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Abstract

Alzheimer’s disease (AD) is one of the neurodegenerative disease characterized by progressive neuronal loss 
in the brain. Its two major hallmarks are extracellular senile plaques and intracellular neurofibrillary tangles 
(NFTs), formed by aggregation of amyloid β-42 (Aβ-42) and Tau protein respectively. Aβ-42 is a transmem-
brane protein, which is produced after the sequential action of β- and γ-secretases, thus obtained peptide is 
released extracellularly and gets deposited on the neuron forming senile plaques. NFTs are composed of 
microtubule-associated protein-Tau (MAPT). Tau protein’s major function is to stabilize the microtubule 
that provides a track on which the cargo proteins are shuttled and the stabilized microtubule also maintains 
shape and integrity of the neuronal cell. Tau protein is subjected to various modifications such as phos-
phorylation, ubiquitination, glycation, acetylation, truncation, glycosylation, deamination, and oxidation; 
these modifications ultimately lead to its aggregation. Phosphorylation is the major modification and is 
extensively studied with respect to Tau protein. Tau protein, however, undergoes certain level of phos-
phorylation and dephosphorylation, which regulates its affinity for microtubule and ultimately leading to 
microtubule assembly and disassembly. Our main aim was to study the native state of longest isoform of Tau 
(hTau40WT-4R2N) and its shortest isoform, (hTau23WT-3R0N), at various temperatures such as 10, 25, 
and 37 °C. Raman spectroscopic results suggested that the proportion of random coils or unordered struc-
ture depends on the temperature of the protein environment. Upon increase in the temperature from 10 to 
37 °C, the proportion of random coils or unordered structures increased in the case of hTau40WT. However, 
we did not find a significant effect of temperature on the structure of hTau23WT. This current approach 
enables one to analyze the global conformation of soluble Tau in solution.

Key words Tau protein, Tau conformation, Tau aggregation, Alzheimer disease, Sedimentation assay, 
Raman spectroscopy

1  Introduction

Tau belongs to a class of proteins called microtubule-associated 
proteins (MAPs) whose major function is to stabilize microtubules 
(MT) that serve as cytoskeleton. Microtubules are important for 
cell viability, cell polarity, and particularly for development of neu-
rons. The main biological function of Tau is to stimulate 
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microtubule assembly and to stabilize the structure of microtu-
bules (Fig. 1). Tau is a phosphoprotein and its phosphorylation 
state is developmentally regulated [1–7]. Tau protein is one of the 
most soluble, natively unfolded, which does not adapt any second-
ary structure (Fig.  1). However, it forms transient α-helix or 
β-sheet structures on binding to its interacting partners. Tau pro-
tein in Alzheimer’s disease (AD) condition forms toxic β-rich 
aggregates, leading to neurodegeneration. Tau protein has been 
studied using different spectroscopic techniques in order to under-
stand its structural conformations. The analysis of sedimentation 
assay and circular dichroism (CD) showed Tau to be a highly asym-
metric molecule with very little secondary structure in solution 
[8–10]. The extensive investigation of Tau structure in solution 
using X-ray scattering and CD revealed that Tau behaves as a ran-
dom Gaussian coil with persistence length of ~2  nm [11–15]. 
Intrinsic fluorescence analysis of tryptophan mutants of Tau con-
firmed that residues along the polypeptide chain were indeed com-
pletely solvent exposed, supporting the lack of structure [16]. All 
these observations clearly demonstrate that Tau in solution does 
not contain any secondary structure and can be regarded as 
‘natively unfolded protein’ [11, 17–19]. In addition, nuclear mag-
netic resonance (NMR) was performed for Tau protein in its 
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Fig. 1 Schematic presentation of Human Tau protein. Tau protein has an overall basic charge with N-terminal 
acidic region, basic repeat region and neutral C-terminal. Bar diagrams of hTau40WT and hTau23WT, the 
longest and the shortest isoform respectively are depicted. hTau40WT has 441 amino acids that include two 
inserts, I1 and I2, encoded by exon 2 and 3, located at the N-terminal end. This is followed by P1 and P2, the 
proline-rich regions. R1, R2, R3, and R4 are the four imperfect repeats present towards the C-terminal end. 
These repeats are binds to tubulin and also responsible for its assembly into microtubule. Many proteins inter-
act with Tau in its N-terminal as well as in the repeat region. Tau protein is highly soluble with no secondary 
structures, but however it forms transient β-sheet, indicated by black arrows. hTau23WT is the shortest iso-
form that lacks I1, l2, and R2, which are encoded by exon 2, 3, and 10

Nalini Vijay Gorantla et al.



