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Abstract

Targeted cancer nanotherapeutics offers numerous opportunities for the selective uptake of toxic
chemotherapies within tumors and cancer cells. The unique properties of nanoparticles, such as their
small size, large surface-to-volume ratios, and the ability to achieve multivalency of targeting ligands on
their surface, provide superior advantages for nanoparticle-based drug delivery to a variety of cancers. This
review highlights various key concepts in the design of targeted nanotherapeutics for cancer therapy, and
discusses physicochemical parameters affecting nanoparticle targeting, along with recent developments for
cancer-targeted nanomedicines.
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1 Introduction

Cancer chemotherapy is fundamentally limited by dose-limiting
toxicity. This has long been true of nonspecific cytotoxic agents
that are still the most widely used anticancer therapies, which in
addition suffer from a low therapeutic index. The last 20 years has
seen the development of molecularly targeted agents, which have
an improved toxicity profile, especially for acute events. However,
these newer agents are often given continuously over longer time
periods and chronic toxicity remains a key limiting factor [1, 2].

With our improved understanding of cancer biology and path-
ways, targeted agents and cancer immunotherapy approaches have
gained considerable interest and investment, resulting in positive
outcomes, and a rise in the use of these treatments. Targeted agents
primarily include antibody drugs that are capable of specifically
blocking proliferative cancer pathways, and immunotherapy
approaches being aimed at priming the patient’s own immune
system to attack and destroy cancers [3, 4]. Surgery and radiother-
apy are also still routinely used in the arsenal of anticancer
treatments—along (or in combination) with chemotherapies,
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targeted therapies, immunotherapy or newer treatments such as
adoptive cellular therapy [5]. Cancer nanomedicines are intended
to add to this arsenal of therapeutics, by packaging and specifically
delivering existing chemotherapies to where they are needed the
most: within cancer cells.

Nanoparticles (NPs) enable the encapsulation of poorly soluble
drugs, protection of a variety of therapeutic payloads from blood
components, increase systemic circulation times and improve bio-
distribution, leading to minimized systemic toxicities [6]. These
properties are ideal for oncology applications where systemic toxic-
ity is a major issue. Doxil, which is the first anticancer nanomedicine
to enter the clinic, is liposome-encapsulated doxorubicin, which
was shown to drastically increase the systemic circulation half-life of
doxorubicin (Dox) from 0.8 h to 2 days, in addition to reducing
cardiotoxicity [7]. Albumin associated paclitaxel (nab-PTX) has
also led to higher tolerated doses [8].

Once injected into systemic circulation, the localization of NPs
within the body can be influenced via “passive” or “active” target-
ing strategies. The term passive targeting describes the accumula-
tion of NPs bearing no affinity ligands at disease sites, where the
degree of accumulation depends on their inherent physicochemical
properties (size, shape, charge, flexibility, etc.). If suboptimal, these
properties may also impede the effective concentration of NPs at
active sites due to increased sequestration by the mononuclear
phagocytic system (MPS), limiting their systemic concentration
and potential to extravasate into target tissues [9]. Active targeting
is a term used to describe the mode of action of NPs with surface-
bound affinity ligands having specificity to diseased tissue and/or
cells. Actively targeted particles rely on the principle of passive
targeting discussed above, but targeting ligands have an additional
effect, aiding accumulation in the tumor or uptake of NPs into
cancer cells via endocytosis, or both.

The development of actively targeted NPs was facilitated by the
maturation of antibody technologies, together with techniques for
bioconjugation of targeting moieties including antibodies, anti-
body fragments, peptides, aptamers (Apts), sugars, and small mole-
cule ligands to the surface of NPs [10–13]. Although more than 30
years has passed since the first targeted NPs were developed, only a
handful have reached clinical translation, and none have yet been
approved [14–17]. The lack of effective translation of targeted NPs
could be attributed to the following limitations; (1) our insufficient
understanding of events at the nano–bio interface both in vitro and
in vivo; (2) our inadequate knowledge of the fate of NPs at the
body, organ, and cellular levels; (3) difficulty in achieving reproduc-
ible and controlled synthesis of targeted NPs at larger scales; (4)
lack of technologies enabling screening of a large number of tar-
geted NP candidates under biologically relevant conditions that
could be reliably correlated to clinical performance; (5) potential
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lack of or low occurrence of the so-called enhanced permeation and
retention effect (EPR) in patient tumors, and; (6) inter- and intra-
patient heterogeneity in receptor expression levels. In this review
we discuss effective targeting of tumors via passive and active
mechanisms, and highlight the various tumor biology and NP
physicochemical properties that affect targeted nanodrug delivery
for oncology applications.

2 Passive Targeting

The growth of a solid tumor requires development of a blood supply
and lymphatic drainage. However, the development of these sys-
tems is pathological and this has profound implications for delivery
of nanomedicines. Characteristics of the tumor vasculature such as
excessive branching, chaotic structures, enlarged gaps between
endothelial cell lining of vessel walls and associated breakdown of
tight junctions, and a disrupted basement membrane, facilitate the
extravasation of particulate materials from vessels into tumor tissues
[18, 19]. An impaired lymphatic drainage system further entraps
macromolecular particles and delays their clearance. Starting in
the 1980s, the observation of increased accumulation of macromo-
lecules and colloids such as the polymer-drug conjugate poly(sty-
rene-co-maleic acid)-neocarzinostatin (SMANCS) in tumor tissues
led to the term “enhanced permeability and retention” (EPR) effect
[20]. Together with grafting of polyethylene glycol (PEGylation) to
the surface of NPs (to enhance systemic circulation), this has
become the most widely exploited concept in nano-oncology appli-
cations [20–24]. The EPR effect has been observed with a wide
range of macromolecular agents such as: proteins, including immu-
noglobulin G (IgG); drug-polymer conjugates; micelles; liposomes;
polymeric NPs and many other types of NPs [25–28].

