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Abstract

Computational protein design (CPD), a yet evolving field, includes computer-aided engineering for partial or
full de novo designs of proteins of interest. Designs are defined by a requested structure, function, or working
environment. This chapter describes the birth andmaturation of the field by presenting 101 CPD examples in
a chronological order emphasizing achievements and pending challenges. Integrating these aspects presents
the plethora of CPD approaches with the hope of providing a “CPD 101”. These reflect on the broader
structural bioinformatics and computational biophysics field and include: (1) integration of knowledge-based
and energy-based methods, (2) hierarchical designated approach towards local, regional, and global motifs
and the integration of high- and low-resolution design schemes that fit each such region, (3) systematic
differential approaches towards different protein regions, (4) identification of key hot-spot residues and the
relative effect of remote regions, (5) assessment of shape-complementarity, electrostatics and solvation effects,
(6) integration of thermal plasticity and functional dynamics, (7) negative design, (8) systematic integration of
experimental approaches, (9) objective cross-assessment of methods, and (10) successful ranking of potential
designs. Future challenges also include dissemination of CPD software to the general use of life-sciences
researchers and the emphasis of success within an in vivo milieu. CPD increases our understanding of protein
structure and function and the relationships between the two along with the application of such know-how for
the benefit of mankind. Applied aspects range from biological drugs, via healthier and tastier food products to
nanotechnology and environmentally friendly enzymes replacing toxic chemicals utilized in the industry.

Key words Computational protein design, Inverse folding problem, De novo design, Directed
evolution, Rational design, Synthetic biology, Negative design, Enzyme design, Protein–protein
interaction

“The abundance of substances of which animals and plants are composed of, the

remarkable processes whereby they are formed and then broken down again claimed

the attention of mankind, and hence from the early days they also persistently capti-

vated the interest of chemists. . . . To determine the structure of the molecule the chemist

proceeds in a similar way to the anatomist. By chemical actions he breaks the system

down into its components and continues with this division until familiar substances

emerge. Where this decomposition has taken different directions, the structure of the

original system can be inferred from the decomposition products. Usually, however, the

structure will only be finally elucidated by the reverse method, by building up the

molecule from the decomposition products or similar substances, i.e. by what is termed

synthesis. Nevertheless, the chemical enigma of Life will not be solved until organic

chemistry has mastered another, even more difficult subject, the proteins, in the same
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way as it has mastered the carbohydrates. It is hence understandable that the organic

and physiological chemists are increasingly turning their attention to it. . . .”

Emil Fischer, Nobel Lecture, December, 12th 1902

1 Introduction: The Birth of Computational Protein Design

In 1902 Emil Fischer’s Nobel lecture [1] presented the idea of
protein design (see exert). He emphasized that molecules can be
elucidated only by the reverse method, namely, design from decom-
position products, which in the case of proteins are the amino acids.
At the time Fischer stated that proteins are far more difficult than
carbohydrates, for which he received the Nobel. Indeed, it was only
in 1972 that Chris Anfinsen received a Nobel Prize for the “con-
nection between the amino acid sequence and the biologically
active conformation.” Anfinsen’s famous experiment included dena-
turing and renaturing ribonuclease A; thus setting the stage for the
sequence-structure–function relationships underlying protein sci-
ence [2]. In 1981 Drexler speculated that it should be possible to
design novel proteins and that such proteins could provide a general
capability for molecular manipulation [3]. In 1983 Pabo wrote about
designing proteins and peptides concluding that it may be difficult to
design proteins which carry out a particular function but the use of
pre-folded backbone configuration may be useful at this stage [4].
Pabo pointed at the so called inverse folding problem of using a
known backbone conformation on which new sequences can be
applied; thus modifying function. In agreement with Pabo, in 1987
Wodak reviewed the field with the title “computer-aided design in
protein engineering” where the key features of CPD were laid out in
a manner that is accurate till this very day, and not only in e.g. the
Wodak lab’s DESIGNER [5, 6] CPD software.

In 1985 DeGrado conducted what should be regarded as the
first CPD: a design, synthesis, and characterization of a 17-residue
helical peptide that was the tightest calmodulin-binding peptide
produced [7]. This first CPD attempt, described in more detail
below, includes many of the main features of current CPD including
the need to produce and characterize the suggested design, the
crosstalk between human and computer input and the iterative feed-
back process of the CPD scheme to learn and improve the design.

Other early attempts were “computer-aided” by visually inspect-
ing the protein for suggesting specific point mutations. For example,
in 1985 Rutter and coworkers replaced two glycines by alanines in
the binding site of trypsin, thus altering binding specificity [8].

While DeGrado and others used computer-aided protein
design in early days, according to PubMed, the term “protein
design” was introduced only in 1986 by Vonderviszt, Matrai, and
Simon [9]. As in the talk of Fischer, Simon’s paper did not focus on
the protein design per se. Rather, they implied the potential use of
analysis of protein environment trends as parameterization required
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for protein design. It took an additional decade for the term
“computational protein design” to enter the literature. In 1997,
Dahiyat, Sarisky, and Mayo introduced the term as part of a system-
atic design of a ββαmotif (Table 1) in which they designed 20 of the
28motif residues [18, 19]. Early attempts of CPD often did not use
this term despite describing science that is in the core of the CPD
field till this very day. In parallel, numerous CPD publications refer
to CPD with related terms that relate to protein design but do not
focus on the related computational methodology. These include
protein design, synthetic biology, rational design, and more.

Of special note is the fuzzy division between “protein design”
and CPD as often there is a significant contribution from computa-
tional tools to protein designs that are conducted with an expert
know-how that is formulated by computation. This review will
emphasize attempts of computer-assisted designs but will focus
on protein designs in which the computational part is central to
the design methodology.

Thus, in a century since Fischer’s visionary Nobel lecture,
science has moved from yearning to understanding protein struc-
ture by designing it from building blocks to applying a computa-
tional general design algorithm. Not less important, protein design
is often termed “the inverse folding problem” as the success of
using building blocks to fold a protein into a given structure
and function is the true proof that folding is well-understood.
Consequently, the know-how and success of CPD contribute
directly to that of protein structure prediction in healthy and
diseased proteins. Within these frameworks, the CPD field is
constantly growing into new basic- and applied-scientific research.

Here, rather than providing an overview of methodological
components [121, 122], the idea is to present CPD examples in
chronological order showing the achievements and pending chal-
lenges in a timeline perspective. In other words, rather than
providing a grocery list of available computationally assisted protein
design, this review is aimed towards presenting the state of the field
as it evolves on the chronological milestone road. Taken together,
these case-studies encompass the breadth of the CPD field, the
plethora of distinct flavors of it as well as the common threads of
success and pitfalls computational protein designers are encoun-
tered with (Table 1). The concluding remarks focus on the latter;
providing scientific questions for years to come.

2 The First Decade of Computational Protein Design, 1985–1994

In 1985 DeGrado, a leading pioneer in protein design, designed
with coworkers the tightest-binding peptide inhibitors of calmod-
ulin known till then [7]. Computationally, the 17-residue helical
peptide designs included computer-graphics based modeling of the
calmodulin target as well as computer modeling [123] of the
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Å
)

2
0
0
5
,
K
o
rk
eg
ia
n
,

S
to
d
d
ar
d
,
Sc
ie
n
ce

[5
2
]

3
6
.

N
eg
at
iv
e
d
es
ig
n
fo
r

re
en

g
in
ee
ri
n
g
a

h
o
m
o
d
im

er
to

a
h
et
er
o
d
im

er

S
sp
B
h
o
m
o
d
im

er
O
R
B
IT

,
m
o
d
ifi
ed

b
y

ca
p
p
in
g
u
n
fa
vo

ra
b
le

vd
W

en
er
g
et
ic
s
an
d

ad
d
in
g
an

M
C

n
eg
at
iv
e-

d
es
ig
n
m
o
d
u
le

X
-r
ay
,
G
u
H
C
l-

d
en

at
u
ra
ti
o
n
,

ch
ro
m
at
o
g
ra
p
h
y

d
im

er
iz
at
io
n
as
sa
y

1
zs
z
(2
.0

Å
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Å
),
3
n
ed

(0
.9
5
Å
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Å
)

2
0
1
1
,
F
le
is
h
m
an
,

B
ak
er
,
Sc
ie
n
ce

[8
6
]

7
0
.

D
e
n
o
vo

d
es
ig
n
o
f
a

b
in
d
in
g
p
ai
r

A
n
kr
yn

-r
ep
ea
t-
b
as
ed

T
yr
-

T
yr

b
in
d
in
g
b
et
w
ee
n
P
rb

an
d
P
d
ar
.

R
o
se
tt
aD

es
ig
n
,
P
at
ch
D
o
ck
,

m
o
ti
f
se
ar
ch
,

ex
p
er
im

en
ta
l
af
fi
n
it
y

m
at
u
ra
ti
o
n

X
-r
ay
,
E
L
IS
A
,
S
P
R
,

fl
u
o
re
sc
en

ce
p
o
la
ri
za
ti
o
n
,
D
L
S
,
C
D
,

N
M
R

3
q
9
n
(2
.0

Å
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Å
),
4
ek
q

(1
.5
4
Å
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(Å

re
so
lu
ti
on
)

Y
ea
r,
fi
rs
t
an
d
la
st

au
th
or
s,
jo
ur
na
l,

an
d
re
fe
re
nc
es

P
ro
te
in

st
ru
ct
ur
e

(fi
rs
t
P
D
B
on
ly
)

7
9
.

H
ig
h
-a
ffi
n
it
y
ep
it
o
p
e

sc
af
fo
ld

H
IV

2
F
5
ep
it
o
p
e
d
es
ig
n

u
si
n
g
b
ac
kb

o
n
e-
g
ra
ft
in
g

o
n
to

sc
af
fo
ld

p
ro
te
in
s

S
ix
-
an
d
se
ve
n
-r
es
id
u
e

ep
it
o
p
e
d
es
ig
n
vi
a

R
o
se
tt
a,

E
p
it
o
p
e

fr
ag
m
en

t
se
ar
ch

in
th
e

P
D
B
,
lo
o
p
cl
o
su
re

vi
a

cy
cl
ic
co
o
rd
in
at
e

d
es
ce
n
t
(C

C
D
)
an
d
M
C

X
-r
ay
,
C
D
,
st
at
ic
li
g
h
t-

sc
at
te
ri
n
g
,
S
P
R

3
ri
j
(2
.3

Å
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Å
),
4
p
n
b

(2
.0

Å
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Å
)

2
0
1
4
,
T
h
o
m
so
n
,

W
o
o
lf
so
n
,
Sc
ie
n
ce

[1
1
4
]

9
6
.

S
yn

th
et
ic
co
il
ed

-c
o
il
s

A
n
ti
p
ar
al
le
l
h
o
m
o
d
im

er
ic

co
il
ed

-c
o
il
s
w
it
h
n
o

cr
o
ss
-s
p
ec
ifi
ci
ty

D
F
IR

E
,
C
C
C
P
st
ru
ct
u
re

g
en

er
at
o
r,
C
L
A
S
S
Y

A
U
C
,
d
is
u
lfi
d
e-
ex
ch
an
g
e,

C
D

–
2
0
1
4
,
N
eg
ro
d
,

K
ea
ti
n
g
,
JA

C
S

[1
1
5
]

9
7
.

E
p
it
o
p
e-
fo
cu
se
d

va
cc
in
e
d
es
ig
n

R
S
V
h
el
ix
-t
u
rn
-h
el
ix

ep
it
o
p
e
in

a
th
re
e-
h
el
ix

b
u
n
d
le

sc
af
fo
ld

F
o
ld
-f
ro
m
-l
o
o
p
s
(F
F
L
)

p
ro
to
co
l
in

R
o
se
tt
a

X
-r
ay
,
N
M
R
-H

S
Q
C
,
C
D
,

S
P
R
,
E
L
IS
A
(o
n

im
m
u
n
iz
ed

m
ac
aq
u
es
)

4
L
8
I
(2
.0

Å
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calmodulin–peptide interaction focusing on electrostatic potential
surfaces and structural modeling. These included side-chain posi-
tioning using geometries taken from a known homologous struc-
ture of an intestinal calcium-binding protein, interactive computer
graphics, and minimization using the AMBER [124] force-field.
The acquired know-how of the calmodulin-peptide structure and
binding characterization was tested by iterative peptide synthesis
and characterization. Hence, this early attempt of CPD underscores
the need to integrate all available know-how and methods for the
requested target as well as the need to combine theory and experi-
ment in an interactive and iterative feedback loop.

In 1990 Hecht and Ogden and the Jane and David Richardson
lab designed a de novo four-helix bundle, termed Felix [10]. This is
an example in which protein design rather than CPD was the
leading method. Even for designing the hydrophobic core, the
authors write that: “Space-filling models of Felix were constructed
and the sequence was then modified to remove lumps or fill holes. This is
easier to do with physical models than on the computer.” Computa-
tionally, several structures were modeled followed by application of
molecular dynamics (MD). Positive- and negative-design rules were
conducted manually, including for residues preferring helicity, for
the radial distribution of hydrophobicity along the helices and for
helix capping. Hence, this case-study proves that it is required not
only to focus on the requested design combining existing and
newly found parameterization, but rather attention should be
devoted to the so-called negative design of avoiding unwanted
designs.

In 1991 Hellinga and coworkers used CPD software aimed at
sites with predefined geometry (DEZYMER [125]). They intro-
duced a copper-binding site into thioredoxin by mutating four
amino acids [11]. In the analysis of the design they concluded
that two residues are pivotal for the metal ligation while the two
other are pivotal for removing alternative modes of binding, thus
highlighting the need to focus on negative design.

In 1991 Wilson, Mace and Agard presented a generalized
model for altering substrate specificity [12]. Using a ΔΔG free
energy perturbation approach, the free energy of the free substrate,
free enzyme, and complex were computed separately as to non-
bonded and solvation energetics over the different potential con-
formations suggested by the PROPAK [126] rotamer-library based
CPD software. The approach was tested using a protease in which
the specificity for cleaving leucine was raised by three orders of
magnitude following a single mutation. While this CPD example
entails merely a single mutation, the components of the approach
include many of the later CPD methodology.