23

longest as well as shortest isoform; Mandelkow [16, 20–25] and 
Lippens group in 2006 [26, 27] elucidated the use of NMR to 
study the residual structures not only in the soluble form but also 
in the aggregates of Tau protein. This revealed the highly dynamic 
property of Tau and also showed that transient long-range interac-
tions are necessary for aggregate formation [16, 20–25]. Further 
efforts to visualize Tau in electron microscope suffered from its 
low contrast due to its low-z number as well as hydrophilic nature 
(carbon coated TEM grids being hydrophobic-resulting into poor 
coating) [28], but the glycerol-spray technique clearly revealed the 
structure of Tau to be an elongated and flexible rod, about 35 nm 
in length [29]. The global hairpin conformation of Tau protein 
was explained using fluorescence resonance energy transfer (FRET) 
technique and electron paramagnetic resonance (EPR) [16, 30–
32]. EPR showed the importance of second and third repeat in the 
formation of protease resistant core region of aggregates [32]. Tau 
adopts a “paperclip” conformation, whereby the N- and C-terminal 
domains approach each other and also the repeat domain [30, 32]. 
Tau protein is subjected to various insults before aggregating and 
one such is hyperphosphorylation by many cellular kinases. There 
are many distinct sites of phosphorylation; these were answered 
using matrix-assisted laser desorption/ionization-Fourier trans-
form ion cyclotron resonance-mass spectroscopy (MALDI-
FTICR-MS) [33]. In addition, small-angle X-ray scattering (SAXS) 
and FRET were used to obtain insight into the structure of the Tau 
protein [16, 18, 30, 31, 34–37]. These methods revealed that 
441-residue Tau is highly dynamic in solution with a distinct 
domain character and an intricate network of transient long-range 
contacts important for pathogenic aggregation [28, 37]. Several 
attempts were made to understand the structure of Tau in soluble 
as well as aggregated form, but still it remains partially unresolved. 
The plausible reason is that being natively unfolded, Tau protein 
may not have static structures (α-helix or β-sheet), but possibly it 
may adapt an ensemble of dynamically interchanging secondary 
structure conformations, which limits the application of standard 
structural biology tools for structural determination [38]. Raman 
spectroscopy has the potential to characterize the change in the 
conformational states induced by environmental changes.

Raman spectroscopy has been widely used to noninvasively 
investigate the changes in secondary structure at all stages of pro-
tein aggregation and amyloid fibril formation. Raman spectroscopy 
is an inelastic light scattering technique that scatters the mono-
chromatic light on interacting with the sample (Fig. 2). The wave-
length of the light emitted from the sample will be higher (Stokes 
scattering) or lower (anti-Stokes scattering) depending on the loss 
or gain of the energy by the light photon. Nevertheless, in Raman 
spectroscopy, Stokes scattering is considered in the spectrum due 
to its higher intensity. But only 1 in 107 photons exhibits Stokes 
scattering due to its feeble scattering cross-section, anti-stoke 
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being still lesser and Rayleigh’s scattering being more prominent. 
In order to increase the scattering cross-section, there are several 
enhancements in Raman spectroscopy, such as surface-enhanced 
Raman spectroscopy (SERS), tip-enhanced Raman spectroscopy 
(TERS), Raman optical activity (ROA), resonance Raman, coher-
ent anti-Stokes Raman, and deep UV resonance Raman spectros-
copy (DUVRR), etc. The β-sheet conformation of poly-(l-lysine) 
was studied using vibrational ROA and the structural transitions 
were also monitored against the function of time [39]. The Tau 
protein before forming stable aggregates goes through several 
intermediates structures, such as oligomers, protofilaments, and 
fibrils. Raman spectroscopy can be used to study these transitions 
in structure and trace their conformational path [40]. Raman is 
also coupled to techniques such as atomic force microscopy (AFM), 
scanning electron microscopy (SEM), and vibrational circular 
dichroism (VCD) to study the morphology of the amyloid fibrils 
[41–43]. Elucidation of the structural details of these aggregated 
proteins is challenging. The morphology of aggregates are differ-
ent based on different interacting partners, such as metal ions [42] 
and lipids [44]. Similarly, the effect of temperature, pH, ionic 
strength, etc. on the protein can be studied using Raman spectros-
copy [43]. Recently, Ramachandran et al., employed the UV reso-
nance Raman spectroscopy to look at the signatures of changes in 
secondary structure and side-chain packing during fibril formation 
by the four repeat functional domain of Tau in the presence of the 
inducer heparin [45]. However, there is a lack of Raman study on 

Fig. 2 (a) Principle of Raman effect and (b) instrumentation. When the sample illuminated with monochromatic 
laser beam (green color), the exchange of quantum vibrational energy occurs, which results into the change in 
the energy of scattered light. However, most of the scattered light has the same energy (elastic scattering) as 
the incident light and referred as Rayleigh scattering. Only the very small amount (1 in 107 photons) of scattered 
light (elastic scattering) can be of higher or lower vibrational energies depending on the vibrational state of the 
molecule and can be referred as Stokes and anti-Stokes Raman scattering. The Raman shifted light (blue color) 
will filter from notch filter and detected by CCD detector
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the natively unfolded Tau protein and its temperature dependence. 
In this chapter, hTau40WT and hTau23WT are studied in their 
native condition using a combination of sedimentation analysis and 
Raman spectroscopy as a function of temperature such as 10, 25, 
and 37 °C.