The distribution of NPs within tumors begins with margin-
ation toward the vascular wall, followed by extravasation from the
blood vessels, diffusion throughout the extravascular tissue and
interaction with extracellular and intracellular targets [6]. The
degree of vascular permeability in patients is far more heteroge-
neous than in pre-clinical models. Variable tumor microenviron-
ments can affect the cutoff size for NP accumulation in tumors,
restricting their effective penetration range, and accounting for the
lack of observable EPR effects in certain tumor types [29, 30]. The
negative pressure gradient present within the tumor interstitium
can substantially limit the convection of NPs from the intravascular
to the extravascular space within tumors, regardless of the presence
of leaky vasculature [29, 31, 32].

The EPR effect is more highly multifaceted than first thought.
Only recently are we beginning to understand the contribution of
other tumor microenvironment (TME) related parameters such as
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blood circulation in tumors, extravasation to the perivascular tumor
microenvironment, tumor-associated macrophages (TAMs), fibro-
blasts, collagen, penetration distance within tumor tissue, tumor
cell internalization and intracellular trafficking (and other tumor
matrix components). Although the EPR effect has been the main
principle governing the use of nanomedicines for tumor therapy, a
number of important limitations need to be considered. The main
observations of EPR have been studied in small animal subcutane-
ous or orthotopic xenografts, and genetically engineered mouse
models [33]. These settings are drastically different from tumors in
humans where the EPR effect may not be present or manifested in a
similar manner. Other than the observation of marginal
progression-free survival in the case of ovarian cancer patients
(receiving Doxil as a second line therapy or platinum-sensitive
cohorts), passively targeted NPs up to now have not led to substan-
tial improvement in patient survival rates, which may suggest
patient populations with lowered tumor susceptibility to NPs
and/or lack of EPR effect [6, 34–36]. More importantly, it appears
that the EPR effect can also vary substantially between patients,
with variability arising even within the same patient or tumor type
[6]. To circumvent these problems, in the samemanner that molec-
ularly targeted treatments are currently offered to patients follow-
ing genetic profiling of their tumors, more personalized approaches
could be envisioned for the future where “nanomedicine-respon-
sive” patient populations can also be identified. Research on com-
panion diagnostics is helping to address this complex problem. In
preclinical models, iodine loaded liposomes have been used to
predict animal cohorts that were responsive to nanotherapeutics
[37]. In another recent preclinical study magnetic resonance imag-
ing (MRI) was used to predict treatment response and drug accu-
mulation using co-administered 30 nm magnetic iron oxide NPs
and paclitaxel encapsulated polymeric NPs in tumor-bearing mice
[38]. In the clinic, a study was initiated to ascertain the safety of co-
administering ferumoxytol as a tumor imaging agent, in addition to
irinotecan-loaded liposomes (clinicaltrials.gov, NCT01770353).
These approaches have yielded valuable insights into the in vivo
kinetics of NP biodistribution and demonstrated how clinically
relevant imaging modalities and agents can be utilized to select
patients with high EPR and to predict therapeutic nanomedicine
efficacy using companion diagnostics.

3 Active Targeting

Active targeting describes the use of affinity ligands to direct NP
binding to antigens that are overexpressed in diseased tissue.
Actively targeted particles rely on the principle of passive targeting
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discussed above, but the addition of ligands can aid accumulation in
the tumor and uptake of NPs into cancer cells via endocytosis.

A wide variety of targeting ligands are used to create targeted
NPs (Table 1). These ligands are often directed toward overex-
pressed receptors or antigens on proliferating cancer cells. Impor-
tant parameters that should be taken into account when choosing a
targeting ligand include binding affinity, ligand size, immunogenic-
ity, and cost of manufacturing. The ideal ligand should also facili-
tate deeper tumor penetration.

The first antibody to be approved for clinical use was
muromonab-CD3 (an immunosuppressive agent) in 1986 [39].
Since then numerous antibody platforms have been developed

Table 1
Examples of targeting ligands and targeted NPs

Ligand Type Nanoplatform Target Indication (Ref)

Antibodies and fragments
l F(ab0)2 Liposome Non-muscle myosin heavy

chain type A
Gastric cancer [63]

l F(ab0) Liposome HER2 Breast cancer [144]
l scFv Liposome HER2 Breast cancer [58]

Proteins
l Transferrin Polymeric NPs Tf receptor Cancer [59]
l Ankyrin repeat protein siRNA

complexes
EpCAM Cancer [145]

l Affibodies Polymeric NPs HER2 Breast cancer [146]

Peptides
l CGNKRTRGC (LyP-1) Protein NPs gC1qR (p32) Cancer [147]
l F3 peptide Iron oxide NPs Nucleolin Cancer (imaging) [148]
l iRGD Iron oxide NPs αvβ3/5 Cancer (imaging) [149]
l iRGD Polymeric NPs αvβ3/5 Cancer [150]
l KLWVLPKGGGC Polymeric NPs Collagen IV Inflammation [151]
l KLWVLPK Polymeric NPs Collagen IV Vascular wall [152]
l SSPIQGSWTWENGK-
WTWRGIIRLEQ

