
Chapter 2
Deterministic Unit Commitment Models
and Algorithms

This chapter introduces the basic formulations of unit commitment problems which
are generally proposed to optimize the system operations by mixed integer linear pro-
gramming. Meanwhile, the formulations target a series of external factors that affect
electrical power generation schedules, such as ramping capacity, reserve requirement,
transmission capacity, fuel constraint and emission. This chapter also introduces the
solution approaches to solve the deterministic unit commitment problems, especially
using Lagrangian Relaxation and Benders’ Decomposition. The SCUC cases are pro-
vided to illustrate the UC modeling and decomposition processes. All formulation
notations are listed in Appendix B for reference.

2.1 Introduction

Generally, unit commitment is defined to optimize the ON/OFF status of generat-
ing units to meet the forecasted loads and reserve requirements, so as to provide a
least-cost power generation schedule. The unit commitment problems namely con-
sider how to optimally operate generators under physical conditions, such as gener-
ation capacity, minimum ON time, minimum OFF time, ramp up/down rate, reserve
requirements, as well as generation costs, such as startup/shutdown cost and fuel
costs.

Since the electric power generation is not an isolated component in the power
system, the real-time dispatch levels are also subject to demand changes, transmission
capacity and corresponding transmission conditions. Assuming that the real-time
loads follow the expectations of forecasted loads, when the transmission outage
possibly occurs at a time, it would cause to transmission congestions in some lines
and change the original transmission flows on current networks, and meanwhile, will
likely affect the original power generation schedule (real-time unit commitment).
This correlation reveals the importance of the co-optimization of generation and
transmission in practice. Although the unit commitment problems combined with a
transmission constrained network become more complicated, these studies are very
helpful to guide unit commitment scheduling from the perspective of a whole power
system’s operations.
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2.2 Objective Function

The objective function of unit commitment usually achieve the minimum total opera-
tional cost over a planned time horizon, the maximum social welfare or the maximum
total profit for a GENCO.

A generic UC objective function is composed of two component costs, related to
two-stage decisions. The first component cost is determined by day-ahead decisions,
i.e. the startup decision and shutdown decision on each generator (in first stage). We
here assume there will be no reschedule of units occurring during next-day operating
hours. The first-stage decision includes the start-up decision vgt and the shutdown
decision wgt that indicate when generation units will be turned on or shut down, and
other operational determinations for operation services. The second component cost
comes from the total operational costs in the second stage, which is primarily made up
of fuel cost and possible unserved energy penalty. And, this unserved energy penalty
is usually produced by load-shedding losses when scheduled generators are not able
to satisfy real-time demands. There is a list of parameter definitions in Table 2.2 for
reference.

min
∑

g∈G

∑

t∈T

(SUgvgt + SDgwgt ) +
∑

g∈G

∑

t∈T

Fg(pgt) + V O L L
∑

i∈N

∑

t∈T

δi t

(2.1)

where

SUg start up cost of unit g
SDg shut down cost of unit g
Fg(·) fuel cost function for unit g
pgt the thermal power generation/dispatch amount of unit g at time t
V O L L value of loss load [$/MWh]
δi t load loss at but i at time t

It should be noted that the fuel cost in the second-stage objective function is a
quadratic function highly associated with power dispatch on a generator and fuel
price. In general, the fuel cost function can be presented as a quadratic function of
the dispatch/production level, p, i.e., for a generator g, Fg(p) = a +bp+cp2, where
a, b and c are usually positive cost coefficients. We know that the quadratic mixed
0–1 integer programming problem is not easy to solve in practice, especially when a
lot of generators are involved. Further, due to the presence of binary decisions, this
could bring extra computational burden on solving a nonlinear fuel cost function.

Instead of solving the mixed integer quadratic problem, an alternative method
is to apply the piecewise linear approximation method to gain very close solutions
for computational convenience. In other words, the original objective function is
reformulated to generate a piecewise linear approximation and become a mixed
integer linear programming problem. For gaining the piecewise linear approximation,
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the sum of squares (SOS) techniques are often used to substitute the fuel cost function
Fg(p) by the summation

∑K
k=1 Ckλk with additional constraints,

{pg =
K∑

k=1

Δkλk,

K∑

k=1

λk = ug,λk ≥ 0, k = 1, . . . , K },

where u is the commitment status of generator g, and Ckand Δk are coefficients used
to approximate the quadratic curve.

Based on two status of a generator, we can know that when a generator is online
and commits to supply capacity, i.e. ug = 1, the UC model will be introduced with
the following constraints,

pg =
K∑

k=1

Δkλk,

K∑

k=1

λk = 1,

λk ≥ 0, k = 1, . . . , K .

When the generator commitment status is in an “off” state, i.e., ug = 0, the power
dispatch level pg become zero and has no any operational cost Fg(p).

Because the cost function itself is convex (see Fig. 2.1), the piecewise linear
approximation function is still convex. The solution obtained from the MILP is
very close to the real optimal solution [HROC01, ZWPG13].

Fig. 2.1 Piecewise linear approximation of the fuel cost function [ZWPG13]
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2.3 Constraints

In this sections, we introduce several common sets of UC constraints and variables
from two-stage mixed integer linear programming models in details. From the most
recent studies, we separate those typical constraints to address based on operation
characteristics and service requirements.

2.3.1 Unit Commitment Constraints

In the day-ahead markets, an ISO determines an unit commitment schedule based on
forecast demands and bids before the operating day, and designates power plants to
prepare to generate electricity for next-day demands. As the first stage of operation
scheduling, the UC constraints state generator status restricted by specific operation
requirements, such as minimum ON time and minimum OFF time, and also specify
startup action and shutdown action on each unit at a time period t , respectively.

Because a generator can’t be started up or shut down arbitrarily in consecutive
hours, Constraints (2.2) and (2.3) respectively indicate two generator’s requirements:
the shortest ON duration has to be met before a generator being shut down and the
shortest OFF duration is also required before a generator being restarted up.

minimum ON time constraint:

ugt − ug(t−1) ≤ ugτ ∀ g ∈ G, t ∈ T, τ = t, . . . , min{t + Lg − 1, |T |} (2.2)

minimum OFF time constraint:

ug(t−1) − ugt ≤ 1 − ugτ ∀ g ∈ G, t ∈ T, τ = t, . . . , min{t + lg − 1, |T |} (2.3)

where

ugt : commitment decision, a generator commits online, if ugt = 1; otherwise,
ugt = 0.

Lg: the minimum-ON duration
lg: the minimum-OFF duration
τ : time alias, a possible operating time period starting from time t
|T |: the duration of a planning horizon

The startup action vgt and the shutdown action wgt are determined by the generator
commitment statuses in the previous time period t − 1 and the current time period t .
Any operational actions can incur startup or shutdown costs, which are considered
in the objective function.
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Startup action constraint:

vgt ≥ ugt − ug(t−1) ∀ g ∈ G, t ∈ T (2.4)

Shutdown action constraint:

wgt ≥ −ugt + ug(t−1) ∀ g ∈ G, t ∈ T (2.5)

ugt , vgt , wgt ∈ {0, 1} ∀ g ∈ G, t ∈ T (2.6)

where

vgt : binary variable, startup action of unit g at time t
wgt : binary variable, shutdown action of unit g at time t

2.3.2 Thermal Generation Constraints

According to given unit commitment schedules, power generation is to fulfill system
operations through available generation resources and then to provide the least-cost
generation outputs to serve demand. A generator output in a hour is subject to the
maximum generation limit Pmax

g and the minimum generation limit Pmin
g . When a

generator is scheduled online (ugt = 1), the generation capacity is active giving
bounds on dispatch level, shown in (2.7); otherwise, a generator output is forced to
zero.

Pmin
g ugt ≤ pgt ≤ Pmax

g ugt ∀ g ∈ G, t ∈ T (2.7)

pgt ≥ 0 ∀ g ∈ G, t ∈ T (2.8)

In addition, a generator output can be adjusted, increasing or decreasing between
two successive time periods. The generation difference between two adjacent time
periods is called ramping. A basic constraint to address generation ramping is pre-
sented in (2.9).

− RDg ≤ pgt − pgt−1 ≤ RUg ∀ g ∈ G, t ∈ T (2.9)

where

RDg: ramp-down rate of unit g
RUg: ramp-up rate of unit g

We also take into account some specific ramping situations, in which ramping
rate is a changeable value and affected by the previous time period of commitment
status. T Some recent models have addressed this situation [WWG13c, WWG13b].
If a generator has a startup ramping, i.e. the dispatch level ramping up from 0 MW to
Pmin

g , the regular ramp up rate is not suitable under this condition, but can be replaced
with Pmin

g . In addition to startup ramping or shutdown ramping, the regular ramp



16 2 Deterministic Unit Commitment Models and Algorithms

up rate and the ramp down rate are applied to consecutive online status. Therefore,
constraint (2.9) can be modified as follow:

pgt − pgt−1 ≤ Pmin
g (2 − ugt − ug(t−1)) + RUg(1 + ug(t−1) − ugt ) ∀ g ∈ G, t ∈ T

(2.10)

pgt−1 − pgt ≤ Pmin
g (2 − ugt − ug(t−1)) + RDg(1 − ug(t−1) + ugt ) ∀ g ∈ G, t ∈ T

(2.11)

where constraint (2.10) describes two following situations:

• If a unit is ON at time t − 1 and ON at time t , the ramp up rate is RUg;
• If a unit is OFF at time t − 1 and ON at time t , the ramp up rate is Pmin

g .

