can be written as:

T
T
opy(Ei) = oy —dT. 2.114
olB) =, | 3 (2.114)


http://dx.doi.org/10.1007/978-1-4939-3438-6_1
http://dx.doi.org/10.1007/978-1-4939-3438-6_1
http://dx.doi.org/10.1007/978-1-4939-3438-6_1

2.3 The Displacement Cross Section 113

However, since we have assumed that the lattice atom recoils with an average
energy

and that E, for a given isotope is either known or can be measured, Eq. (2.114) can
be simplified to:

- 2
T E?

L —g 2.115
T2E; ~ VSEJ A+ 1) (2.115)

Opy =

The total displacement cross section due to these forms of neutron interaction then
becomes:

op(Ei) = ops(Ei) + 0pg(Ei) + 0pman) (Ei) + opy

JE) BT 2T
:M/ Z hraE) (1= ar
VEi Jg, 2E4 VE;

d

_ /2 T
st(Einj) % 1+A 1 /]l
2 B | TE\ A " T (2

J
oy (B, T) —dT
+ /0 T nom)( )2Ed
E?
T B AL )

where the terms are for elastic scattering, inelastic scattering in the resonance
region, (n, 2n) reactions and (n, y) reactions, respectively.

2.3.4 Modifications to the K-P Model and Total
Displacement Cross Section

The displacement cross section can be modified to account for the relaxation of the
various assumptions made to the basic K—P model as in Sect. 2.2. These modifi-
cations are summarized in Table 2.4. Applying these correction terms to the basic
K-P result by consolidating Assumptions 1 and 3 into a single constant C' and
using Eq. (2.104) for the effect of crystallinity transform Eq. (2.116) to read:



114 2 The Displacement of Atoms

Table 2.4 Modifications to the displacement cross section

Assumption Correction to W(T') = T2E, Equation in text
3: Loss of Ey4 0.56(1 N i) Equation (2.31)
2E4
4: Electronic energy loss cutoff T Equation (2.54)
1) 5
d
5: Rea?lstlc energy transfer cross Ci, 052<C<122 Equation (2.33),
section 2E4 (2.39)
6: Crystallinity 1—p /71— 2P) P Equation (2.104)
1—2p (E) T1-2p
7\ —2P) Equation (2.105)
2k,

D[R 1- (1-2P)
JD:asy(Eb?) /E lll— 21; (C’é(T)z_;) - —PZP]
x [1+a1(Ei)(1 _%)}dT
- (1-2pP)
11_21;<c’é(T)2£d> _I—PZP]dT

i}
X/
T

E-E, 1—p 7\ p
E.T C'E(T)=— — dr
T TS )L_ZP( D) o

1 P E2 1-2P p
|— | ) ————— — .
o —2P< < )8Ed(A+1)c2> 1-2p

(2.117)

Using the more simplified expression for the effect of crystallinity, Eq. (2.104)
reduces Eq. (2.117) to:
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Fig. 2.18 The displacement cross section for stainless steel based on a Lindhard model and
ENDEF/B scattering cross sections (after [21])

o =248 [ (st [ (1 20)Jor

ay(Ei, Qj) 0 (1+A -2 ) 7\ (1-2P)
+ZT{1+E< A )] /T (Cé(T)2_Ed> dr

J j

E—E, T (1-2P)
E,T)| C'&T)== dr
+/0 0(n,2n)( ) )< é( )2Ed>

= 1-2p
/ v
toy <C ¢(T) 8&1(14‘*'1)02) :

(2.118)
or,
0D = 0Ds + 0Di + Op(n2n) T ODy- (2.119)

The displacement cross section for stainless steel was calculated by Doran [21]
using the energy partition theory of Lindhard and is shown in Fig. 2.18.
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2.4 Displacement Rates

Recall that the displacement rate was given in Eq. (2.1) as:

R = ﬁEN(b(Ei)O'D(Ei)dEi.