Iron oxide Fibronectin Cancer (Imaging) [153]

l SSPIQGSWTWENGK-
WTWRGIIRLEQ

Liposomes Fibronectin Cancer

Nucleic acid ligands
l A10 aptamer Polymeric NPs PSMA Prostate cancer [154]
l A9 CGA aptamer Gold NPs PSMA Prostate cancer [155]
Small molecule ligands
l Folic acid Liposomes FA receptor Cancer [56]
l Folic acid Polymeric NPs FA receptor Cancer [156]
l TPP Polymeric NPs Mitochondria Various [157]
l ACUPA Polymeric NPs PSMA Cancer [158]

HER2: human epidermal growth factor receptor 2. Tf: transferrin. EpCAM: epithelial cell adhesion molecule. PSMA:

prostate specific membrane antigen. FA folic acid, TPP triphenyl phosphonium, ACUPA 2-[3-[5-amino-1-carboxypen-
tyl]-ureido]-pentanedioic acid

Improved Targeting of Cancers 17



including murine, chimeric, humanized and human monoclonal
antibodies (mAbs) [40]. For example, rituximab (Rituxan) is a
chimeric mAb, which binds to CD20, and was approved for the
treatment of non-Hodgkin’s lymphoma in 1997 [41]. Trastuzu-
mab (Herceptin) which was approved for the treatment of breast
cancer in 1998 is a humanized mAb that binds to the HER2/neu
antigen [42]. Natural or fully synthetic antigen-binding fragments
(Fab and Fab0 ~ 50 kDa), variable fragments (Fv ~ 15 kDa), and
single chain variable fragments (scFv ~ 30 kDa) of antibodies have
been engineered and tested [43]. Antibody fragments are engi-
neered to control properties such as affinity (KD usually lower
than 1 nM) or internalization capability. The advantage of anti-
gen-binding fragments is that they lack the Fc-antibody region,
which is the most immunogenic component of antibodies.

Several other classes of binding ligands, including antibody
mimetics, peptides, nucleic acid ligands, and small molecules,
have been developed against a number of target antigens [43].
These types of ligands can also be conjugated to radioisotopes or
drug molecules to create more effective targeted imaging and
therapeutic modalities [44–47]. Similar ligands can be conjugated
to the surface of NPs in order to achieve antigen-specific active
targeting [43, 48]. In contrast to antibody–drug conjugates, which
typically carry 1–8 drug molecules, targeted NPs are capable of
carrying up to 105 drug molecules, allowing for a higher amount
of drug delivery per bio-recognition or binding event.

For effective cancer therapy, drug encapsulating NPs should
ideally be delivered within cancer cells, and therefore therapies that
act on intracellular active sites are most effectively delivered with
targeted NPs since this facilitates uptake of NPs via either clathrin-
dependent endocytosis, caveolin-assisted, cell adhesion molecule
directed, or lipid raft associated mechanisms [49]. In the case of
hydrophobic small molecule drugs that can easily permeate
through the endosomal lipid bilayer, NP entrapment within endo-
somes following endocytosis can still lead to effective intracellular
drug concentrations as the drug molecules are released from the
carrier over time. In contrast, for the effective delivery of biological
macromolecules such as nucleic acids (DNA, siRNA, miRNA),
charged/and or hydrophilic small molecule drugs (that are
impermeable to the endosomal membrane), endosomal escape is
an important prerequisite [50]. This is crucial since intracellular
payload release should occur prior to fusion of endosomes with
lysosomes where biological payloads can be degraded as a result of
low pH levels [51]. Studies to identify mechanisms that lead to
endosomal escape based on pH buffering and osmotic swelling,
which cause endosome bursting or endosomal membrane destabi-
lization for the purposes of effective subcellular drug delivery are
helping to further understand this effect [52–55].
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Ligand mediated cell internalization can result in therapeutic
benefits as compared to equivalent non-targeted NPs [56–59]. For
example, accumulation of siRNA-loaded NPs at tumor sites is
largely a function of effective EPR via passive targeting; however,
cellular internalization and effective gene silencing are largely a
function of targeting ligands, which facilitate intracellular uptake.
Therefore, the colloidal properties of NPs determine their biodis-
tribution, whereas the targeting ligand serves to facilitate and
enhance cellular uptake at specific sites [60]. For effective tumor
targeting and margination and extravasation of NPs for cancer
therapy deeper tumor penetration and retention is important.
Targeting strategies that focus on the TME can also be utilized to
improve penetration. For example tumor-specific penetrating
peptides such as iRGD with a R/KXXR/K C-terminal peptide
motif have been used to stimulate neuropilin-1-mediated vascular
permeability [61].

For targeting of nanomedicines in oncology applications
parameters such as ligand binding affinity (KD) and receptor
expression levels throughout the treatment period also need to be
considered.