Similarly, constraint (2.11) describes other two situations:

• If a unit is ON at time t − 1 and ON at time t , the ramp down rate is RDg;
• If a unit is ON at time t − 1 and OF at time t , the ramp down rate is Pmin

g .

2.3.3 Operating Reserve Constraints

Operating reserve is one type of ancillary operations to support the power balance on
the demand sides. The ISO promote ancillary services not only to enlarge the pool
of energy resources and introduce advanced techniques that effectively and actively
participate in the ISO market, but also to support the renewable energy integration
as a complementary tool.

The current operating reserve services being offered in electric energy markets
include synchronous or non-synchronous, regulation reserves, spinning reserves,
and non-spinning reserves. The sources of energy provided from different reserve
services are different: regulation service mainly supplied from online generators,
partial spinning reserve provided from generators already connected to the grid or
system resources, and non-spinning reserve provided from quick-start generators,
system resources or interruptible loads. The response times of reserve services cn
vary from a few seconds to 30 min, up to 60 min, depending on the control reserve
deployment time.

To achieve the optimization of energy and reserve in practice, one can obtain an
efficient energy and reserve offering strategy by Heuristic method [NLR04] or con-
sider the reserve determination on pre-contingency and post-contingency conditions
[BGC05]. In the fact that the durations of reserve services are often less than 30 min,
if the reserve duration is considered as a significant factor, a sub-hourly unit com-
mitment model become necessary to handle this time transition issue [YWGZ12].
Here, we primarily focus on hourly unit commitment formulations based on an
optimization method.

The spinning reserve is generally accounted for partial online generating capacity
or off-line generation resources. Their outputs are constrained by predetermined
maximum spin reserve, shown as
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0 ≤ sgt ≤ Smax
g ∀ g ∈ G, t ∈ T . (2.12)

where

sgt : spinning reserve of unit g at time t
Smax

g : maximum spinning reserve limit of unit g

Meanwhile, the generators that participate in biding spinning reserve must meet
the spin reserve requirements given by ISOs. Constraint (2.13) describes an operating
condition that the total spinning reserve at bus i should not less than the fixed reserve
requirement.

∑

g∈Gi

sgt ≥ RSit ∀ i ∈ N , t ∈ T (2.13)

where

RSit : spinning reserve requirement for bus i at time t .

More typical constraints regarding spinning and non-spinning reserve require-
ments are shown in constraints (2.14)–(2.18). The provisions of spinning reserve are
expended, not only from internal spinning reserves (e.g. from synchronized gener-
ators) but also from external spinning reserve (purchased from spinning reserve not
served). The maximum spinning reserve can be estimated through the response time
of spinning reserve at ON status, which is shown in (2.15).

∑

g∈Gi

sgt + (sn)t ≥ RSit ∀ i ∈ N , t ∈ T (2.14)

0 ≤ sgt ≤ S RT × M S Rg × ugt ∀ g ∈ G, t ∈ T (2.15)

The non-spinning reserve has a more complicated situation, in fact, divided into
two types of reserves: nonspinning reserve if a unit is ON and nonspinning reserve if
a unit is OFF. The former nonspinning reserve is similar to regular spin reserve from
online generators, and the latter nonspinning reserve is provided from off-line quick
start generators with a higher level of nonspinning capacities. Either of nonspinning
reserve is also necessary to satisfy the non-spin reserve requirements by the total
provisions of non-spin reserve resources. The corresponding formulations are given
in (2.16)–(2.18).

∑

g∈Gi

(nsO N
gt + (ns)O F F

gt ) + (nsn)t ≥ N RSt ∀ i ∈ N , t ∈ T (2.16)

0 ≤ (ns)O N
gt ≤ N S RT × M S Rg × ugt ∀ g ∈ G, t ∈ T (2.17)

0 ≤ (ns)O F F
gt ≤ QSCg(1 − ugt) ∀ g ∈ G, t ∈ T (2.18)
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All reserves mentioned above are dominant in ancillary service markets.
Meanwhile, more and more new products like flexible ramping products will be
added to ancillary services and enrich the ancillary services market. ISOs also expect
to benefit from the co-optimization by the effective determination of market clearing
prices, the enhancement of reserve shortage pricing, the identification of units for
system re-dispatch and proper compensation, etc.

2.3.4 Transmission Constraints

Power flows in a transmission network are usually considered in UC optimization
problems, because they can be used to address power losses occurring in a network
and eventually affect real-time power dispatch at a bus. Generally, Kirchhoff’s current
and voltage laws in a nodal way are applicable to find out electricity characteristics
of transmission and distribution systems. Through simplifying calculation processes,
one can present the power transmission using a DC linear approximation of power
flows. In addition to voltage magnitudes, MVA or MVAR flows, the DC power flow
method actually is often used to determine the MW flows on transmission lines in
optimization models.

Measuring load-shedding losses is to help decision makers identify possible load
losses at a specific bus. We can introduce a loss variable δi t into the DC approximation
of KCL constraints, in which the loss appeared at a bus for each time period will
cause unserved energy penalty. The modified DC approximation of KCL involves
in-bound and out-bound flow, thermal generation, forecasted demands, renewable
energy generation as well as load-shedding loss, shown in constraint (2.19). The
power transmission line from bus i to j also has a flow limit given in (2.20). In some
cases, the load-shedding loss is not allowed in a specific location and thus δi t needs
to be restricted to zero.

∑

(i, j)∈A+
i

fi j t −
∑

( j,i)∈A−
i

f j i t =
∑

g∈Gi

pgt + Rit − D0
i t + δi t ∀ i ∈ N , t ∈ T (2.19)

− Fmax
i j ≤ fi j t ≤ Fmax

i j , ∀ (i, j) ∈ A, t ∈ T
(2.20)

li t ≥ 0, ∀ i ∈ N , t ∈ T (2.21)

where

fi j t : unrestricted variable, a bi-direction flow between bus i and bus j
δi t : load-shedding loss at bus i at time t
A+

i : the set of flow starting at bus i
A−

i : the set of flow ending at bus i
Rit : renewable energy output at bus i at time t
Fmax

i j : transmission flow limit between bus i and bus j
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Additionally, a DC approximation of Kirchhoff’s voltage law is presented in
constraint (2.22). The renewable energy output Rit , demand Dit , and phase angle βi t

are usually given as parameters in the transmission constraints.

( fi j t − f ji t ) − Bi jt (βi t − β j t ) = 0 ∀ (i, j) ∈ A, t ∈ T (2.22)

βi t unrestricted, ∀ i ∈ N , t ∈ T (2.23)

where

βi t : a phase angle at interconnected bus i
Bi j t : susceptance of an transmission line (i, j)

The system voltage and transformer tap limits are shown in constraint (2.24) and
(2.25), respectively.

Vmin ≤ V ≤ Vmax , (2.24)

Bmin ≤ B ≤ Bmax , (2.25)

where

V: system voltage vector
B: transformer tap vector

Vmin , Vmax : system voltage lower and upper limit vector
Bmin , Bmax : transformer tap lower and upper limit vector

2.3.5 Emission Constraints

Environmental factor is one of operation considerations and usually addressed as a
system level or regional emission limit in general. The emission control is mainly
executed on these emission gases, i.e. CO2, SO2, NOx . Also, the allowable emission
amount highly depends on the fuel type of generating unit, for example, a coal-
burning electric generating unit has a higher emission level than a gas-turbine unit.
A system level emission limit over a planning horizon [FSL05b] is formulated as

∑

g∈G

∑

t∈T

(
Fe

g (pgt )ugt + SU e
g vgt + SDe

gwgt
) ≤ Emax , (2.26)

where

Fe
g (·): emission function of unit g

SU e
g : startup emission of unit i at time t

SDe
g: shutdown emission of unit i at time t

Emax : system emission limit
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This constraint is applied to one emission gas and the emission function may
vary according to the fuel type of generating units. In addition, this constraint can be
tailored for regional emission limit based on the location area of generating units.

2.3.6 Unserved Energy Constraint

In some circumstances, load loss is allowed to occur and may come with unserved
energy penalty reflected in the objective function. While the unserved energy
constraint imposes a performance bounding to control the expected total load losses
within an expected loss allowance.

E(
∑

i∈N

δi t ) ≤ εt , ∀ t ∈ T (2.27)

where

E(·): the expectation of load loss in a power system
εt : loss allowance for time t

2.3.7 Reactive Power Constraints

Relative to real power generation, this subsection briefly introduce reactive power
generation in current system operating, including generation limit, load bus balance
and operating reserve requirement [].

Qmin
g ugt ≤ qgt ≤ Qmax

g ugt ∀ g ∈ G, t ∈ T (2.28)
∑

g∈G

Qmax
g ugt ≥ DQ

t , ∀ t ∈ T (2.29)

load bus balance (2.30)

where

qgt : reactive power generation of unit g at time t
Qmin

g : lower limit of reactive power generation of unit g
Qmax

g : upper limit of reactive power generation of unit g

DQ
t : reactive power flow demand at time t
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2.4 Case Studies

This section provides two selected cases to illustrate basic unit commitment problems
and their solution analyses. Both cases are based on a modified 7-bus system, which
are taken from Reference [HZW14]. The test system includes 4 generators, 1 wind
farm, and 10 transmission lines with given capacities, shown on Fig. 2.2. The bus
parameters corresponding to generating units are listed on Table 2.1. The generating
unit parameters and their bid prices are given on Table 2.2. The transmission line
parameters are given in Table 2.3. Here, line congestion is not considered in both
case studies. The daily forecasted Loads are shown in Fig. 2.3 and the wind energy
output is in Fig. 2.4. All models can be coded in C++ and solved by commercial
solvers like CPLEX.