In 1992 Hurley and Matthews redesigned the core of bacterio-
phage T4 lysozyme [13]. This case-study, coming from the lab
most known for thoroughly studying the effect of mutation on
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protein structure and function, includes several insights. Only
nine solvent inaccessible amino acids were subjected to redesign.
Moreover, a core valine residue was not part of the redesign as it
binds structural water. The repacking was limited to residues
that are more hydrophobic compared to the wild-type residues. In
addition, as all potential sites occur in α-helical regions, no net
increase in the number of β-branched amino acids (Val and Ile)
was allowed. While each addition of a β-branched amino acid to a
helix has a small energetic cost of less than 0.5 kcal/mol, it was
feared that the accumulation of such residues will destabilize
the structure. For packing calculations, the Ponder and Richards
rotamer library [126] was used truncating rare (<5 %) rotamer
conformations. Hydrogens were omitted and reduced van der
Waals radius was applied to account for local relaxation. The free
energy was calculated with a standard local minimization as well as a
component accounting for the loss of side-chain conformational
entropy. Four amino-acids were mutated showing a similar stability
compared to the template structure (0.5 kcal/mol destabilization).
The destabilization of each single mutation was much larger thus
showing the overall cooperative nature of the overall core repacking
design.

In 1994 Jane and David Richardson, de novo designed beta-
doublet, a β-sandwich protein [14]. It is no surprise that such an
endeavor came from pioneers in visualization (Richardson diagram,
also known as ribbon diagram), parameterization, and quality con-
trol of protein structures. A four-stranded β-sheet dimer designed
from scratch included an intersubunit disulfide bridge. Internal
side chains were chosen for their statistical preference for β-sheet
formation and their ability to tightly pack in a protein core. This
knowledge-based parameterization was corroborated by side-chain
repacking of rotamers. This design scheme focused on negative
design, specifically disfavoring the Greek Key topology. To mini-
mize alternative folding modes, turns were shortened as much as
possible. Binding of 1-anilinonaphthalene-8-sulfonate (ANS) was
higher, compared to binding to well-folded proteins. Along with
low unfolding cooperativity and poor NMR characteristics,
this may indicate a loosely packed hydrophobic core or even a
molten-globule structure; highlighting the challenge of obtaining
thermostable de novo designed proteins, let alone those composed
of β-sheets.

3 The Second Decade of CPD, 1995–2004

Setting the framework for CPD, in 1995 DeGrado and coworkers
reviewed the hierarchic approach to protein design including helix
stabilization, coiled coils, four helix bundles, β-sheets, mixed α-β
structures, DNA-binding proteins, and functional proteins [127].
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The presented approach emphasized the need for quantitative
parameterization of the various levels of structure and function
within the design target. Such parameterization can be either
physics-based or knowledge-based. In either ways, it should be
integrated into quantitative potential (scoring) functions.

In 1995Desjarlais and Handel presented a novel computational
framework for the de novo design of hydrophobic cores [15]. The
CPD was conducted via the Repacking of Core (ROC) program,
later developed to their Sequence Prediction Algorithm (SPA)
[128]. The approach included two steps—a custom-made rotamer
library for hydrophobic residues (Val, Ile, Leu, Phe, and Trp) and a
genetic algorithm (GA) for optimizing sequence and structure
space of the designed protein. The method was exemplified on
the phage 434 Cro helical protein with five to eight amino acid
changes in the hydrophobic core. Two of the three attempted
designs resulted in a stable protein. This first study into a pivotal
protein region helped to substantiate the notion that the noncore
residues of a protein play a role in determining the uniqueness of
the folded structure [15].

In 1997 Desjarlais and Handel applied their ROC program for
the stabilization of a mainly β-sheet protein, ubiquitin [16]. Nine
designs with three to eight mutations each were experimentally
characterized. Unlike their 434 Cro [15] redesign, all ubiquitin
designs were less stable relative to the wild-type protein. The
authors postulate that this may be due to the fact that in contrast
to the α-helical 434 Cro protein, ubiquitin is mainly composed of
β-strand secondary structures which may dictate more stringent
packing requirements. One of the designs was structurally eluci-
dated confirming that the core side-chains had less favorable con-
formations and higher flexibility compared to the wild-type [17].

In 1997Dahiyat andMayo opened the field of full-protein fully
automated computational de novo protein design [18, 19]. The
CPD scheme was termed ORBIT [18] for Optimization of Rota-
mers by Iterative Techniques. The so called full sequence design 1
(FSD-1) was not a typical protein of over 200 amino acids, but
rather a small, 28-residue sequence; a length considered a peptide
rather than a protein. Nevertheless, the remarkable achievement
included a complex ββαmotif based on the polypeptide structure of
a zinc finger domain in which 20 of the 28 residues were subjected
to design. Moreover, while such a small DNA-binding motif is
folded in nature with the aid of a zinc ion, the zinc-ligating residues
(two cysteines and two histidines) were replaced in the design with
two phenylalanines, an alanine, and a lysine without the need for
the metal ion. As a side-remark, the use of a charged lysine in such a
core position highlights the need to take caution in stigmatizing
amino acids as “hydrophobic” or “hydrophilic” as in this case the
long hydrophobic neck of this charged residue filled the hydropho-
bic requirement within this position. The 1.9 � 1027 possible
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amino acid sequences were searched by application of the Dead End
Elimination (DEE) theorem [129]; highlighting the intertwined
connected between CPD and search and sampling methods [130].
FSD-1 displayed low identity to any other existing sequence, thus
establishing it as a ‘de novo’ design. In this fixed-backbone design,
an existing crystal-structure template was utilized in which eight
residues were left as is and the remaining 20 were subjected to
design. The hierarchical approach of confining key positions was
further confined by considering 7, 10, and 16 optional amino acids
for each core, surface, and boundary position, respectively. The
backbone dihedral angle further confined two positions to glycine,
thus de facto leaving 18 positions for CPD. The combined struc-
ture space defined by the accessible backbone-dependent Dunbrack
rotamer library [131] applied over the accessible fold space,
resulted in 1.1 � 1062 possible rotamer sequences. The experimen-
tal validation included Nucleic Magnetic Resonance (NMR) struc-
tural elucidation exhibiting 1.98 Å and 0.98 Å Cα-atom root means
square deviation (RMSD) between the design and the template
structure for the full and the core residues (residues 8 to 26),
respectively. The difference between these two numbers highlights
the intrinsic flexibility and disorder associated with nonsecondary
structure elements, especially when positioned at the edge of the
protein sequence.

In 1998 theMayo lab applied the ORBIT [18] for the design of
a hyperthermophilic Streptococcal protein G β1 domain [20]. The
stability enhancement stemmed from seven mutations which opti-
mized core packing, increased burial of hydrophobic surface area,
more favorable helix dipole interactions, and improvement of sec-
ondary structure propensity. The resulting protein displayed a
melting temperature above 100 �C and a 4.3 kcal/mol thermody-
namic stabilization compared to the wild-type at 50 �C. Structure,
activity, and binding to an antibody were similar to the wild-type
structure thus changing only the thermal stability of the protein.

In 1998 the Kim lab designed right-handed coiled coils apply-
ing backbone flexibility, hydrophobic-polar residue patterning for
the superhelical axis and the hydrophobic core along with modeling
of packing [21]. Backbone coordinates were determined by explor-
ing a parametric family of superhelical backbones described origi-
nally by Francis Crick. Negative design was applied by mimicking a
less-folded state via permutations on the mutation location and
calculating the energy gaps to such permutations. Dimeric, tri-
meric, and tetrameric bundles were designed. The tetramer was
structurally resolved exhibiting a striking 0.2 Å RMSD for the core
residues.

In 1998 the DeGrado lab de novo designed an antiparallel
three-helix bundle, α3C, in an iterative process with specific inter-
actions added incrementally [22]. In this design many steps were
designed rationally without the aid of the computer. Two rounds of
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core design were conducted fully by CPD. A previously designed
dimer (CoilSer) that was found to be a trimer was the initial
template for the design. In this structure, some hydrophobic Leu
residues adopt a less likely rotamer suggesting the availability of
better core packing. The trimer was trimmed by one turn. In the
first round, GlyAsn and ProGlyAsn loops were added to turn the
discrete helices into a single subunit. In the second round, helix
capping was introduced and in the third round nonnative charac-
teristics were eliminated by negative design. Specifically, the 17
residues of the hydrophobic core were repacked using 30 runs of
ROC followed by 30 runs of ROC for a subset of six residues.
Further, to avoid both clockwise and counterclockwise turning of
the helices within the trimer, charged residues were designed to
cause electrostatic repulsion and favor only one conformation. This
is a direct negative design step. Thus, the designed helix capping
interactions and electrostatic interactions between partially exposed
residues assisted in achieving a unique, native-like structure. In
1999, three surface exposed residues were changed thus designing
α3D in which the homology between the helices was decreased thus
simplifying structural elucidation [23].

In 1999 the Serrano lab redesigned the two-helix coiled-coil
interleukin-4 using GCN-4 as a template [24]. This is not a classical
CPD case-study but rather a computer-aided sequential rational
design where deep understanding of the binding interface enabled
grafting of the positive electrostatic convex binding site shape from
the four-helix-bundle protein to a new two-helix template. The
side-chains of the mutated positions were structurally predicted
via the rotamer-library-based software SMD [132]. Interestingly,
MD simulations were applied as in silico screening of the mutations
prior to decision on experimental characterization. Depending on
the size of the interleukin-4 binding site (to interleukin-4 receptor
alpha) grafted on the GCN4 template, the binding affinities ranged
from 2 mM to 5 μM.

In 2001 the Baker lab applied CPD to convert the monomeric
protein L to an obligate dimer by just three mutations [25]. The
design relied on a β-hairpin single mutation domain swapped dimer
in which a β-turn straightens and the C-terminal strand inserts into
the β-sheet of the partner. The Rosetta [133] module RosettaDe-
sign [134] focused on an eight-residue region and added just two
mutations to the domain swapping mutation resulting in an obli-
gate dimer.

In 2001 the Serrano lab applied PERLA [135] for the redesign
of their previously designed 20-residue β-sheet protein betanova
[136] aiming to create a set of double- and triple-mutations with
different folding stabilities so as to compare predicted and experi-
mental folding stabilities [26]. Briefly, PERLA includes a custom-
made rotamer library, an all-atom force-field, and a combination of
statistical terms including solvation and entropy. Relaxation of the
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local strains is achieved by sub-rotamer states and most parameters
are balanced with respected to a reference denatured state. DEE is
applied to prune the search space and then side-chain conforma-
tions are weighted using a mean-field approach. Here, two CPD
schemes were applied: First, four positions adjacent to aromatic
residues were discretely redesigned aiming at utilizing the Nuclear
Overhauser effects (NOEs) between the aromatic residues and the
new mutations for evaluating structural effects. Second, multiple-
residue mutations were designed with the most promising designed
experimentally characterized. Increase in core hydrophobicity or
van der Waals contacts stabilized the design. At one site the algo-
rithm did not predict a hairpin destabilization, possibly due to
alternative conformations. Alternatively, the sequence of folding
events should be taken into account along with the balance
between long-range electrostatic interactions and short-range van
der Waals interactions. β-sheet propensities were also shown to
correlate with stabilization. Some of the mutants stabilized the
design by 1 Kcal/mol. Taken together; this early study displays
the usage of CPD algorithms for the study of structure–stability
relationships and parameterization of their underlying causes.

In 2001 Bolon andMayo applied ORBIT [18] to computation-
ally design protozymes which are enzyme-like proteins exemplified
on a thioredoxin scaffold catalyzing a nucleophilic hydrolysis of p-
nitrophenol acetate [27]. ORBIT applies a force-field and DEE
theorem to compute sequences that are optimal for a given scaffold.
The use of an inert scaffold required the design of a new cleft, which
was relatively open to the surrounding milieu, thus possibly affect-
ing efficiency. The 94 non-glycine positions reflected 10101 rotamer
sequences that were scanned using the DEE algorithm within
ORBIT [18]. The rate enhancement of ~25-fold (KM ¼ 170 � 20
μM, kcat ¼ 4.6 � 0.2 � 10�4 s�1) is comparable to that of early
catalytic antibodies (Table 2).

In 2001 the Kim lab designed six dimeric coiled coils with a
range of stabilities by combining knowledge-based rules (specifi-
cally the a and d hydrophobic positions in the heptad repeat),
rotamer selection and sampling followed by minimization [28].
The first two parts address the large accessible search space while
the last one assists in achieving quantitative estimates of interaction
energies. For example, a hydrophobic Val was constrained to the
gauche (�) rotamer, which is known to be favored in this position.
In parallel to choosing a small subset of rotamers, subrotamers were
introduced by including þ/110� of the χ1 and χ2 rotamer posi-
tions. Interestingly, to address the difficulty of modeling solvent-
exposed charged residues, residues at the e and g positions of the
heptad repeat were truncated beyond the Cδ position. Minimiza-
tion was carried out without electrostatics but with an explicit
hydrogen-bonding term and the overall solvent-exposed residue
energetics were later fixed by an empirical solvation correction.
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The propensity of residues to be in helices was also added to the
equation. The designed structures displayed an impressive <0.7 Å
for all non-hydrogen atoms.

In 2002 the DeGrado lab computationally designed an A2B2

four-helix bundle protein binding diiron called DueFerro tetramer
orDFtet [29]. The de novo design focused on the gap between the
requested fold and alternative folds thus explicitly incorporating
positive- and negative-design considerations. The design was built
using a template of a previous design which was then elongated to
increase stability by extending the four-helix bundle Crick para-
meters. Residues were chosen to increase helical propensity, stabi-
lize one of the competing topologies via computing contact
energetics. The best four designs following 700,000 iterations of
sequence design were modeled structurally and the best design was
validated experimentally.

In 2002 the Serrano lab de novo designed 13 divergent spectrin
SH3 core sequences to determine their folding properties [30].
The PERLA-based [135] redesign included nine nonconsecutive
positions resulting in a larger buried hydrophobic volume.
The computational design over-packed the core resulting in an
expansion of the β-barrel. This was further validated by conducting
Ile ! Val mutations which all resulted in strain removal and stabi-
lization. Eleven of the 13 designs folded well with similar charac-
teristics to the folded wild-type. Two structurally resolved designs
were similar to the wild-type with small changes at a loop region
following discrepancies at the χ2 side-chain positions relative to the
design.