3.1 Clinical Stage

Actively Targeted

Nanoparticles

Over the last four decades since the first actively targeted NPs were
reported [62], only a handful have progressed to clinical trials
(Table 2). MCC-465, the first targeted NP to enter trials, consists
of liposome encapsulated Dox with surface bound PEG for
immune shielding and dimers of F(ab0) fragments for targeting
[15]. The F(ab0)2 used is a fragment of the tumor specific human
mAb (GAH), which has shown affinity to>90 % of human stomach
cancer cells [15]. MCC-465 exhibited significant antitumor
response against GAH-positive xenografts leading to 80 % reduc-
tion in tumor mass [63]. Phase I trials with MCC-465 were carried
out in order to determine the maximum tolerated dose and further
dosing regimens. MCC-465 does not appear to have progressed
through clinical development after phase I completion.

Anti-EGFR (epidermal growth factor receptor) immunolipo-
somes loaded with doxorubicin (anti-EGFR ILs-dox) have been
tested in the clinic on patients with advanced solid tumors over-
expressing EGFR no longer amenable to standard treatment and a
maximal tolerated dose was defined (50 mg/m2) from the phase I
trial [64]. MM-302 is a HER-2-targeted PEGylated liposome that
encapsulates doxorubicin for delivery to HER-2-overexpressing
tumor cells, it is currently undergoing phase II and III trials for
breast cancer and HER-2 positive breast cancer respectively [65].
MM-302 has been recently shown to improve the antitumor activity
of oxaliplatin in HER-2 positive breast cancer, when administered
after cyclophosphamide priming [66]. The overexpression of TfR,
EGFR, and HER-2 occurs in a range of cancer types, making these
cancer ligands attractive targeting strategies for drug delivery [67].
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SGT-53 is a transferrin receptor (TfR)-targeted liposome,
which binds to TfRs on the surface of cancer cells using single-
chain antibody fragments (TfRscFv). Its payload is a plasmid
encoding wild type tumor suppressor P53 [68]. Preclinical studies
showed that SGT-53 could sensitize tumors to the effects of radia-
tion and chemotherapy [68]. It is currently undergoing phase I and
II clinical trials in combination with Dox for treatment of solid
tumors and metastatic breast cancer. SGT-94 is a similar formula-
tion to SGT-53. In SGT-94 the P53 plasmid was replaced with an
RB94 plasmid encoding a fragment of the wild-type retinoblastoma
tumor suppressor protein. SGT-94 is undergoing Phase I trials in
patients with RB negative tumor biopsies.

MBP-426 is another TfR-targeted liposome that encapsulates
oxaliplatin [14]. In a phase I study, patients with advanced or
metastatic solid tumors refractory to conventional therapy received
MBP-426 as 2–4 h infusions every 3 weeks and it was well tolerated
[14]. 2B3-101 is a targeted liposomal formulation of Dox using
glutathione as a ligand. By targeting the glutathione receptor it is
able to traverse the blood–brain and blood-CSF barriers. Phase II
trials have taken place for glioma and for metastases of breast cancer
to the brain or the leptomeninges.

BIND-014 is the first targeted, controlled-release polymericNP
for cancer chemotherapy to reach clinical development. It is com-
posed of PLA-PEG diblock polymer, that targets prostate-specific
membrane antigen (PSMA) and encapsulates a docetaxel (Dtxl)
payload [69]. PSMA is a transmembrane protein that is overex-
pressed on the surface of prostate cancer cells and tumor-associated
neovasculature of virtually all solid tumors [70, 71]. BIND-014 is
currently in phase II trials for second-line therapy for patients with
non-small-cell lung, metastatic castration-resistant prostate cancers,
and squamous cell carcinoma of the head and neck [72].

CALAA-01 was the first targeted polymeric NP to reach clinical
use for siRNA delivery in 2008 [73]. The CALAA-01 NP consists
of siRNA that reduces the expression of the M2 subunit of ribonu-
cleotide reductase (R2), cyclodextrin containing polymer (CDP)
for siRNA condensation, adamantine-PEG (AD-PEG) for steric
stabilization, and adamantine-PEG conjugated to human Tf
(AD-PEG-Tf) to target the TfR which is overexpressed on the
surface of many cancer cells [74, 75]. CALAA-01 currently has
no further active trials after the completion of the phase I trial.

4 Optimal Biophysicochemical Parameters for Targeted Nanoparticles

Properties such as size, shape, surface charge, surface chemistry,
hydrophobicity, roughness, rigidity, and composition are termed
the physicochemical properties of NPs and can influence the uptake
and/or targeting of NPs to tumors and cancer cells (Fig. 1) [76].
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Tumor targeted NPs must be able to effectively circulate, mar-
ginate, and successfully bind to vascular targets or extravasate into
tumor interstitium and finally become internalized in cancer cells.
The combination of these events requires that the NPs have optimal
size, shape and surface properties, Each of these aspects merits
investigation when developing optimal tumor targeted NPs. In
this section, we discuss these properties, which generally affect
both passively and actively targeted NPs.

NP biophysicochemical properties can significantly affect their
cell uptake, cell cytotoxicity, pharmacokinetics (PK) and biodistri-
bution (BD) in vivo. There is a strong interplay between each of
these properties. Computational techniques ranging across scales
from molecular dynamics through to simulation of fluid flow and
tumor growth can help gain insight in to the optimal combination
[77, 78]. However, the complexity of the bio–nano interface still
demands a comprehensive experimental approach.

4.1 Influence

of Nanoparticle Size

Nanoparticle size crucially effects three phases of biodistribution:
circulation and clearance; diffusion into and through tumor tissue;
and cellular internalization by tumor cells. NP sizes are most often
given as hydrodynamic sizes, measured by dynamic light scattering.
Other techniques, such as atomic force microscopy or electron
microscopy are also sometimes used, and will generally measure
smaller sizes for the same particles.