Here are two UC cases discussed as follow:

• Case 1: Joint energy and ancillary service optimization
• Case 2: Security-Constrained unit commitment with transmission contingency

Based on the given system, the case studies do not consider the impacts of trans-
formers, phase shifter for MW control as well as contingency, i.e. generator outages,
line outage.

R1 G1 G2

G3

G4

L1 L4

L2

L3 L5

Fig. 2.2 The 7-bus system
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Table 2.1 Bus parameters

Bus ID Type Unit ID Gen Capacity
(MW)

Spin Reserve
limits (MW)

ES Cap.
(MW)

B1 Wind R1 100 − 20

B2 Coal G1 90 10 20

B2 Coal G2 60 − −
B3 − − − − −
B4 Gas G3 100 − 10

B5 − − − − −
B6 Coal G4 90 − −
B7 − − − − −

a The symbol, ‘−’, represents no generation unit available at a corresponding bus

Table 2.2 Generator parameters and costs

G1 G2 G3 G4

Min-ON (h) 2 1 2 2

Min-OFF (h) 2 2 2 1

Ramp-Up
Rate(MW/h)

30 15 60 15

Ramp-Down Rate
(MW/h)

15 15 60 15

Pmin (MW) 20 10 20 15

Pmax (MW) 90 50 90 60

Smax (MW) 15 10 15 10

Startup ($) 500 500 800 300

Shutdown ($) 500 500 800 300

Fuel Cost a ($) 6.78 6.78 31.67 10.15

Fuel Cost b
($/MWh)

12.888 12.888 26.244 17.820

Fuel Cost c
($/MWh2)

0 0 0 0

2.4.1 Case 1: Joint Energy and Ancillary
Service Optimization

This case focuses on the co-optimization of energy and ancillary service at a same
planning horizon. This energy-reserve co-optimization aims to clear both markets
simultaneously in a least-cost way. Although energy and spinning reserve come
from the same physical resources, the same amount of electricity provided have
different prices between energy market and ancillary service market. The problem is
formulated in a two-stage mixed integer linear program. The UC schedule is modeled
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Table 2.3 Transmission line parameters

Line ID From To Flow capacity
(MW)

Voltage (V) Susceptance

L1 B1 B2 50 500 1

L2 B1 B3 160 500 1

L3 B1 B4 80 500 1

L4 B2 B3 100 500 1

L5 B2 B5 50 500 1

L6 B3 B5 30 500 1

L7 B3 B6 100 500 1

L8 B4 B6 50 500 1

L9 B4 B7 60 500 1

L10 B6 B7 50 500 1
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Fig. 2.3 Hourly loads on 7 buses

in the first stage, while both economic dispatch and spinning reserve are scheduled
in the second stage.

The length of the planing horizon is 24 h and the forecasted wind energy output is
given in one scenario. The wind farm is located at Bus 1 with a generating capacity
of 100 MW. The hourly wind energy output was truncated in the range of [5, 80] MW
with assumptions of a minimum production output and a maximum production out-
put. Therefore, index sets for Case 1 are shown below and the hourly wind energy
outputs are plotted in Fig. 2.4.

G = 4 Generators
T = 24 Hours
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Fig. 2.4 Case 1: hourly wind energy output

N = 7 Buses
S = 1 Scenario
|A | = 10 Transmission Lines

Then the determinist UC problem for energy and ancillary service is formulated.

min
∑

g∈G

∑

t∈T

(SUgt vgt + SDgt wgt) +
∑

t∈T

∑

g∈G

[(bgt pgt + agt ugt ) + (b′
gt sgt + a′

gt ugt )]

+ V O L L
∑

t∈T

∑

i∈N

Δi t

s.t. The first-stage constraints

ugt − ug(t−1) ≤ ugτ , ∀ g ∈ G, t ∈ T, τ = t, . . . , min{t + Lg − 1}
ug(t−1) − ugt ≤ 1 − ugτ , ∀ g ∈ G, t ∈ T, τ = t, . . . , min{t + lg − 1}
vgt ≥ ugt − ug(t−1), ∀ g ∈ G, t ∈ T

wgt ≥ −ugt + ug(t−1), ∀ g ∈ G, t ∈ T

ugt , vgt , wgt ∈ {0, 1}, ∀ g ∈ G, t ∈ T

The second-stage constraints

Pmin
g ugt ≤ pgt ≤ Pmax

g ugt , ∀ g ∈ G, t ∈ T

− RDg ≤ pgt − pgt−1 ≤ RUg, ∀ g ∈ G, t ∈ T

0 ≤ sgt ≤ Smax
g , ∀ g ∈ G, t ∈ T

pgt + sgt ≤ Pcap
g ugt , ∀ g ∈ G, t ∈ T
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Table 2.4 Objective value and unit commitment for 7-bus system

Objective value Unit ID Hour (1–24)

$60615.6 G1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

G2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

G3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

G4 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

∑

g∈Gi

sgt ≥ RSit , ∀ i ∈ N , t ∈ T

∑

(i, j)∈A+
i

fi j t −
∑

( j,i)∈A−
i

f j i t −
∑

g∈Gi

(pgt+sgt)−Δi t = Wit − Dit , ∀ i ∈ N , t∈T

( fi j t − f ji t ) − Bi jt (βi t − β j t ) = 0, ∀ (i, j) ∈ A, t ∈ T

pgt , sgt ≥ 0, ∀ g ∈ G, t ∈ T

Δi t ≥ 0, ∀ i ∈ N , t ∈ T

fi j t , ∀ (i, j) ∈ A , t ∈ T

We can obtain the computational results using the solver CPLEX, in which the
Brand-and-Cut-and-Price algorithm is used to solve mixed integer linear programs.
The total generation cost for this recommended UC schedule is $60615.6. Table 2.4
lists the objective value and the optimal UC schedule according to the forecasted
(known) hourly wind energy outputs and loads. Figures 2.5 and 2.6 are the optimal
generator dispatches and spinning reserve levels, respectively.

Without consideration of line congestion, load-shedding loss can be resulted from
the physical generation conditions, such as generation limits or ramping constraints.
The solution shows no loss occurs under this wind scenario. Therefore, the current
generation capacities and ancillary service requirements are able to provide power
balance in this system.

2.4.2 Case 2: SCUC with Transmission Contingency

This case focuses on the N-1 reliable DC optimal dispatch under transmission line
outage. This problem bases on the Case 1’s model and further considers the impacts
of transmission contingency on operation scheduling. The model remains a mixed
integer linear program and includes the transmission flow capacity constraint (2.31)
subject to a line outage during a period [t, t + a].
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Fig. 2.5 7-bus system: dispatch level for each generator
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Fig. 2.6 7-bus system: total spin reserve

− Fmax
i j αi j t ≤ fi j t ≤ Fmax

i j αi j t , ∀ (i, j) ∈ A, t ∈ T (2.31)

where

αi j t : Binary parameter, if αi j t = 1, line outage occurs between bus i and bus j at
time t ; otherwise, αi j t = 0.

Note that the practical method to deal with transmission line outage is not limited
to UC operation scheduling, including common transmission switching, whereas the
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state of transmission element (line or transformer), voltage and phase angle are fully
taken into account in transmission switching. For the simplicity of case, here we do
not consider such factors except transmission line.

Case 2 uses the same 7-bus system and shares the same parameters with Case
1. Assuming that the occurrence of line outage can be predicted in advance, only
one line outage occurs in line (4, 7) at 11 am. During the line outage, the number of
available transmission lines is reduced to 9 and the flow capacity Fm

47(11)ax becomes
zero. The deterministic UC model for Case 2 is shown as follow.

min
∑

g∈G

∑

t∈T

(SUgt vgt + SDgt wgt) +
∑

t∈T

∑

g∈G

[(bgt pgt + agt ugt ) + (b′
gt sgt + a′

gt ugt )]