This is the displacement rate density or total number of displacements per unit
volume per unit time [#/cm” s]. To get a rough estimate of the order of magnitude of
this number, let us simplify the displacement cross sections as follows. Neglecting
(n, 2n) and (n, y) contributions to displacements, all modifications to the simple K—
P displacement model (i.e., using v(T) = T/2Ey), and neglecting E4 relative to E;, the
displacement cross section due to elastically and inelastically scattered neutrons
only becomes:

on(E) = @/EE 2—;[1 +a(E) (1 _ 2—T>]dT

vE; 3 vE;
7
T
/ L ar.
T 2E4

oy(E. Q) [, @ (1+A
+ ; vE; + E\ A
Assuming that elastic scattering is isotropic (a; = 0), neglecting inelastic scattering
and integrating between the limits E4 and yE; gives:

i (2.120)

os(E) ("5 T
E)=2 _—_dr, 2.121
T /E 2Eq 2120

and if yE; > E,, then:

o (E) 2E, E. T VE; E
E;) =22 dr —dT dr
oE) = F UE " /2,; T /E 2E, }

2.122
_ o(E) EE E? ( )
_ZVEzEd VEite 2 '
If we choose yE; ~ E. then we have:
VE;
E) ~ s(Ei), 2.123
w(E) ~ (15 ) (B (2123

and Eq. (2.1) becomes:
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Ny [*
Rd = — Gs(Ei)Ei¢(Ei) dEi (2124)
4Ed Ed/:,
VE;
= — 2.12
Noy (4Ed>¢7 ( 5)

where E| is an average neutron energy and ¢ is the total neutron flux above energy
E4ly, and the term in brackets is the number of displacements (Frenkel pairs)
produced per neutron. The validity of assuming isotropic scattering and neglecting
inelastic scattering is shown in Figs. 2.19 and 2.20. Essentially, both approxima-
tions are reasonable at energies below one to a few MeV.

Example 2.1. Neutron irradiation of iron
As an example, let us look at the damage caused by 0.5 MeV neutrons in Fe
in a fast flux that may be representative of the core of a fast reactor:

N = 0.85 x 10** atoms/cm’
o, =3 X 107%* cm?
¢ = 10"5 neutrons cm s~

2B

1

= 350 displaced atoms/neutron

R, is 9 x 10' displaced atoms per cm® per second, or dividing R, by
N gives ~ 107 dpa/s or about 32 dpa/year. This is equivalent to each atom
being displaced from a normal lattice site once every 12 days.

Fig. 2.19 Recoil energy — T 1 T T T T T 1
spectra from the elastic E -
scattering of fast neutrons T

using data from ENDF/B files '
(after [22])

Recoil probability density

TTTTITh
e
—

=5

0 0.2 0.4 0.6 0.8 1.0
Relative recoil energy
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Fig. 2.20 Displacement cross LAY LLLL R UL LA LU B S LLL GRS R L
section for nickel showing the nickel Total ™
elastic and inelastic 2000 E =33eV otalT=—j ]
components (after [21]) s
L inelastic
EoT N
51
2
% 1000 |- elastic ]
o
S I
n, 2n
W
0 J__H—LHM WAL | llll]_ll 1 ll‘llll Al lIIIIIl
10° 10 107! 1 10 102

Neutron energy (MeV)

A second example can be worked for the displacement rate in the alu-
minum fuel plates in an MTR-type thermal neutron research reactor. In this
case, we have:

E; ~ 0.5 MeV

N = 0.6 x 10* atoms/cm®

o, =3 x 10 *cm?

¢ =3 x 10" neutrons cm s~
VE;
4Eq

1

= 690 displaced atoms/neutron

Ry is 4 x 10" displaced atoms per cm’ per second, or dividing R, by
N gives ~7 x 107® dpa/s or about 2 dpa/year. Note that even though the
number of displacements per neutron is almost a factor of 2 higher in Al than
in Fe, the damage rate is significantly lower because of the much lower fast
flux in this type of reactor.

2.5 Correlation of Property Changes and Irradiation Dose

The ultimate objective of the calculation of Ry is to provide a prediction of the
extent of change of a particular property of the material under irradiation. The
mechanical property may be yield strength, swelling, degree of embrittlement, etc.
Recall in the introduction that the determination of the number of displaced atoms
was motivated by the inability of particle fluence to account for property changes
(see Fig. 1 in the Introduction). While an improvement over units of exposure such
as neutron fluence, displacement rate alone cannot account for the macroscopic
changes observed, and a semiempirical method of correlating damage with
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macroscopic property changes has evolved known as the damage function method.
In this method, the atom displacement rate is replaced with the change in some
macroscopic property after a time t of irradiation. The displacement cross section is
replaced by the damage function for the particular mechanical property, G;(E),
hence:

AP,;i_// E)¢;(E, 1) dE 1, (2.126)

where AP;; is the change in the property labeled by the index i, during an irradiation
time of ¢ and in a neutron flux where ¢,(E,?) is the jth neutron differential spectrum.
Assuming energy—time separability, ¢(E,;) = ¢,(E,)t, then Eq. (2.126) can be
rewritten as