Based on many studies, 10–150 nm is a generally accepted size
range for the development of NPs for in vivo applications with most
favorable in vivo circulation and biodistribution, and tumor uptake
patterns [79]. These upper and lower sizes are mostly determined

Fig. 1 Physicochemical properties of ligands and nanoparticles and the TME can
affect their in vivo performance
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because of interactions with the immune system and kidney filtra-
tion cutoffs, respectively. In general the larger the NP, the lower the
curvature will be, which can lead to increased interactions of opso-
nins and more rapid in vivo clearance [80]. Larger NPs are more
likely to be filtered by the sinusoids in the spleen and cleared by the
MPS cells, which include the Kupffer cells of the liver [81].
Furthermore, NPs smaller than approximately 5.5 nm have been
shown to be rapidly cleared by glomerular filtration in the
kidneys [82].

For tumor accumulation, the upper limit for extravasation into
solid tumors appears to be ~400 nm and it is generally observed
that NPs <200 nm in size can accumulate effectively within tumor
tissue, with the 70–200 nm range considered optimal for tumor
passive targeting [83]. In relation to diffusion within the tumor,
intercapillary distances must be considered, since it is important for
NPs to reach tumor cells that are located further away from these
microvessels. Tumor matrix components such as collagen fibers,
extracellular proteins, increased interstitial fluid pressure, heteroge-
neous blood flow, and impaired lymphatics towards the tumor core
present challenges for the effective passive diffusion of NPs within
tumors [84, 85]. Work has shown that NPs of about ~10–20 nm
are ideal for maximum tumor penetration [86].

Cellular internalization of NPs is highly dependent on the size
of the NPs, and in general, particles in the 40–50 nm range exhibit
maximal uptake in vitro [87]. For example, Herceptin (HER) gold
NPs (2–100 nm) were synthesized and their size-dependent bind-
ing and uptake was investigated in ErbB2 receptor expressing cells
[88]. Interestingly, studies have shown that NP uptake as a function
of size can also be tumor cell type-dependent, and just a 10 nm
deviation from an investigated optimal size, results in a significant
decrease in NP uptake [88]. Firstly it was shown that the number of
HER antibody binding sites on the NPs was dependent on the NP
surface area and increased with particle radius. Surface antibody
density also increased linearly with NP radius—demonstrating that
these multivalent antibody-conjugated NPs can allow for a high
degree of ErbB2 cross-linking and can be tuned by varying NP size.
Therefore, NP shape and size can change ligand presentation,
affecting NP binding avidity.

As noted above, animal models understate the extent of varia-
bility of the EPR found in patient tumors. Yet even examples from
the preclinical literature clearly show that optimal size is dependent
on the model chosen.

The size dependent accumulation of fluorescently labeled
PLA-PEG polymeric NPs using two different tumor xenograft
models, HT20 colon and A2780 ovarian carcinoma, which result
in different tumor structures, growth rates, and microenvironments
was investigated [89]. The biodistribution and accumulation of
near-infrared dye-loaded PLA-PEG NPs was tracked using in vivo
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fluorescence imaging technique. NPs with sizes 111 and 141 nm
accumulated efficiently in tumors and a larger 166 nm NP was
shown to undergo rapid clearance in the liver. The pattern of
accumulation was variable in both tumors, although fluorescence
was mostly observed from the tumor core region in the case of
HT29 tumors, which was not observed in the A2780 tumors. NP
accumulation in the necrotic HT29 tumor core was shown to be
size-independent, but size dependent in A2780 tumors, which
were more vascularized. In general the larger NPs led to lower
tumor accumulation.

Tumor permeability and degree of vascularization are key
concepts for the assessment of NP biodistribution in tumors. In
hyperpermeable murine colon adenocarcinoma polymeric micelles
of sizes between 30 and 100 nm were found to be similar in their
accumulation, tumor extravasation, and treatment efficacy [90].
However, in hypopermeable pancreatic tumors, only 30 nm
micelles were shown to be effective [90]. Considering the diversity
of nanomaterials and cell types used to investigate targeted NPs
for cancer therapy, it is important that an optimal NP size be
determined experimentally for a given NP type and cell type.

4.2 Influence

of Nanoparticle Shape

The interaction between NP shape and hemodynamic forces (fluid
dynamics of blood flow) affects circulation through the blood.
The interaction between shape and cellular internalization affects
both the rate of clearance by the MPS and the rate of uptake by
target cells.

In relation to circulation of NPs in vivo, spherical NPs tend to
be less susceptible to transport across streamlines by hemodynamic
forces in the bloodstream. Certain studies, on the other hand, have
shown that non-spherical particles with longitudinal lengths reach-
ing cellular diameters and discoidal shapes can exhibit longer circu-
lation times than spherical particles [91, 92]. Discoidal particles
have highly oscillatory trajectories that can increase their contact
with vessel walls. Oblate-shaped NPs are susceptible to torques
resulting in tumbling and rotation, leading to an increase in the
lateral drift of NPs towards blood vessel walls in microvessels [93].
Furthermore, oblate-shaped particles are less susceptible to
uptake by macrophages leading to increased blood circulation
[91, 94, 95]. Vascular endothelium or cancer cell targeting seems
to also favor oblong and more elongated NPs since these shapes
offer greater avidity towards targets due to an increased multiva-
lency, maximizing NP surface contact with targets [96]. In particu-
lar for vascular targeting, geometrically enhanced targeting can
avoid hemodynamic forces that can lead to NP detachment from
the endothelium [97].