+ V O L L
∑

t∈T

∑

i∈N

Δi t

s.t. The first-stage constraints

ugt − ug(t−1) ≤ ugτ , ∀ g ∈ G, t ∈ T, τ = t, . . . , min{t + Lg − 1, |T |}
ug(t−1) − ugt ≤ 1 − ugτ , ∀ g ∈ G, t ∈ T, τ = t, . . . , min{t + lg − 1, |T |}
vgt ≥ ugt − ug(t−1), ∀ g ∈ G, t ∈ T

wgt ≥ −ugt + ug(t−1), ∀ g ∈ G, t ∈ T

ugt , vgt , wgt ∈ {0, 1}, ∀ g ∈ G, t ∈ T

The second-stage constraints

Pmin
g ugt ≤ pgt ≤ Pmax

g ugt , ∀ g ∈ G, t ∈ T

− RDg ≤ pgt − pgt−1 ≤ RUg, ∀ g ∈ G, t ∈ T

0 ≤ sgt ≤ Smax
g , ∀ g ∈ G, t ∈ T

pgt + sgt ≤ Pcap
g ugt , ∀ g ∈ G, t ∈ T

∑

g∈Gi

sgt ≥ RSit , ∀ i ∈ N , t ∈ T

∑

(i, j)∈A+
i

fi j t −
∑

( j,i)∈A−
i

f j i t −
∑

g∈Gi

(pgt + sgt) − Δi t = −Dit , ∀ i ∈ N , t ∈ T

− Fmax
i j αi j t ≤ fi j t ≤ Fmax

i j αi j t , ∀ (i, j) ∈ A, t ∈ T

pgt , sgt ≥ 0, ∀ g ∈ G, t ∈ T

Δi t ≥ 0, ∀ i ∈ N , t ∈ T

fi j t , ∀ (i, j) ∈ A , t ∈ T

Because of the disruption of line (4, 7) at 11 am, the transmission flows in the
network would be changed as well as the dispatch levels for some specific generating
units. Table 2.5 shows that the objective value for UC with a line outage is increased
to $336, 438, in which 76.6% of costs come from the loss penalty. When the line
outage happens, the new line capacities are not able to satisfy the surge in flow and
line congestions also occur between some buses. Therefore, all units are required
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Table 2.5 Objective value and unit commitment for 7-bus system with line outage

Objective value Unit ID Hour (1–24)

$336, 438 G1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

G2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

G3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

G4 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
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Fig. 2.7 7-bus system: dispatch level for each generator

online and try to meet the local demands first so as to mitigate line congestions.
Meanwhile, the line outage forces G4 shut down at 11 am since the outflow of Bus
7 would be terminated.

Figure 2.7 describes the dispatch levels for each generator. Compared to the gen-
eration outputs in normal state (Fig. 2.5), these dispatch levels are more fluctuating
to accommodate the flow changes. Also, in this case, ramp up/down capabilities
regarding online units appear more important to adopt sudden changes in power
systems.

Figure 2.8 shows the total spinning reserve in the whole system. Apparently, the
overall reserve level is much higher than that of normal state and also the reserve
level changes have higher frequency. In the normal state, there is no load-shedding
loss within 24 h. However, the line outage results in load-shedding losses gathering
at Bus 7 over on-peak hours (Fig. 2.9). Meanwhile, the line outage leading to sudden
power supply changes can also trigger losses at other buses, e.g. Bus 3 and Bus 7.
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Fig. 2.8 7-bus system: total spin reserve
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Fig. 2.9 7-bus system: total load-shedding losses

In fact, the unexpected line outage is a very serious contingency event, and thus,
it’s more applicable to arrange the forced line outage for transmission maintenance to
mitigate an unexpected event. What’s more, the ISOs/RTOs execute some operating
reserves (non-spinning reserve or contingency reserve) to remove the transmission
violation, not limited to adjusting tap transformers, phase shifters, predetermined
dispatch levels and loads within given time limits.
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2.5 Solution Approaches for Deterministic
Unit Commitment

We mentioned the unit commitment problems which mainly consider physical gen-
erating requirements and power balance as a classic unit commitment problem. In
the absence of uncertainty, the classic UC problem is modified to implement some
hard operation requirements, i.e. must ON/OFF [OS92, FGL09a, FGL11], operating
reserve [SNS01], maintenance [FSL07], emissions [Gje96, FSL05a]. These studies
make the classical UC models become more realistic and applicable.

According to the nature of formulated UC problems, there are several common
solution approaches for deterministic unit commitment summarized as follow.

• Priority list, including evolutionary programming,
• Dynamic programming,
• Mixed integer linear programming (e.g. Lagrange relaxation method, decomposi-

tion method), and
• Heuristics methods.

The above solution approaches have been applied to solve UC problems in the
study and the reality. Priority list is one of initial solution methods and dynamic pro-
gramming is also widely used to obtain UC schedule and optimal generation costs.
Mixed integer linear programming has been employed in recent years as the most
efficient solution optimization techniques to solve classical UC problems, which will
be introduced in Sect. 2.5.3 with more details. Heuristics methods and evolutionary
programming have been attempted to solve deterministic UC problems. However,
their applications are limited to deterministic cases since they may have lower com-
putational performance when the UC problems face a large-scale power system, and
yet both methods can’t guarantee for solution optimality. A overview regarding these
two solution approaches refers to [Zhu09] for interests.

2.5.1 Priority List

For a generic priority list method, generators are committed in ascending order of the
fuel cost so that the most economic base load units are committed first and the most
costly units are scheduled last. The priority list method has a very fast computation
process, but it is highly heuristic and only generate schedules with relatively high
operation cost [SSUF03]. For solving simple UC examples using priority list, the
interested reader is referred to [Zhu09, WW12] for more examples.

The usage of priority list is very simple, but is restricted to the basic economic
dispatch constraints. This method thus has been extended to accommodate more
complicating constraints. The main function of priority list becomes to generate
initial solutions due to fast computation speed. Then the initial solutions will go
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through the improvement process with fast heuristic methods, and eventually one
can obtain an economic dispatch schedule and the total generation cost.

In the recent studies, priority list is collaborated with evolutionary algorithms to
solve UC problems. Some developed solution approaches provide attempts to solve
basic UC problems, such as Evolution Programming, Hybrid Evolution Program-
ming, Gbest based Artificial Bee Colony (ABC) optimization algorithms, Particle
Swarm Optimization (PSO) and Differential Evolution technique [GR12a, GR12b].

One of proposed heuristics-based evolutionary algorithm is to evolve an initial
population made of good solutions which is obtained by priority list method. Whereas
the evolution is characterized by the elimination of the less fit, the survival of the
fittest, a reproduction ability based on the fitness, and the genetic operators: cross-
over, mutation and time-window swap [SC05].

In addition, a hybrid ant system/priority list method is to cooperate the priority list
method with the feature of ant system [WCN+09]. The priority list method gives a set
of heuristics to be used for UC committing process under the operating constraints.
Meanwhile, the ant system can gain the benefit of using a set of heuristic rules
provided by the priority list method as directional bias information for improving its
evolving process.

What’s more, a study proposes an advanced quantum-inspired evolutionary unit
commitment algorithm to develop a new searching initialization method based on
unit priority list and a special Q-bit expression, which ensures the diversity in the
initial search area for improving the efficiency of solution searching. Considering
any prior knowledge of UC problem and the characteristics of the generator units,
the evolutionary optimization process can be initialized better and carried on by a
group-search for QEA-UC [CYW11].

2.5.2 Dynamic Programming

Dynamic programming (DP) is one of main solution techniques to optimize the ther-
mal unit commitment schedule. Dynamic programming with an implicit enumeration
approach is a common solution process to solve UC subproblems. Considering an
example, there are n generators in a power system, so it has 2n − 1 ON-OFF statuses
for determining an optimal UC solution. Using DP, it will go through all possible
combinations and then pick the best solution(s). The computation times are also
increased exponentially, thus the DP applications can’t be easily applied in large-
scale power systems due to its computational performance.

Some DP introductions with UC applications are clearly given in [Zhu09, WW12].
Generally, dynamic programming is not an unique method employed to produce unit
commitment schedules on the whole system. In fact, DP remains its own computa-
tional advantages as many studies have proposed DP integrated with other strategies
or methods, such as
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• Priority list [HHWS88, SPR87, LST+97]
• Lagrangian relaxation method [WSK+95, LS05a, FSL05b]
• Artificial neural network algorithm [OS92]
• Artificial intelligence technique [WS93]
• Expert system [SNS01]
• Branch and bound algorithm [Che08]

The combination of DP with other techniques aims to improve the computation
performance. Particularly, within [WSK+95, LS05a, FSL05b, GNLL97], DP is used
to solve specific UC subproblems in which the objective is required to determine the
optimal unit status cross hours. For the detailed solution process through the DP-
Lagrangian relaxation method, one can refer Sect. 2.5.4.3.

2.5.3 Mixed Integer Linear Programming

Compared to other mentioned solution approaches, MILP is the most promising
solution technique and has been successfully applied in UC problems. The classic
unit commitment problem in abstract form is shown on the following mixed 0–1
linear program (2.32a):

[P] : min cT
1 x + cT

2 y (2.32a)

s.t. A1x = b1 (2.32b)

A2x + Ey = b2 (2.32c)

x ∈ {0, 1}n1 (2.32d)

y ∈ R
n2+ (2.32e)

where c1 ∈ R
n1 , c2 ∈ R

n2 , b1 ∈ R
m1 , b2 ∈ R

m2 , Ai ∈ R
n1×mi (i = 1, 2), E ∈

R
n2×m2 , and m1, m2 are scalars.
The mixed integer program contains an integer variable vector, x, and a continu-

ous variable vector, y. The set of constraint (2.32b) represents unit commitment con-
straints only involving binary variables, while the set of sconstraint (2.32c) mainly
covers the generation limits, operating reserve, ramping limits and emission con-
straints.

The main applications of MILP in UC can be extended with helps from two
aspects: problem reformulation and algorithm modification, both of which aim to
improving solution process as well as achieving optimal solution easier and faster.