The Raman spectroscopic technique is established as a very 
useful probe to study the structure of natively unfolded proteins 
(one of the example is Tau protein) [46, 47]. In view of this fact, 
the Raman spectroscopic measurements were performed on 
hTau40WT and hTau23WT at three different temperatures such as 
10, 25, and 37 °C (Fig. 3a) to analyze the effect of temperature on 
the secondary structural content of these proteins. Figure 3a shows 
the Raman spectra of hTau40WT and hTau23WT proteins and the 
Fig. 3b shows the enlarged area from 1600 to 1700 cm−1, which 
compares the amide I band for all the cases. Amide I band is very 
important in assigning the peptide backbone conformation in pro-
tein structure [45]. Generally, the presence of an amide I band 
centered between 1650 and 1658  cm−1 shows the presence of a 
high α-helical content, the Raman band in the range 1660–
1665 cm−1 shows high proportions of random coil, and the Raman 
band in the range 1665–1680 cm−1 indicated unordered structure, 
and β-sheet structures. It can be easily noticed from the Fig. 3b 
that the intensity of amide I band was more in the case of hTau40WT 
in comparison to hTau23WT. This observation supports the fact 
that hTau23WT is a shorter construct of hTau40WT. Raman spec-
tra for hTau40WT at different temperatures show that the struc-
ture of the protein is dynamic in nature and can be changed upon 
change in the environment temperature. The amide I band of the 
hTau40WT was broad, which suggest the presence of various 

Fig. 3 Tau conformation mapped by Raman spectroscopy. Raman spectroscopy is established as a very useful 
technique to study the secondary structure of protein molecules, especially, natively unfolded proteins (such as 
Tau), which do not have the defined secondary structure in their native states. (a) Raman spectra of hTau40WT and 
hTau23WT proteins at various temperatures 10, 25, and 37 °C, and (b) respective enlarged view of amide I band
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secondary structures in the protein molecule, and can be consid-
ered as a doublet. The spectra recorded at 10 °C for hTau40WT 
shows the most prominent peak ~1654 cm−1, and the less intense 
peak ~1664  cm−1, related to a high proportion of α-helix and a 
small proportion of random coils as well as β-sheets. However, 
upon further increase in the temperature to 25 and 37 °C, leads to 
the clear shift of the most prominent peak to ~1661 cm−1 which 
indicates the presence of a high proportion of random coils or 
unordered structures, apparently, with a small proportion of α-helix 
and β-sheets. However, the significant changes in the structure of 
hTau23WT, as a function of environmental temperature was not 
observed. The presence of amide I band ~1661  cm−1 shows the 
presence of a high proportion of random coils or unordered struc-
ture at all the three temperatures (10, 25, and 37 °C).

2  Materials

	 1.	 Protein sample buffer (Raman spectroscopy): 50 mM phos-
phate buffer, pH 6.8.

	 2.	 BCA Protein Assay.
	 3.	 5 μM BSA in 50 mM phosphate buffer, pH 6.8.
	 4.	 Microcentrifuge, such as Eppendorf 5418 R; rotor FA-45-

18-11 (Eppendorf).
	 5.	 SDS Laemmli sample buffer 5X.

Fig. 4 Sedimentation assay of soluble hTau40WT (a) and hTau23WT (b) at different temperatures (10, 25, and 
37 °C). Supernatant and pellet fractions obtained after sedimentation assay at different temperatures were run 
on 10 % SDS-polyacrylamide gel. Notation 1 and 2; 3 and 4; 5 and 6 denotes supernatant and pellet at 10, 25, 
and 37 °C, respectively on the SDS-PAGE. Soluble protein was found in supernatant fraction. These results 
clearly suggest that the structural changes solely come from temperature
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	 6.	 Coomassie Brilliant Blue R-250 staining solution: 45 % metha-
nol, 10 % glacial acetic acid, 45 % water, 2.5 g/L Coomassie 
Brilliant Blue R-250; dissolve 2.5 g Coomassie Brilliant Blue 
R-250 in 450 mL methanol, mix 100 mL acetic acid to 450 mL 
water and add to the Coomassie dye solution, and filter.

	 7.	 HR-800 Raman spectrophotometer (Jobin Yvon-Horiba, 
France).

3  Methods

Expression of Tau isoforms (see Fig. 1) in E. coli and purification is 
described in Chapter 1 and in [48] (see Notes 1 and 2).