AP =1 /Gfk> (E);(E) dE, (2.127)

where the superscript refers to the kth cycle of iteration.
The objective is to deduce a single function G;(E) from a set of measured AP;

values. Given APl(.jk) and ¢,(E) as input along with an initial approximation of

Gy(E) or Gi<0>(E), a computer code is used to generate iterative solutions Gi(k) (E).
An appropriate solution is obtained when the standard deviation of the ratios of all
measured-to-calculated values AP;/ APg‘) reaches a lower value that is consistent
with experimental uncertainties. As it turns out, the resultant damage function is
highly sensitive to the initial approximation as shown in Fig. 2.21. But note that
since the shape of G;(E) is the same as the displacement function, it is clear that they
are related. However, this result tells us that we cannot fully understand radiation
effects by only calculating the number of displaced atoms. We cannot treat radiation
effects as a black box. Rather, in order to understand the effect of the damage on the
properties of the material, we must understand the fate of these defects after they are
formed. This realization is reinforced by the property dependence on dose shown in
Fig. 2.22. Note that for the three property changes, resistivity, radiation-induced
segregation, and hardening, the functional dependence on dose is strikingly dif-
ferent between them. While property change certainly relates to displacement
damage, the nature of the change is not uniform but varies considerably depending
on the property measured. The next chapter explores the spatial and temporal
distribution of radiation damage. But before we examine the damage zone in detail,
let us complete our picture of the production of displacements by addressing the
damage created by charged particles such as ions and electrons.
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Fig. 2.21 (a) 60 ksi yield strength damage function for 304 stainless steel irradiated and tested at
480 °C (after [23]) (b) Damage function for a 2.0 x 10~% psi~' /& property change for stainless
steel (after [24])

2.6 Displacements from Charged Particle Irradiation

Displacement from charged particles differs from that due to neutrons because as
they travel through the lattice, they lose energy via electronic excitation in addition
to via elastic collisions. Figure 2.23 shows the trade-off in energy loss mechanism
dominance with energy in the energy range of relevance for ion—solid interaction,



2.6 Displacements from Charged Particle Irradiation 121

A swelling
hardening

Property

resistivity

>

dpa

Fig. 2.22 Dose dependence of swelling, resistivity, and radiation-induced segregation
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Fig. 2.23 Variation in nuclear and electronic stopping powers over the energy range of relevance
to ion—solid interactions
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Fig. 2.24 Residual range of an ion incident on a target and the regimes of electronic and nuclear
stopping dominance

and Fig. 2.24 shows the residual ion energy as a function of ion penetration depth.
Note that electronic stopping will dominate at short depths, but elastic collisions
will dominate near the end of range. An expression for the number of displacements
from a charged particle can be derived from the analysis of energy lost from the
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PKA by electronic excitation given in Sect. 2.2.3 and described by Eq. (2.40)
through Eq. (2.49). Equation (2.44) describes the loss of energy to both atoms and
electrons in the target by the PKA. We can revisit this analysis assuming that the
particle we are tracking is the incident ion. As was done in Eq. (2.45), we can
expand the terms for v(T — ¢,) and W(T — &.) in a Taylor series and truncate the series
after the second term, giving:

d
WT = &) = v(T) = e,

d€ (2.128)
W(T —e)=v(T)— a7

and the integrals involving the terms W(T — ¢,) and (T — &) can both be written in
the general form:

Emax Emax d Emax
/ (T — &)a(T,e)de = v(T) / o(T,¢e)de — _v/ ea(T,¢) de
0 0 dr Jo

dv(T)
- dr

(2.129)
=v(T)o(T)

(1),

where S(7) is the stopping cross section. Since in this treatment, the ion is the
incoming projectile, we will rewrite Eq. (2.129) using our established convention
that the incoming particle is of energy E; and it transfers energy T to the target
atoms and electrons, and the maximum energy transfer is 7"

T T dv T
/0 v(E; — T)o(E;, T)dT = v(Ei)/O a(Ei,T)dT—E \ To(E;, T)dT
= v(E)o(E) — dz(gi) S(E),

(2.130)

where Eq. (1.79) is used to transform the integral of the differential energy transfer
cross section, o(E;,T), to the total collision cross section, o(E;), and Eq. (1.129) is
used to transform the integral of To(E;,T) into the stopping cross section S(E;).
Applying the results of Egs. (2.129) and (2.130) into Eq. (2.44) gives:

dv(E;) = dE)/OTv(T)G(Ei,T) dr. (2.131)