As solving UC representations purely through dynamic programming would cause
computational issues, the reformulations to UC problem can be completed using
MILP. This aspiration of better formulations promotes seeking alternative repre-
sentations to get rid of some computational obstacles, such as nonlinear structures.
For instance, the original fuel cost function is a mixed integer quadratic function
of dispatch/production level, but there exists some situations where directly solving
this function may lead to solutions hardly reaching the global optima. To reduce
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the computational burden, the piecewise linear approximation technique is used to
obtain an approximated value for generation variables [CA06, ZWPG13]. In addi-
tion, the traditional thermal generator constraints regarding to minimum ON/OFF
time are reformulated through pure integer programming (i.e. unit commitment
and startup/shutdown action constraint); ramping up/down constraints are simplified
from the general ramping constraint describing the relationship between ramping and
load level; similar to fuel cost function, the emission constraints can be linearized and
show in mixed integer linear programs. Other recent studies on reformulations have
reported alternative UC reformulations from mixed integer nonlinear programs and
how to make MILP approximations more close to real solutions [FGL09b, Jab12,
MELR13].

Regarding the second aspect (algorithm modifications), solution algorithms have
been being developed for several years and also bring a lot of vitality to the applica-
tion of MILP in UC problems. The traditional solution algorithms have been tailored
and customized in the way of integrating basic solution algorithms with other solu-
tion strategies or decomposing original problems to master problem and multiple
subproblems, so that they can be more suitable for applying in new developed UC
models. As for deterministic UC problems, solving corresponding mixed integer lin-
ear programs in the last decade utilized one or two following solution technique(s)
for better computational performance.

• Lagrangian relaxation technique [LB99, MMSN05, MMSN06, FLS+09, LS05b,
WSF10],

• Benders’ Decomposition [GGZ05b, GGZ05a, FSL05b, LS05a, LS05b],
• Branch-and-Cut method [WSF10],
• Augmented Lagrangian relaxation (LR) method and dynamic programming

[FSL05b, LS05a],
• Tabu search [MMSN05, MMSN06],
• Hybrid subgradient and Dantzig–Wolfe decomposition approach [FSL05a]

Here, we mainly introduce two of effective solution techniques, i.e. Lagrangian
relaxation (LR) and Benders’ Decomposition (BD). Since recent UC problems
involving uncertainties and their optimization models become more complicated,
Lagrangian relaxation and Benders’ Decomposition methods work as fundamental
solution theories that provide help for developing other advanced solution algorithms.

Taking the benefits from decomposition methods, a large MILP model can be
decomposed into smaller subproblem(s) which can be solved by existing solution
algorithms easily, so that computation performance is improved.

Generally, a UC original problems can be solved directly via Brand-and-Cut-and-
Price algorithms using solver CPLEX. After breaking down the original problem,
if the subproblem is a MILP, the Branch-and-Cut method is suitable for solving
this subproblem as well as Branch-and-Price method. If the subproblem is a linear
program, many well-known linear algorithms can handle it easily. For solving the
optimal commitments in master problems, LR and DP together can be applied to
solve short-term UC problems; meanwhile, Tabu Search can be used in the attempt
to solve a small size of UC. While solving a long-term UC might be still a challenge
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for current optimization methods, Fu et al. thus proposed a hybrid subgradient and
Dantzig–Wolfe decomposition approach to tackle this issue.

2.5.4 Lagrangian Relaxation

Lagrangian Relaxation (LR) is a powerful relaxation technique, which is often used
to solve UC problems. As many UC problems are complicated by a number of
coupling constraints, their original problems can be modeled as (relatively) easy
solving Lagrangian problems. More specifically, the problem reformulation is to
replace the complicated constraints with penalty terms in the objective function,
in which penalty terms are represented by the violation of constraints and their
Lagrangian multipliers. In a Lagrangian problem, a lower bound can be obtained for
the optimal value of the minimum non-convex UC problem [FLW13].

As an example, the general solution process for the SCUC model is shown on
Fig. 2.10. The solution process starts from solving the master problem (MP), in which
the constraints namely include unit commitment, economic dispatch, energy reserve,
emission limit and unserved energy limit constraints. In the normal case without any
outage, if the MP is found to be feasible, the incumbent solution (UC & ED) is passed
to the subproblem for network security evaluation (NSE). If the incumbent solution
satisfies the transmission requirements, the ED solution continues to be checked for
contingency in NSE. If there is any incumbent solution that fails in NSE for both
cases, the MP will be resolved for another solution.

Master Problem

Unit Commitment (UC)

Subproblems for the Normal Case

Network Security Evaluation (NSE)

Subproblems for Contingency

Network Security Evaluation (NSE)

UC
&

ED

ED

Loop A

Loop B

Additional
Constraints

Fig. 2.10 The decomposition approach for SCUC [FLW13]
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2.5.4.1 Application of Lagrangian Relaxation in UC Problem

Generally the abstract LR-based UC model can be written in (2.33).

[LR-OP] : min F(x1, x2, . . . , xn1 , y1, y2, . . . , yn2) (2.33a)

s.t. H(x1, x2, . . . , xn1 , y1, y2, . . . , yn2) ≤ d ˘ (2.33b)

Gi (xi , yi ) ≤ bi , ∀ i (2.33c)

x ∈ {0, 1}n1 (2.33d)

y ∈ R
n2+ (2.33e)

where constraints (2.33b) represent a set of coupling constraints, such as reserve
requirements, emission constraints, fuel constraints and unserved energy limits,
and constraints (2.33c) involve other non-coupling generation constraints, such as
minimum ON/OFF constraints, startup/shutdown constraints, generation capacities,
ramping limits, spinning/nonspinning constraints and so on.

Here we address the process how to create a Lagrangian problem to solve UC
model. We first let non-negative ˘ denote the Lagrangian multipliers for the system
coupling constraints (2.33b). The Lagrangian relaxations of the original problem
2.33 is to move the coupling constraint (2.33b) to the objective function, shown as

V D∗ = minF(x1, x2, . . . , xn1 , y1, y2, . . . , yn2)

+ ˘(H(x1, x2, . . . , xn1 , y1, y2, . . . , yn2) − d) (2.34)

subject to the unit constraints in (2.33c). When ˘ is a fixed value, the term −˘T d
becomes constant and is discarded. Then the LR-based objective function can be
decomposed into n1 subproblems, where each subproblem 2.35 bases on a corre-
sponding generator, shown as follow:

[LR-SP] : min F(xi , yi ) + ˘T
Hi (xi , yi ) (2.35a)

s.t. Gi (xi , yi ) ≤ bi , (2.35b)

xi ∈ {0, 1} (2.35c)

yi ∈ R+ (2.35d)

As for solving the decoupled subproblems for each generator, dynamic program-
ming (DP) has been verified as one of effective ways to generate every possible state
at each DP stage. Many general discussions of DP can be found in the literature.

In the LR-SP, a state space is made up with all possible generator status and then
DP will execute searching the best strategy from possible strategies of each stage.
Once the generator state xi and its power dispatch yi over the planning horizon are
determined, we can obtain the objective value for V D∗. This is the lower bound of the
UC problem and will be used as the dual value. We then examine the relaxed coupling
constraints to be satisfied. If these constraints can not be satisfied, the Lagrangian
multipliers ˘ will be updated through another method (e.g., subgradient method).
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If they are satisfied, based on the given UC solution, the economic dispatch problem
will be solved to determine power dispatch amount on each generator.

V P∗ = minF(x̂1, x̂2, . . . , x̂n1 , y1, y2, . . . , yn2)

s.t.H(x̂1, x̂2, . . . , x̂n1 , y1, y2, . . . , yn2) ≤ d (2.36)

Gi (x̂i , yi ) ≤ bi , ∀ i (2.37)

y ∈ R
n2+ (2.38)

The objective value of V P∗ is the primal value as the upper bound of the UC problem.
We then compare the primal value with the dual value and examine their difference
met within the range of duality gap. If the current difference exceeds the duality gap,
Lagrange multiplier will be updated until another feasible solution is obtained and
the duality gap stays in an acceptable range. So far the LR method has been applied
to some specific coupling constraints relaxation, usually for ramping, hydropower
generation, transmission network, and emission constraints.

What’s more, due to the non-convexity of UC optimization problem, the perfor-
mance of LR is highly affected by the multipliers and less sufficient to finding a
global optimal solution with reasonable convergence speed. Then the augmented
Lagrangian method can be applied to deal with the non-convexity in the means of
adding quadratic penalty terms to the Lagrangian function. For general UC mod-
els, the main difference between Lagrangian Relaxation and Augmented Lagrangian
Relaxation exists in the Lagrangian function. In order to improve the convexity of
problem, in general we add a quadratic penalty term −(c/2)

∑
t∈T (

∑
g∈G pgt ugt −

Dt )
2, which stands for the gap between supply and demand [FSL05b, SYL03].