After systemic injection of a NP, before it reaches the cancer
cells within tumors, it must first evade phagocytosis by macro-
phages, and marginate across the vascular wall against blood
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hemodynamic forces. This activity can be influenced by the tum-
bling rate of the NP which is affected by its buoyancy, drag, van der
Waals interactions, electrostatic double layer interactions, and steric
repulsive behavior [98]. The movement of spherical NPs and their
margination is size dependent [99]. This is because transport of
larger spherical NPs is dominated by advection while smaller NPs
are more prone to diffusion, which facilitates their extravasation
across blood vessels. For examples, 65 nm liposomes were more
than three times likely to marginate than 130 nm liposomes [100].

Nanoparticle shape is also an important factor in the rate of
cellular internalization [87], with shapes that can accommodate
cellular membrane wrapping processes most effective at cellular
uptake. Amongst NPs of either rod or sphere design, the spherical
shaped NPs were taken up by cells more readily [101].

A wide variety of non-spherical NPs with different sizes and
geometries have been manufactured using different methods [98].
A top-down fabrication method termed Particle Replication in
Non-wetting Templates (PRINT) utilizes lithography techniques
to create polymeric NPs of a wide variety of geometries, shapes and
aspect ratios, and a study using cylindrical PLGA NPs created using
this technique showed an increase in tumor levels of docetaxel with
decreased liver and spleen uptake [102, 103]. However, typical
processes used to fabricate therapeutic NPs (bottom-up fabrica-
tion, self-assembly) renders most nanomedicines spherical. In addi-
tion to further studies of the in vivo effects of shape, new methods
of synthesis for non-spherical NPs suitable for industrial scale-up is
therefore an important area for future research.

4.3 Influence

of Nanoparticle

Surface Charge

The degree of nonspecific binding of proteins to NPs in the blood
is related to NP surface charge, because highly positively charged
NPs are more rapidly cleared from circulation by cells of the MPS
since they are more prone to opsonization [79]. Although cat-
ionic NPs promote cellular binding (due to interactions with the
negatively charged phospholipids, proteins, and glycans on cell
surfaces) and can be ideal for in vitro applications of drug delivery
to cancer cells [104], in vivo this charge should be masked until
the NPs are within the tumor. Negatively charged NPs can also
exhibit selective cellular uptake compared to NPs with neutral
surfaces [101]. Either the uptake of positively charged NPs
could be an energy-dependent process involving the proteins
dynamin and F-actin, or positively charged NPs can by-pass endo-
cytic pathways and enter cells by creating holes in the cellular
bilayer [104, 105].

In vitro studies have shown that amino terminated surfaces
induce the highest levels of complement activation [106], and
NPs with neutral methoxy surface groups were most immunocom-
patible. Post systemic administration, NPs with zeta (ζ) potential
<15 mV exhibited minimal macrophage uptake and led to longer
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circulation times and overall tumor retention [107]. When near
neutral polymeric micelles (ζ potential 1.3 mV) and anionic (ζ
potential �10.6 mV) were compared, the more negatively charged
NPs resulted in lower liver and spleen accumulation [108]. Cation-
ically charged NPs have a high nonspecific uptake in a variety of
cells, and can also facilitate endosomal release through the so-called
“proton sponge effect” [109].

In summary, the charge of NPs, which is related to their surface
chemistry influences the degree of opsonization, and circulation
time of the NP, and interaction with macrophages within organs of
the MPS. Positively charged NPs are more prone to uptake by
macrophages in the lungs, liver, and spleen. Neutral and slightly
negatively charged NPs exhibit prolonged circulation lifetimes and
lowered uptake by the MPS.

4.4 Influence of NP

Rigidity

Particle rigidity can highly influence both circulation and cellular
uptake in vivo. This has long been studied in the case of larger
structures, such as red blood cells. Synthetically engineered
microparticles with both rigid and deformable properties were
developed and their biodistribution evaluated in vivo [110]. The
more deformable synthetic blood cells were eliminated 30 times
more slowly than their rigid counterparts from blood, with
the more rigid microparticles accumulating in the lungs 2 h post-
injection.

More recently, attention has been paid to the rigidity of NPs
although this is still a preliminary area of investigation [111, 112].
Rigidity affects circulation in capillaries. Healthy red blood cells
tend to accumulate in the center of the capillary, leaving a cell-free
sheath zone of several microns. In normal physiology this zone is
also occupied by white blood cells and platelets that interact with
the capillary wall. As referenced above, NPs tend to marginate
toward the cell wall on the basis of size. Whether the correlation
between stiffness and margination found for red blood cells extends
down to the NP size regime is an open question.

In relation to cellular uptake there is in vitro evidence that
macrophages take up harder particles more efficiently, by phagocy-
tosis, and softer particles less efficiently by macropinocytosis [112].
Although evidence is more scant, the same in vitro preference for
harder particles is found in endothelial cells. Cancer cell lines show
much greater variation, which is not surprising in view of their
heterogeneity [112]. It may be that tuning particle rigidity is
another parameter for personalizing tumor treatment.