In 2002 Shifman and Mayo modulated calmodulin binding
specificity by CPD [31]. The calmodulin binding interface was
optimized to improve binding specificity towards one of its natural
targets, smooth muscle myosin light chain kinase (smMLCK).
ORBIT [18] considered 1022 sequences to optimize the calmodu-
lin–smMLCK interface. Thus, without considering negative design
explicitly, a design with eight mutations enabled similar binding
affinity to the target and 1.5- to 86-fold decreased affinity to six
other targets. In 2003 a follow-up included optimization of the
CPD for PPI [32]. First, the pairwise portion of the energy func-
tion was weighted to enhance intermolecular interactions and
attenuate intramolecular ones. Second, the large dielectric constant
(ɛ) routinely used, effectively underemphasized the long-range
electrostatics term in the energy function relative to more local
terms such as van der Waals and hydrogen bonding interactions.
Consequently, the dielectric constant at the boundary- and surface-
optimization region was lowered from 40r to 4r. Third, a romater
library that contained rotamers representing expansion about the
χ1 and χ2 angles was applied. Six designs were tested on eight
targets of which the best showed a specificity change of 0.9- to
155-fold. Hence, by optimizing the protein– protein binding, the
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natural promiscuous binding was decreased. Yet, without direct
incorporation of negative design, this decrease displayed large vari-
ation among the alternative targets.

In 2002 Xencor applied the Protein Design Automation CPD
software (PDA [141]) and demonstrated it by redesigning 19
residues in the vicinity of β-lactamase’s active site to confer resis-
tance against antibiotic cefotexime [33]. The PDA defines a library
of mutant sequences at specific positions. After finding the global
minimum energy conformation (GMEC) an MC/SA search algo-
rithm is applied to find near-optimal sequences which are then
processed to generate a probability table of mutations at each
designed position. The CPD reduced the large sequence space to
a library of ~200,000 sequences which were experimentally
screened obtaining variants exhibiting a 1280-fold increase in cefo-
taxime resistance along with a 40-fold decrease in ampicillin
resistance.

In 2002 Xencor applied CPD to stabilize solubility and improve
thermosstability of the human growth hormone (hGH) [34] and to
stabilize the granulocyte-colony stimulation factor (G-CSF) [35].
In both cases, only core residues were redesigned. As the CPD
scheme of the two targets was similar, they are described here
together. In both cases, the DEE-based PDA CPD scheme was
applied. Interestingly, new terms for side-chain and backbone
entropies were added to the scoring function as a combined mea-
surable reflecting the loss of conformational entropy during core
packing of the designed core residues. Other scoring function
components such as polar hydrogen burial, dielectric constant,
and surface-based nonpolar exposure penalty were weighted into
a new scoring function. The 45 core residues were redesigned
resulting in 11mutations. Three designs were tested experimentally
achieving thermostabilization of 13–16 �C without compromising
biological activity. Similarly, the G-CSF was redesigned to improve
pharmacological properties for the prevention of chemotherapy-
related neutropenia [35]. Here, a homology model based on the
bovine structure was used as a template with 25–34 core residues
redesigned with PDA. Several mutants with 10–14 mutations were
experimentally characterized. Without compromising biological
activity, a thermostabilization of 13 �C and a tenfold improvement
in shelf-life was obtained.

In 2002 the Baker, Monnat and Stoddard labs designed an
artificial endonuclease by fusing the N-terminal domain of homing
endonuclease I-Dmol to an I-Crel monomer, creating a new
1400 Å2 interface between the domains [36]. The design, termed
E-Drel, for engineered I-Dmol/I-Crel, was initially modeled by
superimposing a single helix from the N-terminal domain of
I-Dmol on the same helix in I-Crel and linking the two domains
using a three-residue linker –NGN- which encourages β-turn forma-
tion. All interface positions were redesigned using RosettaDesign
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[134]. The relative contribution of side chains to the interface free
energy were evaluated by computational alanine scanning [142]. The
CPD focused on six residues exhibiting steric clashes in the original
model and extended to eight additional residues predicted to con-
tribute substantially to the interface free energy. One thousand
separate designs were conducted over two backbone models elim-
inating results that may affect the active site and reducing redundant
results. The 16 top-scoring designs, each with 8–12 interface muta-
tions were screened in vivo. The resulting structurally- and function-
ally characterized E-Drel enzyme bound the DNA target site with
nanomolar affinity and cleaves it at precisely the same rate as thewild-
type enzyme.

In 2003 the Wodak lab conducted automatic design of major
histocompatibility complex class I (MHC-I) 9-residue binding
peptides which impair CD8þ T-cell recognition [37]. While this
is a 9-amino acid peptide design rather than a protein design, it is
presented here as an early example of computationally designing
peptide–protein interactions. DESIGNER [5, 6], which combines
a fitness function with an optimization procedure selecting highly
scoring sequences. To select amino acid sequences with lowest free
energies, a DEE procedure was applied as well as a heuristic proce-
dure with 250,000 iterations. In an early ensemble-like approach,
DESIGNER was run on all six representative MHC-peptide com-
plexes available in the PDB. In addition, the top-scoring peptides
were scanned against peptides known to bind the sameMHC allele.
The six strongest binders not only bound MHC but also formed
stable complexes and three displayed significant inhibition of
CD8þ T-cell recognition.

In 2003 the Saven and DeGrado labs designed a water-soluble
analog of the pentameric phospholamban membrane protein [38].
Solubilization enables to study the protein, including ligand or
drug interaction, in the much friendlier soluble milieu. Here, 11
solvent-exposed residues were identified in the transmembrane
(TM) helix. Ten residues were redesigned using a pairwise potential
including intrahelical pairwise residue interactions, contribution to
the helix macrodipole, interhelical electrostatic interactions, solu-
bility, and sequence entropy. The water-soluble analog mimicked all
the TM protein characteristics including oligomerization state,
helical structure, and stabilization upon phosphorylation. A
truncated version of the helix bundle was resolved crystallographi-
cally [39] displaying a parallel tetramer, rather than an antiparallel
pentamer; suggesting that buried and interfacial hydrogen bonds
are pivotal for oligomerization.

In 2003 Havernek and Harbury approached molecular recogni-
tion by entwining positive- and negative-design using a multi-state
framework for engineering specificity in GCN4-based coiled-coils
[40]. Their approach selects sequences maximizing the transfer free
energy of a protein from a target conformation to a set of undesired
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competitor conformations. The algorithm identified three specificity
motifs that have not been observed in naturally occurring coiled
coils. Their genetic algorithm (GA) considered four states including
homodimer, heterodimer, aggregated-, and unfolded-state which
focus on homospecificity, solubility, and stability. Unlike previous
CPD approaches, they selected sequences that maximize the transfer
free energy from a target state to an ensemble of competitors, thus
requiring separate structural optimization for each state. Further,
they evaluated prediction by molecular mechanics with continuum
solvent allowing for direct prediction of observed free energies.
Seven of the eight engineered pairs showed ΔGspecificity values
exceeding the largest control value that was obtained fortuitously.

In 2003 the Saven and DeGrado labs designed a de novo
monomeric helical dinuclear metalloprotein [41]. The 114-residue
four-helix-bundle due ferro single-chain (DFSC) was modeled in
the backbone level using previous oligomeric structures and inter-
helical turns. While 26 residues were predetermined including
ligand-binding residues and one of the turns, all other 88 residues
were computationally designed using the Statistical Computation-
ally Assisted Design Strategy (SCADS [143]). The fixed positions
relied on previous designs of due ferro peptide ensembles [47,
144]. The software provides site-specific amino acid probabilities,
which are then used to guide sequence design. This successful
design was the first realization of complete de novo design, where
backbone structure, activity, and sequence are specified in the
design process. Several years later, the structure was solved combin-
ing NMR and unrestrained MD using nonbonded force-field for
the metal shell, followed by quantum mechanical/ molecular
mechanical dynamics used to relax the NMR-apparent local frus-
tration at the metal-binding site [42].

In 2003 Kuhlman, Dantas and coworkers at the Baker lab
presented a milestone in CPD—the first systematic de novo CPD
of a 93-residue α/β novel topology protein, which folded in
atomic-level accuracy (1.2 Å RMSD) to the design template [43].
The so called TOP7 protein includes four β-strands flanked by two
α-helices. The loops connecting the secondary structure elements
are very short thus contributing to the atomic-level accuracy of the
design. The starting models for the design were assembled from
three- and nine-residue fragments via the Rosetta package [133].
172 backbone-only models were generated, forming an ensemble
of structures that all fit the requested fold. The sequences were
generated using RosettaDesign [134] via a Monte Carlo (MC)
search protocol focusing on van der Waals and hydrogen-bonding
interactions within an implicit solvent. An additional reduction of
search complexity was attained by restricting the β-strand positions
to polar residues. With the Dunbrack rotamers [145] considered
for each position, the procedure included >10186 rotamer
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combinations. A simultaneous optimization of sequence and struc-
ture was conducted by using the Rosetta approach for backbone
optimization with each starting structure followed by 15 cycles of
sequence design and backbone optimization.

In 2003 the Desjarlais lab de novo designed a WW domain
using fully automated CPD emphasizing backbone flexibility
[44]. Here, the labs’ SPA [128] CPD software was coupled to a
sampling procedure integrating information from an ensemble of
backbone structures, thus setting the stage to multistate CPD. The
new procedure was termed SPANS for sequence prediction algo-
rithm for numerous states. The ensemble was generated by a simple
MC expansion of�5� perturbation of the backboneΦ andΨ angles
till a predetermined (0.3 Å) RMSD. Three antiparallel strands fold
into a β-sheet WW domain. The 34–40 amino acid WW domain
folds autonomously with two-state kinetics and is utilized as a
module to bind proline-containing regions. Two CPD approaches
were used, each with methods applied in many other applications.
First, SPANS-WW1 applied multiple “sub-rotamer” states which
were sampled stochastically. The Boltzmann weights of these states
were combined into one “super-rotamer” and included in the
partition function. Alternatively, SPANS-WW2 optimized each
canonical rotamter by torsion-space steepest-descent minimization.
Both designs exhibited WW domain biophysical characteristics yet
with decreased stability relative to the template, especially for
SPANS-WW1 which included a less-dispersed hydrogen-bond
network.

In 2003 the Baker lab applied RosettaDesign for the redesign of
nine different globular folds achieving, on average 65 % deviation
in sequence space with biochemical characteristics comparable with
their natural templates [45]. One of these designs, human procar-
boxypeptidase A2, was structurally resolved in 2007 enabling to
discretely analyze residues contributing to different types of hydro-
phobic packing: interhelical, inter-strand, and helix-strand packing
[46]. While the original redesign had numerous mutations and
10 kcal/mol increased stability, relative to the wild-type, mutating
merely four residues yielded a 5 kcal/mol stability increase.

In 2004 Kaplan and DeGrado designed a phenol-oxidase from
first principles [48] using a computationally designed four-helix-
bundle scaffold made out of four peptides of two kinds (A2B2) that
assemble in a noncovalent manner [29]. Specifically, positions 15
and 19 were mutated to small amino acids thus sculpting the diiron
binding pocket to bind the 4-aminophenol substrate. The resulting
quinone monoamine product was produced with a kcat/KM ¼
1500 M�1 min�1 with efficiency sensitive to the size of the binding
pocket, thus reporting on design specificity. Herein, although the
three-dimensional structure of the backbone and sequence of the
de novo designed scaffold protein was designed computationally,
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the subsequent introduction of catalytic activity was accomplished
without methods or by screening large number of variants.

In 2004 the Baker lab redesigned specificity of a protein–
protein interaction between a bacterial nonspecific DNase (colicin
E7) and its tightly bound inhibitor protein (immunity protein Im7)
pairs [49]. The structurally resolved binding pairs offer straightfor-
ward activity assays and the computational design focused on
destabilizing interactions with the wild-type partner while
stabilizing the mutant complex. Interface positions on both
binding partners were mutated and assessed as to their binding
free energies and specificity changes between cognate and noncog-
nate binding partners. Three positions were chosen for redesign in
the DNase and nine in the inhibitor. The designed cognate pairs
displayed low affinity relative to the wild-type pair, presumably due
to a new water network, which was not part of the modeling. This
suggsts focusing on explicit modeling of bound water in interface
design. Nevertheless, the redesigned interface was structurally
resolved displaying 0.62 Å RMSD between the model and the
actual structure. Focusing on the hydrogen bond network and
water therein, a 2006 follow-up study sampled alternate rigid
body orientations to optimize the interface interactions and then
utilized the resolved structure to further optimize the hydrogen
bonding network, thus increasing the specificity difference between
cognate to noncognate complexes by 300-fold [50].

In 2004 the DeGrado and Saven labs applied CPD to design a
water-soluble analog of the potassium channel KcsA [51]. Using
SCADS [143] and the previous solubilization application [38],
35 solvent-exposed residues were identified and subjected to muta-
tion. The first round of the water-soluble K-channel (Denoted
WSK-1) displayed high oligomers and thus additional mutations
were applied on two solvent-exposed hydrophobic patches. The
resulting WSK-3 structure mimics the TM structure in secondary
structure, tetrameric quaternary structure, and tight binding of a
toxin and a channel blocker.