2.5.4.2 LR Example

To illustrate the implementation of LR in UC problem, we construct a typical UC
model to show the LR-based model and its solution process in details. We consider the
following UC model with partial prevailing constraints and decompose the original
model via the Lagrangian Relaxation method.

min
∑

g∈G

∑

t∈T

(SUgt vgt + SDgt wgt ) +
∑

t∈T

∑

g∈G

(bgt pgt + agt ugt)

s.t. ugt − ug(t−1) ≤ ugτ , ∀ g ∈ G, t ∈ T, τ = t, . . . , min{t + Lg − 1, ‖T |}
(2.39a)

ug(t−1) − ugt ≤ 1 − ugτ , ∀ g ∈ G, t ∈ T, τ = t, . . . , min{t + lg − 1, ‖T |}
(2.39b)

vgt ≥ ugt − ug(t−1), ∀ g ∈ G, t ∈ T (2.39c)
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wgt ≥ −ugt + ug(t−1), ∀ g ∈ G, t ∈ T (2.39d)

ugt , vgt , wgt ∈ {0, 1}, ∀ g ∈ G, t ∈ T (2.39e)
∑

g∈G

pgt ugt = Dt + Δt , ∀ t ∈ T (2.39f)

∑

g∈G

sgt ugt ≥ RSt , ∀ t ∈ T (2.39g)

Pmin
g ugt ≤ pgt ≤ Pmax

g ugt , ∀ g ∈ G, t ∈ T (2.39h)

pgt − pgt−1 ≤ Pmin
g (2 − ugt − ug(t−1)) + RUg(1 + ug(t−1) − ugt),

∀ g ∈ G, t ∈ T (2.39i)

pgt−1 − pgt ≤ Pmin
g (2 − ugt − ug(t−1)) + RDg(1 − ug(t−1) + ugt ),

∀ g ∈ G, t ∈ T (2.39j)
∑

g∈G

∑

t∈T

(
Fe

g (pgt)ugt + SU e
g vgt + SDe

gwgt
) ≤ Emax (2.39k)

pgt , sgt ≥ 0, ∀ g ∈ G, t ∈ T (2.39l)

From the given UC model, all constraints are categorized with the same features into
separable constraints, i.e. (2.39a)–(2.39e), (2.39h)–(2.39j), and coupling constraints
i.e. (2.39f), (2.39g) and (2.39k). Since these coupling constraints have the common
feature that all units are aggregated in one constraint for operational requirement. In
the consideration of system-level operation, if one generation variable get changed,
other generation variables will be affected simultaneously. According to the LR
framework, these coupling constraints are relaxed and placed in the objective function
associated with Lagrangian multipliers. In doing so, we can construct a Lagrangian
function for this UC problem as follows:

L(vgt , wgt , ugt , pgt ,λ
b
t ,λ

r
t ,λ

e)

=
∑

g∈G

∑

t∈T

(SUgt vgt + SDgt wgt ) +
∑

t∈T

∑

g∈G

(bgt pgt + agt ugt )

−
∑

t∈T

λb
t

∑

g∈G

pgt ugt −
∑

t∈T

λr
t

∑

g∈G

sgt ugt

−λe
∑

g∈G

∑

t∈T

(
Fe

g (pgt)ugt + SU e
g vgt + SDe

gwgt
)

(2.40)

This Lagrangian function of UC problem is subject to separable constraints (2.39a)–
(2.39e), (2.39h)–(2.39j), based on each individual generator.

During the LR decomposition process, when the commitment decision ugt and
generation decision pgt are determined for all units over the planning horizon, the
objective value of (2.40) in k + 1th iteration can be obtained as the lower bound of
original UC problem. Next, we use the current solution (û, p̂) and check for the cou-
pling constraints. When the current solution is not satisfied with that constraints, the



38 2 Deterministic Unit Commitment Models and Algorithms

Lagrangian multiplier ˘ will be updated through the subgradient method. Otherwise,
we solve the problem 2.41 with fixed û

min
∑

g∈G

∑

t∈T

(SUgt v̂gt + SDgt ŵgt ) +
∑

t∈T

∑

g∈G

(bgt pgt + agt ûgt)

s.t.
∑

g∈G

pgt ûgt = Dt + Δt , ∀ t ∈ T (2.41a)

∑

g∈G

sgt ûgt ≥ RSt , ∀ t ∈ T (2.41b)

Pmin
g ûgt ≤ pgt ≤ Pmax

g ûgt , ∀ g ∈ G, t ∈ T (2.41c)

pgt − pgt−1 ≤ Pmin
g (2 − ûgt − ûg(t−1)) + RUg(1 + ûg(t−1) − ûgt ),

∀ g ∈ G, t ∈ T (2.41d)

pgt−1 − pgt ≤ Pmin
g (2 − ûgt − ûg(t−1)) + RDg(1 − ûg(t−1) + ûgt),

∀ g ∈ G, t ∈ T (2.41e)
∑

g∈G

∑

t∈T

(
Fe

g (pgt)ûgt + SU e
g v̂gt + SDe

gŵgt
) ≤ Emax (2.41f)

pgt , sgt ≥ 0, ∀ g ∈ G, t ∈ T (2.41g)

and obtain the corresponding solution p as well as the upper bound of original UC
problem. Then check for the difference between the lower bound and upper bound. If
the difference is within a specific gap, the UC final solution is obtained. Otherwise,
update ˘ again until the optima is found.

2.5.4.3 LR-Based Solution Process

Here we briefly introduce the augmented Lagrangian relaxation integrated dynamic
programming approach to solve UC problem within reasonable computation times
[FSL05b]. The flow chat for this solution process is shown in Fig. 2.11 and the
solution approach is explained as follow.

LR-Based Solution Approach:

• Step 1: Initiate Lagrangian multipliers, to support with power balance equalities,
reserve requirements, system fuel limits, system emission limits, and system secu-
rity constraints (Benders cuts).

• Step 2: Decouple the relaxed problem into several subproblems to represent indi-
vidual generators (20). Taking the current values of multipliers, apply DP to solve
the UC for each unit over a 24-h planning horizon.

• Step 3: Check all power balance, reserve, fuel, and emission constraints as
well as Benders cuts produced from the network security check subproblem.
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Fig. 2.11 The flow chart of
augmented Lagrangian
relaxation [FSL05b]

Initial Lagrangian multipliers
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UC results
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Update multipliers through the subgradient method. Go back to Step 2 if one
of constraints cannot be met; otherwise, the solution process will move to Step 4.

• Step 4: Calculate the dual objective in the Lagrangian function and the primal
objective (i.e., ED over a 24-h period). Terminate the solving process in the master
problem when if the relative duality gap falls in the tolerance; otherwise, keep
updating multipliers via the subgradient method, and return to Step 2.

2.5.5 Benders’ Decomposition

The main use of Benders’ decomposition is to decompose an original single large
problem into a master problem (MP) and one/multiple smaller subproblems (SP) to
alleviate the computational difficulty from directly solving an optimization problem.
After decomposition, the algorithm process goes through serval steps: solving MP
to get a lower bound, passing its current solutions to SP, solving SP to get a upper
bound and then generating Bender’s cuts for MP until LB and UB are converged.

As for decomposition, we target to build the subproblem as a linear program (LP)
or a convex nonlinear program [CGB06] in that it applies the theory of duality to



40 2 Deterministic Unit Commitment Models and Algorithms

get a feasible solution, and allow the master problem include all discrete variables,
such as binary variables or integer variables. In some cases, one can also keep some
of the continuous variables in the master problem according to the needs of master
problem and the program structure of subproblem.

2.5.5.1 Principles of Benders’ Decomposition

In this section, we consider a MILP-based UC problem and use it as an example to
illustrate the procedure of Benders’ decomposition. The original UC has two types
of decision variables, x and y, which are vectors of integer and continuous variables.
For fixing values of x variables, the original problem is given by

min {f(x̂) + cT
2 y | Ey ≥ b2 − A2x̂, y ∈ R+, y ≥ 0}. (2.42)

Since the value of function x is fixed in the objective function and moved out from
the function y, the problem (2.42) can be written as follow:

f(x̂) + min {cT
2 y | Ey ≥ b2 − A2x̂, y ∈ R+, y ≥ 0}, (2.43)

where the inner minimization problem is defined to be subproblem (SP).
Let ¯ denote dual variables (extreme points in a feasible region) associated with

the specific constraint, Ey ≥ b2 − A2x̂. If y ∈ Y is a nonempty polytope, there exists
an extreme point for optimal solution in SP. We can further formulate the dual SP as

min {z | z ≥ (b2 − A2x̂)T ¯, ET ¯ ≤ c2, ¯ ≥ 0}. (2.44)

Solving the inner minimization problem means enumerating all extreme points
of Y in the subproblem. If there are partial k (k < Q) extreme points selected, the
MP becomes a relaxed master problem (RMP) with less constraints given by

min {f(x) + z |x ∈ X, z ≥ (b2 − A2x)T ˆ̄ j , for j = 1, 2, . . . , k}. (2.45)

Define (x̄, z̄) as an optimal solution to RMP. In this situation with given partial
extreme points, (x̄, z̄) can only be considered as a feasible solution to the master
problem (k = Q). To check this optimality condition, we equivalently check if this
solution can make the inequality (2.46) at all extreme points hold true.

z̄ ≥ (b2 − A2x̄)T ¯ j , for j = 1, 2, . . . , Q (2.46)

If the current solution of RMP, (x̄, z̄), violates one or partial constraints in SP, an
optimality cut (2.47) will be imposed to RMP.

z ≥ (b − Dy)T ûk+1. (2.47)
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Fig. 2.12 Solution types for master problem and subproblems in Benders’ Decomposition

If SP has infeasible solutions, a feasibility cut (2.48) will be added to RMP.