A key study which controlled for rigidity while holding other
properties constant and investigated the NP size range was Zhang
et al. who synthesized 120 nm poly(carboxybetaine) particles
[113]. They used variable cross-linking of their zwitterionic mono-
mers to achieve bulk moduli ranging from 180 to 1350 kPa. They
showed that softest, more deformable NPs had a circulation half life
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of 20 h, more than twice that of the most rigid particles at 9 h. The
softest particles also showed less than half as much spleen accumu-
lation, probably aided by a capacity to squeeze through spleenic
filtration. Another study found similar behavior with PEG based
hydrogel particles, although at the upper end (greater than
200 nm) of the size range relevant to NP drug delivery [114].

Considering the highly flexible and deformable biconcave dis-
coid shape of red blood cells, it is not surprising that the elastic
modulus of NPs can also play an important role in their pharma-
cokinetics and biodistribution, with more flexible NPs navigating
and traversing vessels and gaps more easily in vivo. Investigating
targeted NPs with variable degrees of structural rigidity and flexi-
bility could be of high interest for effective tumor targeting
strategies.

4.5 Influence

of Nanoparticle

PEGylation

The large surface area-to-volume ratios of NPs can attract a
“corona” type binding of blood proteins to their extremely curved
surfaces [109], with up to hundreds of proteins adsorbing onto
their surfaces [115]. Hydrophobic surfaces tend to lead to higher
levels of protein adsorption, and IgG proteins (opsonins) have high
affinities for hydrophobic surfaces [116].

In the case of small drug molecules plasma protein binding by
abundant proteins such as albumin and alpha-1-acid glycoprotein
can lead to increased bioavailability through the reduction of first
pass hepatic extraction. However for NPs, this can lead to their
enhanced blood clearance by the MPS [9]. Binding of plasma
proteins onto the surface of NPs (opsonization) is extremely rapid
once the NPs are injected into the blood stream. The ability to graft
hydrophilic neutral polymers of polyethylene glycol (PEG) onto
the surface of liposomes and polymeric NPs goes hand-in-hand
with EPR discoveries and led to increased blood circulation times
and improvements in tumor accumulation [12, 23, 75, 117]. The
grafting of PEG molecules onto the surface of NPs is termed
PEGylation and is currently the most utilized technique for
improving the pharmacokinetics, plasma half-life, biodistribution,
and elimination of NPs in vivo [118]. Indeed, uncoated NPs
have been observed to be rapidly cleared by the MPS [116], and
the density and thickness of the PEG layer can also influence
opsonization and biodistribution of injected NPs. Surface-grafted
PEG NPs exhibit reduced uptake by liver cells [119].

PEG configurations on the surfaces of NPs can present as
extended brush-like structures, coiled mushroom or mushroom/
brush intermediates. Brush-like PEG surfaces were shown to be
more optimal to sterically suppress the approach and binding of
opsonins such as the C3b protein [116]. PEGylation as a strategy
for improving NP-based drug delivery has been recently discussed
in an excellent review elsewhere [120].
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5 Emerging Considerations for Improving Targeted Cancer Nanomedicines

The effective homing of targeted NPs to the required site of action
faces numerous biological barriers, including the immune system
and the TME. Opsonization driven sequestration, compromised
vasculature, erratic blood flow and high interstitial fluid pressures
all need to be overcome. In previous sections we discuss the variety
of parameters that can be tailored and optimized in order to
improve nanomedicine targeting to tumors and cancer cells. Fur-
ther considerations that are more recently gaining momentum and
interest are the realization of the importance of TME components
and stimuli-responsive design elements for more controlled target-
ing and drug delivery to cancer cells—and are discussed in the
following sections.

5.1 The Tumor

Microenvironment

The tumor microenvironment (TME) includes subpopulations of
genetically diverse cancer cells, genetically normal cells, vascular/
endothelial cells, blood cells (e.g., erythrocytes, leukocytes, and
thrombocytes) together with the tumor interstial medium—with
all these components having a role in cancer progression [121].
TAMs, cancer-associated fibroblasts and endothelial cells have been
shown to play a role in tumor progression. It is anticipated that
reprogramming of the TME via non-cancerous cells can lead to
tumor regression. For example targeting stromal cells has gained
interest recently [122, 123]. Stromal cells play a major role in
tumor growth and maintenance—and their reprogramming can
be a potential next-generation cancer treatment approach [124].
Another striking example is the use of immune checkpoint block-
ade inhibitors to reprogram immunosuppressive TMEs. Nanotech-
nology can offer solutions for the effective targeting of each of
these components, and pathways. In particular the combination
delivery of multiple chemotherapeutics can be achieved using tar-
geted NPs. Nano-enabled synergistic combination drug delivery to
cancer cells can more effectively kills these cells and minimize
resistance [125].

5.2 Stimuli-

Responsive

Nanomedicines

Cancer produces an inevitable shift in homeostatic chemical equi-
librium, such as amplified or triggered enzymatic activity, a change
towards acidic pH, reductive or oxidative states, or an increase in
reactive oxygen species [126]. These differential biochemical sig-
natures can be exploited for the development of more precise
therapies through NPs which sense these differences (“endogenous
stimuli”) to trigger drug release. In addition to internally triggered
drug release, externally controlled physical parameters (“exogenous
stimuli”) such as local induction of thermal, electrical, ultrasound,
or magnetic energy can also be used to trigger release [127].
Interest is growing in adding biologically responsive elements to
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NP design, to achieve more controlled output behaviors and thera-
peutic outcomes. Release can be triggered by causing structural
changes such as NP building block degradation, shedding of sur-
face layers (e.g., PEG) and charge switching (neutral to positive),
which can ultimately allow for better uptake into cancer cells. As
with targeting generally, the goal of stimuli-responsive drug deliv-
ery systems is to further minimize systemic toxicities and unfavor-
able drug-plasma interactions to allow more efficient dosing and
treatment of disease.