4 The Current Decade of CPD, 2005–2014: From Enzymes to Membrane Proteins

In 2005 the Stoddard and Baker labs conducted thermostabiliza-
tion of the homodimeric hydrolase enzyme yeast cytosine deami-
nase (yCD), which converts cytosine to uracil [52]. Only three
mutations enabled an increase of 10 �C in the melting temperature.
All residues that were more than 4 Å from the active site and were
not involved in the dimer interface were subjected to CPD. Half of
the 65 residues were left unchanged following the redesign and half
of the remaining suggested mutations were solvent exposed. The
remaining suggested mutations were experimentally characterized
individually suggesting a triple mutant as the most thermostable
one.
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In 2005 Sauer and coworkers compared positive- and negative-
design strategies for reeingineering a homodimer into a
heterodimer [53]. Using the Stringent Starvation Protein B
(SspB) α/β-fold homodimer as a model system, stability-focused
(positive design) using the DEE search algorithm as implemented
in ORBIT [18] and specificity-focused (negative design) were
applied aiming to reengineer the homodimer into a heterodimer.
While the positive design yielded a more stable heterodimer, only
the incorporation of negative design yielded exclusive hetero-
dimerization. Eight interface residues (four from each subunit)
were subjected to design allowing for ten out of the 20 amino
acids in each position. The authors note that the greatest challenge
was modeling the energetic effects of destabilizing mutations in
competing state. This challenge was approached by capping
unfavorable van der Waals energies as an approximation for confor-
mational relaxation that would alleviate atomic overlaps. Notably,
in 2007 the Mayo lab used ORBIT [18] to design 13 and 11
residues on two monomer variants of streptococcal protein G—β1
domain (Gβ1) that were designed to heterodimerize [60]. Of the
24 positions, 15 “core” positions were restricted to seven hydro-
phobic residues and the rest to polar and charged residues. Apply-
ing such hydrophobic patches serves as negative designs
destabilizing the monomer state. This specific design was successful
in shifting a monomer to a dimer, albeit with a low binding
constant. Overall, these studies showed the challenges of PPI
design along with the importance of negative design, even at the
expense of stability.

In 2005 the DeGrado, Saven and Dutton lab de novo designed
a 40-residue redox-active minimal rubredoxin mimic [54]. This is
one of the first b-sheet CPD, let alone with the rubredoxin tetra-
hedral metal-binding motif. The last three strands of the Pyrococcus
furiosus rubredoxin were transformed using a twofold symmetric
axis containing the metal ion. A hairpin motif (tryptophan zipper)
was used to fuse the two sides. Other than the hairpin motif, active-
site Cys, two Gly and an Ile residue, all amino acids were designed
using SCADS [143]. The apoprotein and holoproteins were stable
with 16 Fe(II/III) functional cycles under aerobic conditions.

In 2005 the DeGrado lab applied CPD for a de novo four-helix
bundle protein that selectively binds two nonbiological cofactors
termed DPP-Fe for 5, 15-Di[(4-carboxymethylene-oxy)phenyl]
porphinato iron(III)-chloride [55]. Herein, the apoprotein folds
upon binding the cofactors. The four-helix bundle was designed to
maintain 17–19 Å between the metals, His-Fe coordinative inter-
actions, second shell hydrogen-bonding, minimal steric clashes and
D2 symmetry with sampling via MC/SA. Then, three rounds of
SCADS [143] sequence calculations were applied to 28 residues.

In 2006 Dmochowski, Saven, and coworkers designed ferritin-
like proteins (Dps) with increasingly hydrophobic cavities [56]. The
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resilience of the self-assembling complex to mutation which intui-
tively should denature the protein is striking. As many as 120
hydrophilic residues were mutated to hydrophobic or small
amino-acids. The Dps complex is a 12-subunit iron warehouse in
which each subunit is a four-helix-bundle with two helices facing
the interior large iron-binding cavity. The SCADS [143] software
extended for symmetric homo-oligomeric quaternary structures
[146] was applied forming Dps3, Dps7, and Dps10, each with
three, seven, and ten mutations in each of the dozen subunits.
Not only was the mutation per se taken into account but also
how much each residue is prone to an acceptable mutation.
Amino acids participating in salt bridges within the hydrophobic
core were not subjected to mutagenesis. The mutations increased
the percent of hydrophobic surface within the iron-binding cavity
from 52 % to 86 %. The high melting temperature of the complex
as well as iron-mineralization function were largely unchanged for
Dps3 and Dps3 and even Dps10 folded and assembled properly.
Taken together, this study questions the importance of the
hydrophilic surface for proper folding of proteins, let alone protein
complexes; thus opening the door for CPD of hydrophobic surface
regions.

In 2006 Quax, Serrano, and coworkers designed tumor
necrosis factor-related apoptosis-inducing ligand (TRAIL) variants
which initiated apoptosis exclusively via the DR5 receptor [57].
The DR5-selective TRAIL variants represent a reduced binding
promiscuity CPD approach which in this case potentially permits
tumor-selective therapies. The CPD scheme was straightforward
including protein modeling via WHATIF followed by refinement
via FOLD-X. Residues binding to nonconserved positions in the
different four potential receptors were mutated via FOLD-X to all
other amino acids obtaining 2720 models for the 34 designed sites.
The binding energy of the models was used to assess selectivity
yielding seven single-site variants for experimental validation.

In 2006 the Baker lab redesigned a cleavage specificity of the
intron-encoded homing endonuclease I-MsoI [58]. The CPD
aimed at changing one base pair in each recognition half site.
The CPD approach used as input the wild-type crystallographic
structure and considered (in turn) all symmetric base pair changes.
New side chains next to these base pairs were attempted listing the
predicted discrimination energy between the previous and new
recognition sites. The modeling of the DNA-protein interface
is challenging not only due to the highly charged electrostatic
environment possibly requiring bound water molecules, but also
as the binding may involve conformational changes in both binding
constituents. The redesigned enzyme cleaves the new recognition
site ~10,000 more effectively compared to the wild-type protein.

In 2006 Xencor Inc. designed antibody Fc variants with
enhanced Fcγ-receptor-mediated effector function [59]. A
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combination of “directed” diversity and “quality” diversity strate-
gies were applied within the CPD scheme of optimizing the IgG Fc
region for Fcγ-receptor affinity and specificity. Four positions were
mutated in different combinations. Where structural informa-
tion was available, substitutions that provide favorable interactions
were designed, and where such information was incomplete, calcu-
lations provided a quality set of variants enriched for stability and
solubility. At some positions, only residues with high propensity to
the core, surface and boundary of the protein were allowed, thus
focusing the search space sampled. The designed variants displayed
over 2 orders of magnitude enhancement of in vitro effector func-
tion, enabled efficacy against cells with low levels of target antigens
and resulted in increased cytotoxicity in vivo.

In 2007 the DeGrado lab designed a TM peptide that specifi-
cally targets a membrane protein [61]. The peptide was named
CHAMP for Computed Helical Anti Membrane-Protein Peptide.
The TM helices of the αIIbβ3 and αvβ3 integrins were the subject of
the design by replacing the β3 subunit with a new designed helix.
The two subunits form a parallel GASRight motif [147] which was
structurally modeled with the β3 subunit was redesigned. Five and
15 template backbones were tested for the design of the CHAMP
against the αIIb and αv helices, respectively. In the inner half of the
membrane only eight residues were considered. Repacking of prox-
imal positions was accomplished with a linearly dampened
Lennard-Jones potential with van der Waals radii scaled to 90 %,
as implemented in PROTCAD [29] and a membrane-depth depen-
dent knowledge-based potential. 10,000 iterations of an MC with
simulated annealing (MC/SA) were applied for the sequence and
rotamer space search and sampling, with the rotamers optimized
using DEE followed by exhaustive enumeration. The new designs
were tested in micelles, bacterial membranes, and mammalian cells.

In 2007 the Kuhlman lab focused on high-resolution design of
a protein loop [62]. Within the Rosetta software package a loop
design protocol was developed. The protocol iterates between
optimizing the sequence and conformation of a loop in search of
low-energy sequence–structure pairs. 10-residue loops were
designed for connecting the 2nd and 3rd strand of β-sandwich
protein tenascin-C. Loop templates were datamined from 142
12-residue loops found in the protein databank (PDB) that super-
impose the backbone atoms of the design target. These backbone
templates were redesigned with many undergoing four to five
mutations. Loops were filtered by searching for solvent accessible
surface area to a 0.5 Å radii probe and by searching for unsatisfied
hydrogen bonds. Two of three experimentally tested loop designs
were solved showing similar structures compared to the design
while a third design appeared in a significantly different structure;
thus highlighting the potential for loop design along with
the unique challenge in designing loops.
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In 2007 Lai and coworkers de novo designed a protein that
binds the erythropoietin receptor [63]. The CPD was based
on grafting discontinuous interaction epitopes. The erythropoie-
tin (EPO)—EPO-receptor complex structure was studied; iden-
tifying three key residues in EPO which were searched in the
PDB - yielding 1756 potential scaffold proteins onto which the
keystone residues were grafted. These were filtered for RMSD,
shape-complementarity, packing density, and high buried accessi-
ble surface area yielding 15 potential scaffolds for further analysis.
A fourth mutation was designed to eliminate a steric clash. The
novel triple mutant, composed of an unrelated protein, rat
PLCδ1-PH (pleckstrin homology domain of phospholipase C-δ
1) bound the EPO receptor with a KD of 24 nM in vitro and gave
an IC50 of 5.7 μM in a cell-based assay.

In 2007 the Mayo lab redesigned a 51-residue homeodomain
aiming at thermostability [64]. Different sequence optimization
algorithms were compared of which two were characterized.
Amino acids were divided into buried and solvent-exposed, and
further restricted at helix-capping sites. MC/SA yielded the
best solution. The successful design had a thermal denaturation
midpoint temperature of >99 �C.

In 2007 the DeGrado, Saven and Roder labs applied CPD for
the de novo design of a single-chain asymmetric diphenylporphyrin
four-helix bundle metalloprotein [65]. An MC/SA protocol was
applied given five constraints: (a) a metal-metal distance of
17–19 Å, (b) optimal His to Fe bonding interactions, (c) second-
shell His-Thr hydrogen bonding, (d) minimal steric clashes, and
(e) D2-symmetry. A previous four-chain design [55] was shortened
by four residues at each end and replaced by loops. A new program,
STITCH, identified loops within a nonredundant PDB set that
superimposed well on five amino acids at the helical ends. Iterative
cycles of SCADS [143] CPD chose the sequence for 100 of the 108
amino-acids, with eight keystone His and Thr residues fixed as
part of the cofactor ligation. The experimentally characterized
single-chain design demonstrated higher stability compared to the
four-chain previous design both apo- and holo-forms with the
latter increasing stability significantly.

In 2007 the Tidor computational lab and the Wittrup experi-
mental lab joined forces to apply CPD for the improvement of
antibody affinity [66]. The iterative CPD cycle focused on electro-
static binding contributions and single mutations. By combining
multiple designed mutations, a tenfold and 140-fold affinity
improvement was engineered to an anti-epidermal growth factor
antibody and to an anti-lysozyme antibody, respectively. Interest-
ingly, this study began by a general CPD approach that was in
general not successful and led to the understanding that for anti-
body designs the calculated electrostatic term (using Poisson-
Boltzmann continuum electrostatics calculations) for binding was
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a better predictor for affinity improvement compared to the total
calculated binding free energy. Thus, a full side-chain conforma-
tional search was maintained but only the electrostatic component
was applied for affinity improvement.

In 2008 the Schreiber and Edelman-Sobolev labs redesigned a
protein–protein interface between TEM1 β-lactamase and its inhib-
itor β-lacatamase inhibitor protein (BLIP) for high-affinity and
binding specificity using a novel method [67]. Their novel
PDBmodDesign method included replacing structural interface
modules with fragments taken from nonrelated proteins and rank-
ing the 107 starting templates with an accurate atom–atom contact
surface scoring function. The resulting high affinity and specificity
affirms their modularity approach.

In 2008 the Dmochowski, Saven and Christianson labs joined
forces to design a human H ferritin protein that will bind noble
metal ions Au3þ and Agþ, reduce the ions and form nanoparticles
within the protein’s cavity [68]. The study followed up on the
ferritin-like protein hydrophobic cavity design [56] and applied a
similar CPD methodology. Here, 192 mutations were designed in
the 24-subunit complex including four external- and four internal-
surface mutations for each subunit. Two His and two Cys on the
external surface were mutated to charged, polar, or small residues.
In parallel, three Glu and a Lys on the internal surface were all
mutated to Cys as an ion-binder residue. Combining positive- and
negative-design this was aimed to promote noble metal ion binding
in the cavity while avoiding such binding on the outside surface as
well as minimizing protein aggregation. Following experimental
difficulties of crystallization with gold ions, Hg2þ was used to
probe the metal–thiol interactions. Probably due to decrease in
aggregation, the outer-surface mutations stabilized the protein.
Strikingly, the internal-surface mutations kept this high stability
and exhibited Ag0 and Au0 nanoparticles upon soaking with their
respective ions. Indeed, the crystal structure proved the CPD
structure and requested function.

In 2008 Handel and coworkers redesigned BLIP to increase
affinity to SHV-1 which unlike TEM (presented in the previous
example), displays micromolar affinity, thus providing space for
affinity improvement [69]. The EGAD design software succeeded
to stabilize the interface by 10- to 1000-fold. The experimental
structures generally agreed with the computational designs, except
for salt-bridges. Additionally, the authors claim that the off-rotamer
conformational sampling could be improved by adding a short
minimization following the DEE rotamer search.

In 2008 the Saven, Therien, Blasie and DeGrado labs from the
University of Pennsylvania designed nanostructured metallopor-
phirin arrays from coiled coils [70]. Following a previous design of
a D2-symmetric α-helical coiled coil (34 residues for each helix) that
binds two nonbiological porphyrin cofactors [55], the four-helical
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coiled-coil was extended by three-heptad repeats, enabling the bind-
ing of four iron porphyrins. Three charge patterning mutations were
introduced to enforce an antiparallel orientation and two additional
mutations were introduced to improve electrostatic interactions with
the cofactor carboxylates. The resulting four-porphyrin complex was
experimentally characterized. The modular addition of heptad
repeats between the helical capping sections demonstrates the
robustness of the coiled-coil structure, as defined by the Crick para-
meters. This design introduces the feasibility of engineering electri-
cally and optically responsive multiporphyrin arrays.

In 2008 the Baker lab presented two computational enzyme
designs—a group of retro-aldolases [71] and a Kemp eliminase
[72], the latter with Tawfik. Both designs applied a similar scheme
for enzyme design without cofactors [148]. These computational
enzyme designs followed an algorithm presented in 2006, which
was successful in targeting ten different enzymes and identifying
the native site in the native scaffold and ranking it within the top
five designs for six of the ten reactions [149].