0 ≥ (b − Dy)T ûk+1. (2.48)

During the solving process, MP and SP may experience one or more solution
types, shown in the Fig. 2.12. After solving RMP, it may have a feasible solution
which will be passed to SP for the next-step solution, or may have an infeasible
solution that indicates the original problem to be infeasible. Then the suproblem is
solved with three possible cases: feasible, infeasible and unbounded. Based on the
solution type of SP, an optimality cut or a feasibility cut will be generated and then
added to RMP for next iterations. If the SP has the unbounded case, it also shows
that the original problem is unbounded.

To solve a classical MILP problem with L-shaped structure, we outline a
traditional Benders’ Decomposition algorithm as follow:

� Initialization: Let x̂ := initial feasible solution, only solve for the function of x
to get the initial L B and then fix x to solve for U B.

� Step 1: Solve the RMP, minx { f (x) + z| x ∈ X, cuts, z unrestricted}.
If RMP is feasible, get solutions (¯̄, z̄) and L B := f (x̄) + z̄; otherwise, the
algorithm is terminated.

� Step 2: Solve the SP, maxμ{f(x̂) + (b2 − A2x̂)T ¯|AT ¯ ≤ c, ¯ ≥ 0}.
If SP is feasible, get dual solutions ˆ̄ and U B := f(x̂) + (b2 − A2x̂)T ˆ̄.
Add optimality cut z ≥ (b2 − A2x)T ˆ̄ to RMP.
If SP is infeasible, add feasibility cut 0 ≥ (b2 − A2x)T ˆ̄ to RMP.

� If (U B − L B)/U B ≤ ε, the current solution is optimal and the algorithm is
terminated.
If (U B − L B)/U B > ε, perform next iteration and go to Step 1.
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2.5.5.2 Application of Benders’ Decomposition in UC Problem

Based on the above decomposition approach, we can obtain the decomposed UC
problems: an integer master problem (BD-MP) and a linear subproblem (BD-SP),
which are given by

[BD-MP] : L B = minx,π cT
1 x + ß (2.49a)

s.t. A1x = b1 (2.49b)

x ∈ {0, 1}n1 (2.49c)

π ≥ O(x) (2.49d)

0 ≥ F (x) (2.49e)

[BD-SP] : U B = miny cT
2 y (2.50a)

s.t. Ey = b2 − A2x̂ (2.50b)

y ∈ R
n2+ (2.50c)

whereπ is a free variable; constraints (2.49d) and (2.49e) represents a set of optimality
cuts and feasibility cuts, respectively.

In the review of decomposition strategies of UC problems the decomposition
strategy depending on the types of decision variables has been used a lot, as shown
in 2.49 and 2.50.

• Solve the MP with unit commitment and generated cuts;
• Given the current solutions from MP, solve the SP including economic dispatch,

operating reserve, emission, transmission, reactive power and unserved energy
constraints. Generate Benders’ cut(s) according to solution type of SP in current
iteration.

Another common strategy of Benders’ Decomposition is to solve general security-
constrained unit commitment (SCUC) in two operation stages:

• Solve the MP with unit commitment, economic dispatch, operating reserve and
emission constraints;

• Given the current solutions from MP, solve the SP only regarding to transmission,
reactive power and unserved energy constraints. Check if any network violations
occur and generate Benders’ cuts.

For both decomposition schemes, the MP includes new generated cuts, and the SP
are solved iteratively and checked for convergence. When using the second decom-
position scheme, the MP becomes a mixed integer program while the SP is built as
a simple linear program and used for meeting network constraints.

From the literature, the network security check is usually arranged in the SP. In
particular, the DC network security check focuses on the power flow balance and flow
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Fig. 2.13 BD-SP: the flow chart of AC network security check [FSL05b]

restrictions on transmission lines. If the DC network constraint is replaced by more
complicated AC network constraint, the scheme remains suitable for AC network
security check. Because the DC network constraints only consider the power flow
balance at a bus and have several limitations, such as ignoring bus voltage violations,
feasible distribution of reactive power and interactions between real and reactive
power conditions. When the AC network considers such requirements left behind, it
is more appropriate to handle them in SP through the security check. The flow chart
for a comprehensive network security check in subproblem is shown on Fig. 2.13.
This decomposition strategy has also been testified to solve a deterministic large-
scale UC problem effectively, i.e. 118 bus system [FSL05b].

2.5.5.3 BD Example

We take the same UC problem shown in Sect. 2.5.4.2 and decompose it using the
first strategy of Benders’ decomposition. The UC problem is decomposed into a MP
and a SP, shown in 2.51 and 2.52. For the second strategy of BD, interested readers
can find some explicit examples in [SYL03].
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[BD-MP] :
min

∑

g∈G

∑

t∈T

(SUgt vgt + SDgt wgt + agugt ) + π (2.51a)

s.t. ugt − ug(t−1) ≤ ugτ , ∀ g ∈ G, t ∈ T, τ = t, . . . , min{t + Lg − 1, |T |}
(2.51b)

ug(t−1) − ugt ≤ 1 − ugτ , ∀ g ∈ G, t ∈ T, τ = t, . . . , min{t + lg − 1, |T |}
(2.51c)

vgt ≥ ugt − ug(t−1), ∀ g ∈ G, t ∈ T (2.51d)
wgt ≥ −ugt + ug(t−1), ∀ g ∈ G, t ∈ T (2.51e)
ugt , vgt , wgt ∈ {0, 1}, ∀ g ∈ G, t ∈ T (2.51f)
π ≥ O(u) (2.51g)
0 ≥ F (u) (2.51h)

[BD-SP] :
min

∑

t∈T

∑

g∈G

bgt pgt (2.52a)

s.t.
∑

g∈G

pgt = Dt + Δt , ∀ t ∈ T → αt (2.52b)

∑

g∈G

sgt ≥ RSt , ∀ t ∈ T → βt (2.52c)

pgt ≥ Pmin
g ûgt , ∀ g ∈ G, t ∈ T → γgt (2.52d)

pgt ≤ Pmax
g ûgt , ∀ g ∈ G, t ∈ T → εgt (2.52e)

pgt − pgt−1 ≤ Pmin
g (2 − ûgt − ûg(t−1)) + RUg(1 + ûg(t−1) − ûgt),

∀ g ∈ G, t ∈ T → ϑgt (2.52f)

pgt−1 − pgt ≤ Pmin
g (2 − ûgt − ûg(t−1)) + RDg(1 − ûg(t−1) + ûgt),

∀ g ∈ G, t ∈ T → κgt (2.52g)
∑

g∈G

∑

t∈T

Fe
g (pgt) ≤ Emax −

∑

g∈G

∑

t∈T

(SU e
g v̂gt + SDe

gŵgt ) → ν

(2.52h)

pgt , sgt ≥ 0, ∀ g ∈ G, t ∈ T (2.52i)

where power balance constraint (2.39f) and spinning reserve requirement (2.39g) are
replaced with (2.52b) and (2.52c). The major difference between these two expres-
sions is that the bilinear terms (pgt ugt , sgt ugt ) are eliminated and only linear terms
(pgt , sgt ) remain for simplifying the solving process in SP. In addition, the power
balance has the same restriction as (2.39f), while the spinning reserve sources are
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expanded not only from online units but also offline units. In doing so, these modi-
fications can simplify the computation process in SP.

We define several dual variables, such as αt , βt , γgt , εgt , ϑgt , κgt , ν correspond-
ing to constraints (2.52b)–(2.52h), respectively. Then the optimality cut, π ≥ O(u),
is formed in (2.53) through the dual solution of BD-SP.

π ≥
∑

t∈T

α̂t (Dt + Δt ) +
∑

t∈T

β̂t RSt +
∑

g∈G

∑

t∈T

γ̂gt Pmin
g ugt +

∑

g∈G

∑

t∈T

ε̂gt Pmax
g ugt

+
∑

g∈G

∑

t∈T

ϑ̂gt
[
Pmin

g (2 − ûgt − ûg(t−1)) + RUg(1 + ûg(t−1) − ûgt )
]

+
∑

g∈G

∑

t∈T

κ̂gt
[
Pmin

g (2 − ûgt − ûg(t−1)) + RDg(1 − ûg(t−1) + ûgt )
]

+ν̂[Emax −
∑

g∈G

∑

t∈T

(SU e
g vgt + SDe

gwgt )] (2.53)

This cut is associated with binary variables (ugt , vgt , wgt ) and given with incumbent
dual values in kth iteration.

2.6 Summary

This chapter introduces basic UC formulations in terms of optimization methods,
including objective function and their essential constraints: unit commitment con-
straints, electricity dispatch, operating reserve constraints, transmission constraints,
emission constraints, unserved energy constraints, and reactive power constraints.
To address UC problems by optimization approaches, we chose two typical case
studies to illustrate how to model UC problems and analyze optimal solutions for
better decision making. For the improvement of solution process of UC models, we
also provided a overview of solution approaches and summarized their recent devel-
opment. Particularly, we provided a detailed introduction on the most widely used
methods for solving moderate power systems, involving MILP, LR decomposition
method and BD decomposition method.