S(E;
Since we are concerned with the(total number of displacements over the entire
range of the ion rather than the specific number of displacements over a distance
dx of the sample, we can integrate Eq. (2.131) over the entire range of ion energy
loss to obtain the number of displacements resulting from an incident ion with
initial energy E;:


http://dx.doi.org/10.1007/978-1-4939-3438-6_1
http://dx.doi.org/10.1007/978-1-4939-3438-6_1
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(2.132)

and

/ ' W(T)o(E', T)AT = o4(E), (2.133)

d

where E' = E'(x) is the ion energy as a function of the traveled path length x as the
ion travels down to zero energy. We can work a simple example using an
approximation to the treatment given above. We are interested in the number of
collisions made by an ion as it passes through a solid. We will take I as the ion flux
in units of ions/cm” s, and we can write the number of collisions per second in a
volume element of unit cross-sectional area and thickness dx which transfer energy
in the range (7, dT) to atoms of this element as:

NIo(E, T)dx. (2.134)

The number of collisions per unit volume per unit time which transfer energy in (7,
d7) at depth x is NIo(E, T) [collisions/cm3 s]. The number of displaced atoms for
each collision that produces a PKA of energy T is v(T). Therefore, the production
rate of displaced atoms at depth x is as follows:

vE
Rd(x):NI/E o(E, T)v(T)dT [displacements/cm’s]. (2.135)
d

(Note that we have not accounted for the fact that I is a function of x (or E) and that
I(x) # Iy.) E is a function of x since the ion slows down by loss of energy to the
electrons of the target. The functional form of E(x) can be estimated using dE/
dx = kE'? as:

E(x) = (Ei)‘/2—1/2er, (2.136)

where Ej; is the initial energy of the ion when it strikes the target. The number of
. . dpa .

displaced atoms/atom/s is Ry(x)/N, and the (onsienD) at a depth x is Ry(x)/NI. We

will assume that o(E, T) can be described by Rutherford scattering, and using the

Lindhard treatment for v(T) from the K-P model and assuming & = 0.5 gives:
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Ry /”E‘anfZ§e4<M+Mi>21 AMM 1 T
E

NI 2 4 M ) E 2 T2 2E,
i (M -+ M;) ‘ (2.137)
_ nZ373¢ <%> 7E; dpa
4EEq \M)  Eqion/cm®’

Applying this result to 0.5 MeV protons in iron gives ~ 10™'® dpa/(ions/cm?) at the
surface. 20 MeV C* ions incident on nickel produce ~3 x 10™'® dpa/(ions/cm?) at
the surface, but 50 times this amount at the damage peak. These values can be
compared to the damage rate from 0.5 MeV neutrons in iron:

Rq VEi
N <4Ed) »

=350 x3x 107 (2.138)
| displacements

=1x107? -
n/cm

Comparing 0.5 MeV neutrons to 20 MeV C” ions shows that over their range C*
ions produce 3000 times more displacements than do neutrons. Figure 2.25 com-
pares the displacement rates as a function of penetration depth for ions of various
mass and energy. As expected, for the same energy, ions of heavier mass deposit
their energy over a shorter distance resulting in higher damage rates. Note that due

1014 = | L . T T T 1

[ |7 =— 7.5 MeV tantalum

1055 5 3
Y |\7=— 5 MeV nickel =

™Y

10-16 E- 20 MeV carbon 7}
1017 = =
: ra

10°18 1.3 MeV hydrogen

k

Calculated dpa/(incident particle) (cm?)

1019 —
E 14 MeV neutrons

1020 E 1 MeV neutrons 3

1021 b=t ==t = ===
0 2 4 6 8 10 12

Distance into solid ()

Fig. 2.25 Displacement-damage effectiveness for various energetic particles in nickel (after [25])



2.6 Displacements from Charged Particle Irradiation 125

to the large collision mean free path of a neutron as compared to an ion, the neutron
damage energy is low and constant over distances of millimeters.