The retro-aldolase CPD strategy is described over 12 pages in
the supplementary material of the publication highlighting the
many aspects that must be addressed [71]. These range from the
quantum-mechanical (QM) structural description of the catalytic
sites to the computational and experimental ranking and validation
of the designs. Briefly, composite active-site descriptions of transi-
tion states were applied to generate candidate catalytic sites via
RosettaMatch [150] which fills a hash-table with catalytic amino-
acid rotamers for the proposed catalytic site constraints. The
remaining positions are redesigned to optimize the transition-
state binding affinity using RosettaDesign [134]. Following struc-
tural refinement, the potential designs are ranked based on the total
binding energy to the composite transition state as well as satisfac-
tion of specific catalytic geometry. Designs were filtered if the van
de Waals energetics was too high (>�5 kcal/mol), the binding
pocket was too buried or was not sufficiently accessible. This
CPD scheme resulted in 72 designs of which 32 displayed retro-
aldolase activity of up to 4 orders of magnitude kinetic acceleration.

The 2008 Kemp eliminase CPD by the labs of Baker and Tawfik
[72] achieved a 105 rate enhancement. In vitro evolution further
enhanced kcat/KM by >200-fold. The CPD scheme was similar to
the one of for the retro-aldolase. The successful designs showed
high shape-complementarity with several polar or charged catalytic
residues: out of 59 designs, 39 used Asp or Glu as a general base
while 20 used His-Asp or His-Glu as a catalytic dyad. Such variation
highlights the robustness of the CPD strategy which, in this case,
exhibits variability in the functionally accessible set of catalytic
residues. π-stacking interactions contributed towards stabilizing
the transition state. The collaboration between the CPD approach
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provided by the Baker lab and the directed evolution approach
provided by the Tawfik lab continued with subsequent directed
evolution efforts conducted by Khersonsky et al. [138–140].
Cumulatively, the latter efforts showed that CPD designs are highly
evolvable and can be optimized for catalytic efficiency, reduced
thermodynamic stability (which is often too high in computational
designs), optimization of the catalytic site microenvironment for
the required transition state preorganization, and the presentation
of key changes that provide feedback for deciphering mechanism
and further CPD efforts. While directed evolution is not the focus
of this chapter, the collaboration highlights the need to embed
within the CPD approach other fields in a multiple dimension
feedback approach. Fortunately for the CPD field, this Kemp elim-
inase computational design sparked an array of follow-up research
of which some is highlighted below [92, 93, 100, 151] with the key
kinetic parameters summarized in Table 2.

In 2009 the Baker lab focused on loop remodeling to alter
enzyme specificity [73]. Following benchmark tests on eight native
protein-ligand complexes, a critical loop in guanine deaminase was
redesigned such that it became 100-fold more active on ammelide
and 25,000–fold less active on guanine. The two to five residue
loop modeling succeeded in altering specificity. Nevertheless, it
should be noted that the absolute activity towards the new sub-
strate (kcat/KM ¼ 0.15 s�1 M�1) is still 7 orders of magnitude
lower than the activity of the wild-type enzyme towards its innate
substrate; highlighting the comprehensive evolution of enzymes
towards their functionality, which is likely to include far more
than one loop.

In 2009 the Shifman lab applied CPD for increasing the binding
specificity of calmodulin 900-folds [74]. Relying on the promiscu-
ous binding of calmodulin to both CaM-dependent protein kinase
II (CaMKII) and calcineurin (CaN), calmodulin was optimized to
bind the former. The ORBIT-based [18] CPD emphasized inter-
molecular interactions and showed that the specificity increase was
largely due to a decrease in binding to CaN.

In 2009 the Keating lab applied a computational framework for
desigin of protein-interaction specificity allowing for CPD of selec-
tive basic-region leucine zipper (bZIP) binding peptides [75]. The
20 bZIP transcription factor family share high sequence similarity
challenging specificity design. As shown by protein arrays, the CPD
succeeded in designing selectivity by optimizing the affinity and
specificity trade-off e.g. by sacrificing the stability score and by
introducing negative design to disfavor complexes with undesired
bZIP competitors. The bZIP microarray assay benefits from revers-
ible folding of short coiled coils, and data from previous array
measurements of many bZIP transcription factor pairs were critical
for developing predictive models. Their CPD framework is denoted
CLASSY for cluster expansion and linear programming-based
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analysis of specificity and stability [75]. The CLASSY multi-state
CPD applies integer linear programming followed by cluster expan-
sion in which a structure-based interaction model is converted into
a quick-to-evaluate sequence-based scoring function. Negative
design is integrated by applying CLASSY to the design-target and
to design-off-target states.

In 2009 the Baker lab conducted CPD on the monomeric
homing endonuclease I-AniI which cleaves at the center of a
20-base-pair DNA target site [76]. The pseudo-symmetrical
enzyme’s N- and C-terminal domains bind to the left (�) and
right (þ) DNA target sites in very different manners as reflected
by causes of CPD-based altered specificity: specificity on the (�) side
was achieved by modulating single-turnover conditions (KM) while
that in the (þ) side was achieved by modulating turnover number
(kcat). The Rosetta-based CPD scheme tailored for DNA–protein
interactions relied on their previous study [58]. Loop rebuilding
was used to model backbone shifts. In a feedback loop, the best
designs were reverted position by position to thewild-type sequence
to identify mutations that did not contribute significantly to the
energy or specificity. Multi-state design [40] to assess the specificity
offset between the altered and wild-type DNA target structure.
Further, a genetic algorithm was applied to evolve sequence for
preference of the target state compared to competitor states.

In 2009 the Donald lab conducted computational structure-
based redesign of the phenylalanine adenylation domain of
the nonribosomal peptide synthetase enzyme gramicidin S synthe-
tase A (GrsA-PheA) for a set of noncognate substrates for which the
wild-type enzyme has little or virtually no specificity [77].
Here the aim was increased specificity with the leading design
exhibiting 1/6 of the enzyme/wild-type substrate activity. The K*
algorithm [152] was applied on the active site, a generally consid-
ered optimized region which is not the classical target for most
CPD attempts. The double mutant selected showed a 19-fold
increase of kcat/Km for the new Leu substrate and a 27-fold
decrease of this measurable for the wild-type Phe substrate.
On top of two active-site mutations, so called “bolstering” muta-
tions were designed outside the active site aiming to stabilize the -
active-site mutant. Indeed, such mutations gave an additional
twofold increase in kcat/Km for the Leu substrate. Similarly, further
designs for charged substrates were also successful experimentally.

In 2010 the DeGrado, Saven and Therien labs applied CPD for
the design of an A2B2 four-helix bundle that selectively binds two
emissive abiological (porphinato)zinc chromophores of DPP-Zn
[78]. The positive and negative ligand-directed CPD is selective
and did not bind related chromophores such as DPP-Fe3þ.
To achieve the selective Zn-cofactor binding, a pentacoordinate
environment with one His ligand was designed, yielding C2 sym-
metry. One peptide chain included a His ligand while the other
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included a Thr ligand; thus applying a negative design element that
allows only the heterotetramer to bind the chromophore. SCADS
[143] was applied for the recursive design of 62 variable positions.
Cys (potentially making disulfide bridges), His (potentially ligand
binding) and Pro (potential helix-breaker) were excluded at all
positions, Met at interior positions. Three sequential rounds of
sequence CPD were applied and the resulting design was validated
experimentally.

In 2010 the Baker lab altered the cleavage specificity of the
I-Msol homing endonuclease for three contiguous base pair
substitutions [79]. Using a CPD scheme previously applied to the
protein [58, 76], concerted design for all simultaneous
substitutions was more successful than a modular approach against
individual substitutions, highlighting the importance of context-
dependent redesign and optimization of protein–DNA interac-
tions. In a CPD and structure determination feedback loop, a
structure of the CPD effort and its associated unanticipated shifts
in DNA conformation was utilized to create an endonuclease that
specifically cleaves a site with four contiguous base pair
substitutions.

In 2010 the Mayo lab changed the emission wavelength of red
fluorescent protein by CPD [80]. Herein, CPD was combined with
small experimental combinatorial libraries of mCherry mutants.
The library design procedure takes as input a list of scored
sequences, and two sets of constraints: a list of allowed sets of
amino acids, and a range of desired library sizes. The algorithm
generates a list of the combinatorial libraries that satisfy these
constraints, and then ranks the libraries by the degree to which
they reflect the energetic preferences present in the list of scored
sequences. Thus, CPD was used to perform an in silico prescreen to
eliminate sequences incompatible with the protein fold and gener-
ate combinatorial libraries amenable to rapid experimental screen-
ing. The successful 20–26 nm red-shifted mutants found
included targeted stabilization of the excited state via H-bonding
and π-stacking interactions as well as destabilization of the ground
state via hydrophobic packing. Overall, 13 residues were involved in
the design.

In 2010 Warshel suggested that the current computational
enzyme design approaches reflect incomplete understanding of
the details of the enzymatic system and/or inaccurate modeling
by the CPD algorithm [151]. Using his empirical valence bond
(EVB) simulations of the Baker and Tawfik Kemp eliminase [72],
his group showed that the attempt to predict the proper transition
state stabilization and related overall preorganization effect are not
likely to be achieved by gas phase models. Warshel showed that the
transition state design displays a charge distribution that makes it
hard to exploit the active site polarity, even with the ability to
quantify the effect of different mutations. Further, the directed
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evolution led to reduction of the solvation of the reactant state
rather than to the expected transition-state stabilization applied by
naturally evolved enzymes. This study highlights the need to care-
fully design the preorganized environment such that it will exploit
the small changes in charge distribution during the formation of
the transition state.

In 2010 the DeGrado, Therien, Blasie and Walker labs de novo
designed a TM diporphyrin-binding protein complex [81].
The design, termed PRIME (PoRphyrins InMEmbrane), positions
two non-natural iron diphenylporphyrins (Fe3þ DPP’s) sufficiently
close to provide a multicentered pathway for TM electron transfer.
Unlike previous TM to soluble solubilization efforts, here the
opposite path was applied with a four helix D2-symmetrical bundle
adapted for the membrane milieu. First, keystone cofactor-binding
residues (His and Thr) were designed within an idealized four-
porphyrin binding soluble four-helix bundle backbone template
[70]. Then, an all side-chain DEE followed by MC/Self-consistent
mean field (SCMF) approach was applied to explore the reduced
search space along with the Lazaridis implicit membrane solvation
(IMM1). The 24 positions were divided to four categories (buried,
mostly buried, mostly exposed and completely exposed). These
were given different degrees of side-chain conformational sampling
with conformations selected from a conformer library. Models were
ranked by oligomerization energy, i.e. the difference between the
energy of the complex and that of the monomeric state (a mem-
brane solvated helical state, with relaxed side chain conformations),
and the lowest energy model was extensively experimentally char-
acterized validating the design.

In 2010 the Kuhlman lab redesigned the binding of hyperplastic
discs protein to P21-activated kinase 1 kinase (PAK1) domain [82].
The Iterative Rosetta-basedDDMI (Dock,Design,Minimize Inter-
face) protocol was used for docking the scaffold on a chosen hotp-
sot. Next, loops of an MC-based sequence optimization and
backbone optimization by minimization were conducted. This
resulted with potential redesigned interfaces that were filtered by
knowledge-based criteria including binding energy density and the
number of unsatisfied polar interface residues. Of six experimentally
characterized designs, two aggregated and the rest had binding
affinities of up to 100 μM.

In 2010 the Mayo lab combined CPDwith experimental library
screening demonstrating the successful synergism of the two
approaches for thermostabilization of core positions of Gβ1, the
β1 domain of Streptococcal protein G [83]; a protein previously
designed by the lab to dimerize [60]. The lab’s previous Fast and
Accurate Side-chain Topology and Energy Refinement (FASTER)
CPD software for single-state design was expanded here for the
multistate design case. The combination enables the application of
multistate design methods to large conformational libraries,
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transformation of semi-rational CPD results to combinatorial
mutation libraries, and the experimental stability determination of
the designed libraries. The novel protein library design method
took into account the library size and possible sets of amino-acids
to best reflect the experimental results. The library design proce-
dure was called CLEARSS for Combinatorial Libraries Emphasiz-
ing And Reflecting Scored Sequences. Five experimental
crystallographic and NMR structures were used, each resulting in
a 24-member design library. The results enabled to characterize the
sequence space available for the multistate design.

In 2010 the Anderson and Donald lab applied CPD for the
prediction of drug resistance mutations in methicillin-resistant
Staphylococcus aureaus (MRSA) dihydrofolate reductase (DHFR)
[84]. Using ensemble-based CPD algorithm K* which includes
DEE search followed by energy minimization [152], potential
resistance mutations were predicted. The process incorporated
positive design to maintain catalytic function and negative design
to interfere with binding of a lead inhibitor. Interestingly, the wild-
type sequence was ranked low for both the natural ligand and the
inhibitor; suggesting that numerous sequences may have improved
binding to these ligands. Four of the ten top-ranking designs were
experimentally evaluated, of which three were shown to maintain
activity while lowering binding affinity 9- to 18-fold for the inhibi-
tor. The top-ranked double-mutant was crystallized; validating the
design by showing reduced hydrophobic interactions in one locus
and introducing a steric bulk in another.

In 2011 the DeGrado lab applied CPD to design virus-like
protein assemblies on carbon nanotube surfaces [85]. The surface
properties and symmetry were used to define the sequence and
superstructure of the designed surface-organizing peptides.
Single-walled carbon nanotubes were covered with virus-like coat-
ing converting the smooth surface into a highly textured assembly
with long-scale order, thus capable of e.g. directing the assembly of
gold nanoparticles into helical arrays along the nanotube axis.
Three selection rules were applied for the design, defining the
intrinsic recognition motif and its packing into higher-order assem-
bly in accord with the long-range order of the underlying surface.
First, a group compatible with the target surface was identified, in
this case avoiding a hydrophobic motif and using small residues Gly
or Ala. Second, intersubunit packing was defined in accordance
with the surface symmetry. The cylindrical nanotube suggested
rotational-screw symmetry in the form of coiled coils with a radius
of ~9 Å defining five to seven subunits. Third, designability of the
coiled coils was assessed by searching existing tertiary motifs. Four
designs were tested, sequences based on an existing protein
(domain swapped dimer) and a de novo coiled coil, each with Gly
or Ala as the nanotube-facing residue. Adding gold particles to the
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outer surface enabled transmission electron microscopy (TEM)
validation.