	 1.	 The protein concentrations are measured by using bicincho-
ninic acid (BCA) assay and concentrations of hTau40WT and 
hTau23WT are estimated as 26.3 and 18.5 mg/mL, respec-
tively. Bovine serum albumin (BSA) is used as standard. The 
proteins are aliquoted and stored them in −80 °C (see Note 1).

	 2.	 The protein aliquot at −80 °C is allowed to thaw on ice and is 
centrifuged at 4 °C and 20,800 × g for 1 h (see Notes 2 and 3).

	 3.	 50  μL of 1  mg/mL protein dilutions of soluble Tau 
(hTau40WT and hTau23WT) are prepared and incubated at 
10, 25, and 37 °C for 30 min. After incubation samples are 
centrifuged at 20,800 × g for 30  min at 10, 25, and 37  °C 
respectively (see Notes 4 and 5).

	 4.	 50 μL supernatant is carefully transferred into other tube after 
centrifugation. The pellet is resuspended in 50 μL of Protein 
sample buffer (see Note 6).

	 5.	 SDS sample buffer is added to supernatant and pellet fraction 
and these are resolved by 10 % SDS-polyacrylamide gel elec-
trophoresis (Fig. 4a, b).

	 6.	 The percentage of Tau isoforms (hTau40WT and hTau23WT) 
in the supernatants and pellets are quantified by densitometry 
of Coomassie Brilliant Blue R-250 stained gels (Fig. 4a, b). 
These results clearly suggest that the structural changes solely 
come from temperature.

	 1.	 Raman spectra are recorded on a HR-800 Raman spectropho-
tometer equipped with achromatic Czerny-Turner type mono-
chromator with silver treated mirrors and 800  mm focal 
length. The monochromatic radiation emitted by a He–Ne 
laser (633  nm), operating at 20  mW is used as a source. 
The instrument has Raman-shift detection accuracy of ±1 cm−1 
between 100 and 2000 cm−1. The instrument is equipped with 
thermoelectrically cooled (with Peltier junctions), multi-chan-
nel, spectroscopic-grade charge coupled device (CCD) detec-

3.1  Protein 
Preparation

3.2  Tau 
Conformation 
Monitored by 
Sedimentation Assay

3.3  Tau 
Conformation 
Monitored by Raman 
Spectroscopy
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tor (1024 × 256 pixels of 26 μm) with dark current lower than 
0.002 electrons pixel−1 s−1 using a 50× objective.

	 2.	 In order to record the temperature dependent Raman spectra 
using cooling-heating stage, the liquid protein samples are 
mounted on a LINKAM THMS 600 heating/freezing stage 
to which a temperature programmer TP 94 is connected with 
a temperature controller. Liquid nitrogen is used to maintain 
the stage at low temperature (see Note 7).

	 3.	 Temperature dependent Raman spectra of hTau40WT and 
hTau23WT protein samples are recorded at 10, 25, and 
37 °C. The Raman spectra are recorded only after incubating the 
sample at specific temperature for at least 5 min (see Note 8). All 
the parameters such as RTD exposure time = 15  s, exposure 
time = 15  s, accumulation number = 2, filter = D2, hole 
size = 400 μm, slit = 100 μm, grating = 1800 g/mm, are kept fixed 
while recording the Raman spectra for all the measurements.

	 4.	 The background correction and smoothening are performed 
for all the recorded spectra using instrumental software.

	 5.	 All the experiments are performed for at least two different 
occasions to check the reproducibility.

4  Notes

	 1.	 Tau is a soluble protein, which does not form any precipitates, 
but it aggregates if not handled properly.

	 2.	 Prior to the end of pelleting only supernatant is collected 
without touching the bottom of the tube, in order to not dis-
turb the pellet, if any formed, otherwise the particles settled.

	 3.	 After purification and estimating the concentration, proper 
labeling is done and the protein samples are aliquoted and 
stored in −80 °C as repeated freeze–thaw may lead to protein 
aggregation.

	 4.	 Centrifugation is done to remove the aggregated protein to 
ensure that only soluble protein is retained for sedimentation 
assay.

	 5.	 Incubation and pelleting are done at identical temperatures, 
i.e., if the protein is incubated at 10 °C, it is pelleted at 10 °C.

	 6.	 1 mg/mL of hTau40WT and hTau23WT would correspond 
to 21.81 and 27.25 μM, respectively.

	 7.	 The protein samples should be transferred carefully from the 
icebox to the Raman temperature stage so that the tempera-
ture of protein environment should not increase more than 
10 °C.
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	 8.	 Raman measurements should start from 10 °C which would 
be beneficial for precise liquid state measurements and sec-
ondary structure prediction.
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