A range of endogenous stimuli such as changes in pH, redox
state and ionic content within tissues and cells can be utilized for
the development of chemically triggered drug release from poly-
meric NPs. Solid tumors have acidic pH environments
(pH 6.2–6.9) [128], that can be used to trigger chemical changes
in the NP structure leading to increased drug release. Subcellular
compartments also offer various low pH environments post uptake
of NPs (endosome, lysosome, cytosol, etc.), which can cause either
surface layer shedding or conformational changes in NPs, leading
to site-specific and increased drug release.

5.3 Subcellular

Targeting

Following cancer cell internalization through different endocytosis
pathways, NPs need to release their therapeutic payload, which can
further diffuse through the cellular compartments to reach the
biological target. Cell cytosolic internalization is not always suffi-
cient for drugs to reach their targets via diffusion alone [129–135].
The cytoplasm contains a cytoskeletal network and numerous dis-
persed organelles, with many dissolved macromolecules ranging in
concentration between 50 and 400 g/L [136, 137]. In the case of
drugs that are recognized by efflux pumps (e.g., P-glycoprotein)
NPs that can be internalized by endocytosis and thus release their
active drugs within specific subcellular organelles can be a way to
reduce multidrug resistance in cancer cells [138, 139].

Folic acid, low-density lipoprotein, cholera toxin B, mannose-
6-phosphate, Tf, riboflavin, the tripeptide RGD, ICAM-1 anti-
body, and nicotinic acid are suitable endocytic targeting ligands
that can be useful for subcellular localization of NPs [49]. Cellular
internalization with these ligands can occur via clathrin-dependent
receptor mediated endocytosis, caveolin-assisted endocytosis, lipid
raft-associated endocytosis, or cell adhesion molecule (CAM)-
directed cellular uptake [49, 140, 141].

Encapsulation of Dox into liposomes bearing Tfs on the distal
end of PEG chains was shown to increase Dox uptake into glioma
cells (that overexpress TfRs) [142]. The dynamic subcellular fate of
polymeric micelles formed from (1,2-diaminocyclohexane) plati-
num(II) (DACHPt/m), the parent complex of oxaliplatin, was
investigated in tumor tissues [143]. Potent antitumor activity was
shown and the micelles were able to overcome Pt resistance both
in vitro and in vivo. The extravasation of DACHP/m NP was
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observed from blood vessels into tumors in addition to polymer
dissociation within the cells. The polymeric NPs selectively disso-
ciated in the late endosomes and facilitated Pt drug delivery to the
nucleus relative to free oxaliplatin, by circumventing the cytoplas-
mic detoxification systems of metallothionein and methionine
synthase, suggesting that NP intracellular targeting via compart-
mentalization is an effective strategy for drug delivery. It would be
of interest to understand the exact mechanisms of subcellular trans-
port of NPs in order to improve their design and targeting
functions.

6 Conclusions and Outlook

Improving and fine-tuning our understanding of tumor heteroge-
neity and discovering EPR biomarkers can help identify “nanome-
dicine-responsive” patients and further improve their clinical
outcomes. Our understanding of NP transport to tumors and
factors involved in their biodistribution and uptake within the
TME is constantly expanding and will result in safer and more
efficacious nanotherapeutics. Investigating the challenges of con-
trollable, reproducible and scalable NP synthesis, as well as large-
scale NP screening and evaluation, will facilitate their more rapid
clinical translation.

Oncology is one area where nanomedicine products are set to
make the most impact, where cell and tissue targeting approaches
can be used to efficiently deliver cytotoxic and molecularly targeted
drugs to cancer cells. Ultimately physicochemical parameters need
to be investigated for successful design of targeted NPs, which
include optimization of NP biophysicochemical properties and
the demonstration of the efficacy of targeted NPs in a clinical
setting on their impact on patient treatment. Indeed, the value of
tailoring these parameters with the purpose of minimizing toxicity,
unfavorable interactions with the immune system, rapid renal clear-
ance, and minimal accumulation in organs such as the liver and
spleen is beginning to be more systematically recognized and more
routinely investigated. Other than identification of optimal ligands
and ligand targets suitable for highly selective NP targeting, other
important practical challenges in the development of targeted ther-
apeutic NPs should also be considered including: (1) the use of
biocompatible, biodegradable/bioeliminable materials; (2) the use
of simple, robust, and reproducible bioconjugation chemistries for
the attachment of precursors and targeting ligands; (3) facile NP
assemblies that avoid multistep NP preparation and purification
steps; (4) optimization of NP biophysicochemical properties to
achieve, optimal drug load/release, long circulation half-life, suit-
able biodistribution, differential target tissue accumulation, effica-
cious target tissue drug concentration and drug exposure kinetics;
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(5) validation of NP stability and predictable shelf life; and (6)
development or adaptation of scalable processes and units of opera-
tions amenable to the manufacturing of large quantities of targeted
NPs for clinical development and commercialization. The field is
steadily progressing and we will see targeted nanomedicines en
route to becoming valuable therapeutics in oncology with greater
impact in the near future.
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