In 2011 the Baker lab took the challenge of PPI and designed a
protein that binds to the conserved stem surface of influenza
hemagglutinin [86]. The strategy focused on the design of shape-
complementarity with hot-spot-like residue interactions, with the
latter serving as anchors to the former. 865 potential scaffold
proteins were searched to support the disembodied hot-spot resi-
dues and the shape complementarity. The coarse-grain binding
modes were then refined by docking followed by scaffold redesign.
Selected designs included 51 and 37 designs with two and three
hot-spot residues, respectively. Designs that presented binding
were subjected to directed evolution for increased binding; result-
ing in mutations supporting interactions of filling a void in the
binding interface, favorable interactions in the unbound state,
electrostatic complementarity, and desolvation. Two binding pro-
teins displayed nanomolar affinity.

In 2011 the Baker lab applied a motif-based method to
computationally design protein–protein complexes with native-like
interface composition and interaction density as exemplified on the
Prb-Pdar heterodimer [87]. The tight dimer was further optimized
by directed evolution which surprisingly rotated one of the complex
partners by 180�, showing that the specificity of the binding patch
was not sufficient yet the binding hot-spot was sufficient to facilitate
the binding within a noncrowded pure protein environment. The
motif-based approach focused on a key polar aromatic residue (Trp or
Tyr) which facilitate packing and hydrogen bonding followed by
shape-complementarity. Here, the ankryn repeat which naturally
associates with an array of proteins served as one scaffold (redesigned
to Pdar). Each of several ankryn repeat protein structures was paired
with a set of 37 structurally diverse thermostable proteins applying a
surface feature-matching approach, PatchDock [153], followed by
rigid-body docking to generate a set of bound orientations with
shape-complementarity. The interface design started from screening
a well-packed hydrogen-bond containing aromatic pair followed by
expanding it to include a hydrophobic first shell of residues and a
polar secondary shell of residues protecting the hydrophobic patch
from the solvent. RosettaDesign was used to optimize residue iden-
tities at the interface periphery holding the hydrophobic inner
layer fixed. Further, global long-range electrostatic complementarity
was aimed at by biasing one partner to acidic residues and the other to
basic ones. Finally, natural parameterizations of native interfaces, e.g.
size, packing, void volume, and lack of steric clasheswere used to filter
the suggested designs. Notably, negative design was not applied in
any step, possibly facilitating the 180� flip of binding orientation in an
experimentally validated pair. Twelve designed pairs were experimen-
tally screened ofwhich five displayed a signal>2-fold over nonspecific
binding. Finally, a combination of phage and yeast displaywas applied

Achievements and Challenges in Computational Protein Design 67



to evolve tighter binding of the leading pair. Two mutations intro-
duced in this step improvedbinding from aKd of 130 nMto180 pM.

In 2011 the Kuhlman lab designed a symmetric homodimer
using β-strand assembly in which two solvent-exposed strands were
designed to form an antiparallel β-strand pairing [88]. Looking for
solvent exposed β-strands, automatic homodimer docking (similar
to the DDMI protocol) was applied with the β-strand part designed
with five rounds of symmetric sequence optimization and minimi-
zation at the interface; searching for an >850 Å2 buried interface
and minimizing unsatisfied buried polar atoms. Of the 5500 struc-
tures scanned, 1100 had an exposed β-strand. One structure, γ-
adaptin was chosen. Two mainly hydrophobic and two mainly polar
interface homodimers were characterized of which the former were
more successful emphasizing the difficulty in designing hydrogen-
bond networks. One promising structure βdimer1 was structurally
resolved showing that the design was successful.

In 2011 William Schief and coworkers applied CPD with flexi-
ble backbone remodeling and resurfacing for designing antigens
[89]. In this intriguing approach, an HIV 4E10 epitope structure
was implanted onto a new scaffold enabling antigen optimization.
The remodeling refers to replacing a backbone segment by a new
design. The resurfacing refers to redesigning the antigen surface
outside the target epitope to obtain variants that maintain only the
epitope. Briefly, their six-stage protocol includes segment selection
(length, secondary structure), de novo backbone CPD of the seg-
ment followed by sequence design and minimization. Next, designs
that did not meet energy, packing, and unsatisfied polar-atoms were
filtered and surface hydrophobic residues were replaced by polar
ones. Three designs of 16–17 remodeled segment were experimen-
tally characterized showing a viable epitope while maintaining sol-
ubility and binding affinity.

In 2011 Korendovych and DeGrado applied an alternative
minimalist approach to the Kemp eliminase design challenge [92].
Rather than conducting a comprehensive design of a full protein
from the QM-optimized active site to the rest of the enzyme, they
applied a single mutation in a minimal 75-residue allosterically
regulated catalyst, termedAlleyCat (for ALLostEricallY Controlled
cATalsyt), with activity (kcat/KM ¼ 5.8 � 0.3 M�1 s�1) compara-
ble to the original [72] Kemp eliminase design. The rationale was
that protein folding energetics can dehydrate a carboxylate side-
chain rendering it from the weakly basic aqueous state to a strongly
basic dehydrated state. The computational design scheme applied
on calmodulin C-terminal domain included in silico single-site Asp
or Glu mutagenesis scanning of the C-terminal domain cavity,
which naturally binds aromatic side-chains, suggesting that it can
bind the benzisoxazole substrate. Low energy models including the
point mutation which facilitated a cavity were next docked to the
substrate. This determined whether the C-H hydrogen would be
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appropriately positioned in the Michaelis complex. Finally, the Glu
carboxylate was virtually fused to the substrate and the resulting
“superrotamer” was optimized. Alternative mutations were used as
control.

In 2011 the Weiss and Saven labs applied SCADS [143] to
design a thermostable terpene synthase, an enzyme involved in
the synthesis of antibiotics, flavorings, and fragrances [90]. A
dozen mutations were selected for design in the tobacco 5-epi-
arisolochne synthase (TEAS) for the catalysis of carbocation cycli-
zation. All mutations were>12 Å from the substrate binding site so
as to minimize an effect on the functional site. Amino acids iden-
tities were prepatterned at the mutated sites based on the number
of Cβ atoms within 8 Å of the amino acids: for residues with 0–6 Cβ
atoms were constrained to charged, polar, and small residues. For
those with 7–8 Cβ atoms, aliphatic and aromatic residues were
added to the potential mutations enabling mutation to all residues
except Cys, Pro, His, and Thr. Last but not least, buried residues
with 10 or more Cβ atoms were allowed to mutate to eight rela-
tively hydrophobic residues. Mutations included both buried and
surface-exposed positions with the latter eliminating surface-
exposed hydrophobic patches and introducing salt bridges. The
design retained activity in 65 �C and denatured in 80 �C, which is
twice the temperature relative to the wild-type.

In 2011 the Nanda lab computationally designed an A:B:C-
type heterotrimer collagen [91]. They applied positive and negative
design constraints. A compositional constraint was used where all
triplets in the design contained Pro or hydroxy-Pro. The energy
score was constrained to allow the melting temperature to be above
26 �C. Specificity was enforced by optimizing the energy gap
between the design and the best competing stoichiometry. The
resulting empirical design displayed two of the nine available stoi-
chiometries (B:2C and 2B:C). The ABC design indicated multiple
species (due to permutations) which were removed upon increasing
the salt concentration to 100 mM.

In 2012 several labs from the University of Pennsylvania and
University of Pittsburgh applied Saven’s SCAD CPD software to
produce a water-soluble TM domain (α1 subunit) of the nicotinic
acetylcholine receptor [94]. The template used for the CPD was a
4-Å low-resolution cryo-electron microscope (EM) structure in
which hydrophobic residues with >40 % exposure to the mem-
brane region were redesigned using a molecular mechanics force
field entwined with an energy function that constrained the average
hydrophobicity of surface-exposed residues to that expected for an
average soluble protein of a similar size. In order to avoid spectral
over-crowding in NMR spectra used to solve the structure, residues
which were not highly favorable in a given site underwent an
additional round of CPD with an additional constraint imposed
so as to increase sequence diversity. In addition, a polyglycine linker
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was designed between the C-terminus of helix-4 and the N-
terminus of helix-1 using the loop builder in MODELLER [154].
The design was structurally resolved by NMR displaying high
resemblance to the TM domain of the bacterial pentameric
ligand-gated ion channel (GLIC); demonstrating the robustness
and general applicability of the CPD scheme. Two conformations
were resolved with overall dynamics that may be due to the dynamic
loops. Moreover, anesthetics were bound to the same residue as in
the bacterial GLIC validating the functionality of the solubilized
protein.

In 2012 Baker and coworkers redesigned a mononuclear zinc
adenosine deaminase metalloenzyme for organophospate hydroly-
sis of the RP isomer of a coumarinyl analog of the nerve agent,
cyclosarin [95]. First, a set of mononuclear zinc enzyme scaffolds
with at least one open coordinate state was extracted from the PDB.
The open coordinate state was utilized to ensure that structural zinc
is excluded from the set. Previous gas-phase quantum-mechanical
calculations of organophosphate hydrolysis were used to construct
models of the reaction transition state bond lengths and angles.
RosettaMatch [150] was used to search for hydrogen-bonding
interactions to the phosphoryl oxygen, the nucleophilic hydroxyl
moiety, and the leaving group oxygen. Next, RosettaDesign was
used for shape-complementarity interactions to the transition state.
These parameters along with the presence of a docking funnel
timed the results to 12 potential proteins, of which a
redesigned adenosine deaminase hydrolyzed the substrate
7-hydroxycoumarinyl phosphate (DECP). The eight-mutation
design exhibited activity that was sevenfold higher than that of
the buffer background. Directed evolution at eight positions
increased activity kinetics to levels identical to the wild-type
deaminase with over 140 catalytic turnovers per enzyme and high
stereospecificity. The directed evolution improvement of kcat was
post factum realized as an increase in the basicity of an active site
Glu residue.

In 2012 the Schief lab followed up on their previous epitope
grafting research [89, 155] and applied CPD with Rosetta to
design a new 2F5 HIV epitope with improved biophysical charac-
teristics followed by transplanting the linear epitope onto different
scaffolds [96]. Here, the epitope design used side-chain grafting
while backbone-grafting was applied to transplant the design onto
the new scaffold. Potential scaffolds were identified by searching
the PDB for the core Asp-Lys-Trp sequence of the epitope. Side-
chain grafting was conducted by binding interface optimization
followed by sequence design for epitope accommodation and
removal of extraneous interfacial interactions. The latter was facili-
tated also by initially changing the identity of all non-interacting
scaffold residues to glycines. During the automated CPD, residues
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within 4 Å of the epitope were allowed to change to any non-
cysteine residue while other residues were allowed to change to
small residues Gly, Ala, Ser, or Thr. For the backbone grafting, both
N-terminal to C-terminal and C-terminal to N-terminal were con-
sidered with a 3 Å-RMSD threshold of the epitope to the scaffold
set as an initial filter followed by a steric-clash filter. Loop
closure utilized a Rosetta low-resolution scoring function, cyclic
coordinate descent (CCD [156]) and MC sampling. Next, a
high-resolution scoring function was applied to catch problematic
conformations. Finally, a full-atom refinement was applied. For two
of the three cases tested experimentally, binding to the antibody
was increased 9- and 30-fold compared to side-chain grafting alone.

In 2012 Merski and Shoichet applied an alternative minimalist
approach by engineering a Met102 ! His mutation to the Leu99
! Ala cavity in T4 lysozyme [93]. Here, CPD was applied to
engineer subsequent mutations that increased activity fourfold to
kcat/KM ¼ 1.8 M�1 min�1. The absence of ordered water or
hydrogen bonds and the presence of a common catalytic histidine
base in complexes of the enzyme with product analogs facilitated
detailed analysis of the reaction mechanism and its optimization.
Notably, in this design some of the stabilizing mutations followed
previous studies on the T4 lysozyme showing that deep knowledge-
based understanding of the template, whether theoretical or exper-
imental, is key to the design efforts. In this iterative approach the
first designs had low stability of ΔΔG ¼ ~�7 kcal/mol relative to
wild-type T4 lysozyme while subsequent designs increased stability
to ΔΔG ¼ ~�2 kcal/mol with a significant increase in catalytic
activity.

In 2012 the Kortemme lab applied CPD to control protein
signaling by designing a GTPase/guanine nucleotide exchange
factor (GEF) orthogonal (non-cross-reacting) pair [97]. A new
interaction was designed while maintaining correct interface with
existing machinery. Integrating such a new protein pair into exist-
ing cellular circuitry requires consideration of certain design cri-
teria: Not only must the redesigned GTPase be activated by its
redesigned GEF partner, but it must also be protected from inad-
vertent activation by the wild-type GEF and all other endogenous
GEFs. Further, the redesigned GTPase must also preserve interac-
tions with both upstream regulators and downstream effectors.
Here, the known interface between the GTPase Cdc42 and ITSN
(GEF) was used as a template for the new design. Computational
alanine scanning was used followed by backbone design using the
computational second-site suppressor protocol [49]. These simula-
tions identified substitutions in one protein that are significantly
destabilizing to the complex formed with the wild-type partner but
can be compensated for by complementary changes in the partner.
Flexible backbone CPD used RosettaBackrub [157] and the
robotics-inspired local loop reconstruction method for peptide
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chains, called kinematic closure (KIC) [158]. One hundred result-
ing models were used as a backbone ensemble for interface redesign
using one interaction pair as an anchor followed by backbone
diversification. Then, soft and hard repulsive forces were applied
iteratively aiming at modeling conformational changes that initially
appear unfavorable but may be accommodated by subsequent
refinement. The experimentally validated design was proven struc-
turally and functionally. The interaction is activated exclusively by
the engineered cognate partner while maintaining ability to inter-
face with other GTPase signaling components in vitro. The orthog-
onality was also shown in mammalian cells.

In 2012 the Montelione and Baker labs applied new rules for
designing ideal protein structures applying CPD for the design of
five different folds [98]. Secondary structure connectivity rules were
derived from simulation and from datamining available structures.
For connecting two β-strands, 2- and 3-residue loops prefer L-
hairpins while 5-residue loops give rise to R-hairpins. For connect-
ing a β-strand to a α-helix, a parallel orientation is preferred for 2-
residue loops while an antiparallel one is preferred for 5-residue
loops. For the reverse connectivity (αβ), the general preference is
for parallel connectivity, especially for short 2-residue loops and
longer loops providing helix-capping. Similar rules were applied
for connecting three secondary structures. Negative design was
applied for local interactions and for the edge of β-strands, the
protein surface and high core packing. Five new folds were
designed, almost all with short 2- and 3-residue loops, 7-residue
β-strands, and 18-residue α-helices. Ab initio simulations of
200,000–400,000 structure predictions were performed to map
the folding energy landscape, selecting 10 % with well-funneled
landscapes. Five folds were experimentally determined displaying
1.1–2.0 Å RMSD as compared to their respective designs.