Nomenclature

a Lattice constant

ao Bohr radius of the hydrogen atom

A Atomic mass

A Pre-exponential constant in Born—-Mayer relation, Eq. (1.47)
B Spacing between barrier atoms in crystal lattice

B Constant in exponent in Born—Mayer relation, Eq. (1.47)
c Speed of light

D Nearest neighbor spacing between atoms

E. Cutoff energys; critical energy for focusing

Ecn Critical energy for channeling

E¢. Critical focusing energy

Eq4 Displacement energy

Ep Damage energy

E; Projectile energy

E. Critical energy for replacement collisions; relative kinetic energy
E; Sublimation energy

E, Gamma ray energy

E; Incoming particle energy

E Kinetic energy of incoming particle in CM system

E! Energy of neutron after (n, 2n) reaction

E* Saddle point energy

Eeq Energy of atom in equilibrium lattice site

f Focusing parameter

g Relative speed v; — v,

G Damage function

T Excitation—ionization level

k Force constant; constant in the electronic energy loss term, kE'/*
m Mass of incoming particle; 1/s in power law expression
M, Mass of the electron

M, Mass of projectile

M, Mass of target

N Atom number density

p, P, P, Probability, referring to electron and atom

Py Channeling probability

Py Displacement probability

Py Focusing probability

0 Excitation energy of nucleus

Teq Equilibrium spacing between atoms

Fmax Transverse amplitude of channeled atom

R Atomic radius


http://dx.doi.org/10.1007/978-1-4939-3438-6_1
http://dx.doi.org/10.1007/978-1-4939-3438-6_1
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Radius of channel

Displacement rate [#/cm3 s]

Exponent in the power law approximation

Stopping power electronic, nuclear

Collision time

Energy transferred in collision

Minimum energy transferred

Maximum energy transferred

Average energy transferred

Energy transferred to target atom after (n, 2n) reaction
Energy per atom in a crystal

Binding energy lost by an atom when leaving a lattice site
Potential energy

Velocity of projectile in laboratory system

Velocity of target in laboratory system

Velocity of CM in laboratory system

Distance to atom barrier

Impact parameter

Atomic number

Compressibility

Secondary atom knock-on energy unit charge in Eq. (2.52)
Energy of atom in a normal lattice site

Energy of atom at saddle point

Reduced PKA energy

Neutron flux, fluence

4M\M>/(M; + M2)2

Energy lost to electronic excitation in the NRT model
Displacement efficiency

Reduced mass

Specific volume of an atom

Displacement function

Scattering angle in laboratory system

Critical focusing angle

Critical channeling angle

Total atomic collision cross section

Differential energy transfer cross section
Displacement cross section

Scattering cross section

Inelastic scattering cross section for the jth resonance
Cross section for (n, 2n) reactions

Cross section for (n, y) reactions

Period for oscillation for a channeled atom

Damage energy efficiency, Eq. (2.50)
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Problems

2.1

2.2

23

2.4

25

2.6

(a) Using the simple K-P model and assuming only elastic, isotropic
scattering, calculate the number of displacements per atom (dpa) in
nickel subjected to a fast neutron (2 MeV) fluence of 10%? n/em?

(b) Using the relativistic expression for the electron—atom energy transfer,
calculate the minimum electron energy required to displace an atom in
(i) Al and (ii)) W.

In a (n, 2n) reaction, a second neutron can only be emitted if the residual
excitation of the nucleus after emission of the first neutron exceeds the
binding energy of a neutron in the mass M nuclide. The recoil energy after
emission of the first neutron is taken to be the average value (cos ¢ = 0).
Write an expression for the recoil energy following the second emission.
An *°Fe nucleus undergoes an (n, y) reaction resulting in the release of a
single 7 MeV gamma ray, on average. If a steel component is located in a
reactor where the peak thermal flux is 1 x 10" n/cm? s and the thermal/fast
flux ratio is one (where Ef! > 1MeV), determine the relative displacement
rates by fast neutrons, recoil nuclei, and gamma rays which undergo
Compton scattering. Assume o, 4 ~ 4b, s ~ 3b.

A slab of iron is exposed to a 20 MeV gamma source.

(a) What is the most probable interaction between the gamma and the
electrons in the Fe?

(b) Assume the reaction you chose in part (a) occurs. Can this lead to the
displacement of an Fe atom if the displacement energy is 40 eV?

A thermal neutron causes the following reaction
YAl+n =2 Al+7.

The gamma energy is 1.1 keV. The gamma will interact with lattice
electrons. What is the most probable event? For this event, what is the
maximum energy transferred? Does the resultant electron have enough
energy to displace an aluminum atom (assume the displacement energy is
25 eV). Can the recoil Al atom displace another aluminum atom?

The (n, y) reaction in >°Fe releases a prompt gamma ray of energy
Ey =7 MeV.