In 2012 Fallas and Hartgerink applied CPD for the design of
self-assembling, register-specific collagen heterotrimers focusing
on sequence-specific axial salt-bridges [99]. A collagen composed
of three distinct chains can trimerize in 27 unique combinations.
Axial rather than later contacts, stabilize the heterotrimeric collagen
target state. The energy score includes a component for the differ-
ence between the number of ionizable residues and the number of
salt-bridges which was searched using a genetic algorithm. An
automated sequence selection algorithm was successful as it bal-
ances between destabilization induced on triple helical assemblies
by changing conformationally restricted imino acids (Pro) to ioniz-
able residues and the stabilization conferred on the formation of
axial interstrand ionic interactions. For each mutation, the gap
between the target state and competing states was computed for
all 27 states. Experimental validation showed that this minimalist
function is sufficient, though could be optimized with the addition
of components such as electrostatic repulsion and specific local
energetic contributions.
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In 2012 the Mayo lab published an interesting story of applying
an iterative stepwise approach to computational enzyme design of
Kemp eliminases termedHG-1,HG-2, andHG-3 [100]. The paper
highlights the evolution of the CPD process with increasing success
following careful analysis of the result in the previous round, an
approach named the protein design cycle [141]. The motivation for
this study followed on the study of Warshel [151] showing that the
Kemp eliminase design of Baker and Tawfik [72] was not an ideal
enzyme and required a “shotgun” approach of selection, not to
mention benefiting from in vitro evolution. Interestingly, for the
case of HG-3, 17 rounds of directed evolution produced an enzyme
which accelerated the reaction by 6 � 108-fold, thus approaching
natural enzyme rates [101]. The directed evolution optimized
substrate-enzyme shape-complementarity, substrate-catalytic base
(Asp127) alignment and, above all, stabilization of a negative
charge in the transition state which emerged over the course of
the evolution, reminiscent of the serine-protease oxanion hole.

In 2012 four labs from four countries (Grzyb, Nanda, Lubitz,
and Noy) joined forces to compare computational and empirical
design of iron-sulfur cluster proteins [102]. Both approaches suc-
cessfully yielded a cluster-binding helical bundle. The CPD of a
several coiled coil iron-sulfur clusters (CCIS) aimed at increasing
stability of the reduced state of the [4Fe-4S] cluster by improving
packing, helix propensity, oligomerization prevention (by changing
surface net charge), and charge pairing optimization. Each of these
aims was tested in a different design. Structural modeling was
conducted by multiple-threading alignment within I-Tasser
[159], and CPD was conducted using ProtCad [160] using the
metal-first approach [161]. All CCIS designs were helical. The
design focusing on stabilizing the iron-sulfur cluster increased
helicity upon binding the cluster, showing the success of the design
within a marginally stable protein. In this case, attempts to improve
the CPD by intuitive modifications had limited success as to
improved stability of the [4Fe-4S] stability over redox cycling
suggesting that a different backbone scaffold should be attempted.

In 2012 the Saven and DeGrado labs applied CPD for design-
ing a protein crystal [103]. A three-helix coiled-coil was designed
de novo to form a polar and layered P6-space group crystal. An
ensemble of crystalline structure models consistent with the
required space group was constructed of which designable struc-
tures were datamined. These include minima structures in the
sequence-structure energy landscape. Within the 26-residue pep-
tide forming the C3-symmetry coiled coil, the eight interior posi-
tions (a and d in the heptad repeat) were hydrophobic Val and Leu
residues. The other 16 amino acids (not including Pro and Cys)
were allowed to be positioned in other places. 19,200 structures
were designed to construct a grid over R and θ, representing the
inter-protein distance and the angle of rotation around the
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superhelical angle, respectively. The final design included a par-
allel GX3G motif interfacing the coiled-coil interhelical contact
and an antiparallel GX3GX3A motif between the coiled coils.
Exploiting the symmetry of the honeycomb-like space group,
the resulting structure had sub-Å RMSD relative to the designed
model.

In 2012 the DeGrado lab altered the function of a de novo Due
Ferri four-helix bundle from catalyzing the O2-dependent two-
electron oxidation of hydroquinones to selectively catalyzing
N-hydroxylation of arylamines [104]. This was conducted by
remodeling the substrate access cavity and by introducing an addi-
tional His ligand to the metal-binding cavity. Further second- and
third-shell CPD was applied using the Molecular Software Library
(MSL [162]) to stabilize the catalytic core. The resulting design
had a 106-fold rate enhancement towards the altered function
relative to the previous one.

In 2013 the Hahn and Dokholyan labs applied CPD for the
rational design of a ligand-controlled protein conformational
switch [105]. Their unique topology design of a rapamycin-
regulated switch, denoted uniRapR, was utilized as a src kinase
activator. A high-affinity binding pocket of FK506-binding protein
and FKBP12-rapamycin were used with the two proteins connected
by a double linker. The first 20 residues of FKB12 were removed
making the N- and C-terminii close in space for insertion of the
regulatory domain to the other protein. The conformational
switching was assessed by replica-exchange and equilibrium discrete
molecular dynamics.

In 2013 the Therien, Saven and DeGrado labs joined forces and
computationally de novo designed a protein that selectively binds a
highly hyperpolarizable abiological chromophore [106]. The 109-
residue four-helix-bundle was designated SCRPZ-1 and SCRPZ-2 for
the dimeric and monomeric form, respectively. The protein binds
RuPZn, a hyperpolarizable super-molecular chromophore that
features highly conjugated (porphnato)zinc and (poly-pyridyl)
ruthenium. The antiparallel four helix bundle was designed to
accommodate the size of the chromophore and ligate the metal
ions. Loops for connecting the helices were selected from natural
proteins and spliced to accommodate the structure. The SCADS
[143] software was used in two rounds first placing the keystone
residues and then the other positions. 17 residues were allowed in
the helices. His and Cys were precluded as a negative design
approach to avoid unwanted metal ligations and disulfide bonds,
respectively. Likewise, Pro was precluded from the helices to avoid
unwanted kinks. For SCRPZ-2 the surface was then redesigned to
decrease hydrophobic patches and incorporate interhelical salt
bridges to increase bundle stability. A third design included Cys,
enabling binding onto functionalized silica surfaces. The protein
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structure, stability, and nonlinear optical functional elements were
proven with an array of experimental methods.

In 2013 the Liu and Saven labs applied CPD for the design of a
solubilized G-protein coupled receptor (GPCR)—the μ-opioid
receptor [107]. The pain and addiction receptor underwent 53
mutations on the exterior surface solubilizing it completely without
loss of structural characteristics and antagonist (naltrexone) bind-
ing affinity. Interestingly, the CPD was not conducted on a high-
resolution known structure but rather on a comparative model
using the β2 adrenergic receptor as a model with the subsequent
structure of the murine μ-opioid receptor validating the model.
Amino acids with >40 % solvent accessible surface area that were
within the TM region were targeted for redesign within the SCADS
framework [143] and the previous solubilization protocol [38]. To
account for solvation effects, an environmental effective energy was
employed based on the local density of Cβ atoms of each residue
and parameterized using a dataset of soluble proteins having up to
288 residues, the size of the TM domain of the targeted receptor. In
2014 five labs from theUSA and South Korea (Johnson, Lieu, Saven,
Park, Xi) joined forces and implemented this solubilized opioid
receptor within a graphene field effect transistor (GRET) biosensor
[108]. The receptor exhibited high sensitivity and selectivity for an
opioid receptor antagonist (naltrexone), with an impressive detec-
tion limit of 10 pg/mL. The approach is general and can be applied
for any GPCR, the family of proteins which form most drug targets
and which suffers from experimental challenges following their
intrinsic dynamics and embedment in the membrane.

In 2013 Baker and colleagues applied CPD for the design of a
de novo lysozyme inhibitor [109]. Unlike the dock and design
approach, e.g. the CPD of a weak affinity binder for PAK1 [82],
here a hot-spot centric CPD approach was applied. This
approach was previously applied to design proteins that bind the
erythropoietin receptor [63] or the influenza hemagglutinin [86].
Here, the challenge included targeting deeply recessed residues
within the charged active site of hen egg lysozyme (HEL). First a
dock-and design approach was pursued: Coarse-docking was con-
ducted on the HEL active site from a library of scaffold followed by
several rounds of refined docking using RosettaDesign. Designed
potentially binding proteins were analyzed as to binding energetics,
shape-complementarity, packing, and size, aiming at measurables
similar to native HEL complexes. The top 24 designs were dis-
played in a yeast library assessing binding affinity and specificity.
Interestingly, the top-binder appeared to bind via a patch that is
different than the one designed computationally, as evident from
error-prone PCR affinity maturation which yielded affinity increas-
ing mutations in other regions. Following these rarely reported
negative results, a hot-spot centric approach was applied: An exist-
ing HEL complex was studied with computational alanine scanning
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finding residues significantly contributing to binding and targeting
active site residues. The two binding residues (Arg and Tyr) were
held fixed and scaffolds were docked on them using PatchDock
[153] followed by RosettaDock refinement. The two binding resi-
dues were transplanted on the scaffold with the aid of rigid-body
minimization and the surrounding residues were designed with
RosettaDesign. The top 21 designs were experimentally tested for
affinity and specificity and the top design was optimized by error-
prone PCR in a yeast display framework. From analysis of the best
binder displaying low nanomolar affinity, it was concluded that
specific interactions across a rather large interface are pivotal. In
addition, it seems that the directed evolution experimental
approach corrected poor hydrogen-bonding and electrostatic
repulsion that was not sufficiently optimized by the CPD, suggest-
ing room for algorithmic improvement.

In 2013 Baker and coworkers applied CPD for the de novo
design of selective binders to the steroid digoxigenin (DIG), an
example of a small molecule to which a protein binder can be
designed [110]. The CPD of small molecule binders is challenging
and indeed only two of 17 designs bound the molecule. Deep
sequencing and library selections optimized the binding to pico-
molar levels. Three characteristics of naturally occurring binding
sites were aimed: shape complementarity, specific energetically
favorable hydrogen-bonds and van der Waals protein–ligand inter-
actions as well as a structural pre-organization in the unbound
protein state, which minimized entropy loss upon ligand binding.
RosettaMatch [150] was used to identify backbone constellations
in 401 protein scaffold structures where a DIG molecule and side
chain conformations interacting with DIG in a predefined geome-
try could be accommodated. Two successive rounds of sequence
design were used. The purpose of the first was to maximize binding
affinity for the ligand. The goal of the second was to minimize
protein destabilization due to aggressive scaffold mutagenesis while
maintaining the binding interface designed during the first round.
During the latter round, ligand–protein interactions were up-
weighted by a factor of 1.5 relative to intra-protein interactions to
ensure that binding energy was preserved. No more than five
residues were allowed to change from residue types observed in a
multiple sequence alignment (MSA) of the scaffold if (a) these
residues were present in the MSA with a frequency greater than
0.6, or (b) if the calculated ΔΔG for mutation of the scaffold
residue to alanine was large. Designs were evaluated as to their
interface energy, ligand solvent exposed surface area, ligand orien-
tation, shape-complementarity, and apo-protein binding site pre-
organization. The latter was enforced by explicitly introducing
second-shell amino acids. The binding affinity of the directed
evolution optimized design is similar to those of anti-digoxin
antibodies. As it is stable for extended periods and can be expressed
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at high levels in bacteria, the design has to potential to provide a
more cost-effective alternative for biotechnological and for thera-
peutic purposes as long as it can be made compatible with the
human immune response.

In 2014 the Baker lab designed a pH-sensitive Fc-domain IgG
binding protein using the hot-spot centric approach [111].
His-433 on the IgG domain was targeted as a pH-sensitive site
that should bind only under a specific pH range. Ensembles of
disembodied interaction residues were based on the IgG complex
with protein A. Scaffolds with high bacterial expression and solu-
bility that can host the keystone residues were then searched. The
rest of the interface was designed with RosettaDesign with ranking
assisted by shape-complementarity and computed binding energy.
Nine of 17 designs exhibited binding signals. At pH 8.2 the design
bound the target 500-fold more tightly compared to pH 5.5.

In 2014Liu,Chen and coworkers presented a newCPDmethod
with a comprehensive statistical energy function (SEF) and system-
atic integration of experimental selection for foldability which was
proven experimentally on two de novo structurally resolved designs
[112]. In this important paper they highlight some of the challenges
of existing rule-based or general-CPDmethods, the latter minimiz-
ing a general effective energy function. Challenges include low
success-rate on common targets, insufficient reflection of the diver-
sity in natural sequences sharing a common structure and lack of the
rich functional conformational dynamics in CPD results. While SEF
are an integral part of numerous CPD methods, a full-scale SEF for
automated CPD is not available as most general methods focus on
physics-based energy functions. SEFs share the spirit of rule-based
CPD, though the latter can include very few components which are
not well calibrated between them. As such, the rule-based design,
which often necessitates a human expert, receives here a systematic
and coherent formalism. The SEF components including single-
residue and pairwise terms with individual terms were determined
by the probability distributions of rotamer types and pairs of rota-
mer types. Complementary, structure properties considered for
single positions include secondary structure types, solvent accessi-
bility, and backbone Ramachandran angles. Structural properties of
pair terms also include the relative positioning in 3D space. Next, a
general strategy for selecting structure neighbors with adaptive
criteria (SSNAC) addressed the fact that some target properties are
at the boundary of predefined boundary intervals and the need to
treat multi-dimensional properties jointly. Small sample effects were
corrected. Further, the publication aimed to establish the general
applicability of an experimental approach assessing structural stabil-
ity by linking it to antibiotic resistance in bacterial cells expressing an
engineered TEM1-β-lactamase fused to the protein of interest.
Unstable proteins are prone to proteolysis leading toweak antibiotic
resistance. Comparing the SEF to fixed-backbone to
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RosettaDesign, the authors claim that the SEF captures energy
contributions that favor native sequences. The authors note that
the SEF approach cannot treat packing in the same level as physics-
based approaches, but seems to do a better job in capturing
topology-related features, especially for β-strand containing topol-
ogies. Four well-folded de novo proteins for three different targets
were obtained and two were structurally resolved validating the
promising approach.

In 2014 the Baker lab applied CPD for the design of hyper-stable
helical bundles [113]. Specifically, using Rosetta along with
parametric backbone generation an antiparallel, monomeric
untwisted three-helix bundle with 80-residue helices (18-residue
repeat) was designed as well as an antiparallel right-handed mono-
meric four-helix bundle and a parallel left-handed five-helix bundle.
While the classical coiled-coil structure is considered as a side-chain
‘knobs-into-holes’ structure, here the focus was on the less-
appreciated contribution of backbone strain. Within the coiled-coil
Crick parameters, a change of 2� in the helical twist and the coupled
supercoil parameter can dictate the coiled coil twisting or lack of it.
Within RosettaDesign, finer grid searches were undertaken in the
vicinity of these parameters, yieldingoptimizeddesigns.The resulting
designs denatured only in >95 �C with 0.4–1.1 Å RMSD between
the crystallographically resolved structures and the designs.

In 2014 Woolfson applied CPD for designing water-soluble
α-helical barrels [114]. These are coiled-coils with more than four
helices which form a central cavity. Within the abcdefg heptad
repeat of coiled coils positions gade determine the oligomer state.
As such, these positions were the focus of the design with specific
positions relating to the requested coiled coil type. A bZIP scoring
function was used to assess the fitness score of the homo-oligomer.
Sequential rules were applied to reduce the set to be sampled and
then Coiled Coil Builder (CCBuilder) was applied to construct the
requested full-atom models. This includes the SOCKET knobs-
into-holes packing assessment. Next, a genetic algorithm was
applied to optimize radius, pitch, and inter-helical rotational offset.
The designed pentamer, hexamer, and heptamer coiled coil were
resolved crystallographically with RMSDs of 0.67–1.77 Å between
the design and the actual structure.

In 2014 Negron and Keating combined the CLASSY [75]
multi-state CPD and the distance-scaled, finite-gas reference
(DFIRE [163]) state potential for de novo CPD of three coiled
coils consisting three orthogonal antiparallel homodimers [115].
The heptad repeat coiled coil structure enabled the multi-state
design scheme to provide a partition function between the stability
and the specificity gap; allowing for the design of novel and experi-
mentally prove 43-residue peptides folding into specific antiparallel
homodimers. As such, a synthetic coiled-coil toolkit is provided for
modular synthetic biology applications.
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In 2014 the Schief lab collaborated with Baker and others to
apply CPD for the important cause of epitope-focused vaccine
design [116]. Their 27-author study focused on inducing potent
neutralizing antibodies to small and stable CPD scaffolds which
present a respiratory syncytial virus (RSV) epitope. The fold-from-
loops (FFL) CPDRosetta protocol starts by identifying a functional
motif (epitope), which in this case was a helix-turn-helixmotif in the
RSV Fusion (F) glycoprotein, as identified from an antigen-
antibody crystal structure. The epitope was placed on a target
topology along with distance restraints of the scaffold, a thermally
stable three-helix bundle. Then, ab initio folding was applied to
build diverse backbone conformations consistent with the target
topology. Successful low-resolution designs were subjected to an
all-atom sequence design in which functional motif side chains were
recovered followed by three rounds of sequence design and
full-atom optimization. Last but not least, the 40,000 successful
designs were evaluated by structural metrics and 8 designs were
subjected to human-guided sequence design to correct potential
flaws. These included replacing surface residues outside the epitope
with the original template residues and designing larger hydropho-
bic residues at selected positions. One of the designs also underwent
resurfacing (described above). The successful design induced
neutralizing antibodies and was recognized by an existing antibody
against the epitope.

In 2014 the DeGrado lab joined forces with three other labs,
applying CPD for a de novo TM Zn2þ-transporting four-helix
bundle [117]. The protein was named ROCKER. The first shell
of the metal binding was inspired by a previous di-manganese four
helix bundle while the second shell was adapted from that soluble
structure for the TM milieu. A stochastic search over the helix-
bundle Crick parameters was applied for a D2-symmetric anti-
parallel tetrameric coiled-coil. A design alphabet was guided by
the membrane depth (using the Ez potential [164]) and functional
requirements of the different regions. Rotameric self and pair ener-
gies were compuated with a van der Waals radii reduced to 90 % of
their size with the optimal rotameric conformation searched using a
DEE/A* algorithm. 1008 resulting sequences had a preference for
an asymmetric state, excluding the transporter from being filled
with two ions. To confirm an asymmetric rather than symmetric
conformation, each of these sequences was subjected to the two-
state free-energy comparison evaluator algorithm VALOCIDY
(Valuation of Local Configuration Integral with Dynamics [165])
using independent MD trajectories. The protein was extensively
characterized structurally and functionally, confirming the CPD
models.

In 2014 Baker and coworkers applied CPD for reducing immu-
nogenicity by removing T-cell epitopes [118]. As proteins represent
the fastest-growing class of pharmaceuticals, their deimmunization
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is of growing need. MHC-II-binding short-sequence epitopes have
been characterized. Herein, a sliding window of 15-residues was
searched using a support vector machine (SVM) for T-cell epitopes.
These were searched and potential epitope sites were redesigned
without losing structure, stability, and function. As the deimmuni-
zation scores favor negatively charged residues, a net charge
constraint was added. First, they computationally recapitulated a
previous deimmunization effort. Second, the method was experi-
mentally validated on the superfolder green fluorescent protein
(sfGFP) by redesigning the top four predicted H-2-IAb epitopes.
The deimmunized protein designs failed to isolate T cells in mice
while maintaining function. Third, 5 mutations were aimed at
removing 3 epitopes in the toxin domain of the cancer therapeutic
HA22, a potential drug for refractory cell leukemia. Two of these
mutants lost 80 % of the cytotoxic effect while other mutants
displayed increased effect.

In 2014 Zhang, Tame and coworkers applied CPD for the
design of a self-assembling sixfold perfectly symmetric β-propeller
protein [119]. Visual examination of 174 β-propeller proteins was
applied to choose the most visually symmetric protein for design.
Therein, ancestor reconstruction of one of the six blades was
applied followed by reverse engineering of a 6-blade protein. The
process included docking of the blades and side-chain design in
which essential inter-blade interacting residues were left as is. The
actual design was experimentally proven to have an excellent
0.68 Å-backbone RMSD to the designed model.

In 2014 the Andre lab designed a leucine-rich repeat from the
ribonuclease inhibitor family with predefined geometry [120].
Designated software was utilized to determine the length, curva-
ture, and twist geometrical features. The protocol first defined the
desired protein geometry. Second, a library of structures of individ-
ual repeats was compiled from crystal structures of selected repeat
proteins. Third, self-compatible repeats capable of symmetrical
assembly were selected. Fourth, the inter-repeat interface was opti-
mized by cycles of docking and sequence optimization. Fifth, con-
secutive repeats were connected by loops. Last, capping was added
to most N- and C-terminal repeats. A five double-repeat protein
was confirmed to fold into a novel ring for the cap-less design and
to a well-defined repeat protein when the caps were included.

5 CPD Failed Efforts and Retractions

Description of achievements and challenges of CPD cannot be
complete without mentioning cases in which CPD publications
were retracted. Naturally, published science highlights success
stories rather than failures. Nevertheless, in some cases the failed
attempt to repeat a published study results in exposing an
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erroneous or disputed scientific publication. The need to analyze
and understand failed efforts was highlighted by Mayo [100] in his
description of an iterative design cycle: “Proteins from failed compu-
tational design efforts are typically discarded without comment or
investigation into the cause of failure. This situation is unfortunate,
because valuable information is lost when successful designs are
reported. Without detailed computational and/or experimental
analysis of failed designs, flaws in the design procedure cannot be
identified and remedied.”

The field of protein design had suffered from several such
incidents, partly as the proof of the output protein is not always
straightforward. The resulting retracted publications may be due to
innocent mistakes, insufficient validation or potentially even cheat-
ing in reporting the research. This section aims to present key
retractions without getting into the details underlying the retrac-
tions. Rather, such retractions remind us of the caution required in
reporting CPD studies and the need to unequivocally validate the
result of the CPD process.

In 2008 Dwyer, Looger, and Hellinga retracted [166] their
2004 Science [167] publication which attempted to describe the
first computational enzyme design, a triose phosphate isomerase
(TIM) in a computationally redesigned ribose-binding protein.
The retraction states that this is following a report that the provided
clones that were supposed to be clones of the designed enzyme
were actually clones of wild-type TIM impurity. In addition, a JMB
computational enzyme design publication by the same group was
retracted [168]. Following these retractions questions arose [169,
170] including over the validity of a 2003 Nature paper describing
computational redesign of ligand-binding specificities [171] and a
2004 PNAS paper describing the CPD of receptors for an organo-
phosphate surrogate of the nerve agent soman [172]. Notably,
these papers were not retracted. Importantly, Hellinga has
acknowledged responsibility for the two retractions and asked his
university to hold an inquiry regarding them [173].

Unfortunately, retractions in the field of protein design are not
limited to CPD. For example, following cross-contamination, in
2002 Fersht and coworkers have retracted [174] theirNature paper
[175] on the directed evolution of new catalytic activity using the
α/β-barrel scaffold.

In summary, these retractions following irreproducible results
and the heated debate that followed should remind us of the special
care required in experimentally characterizing and confirming that
the CPD product is indeed the designed protein.
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6 Concluding Remarks: Future Challenges

Many aspects of CPD has been reviewed in the past [121, 122,
176–182], yet a chronological case-study review of the field is
presented here for the first time. The field of CPD has undergone
a tremendous leap forward in the three decades in which it exists.
CPD demonstrates the ability to design functional and extremo-
phile complex proteins with great precision using a wide array of
tailored methods as well as imported methods from other fields.
Taken together, it seems that the achievements and challenges of
the CPD field reflect that of the broader structural bioinformatics
and computational biophysics [183] field.

Some of the pending challenges include:

1. Accessibility to the general relevant scientific community. Thus
far, the main efforts in the field of CPD were not distributed
among a large community but rather clustered in a small num-
ber of labs (see Table 3 for list of main labs and software
packages). Often, the CPD software packages are used solely
‘in-house’ and not utilized by the general community, even if
the software is open-source. CPD requires multidisciplinary
know-how in structural biology, biophysics, biochemistry,
software engineering, and a general nontrivial combination of
theory and experiment. As with other fields, it is expected that
with time more and more scientists will apply CPD for their
research and consequently use software developed by others.

2. Integration of knowledge-based and energy-based methods:
Ideally, all design algorithms will rely on physics to address
the enthalpic and entropic energetic contributions. Yet, within
the complex protein milieu and within the foreseeable future of
computer power, such a description is not practical in high
resolution. Currently, it seems that each design lab selects a
different method of integrating knowledge-based know-how
into the design—from selection of hydrophobic or helix-
forming amino acids to use of known structural motifs or
structural fragments. A systematic and comparative analysis of
the different design schemes may help determine better guide-
lines on this aspect.

3. Systematic differential approach towards different proteins
levels of organization, different protein regions, and the rela-
tionships between such regions. While often the design is split
to solvent-exposed and buried regions, the adaption of the
CPD algorithm to the local milieu of the target site is still not
optimized.

4. Assessment of electrostatics and solvation effects: Coupled to
the previous item, the local dielectric milieu and long-range
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electrostatic interactions are still not sufficiently modeled
within CPD software.

5. Integration of thermal plasticity and functional dynamics:
While a generalization, the incorporation of dynamics into
the design scheme is still not done, despite the hard-wired
dynamic functional profile of every protein as e.g. depicted by
quick Gaussian network models.

6. Negative design: Negative design, defined as a design aimed at
avoiding unwanted conformations or functions, must be an
explicit part of computational design. Since the 1991 thiore-
doxin redesign [11] and the betadoublet, a β-sandwich de novo
design [14], the negative design aspect has been in the fore-
front of the field. While the importance of negative design is
well acknowledged since early days of CPD [185], it is still not
explicitly integrated into design algorithms. In this respect, the
positive-design scheme explicitly or implicitly regards a refer-
ence state which can often be considered as a negative design
element. However, too often insufficient emphasis is given to
the definition of the reference state.

7. Systematic integration of experimental design approaches: the
theoretical rational design is moving towards integration with
experimental semi-rational design approaches such as directed
evolution. Yet, currently the number of designs benefiting from
the combination of approaches is still small. Moreover, there is
no systematic protocol for combining the two approaches or
even for reporting the stage to which each approach has
advanced the target design.

8. Objective cross-assessment of methods: To date, there has not
been an objective cross-assessment of the different available
methods, as done for e.g. structure prediction via the Critical
Assessment of Structure Prediction (CASP) competition [186]
which is running since 1995. Therein, the community is given a
mutual target to be submitted to assessors who are not
part of the competitors thus enabling objective analysis of
achievements and challenges in a method comparative manner.
Without such a community-wide objective assessment the
comparative analysis of CPD methods is often challenging
relying solely on reports by the respective authors for each
tool. Consequently, the identification of advantages and
disadvantages of each method and the cross-dissemination of
knowledge is hampered.

9. Definition of the reference state: In many cases the scoring
function consists of scoring the gap between the desired state
and the nondesired, e.g. denatured one. However, the refer-
ence state is still not sufficiently defined, let alone divided
between protein and cellular regions.
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10. In vivo CPD: Many designs are not stable and prone to aggre-
gation [111]. As seen from the case-studies presented, the vast
majority of designs were not characterized within an in vivo
setting, which is the ultimate natural environment of proteins.

Each of the above items deserves a separate chapter. Yet, after
highlighting some of the pending challenges, it is important to
emphasize that the hierarchical approach to CPD has advanced in
all levels—from large scaffold searches in the growing PDB to
quantum-mechanical optimization of enzymatic catalytic sites. In
parallel the richness in knowledge-based and physics-based meth-
odology sets the stage to comparative analysis of methods and the
dissemination of methods from the method creators to the general
community of protein scientists.
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