(a) What is the recoil energy of the °’Fe product nucleus?

(b) Determine the number of displaced atoms per >’Fe recoil assuming
Ed =40 eV.

(c) If the thermal component of the neutron flux in a fast reactor is
10" n/cm? s, what is the damage production rate due to the (n, 7)
reaction in “°Fe?



128

2.7

2.8

2.9

2.10

2.11

2.12

2.13
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(d) If the fast flux is given by ¢¢ (E,) = 10'%8 (E, — 0.5), where E, is in
MeV, what is the damage production rate due to the fast flux in iron?
Use the K-P displacement formula in (c) and (d). The scattering cross section
for 0.5 MeV neutrons is 3 barns. Also, 026 ~ 2.5 barns for part (c).
Assuming that atom—atom interactions can be treated as near head-on col-
lisions, the appropriate potential function is then the Born—Mayer potential.
Write an expression for the threshold energy for unassisted critical focusing
along the [110] direction in fcc nickel in terms of the lattice constant, a.
For iron (equilibrium phase for 400°C), assuming a focusing collision
occurs, how much does the closest approach (the allowed equivalent hard
sphere radius calculated using a Born—Mayer potential) change between a
[100] collision chain and a [110] collision chain?
(a) Calculate the focusing energy of the (111) direction for gold under the
condition of assisted focusing.
(b) Will focusing occur along the {111) direction in the absence of assisted
focusing? Why?
(c) The experimental focusing energy of gold is 21,000 eV for the {111)
direction. Compare your answer with this value.

(a) Determine the critical focusing energy for the {111), {110), and {100)
directions in fcc copper and iron.

(b) Plot 6, as a function of T < E, for the {111) directions in Ni and Fe.
Comment on similarities and differences.

(c) Do the same for the {110) direction of each.

(d) Repeat parts (a) and (b) using the inverse square potential, V(r) = Al
where A = 1.25 eV nm”.

(e) Over what energy range does focused replacement occur? How about
focused energy packets only?

For the focusing process as described in Problem 2.10, give a physical
explanation of why the critical angle for focusing, 6., should depend on the
projectile energy.

A 30 keV ion enters a channel in the solid lattice and loses energy only by
electronic excitation. Using the Lindhard stopping power formula Eq. (1.191),
determine the distance traveled by the ion before it is dechanneled. The
minimum channeling energy is 300 eV. Use k = 3.0NZ** eV"?/nm, where N
is the atomic density of the metal in nm™>.

Show that when channeling is accounted for in the collision cascade, the
average number of displaced atoms w(T) is as follows:

v(T) = (T/2Eq)" ™,

where p is the probability that an atom with energy, E being channeled is lost
to the cascade. Assume that p # (E), T » Eg4, and p K 1.

Assuming that all energy is lost by elastic collisions for 100 keV protons in
nickel determine:
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(a)
(b)

The energy loss per unit length in the solid, dE/dx
The range in the solid.

2.14 A crystal of copper is bombarded with monoenergetic (2 MeV) neutrons.

2.15

2.16

2.17

(@)

(b)

(©)
(d

Calculate the mean atomic displacement rate (displacements/cm’s)
using the simple Kinchin—Pease model and the following data:

Lattice parameter, Cu = 0 361 nm
Atomic weight of Cu = 63.54 amu
Displacement energy for Cu = 40 eV
= 10" n/em®s (2 MeV)

o, =0.5x 107** cm” (2 MeV)

Repeat part (a) but instead of 2 MeV neutrons, use a monoenergetic
thermal neutron beam with the same value of flux, a4, = 3.78 x 107%*
cm? and the recoil energy ~ 382 eV.

What would be the effect on your answer to part (a) by including
Lindhard’s damage energy function &(7)?

How would your answer in part (a) be affected by assuming that the
channeling probability is 1, 5, 10 %?

For the 2 MeV neutron bombardment problem described in Problem 2.14,
how would you go about calculating the threshold energy for unassisted
critical focusing along the [110] direction?

Assume that the copper target in Problem 2.14 was bombarded by a beam of
2 MeV He ions instead of a beam of 2 MeV neutrons. Calculate the dis-
placement rate at the surface of the sample and compare to your result for
Problem 2.14.

The same copper sample as in Problem 2.14 is bombarded with 500 keV Cu*

ions at a flux of 10" ¢cm™

2 571 Calculate:

(a) The displacement rate at the surface
(b) The location of the damage peak.
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