References

[BGC05] Bouffard F, Galiana FD, Conejo AJ (2005) Market-clearing with stochastic security-
part I: formulation. IEEE Trans Power Syst 20(4):1818–1826

[CA06] Carrion M, Arroyo JM (2006) A computationally efficient mixed-integer linear formu-
lation for the thermal unit commitment problem. IEEE Trans Power Syst 21(3):1371–
1378

[CGB06] Castillo E, Garca-Bertrand RMR (2006) Decomposition techniques in mathematical
programming. Springer, Heidelberg



46 2 Deterministic Unit Commitment Models and Algorithms

[Che08] Chen C-L (2008) Optimal wind-thermal generating unit commitment. IEEE Trans
Energy Convers 23(1):273–280

[CYW11] Chung CY, Yu H, Wong K-P (2011) An advanced quantum-inspired evolutionary
algorithm for unit commitment. IEEE Trans Power Syst 26(2):847–854

[FGL09a] Frangioni A, Gentile C, Lacalandra F (2009a) Tighter approximated milp formulations
for unit commitment problems. IEEE Trans Power Syst 24(1):105–113

[FGL09b] Frangioni A, Gentile C, Lacalandra F (2009b) Tighter approximated milp formulations
for unit commitment problems. IEEE Trans Power Syst 24(1):105–113

[FGL11] Frangioni A, Gentile C, Lacalandra F (2011) Sequential lagrangian-milp approaches
for unit commitment problems. Int J Electr Power Energy Syst 33(3):585–593

[FLS+09] Fu Y, Li Z, Shahidehpour M, Zheng T, Litvinov E (2009) Coordination of midterm
outage scheduling with short-term security-constrained unit commitment. IEEE Trans
Power Syst 24(4):1818–1830

[FLW13] Fu Y, Li Z, Wu L (2013) Modeling and solution of the large-scale security-constrained
unit commitment. IEEE Trans Power Syst 28(4):3524–3533

[FSL05a] Fu Y, Shahidehpour M, Li Z (2005) Long-term security-constrained unit commitment:
hybrid dantzig-wolfe decomposition and subgradient approach. IEEE Trans Power
Syst 20(4):2093–2106

[FSL05b] Fu Y, Shahidehpour M, Li Z (2005) Security-constrained unit commitment with AC
constraints. IEEE Trans Power Syst 20(2):1001–1013

[FSL07] Fu Y, Shahidehpour M, Li Z (2007) Security-constrained optimal coordination of
generation and transmission maintenance outage scheduling. IEEE Trans Power Syst
22(3):1302–1313

[GGZ05a] Guan X, Guo S, Zhai Q (2005) The conditions for obtaining feasible solutions to
security-constrained unit commitment problems. IEEE Trans Power Syst 20(4):1746–
1756

[GGZ05b] Guo S, Guan X, Zhai Q (2005) The necessary and sufficient conditions for determining
feasible solutions to unit commitment problems with ramping constraints. IEEE Power
Eng Soc Gen Meet 1:344–349

[Gje96] Gjengedal T (1996) Emission constrained unit commitment. IEEE Trans Energy Con-
vers 11(1):132–138

[GNLL97] Guan X, Ni E, Li R, Luh PB (1997) An optimization-based algorithm for scheduling
hydrothermal power systems with cascaded reservoirs and discrete hydro constraints.
IEEE Trans Power Syst 12(4):1775–1780

[GR12a] Govardhan M, Roy R (2012) An application of differential evolution technique on unit
commitment problem using priority list approach. In: IEEE international conference
on power and energy, pp 858–863

[GR12b] Govardhan M, Roy R (2012) Evolutionary computation based unit commitment using
hybrid priority list approach. In: IEEE international conference on power and energy,
pp 245–250

[HHWS88] Hobbs WJ, Hermon G, Warner S, Shelbe GB (1988) An enhanced dynamic program-
ming approach for unit commitment. IEEE Trans Power Syst 3(3):1201–1205

[HROC01] Hobbs BF, Rothkopf MH, O’Neil RP, Chao H (2001) The next generation of electric
power unit commitment models. Kluwer Academic Publishers, Norwell

[HZW14] Huang Y, Zheng QP, Wang J (2014) Two-stage stochastic unit commitment model
including non-generation resources with conditional value-at-risk constraints. Electric
Power Syst Res 116:427–438

[Jab12] Jabr RA (2012) Tight polyhedral approximation for mixed-integer linear programming
unit commitment formulations. IET Gener Transm Distrib 6(11):1104–1111

[LB99] Lai S-Y, Baldick R (1999) Unit commitment with ramp multipliers. IEEE Trans Power
Syst 14(1):58–64

[LS05a] Li Z, Shahidehpour M (2005) Security-constrained unit commitment for simultaneous
clearing of energy and ancillary services markets. IEEE Trans Power Syst 20(2):1079–
1088



References 47

[LS05b] Lu B, Shahidehpour M (2005) Unit commitment with flexible generating units. IEEE
Trans Power Syst 20(2):1022–1034

[LST+97] Li C, Svoboda AJ, Tseng C-L, Johnson RB, Hsu E (1997) Hydro unit commitment in
hydro-thermal optimization. IEEE Trans Power Syst 12(2):764–769

[MELR13] Morales-Espana G, Latorre JM, Ramos A (2013) Tight and compact milp formulation
for the thermal unit commitment problem. IEEE Trans Power Syst 28(4):4897–4908

[MMSN05] Mitani T, Mishima Y, Satoh T, Nara K (2005) Security constrains unit commitment by
lagrangian decomposition and tabu search. In: Proceedings of the 13th international
conference on intelligent systems application to power systems, pp 440–445

[MMSN06] Mitani T, Mishima Y, Satoh T, Nara K (2006) Optimal generation scheduling under
competitive environment. IEEE Int Conf Syst Man Cybern 3:1843–1848

[NLR04] Ni E, Luh PB, Rourke S (2004) Optimal integrated generation bidding and scheduling
with risk management under a deregulated power market. IEEE Trans Power Syst
19(1):600–609

[OS92] Ouyang Z, Shahidehpour SM (1992) A hybrid artificial neural network-dynamic pro-
gramming approach to unit commitment. IEEE Trans Power Syst 7(1):236–242

[SC05] Srinivasan D, Chazelas J (2005) Heuristics-based evolutionary algorithm for solving
unit commitment and dispatch. In: The 2005 IEEE congress on evolutionary compu-
tation, 2005, vol 2, pp 1547–1554

[SNS01] Siu TK, Nash GA, Shawwash ZK (2001) A practical hydro, dynamic unit commitment
and loading model. IEEE Power Eng Rev 21(5):64–64

[SPR87] Snyder WL, Powell HD, Rayburn JC (1987) Dynamic programming approach to unit
commitment. IEEE Trans Power Syst 2(2):339–348

[SSUF03] Senjyu T, Shimabukuro K, Uezato K, Funabashi T (2003) A fast technique for unit
commitment problem by extended priority list. IEEE Trans Power Syst 18(2):882–888

[SYL03] Shahidehpour M, Yamin H, Li Z (2003) Market operations in electric power systems,
forecasting, scheduling, and risk management. Wiley, New York

[WCN+09] Withironprasert K, Chusanapiputt S, Nualhong D, Jantarang S, Phoomvuthisarn S
(2009) Hybrid ant system/priority list method for unit commitment problem with
operating constraints. In: IEEE international conference on industrial technology, pp
1–6

[WS93] Wang C, Shahidehpour SM (1993) Effects of ramp-rate limits on unit commitment
and economic dispatch. IEEE Trans Power Syst 8(3):1341–1350

[WSF10] Wu L, Shahidehpour M, Fu Y (2010) Security-constrained generation and transmission
outage scheduling with uncertainties. IEEE Trans Power Syst 25(3):1674–1685

[WSK+95] Wang SJ, Shahidehpour SM, Kirschen DS, Mokhtari S, Irisarri GD (1995) Short-
term generation scheduling with transmission and environmental constraints using an
augmented lagrangian relaxation. IEEE Trans Power Syst 10(3):1294–1301

[WW12] Wood AJ, Wollenberg BF (2012) Power generation, operation, and control. Wiley,
New York

[WWG13b] Wang Q, Wang J, Guan Y (2013) Price-based unit commitment with wind power
utilization constraints. IEEE Trans Power Syst 28(3):2718–2726 August

[WWG13c] Wang Q, Watson J-P, Guan Y (2013) Two-stage robust optimization for N-K
contingency-constrained unit commitment. IEEE Trans Power Syst 28(3):2366–2375
August

[YWGZ12] Yang Y, Wang J, Guan X, Zhai Q (2012) Subhourly unit commitment with feasible
energy delivery constraints. Appl Energy 96:245–252

[Zhu09] Zhu J (2009) Optimization of power system operation, vol 49. Wiley, New York
[ZWPG13] Zheng QP, Wang J, Pardalos PM, Guan Y (2013) A decomposition approach to the two-

stage stochastic unit commitment problem. Ann Oper Res 210:387–410 November



http://www.springer.com/978-1-4939-6766-7


	2 Deterministic Unit Commitment Models  and Algorithms
	2.1 Introduction
	2.2 Objective Function
	2.3 Constraints
	2.3.1 Unit Commitment Constraints
	2.3.2 Thermal Generation Constraints
	2.3.3 Operating Reserve Constraints
	2.3.4 Transmission Constraints
	2.3.5 Emission Constraints
	2.3.6 Unserved Energy Constraint
	2.3.7 Reactive Power Constraints

	2.4 Case Studies
	2.4.1 Case 1: Joint Energy and Ancillary  Service Optimization
	2.4.2 Case 2: SCUC with Transmission Contingency

	2.5 Solution Approaches for Deterministic  Unit Commitment
	2.5.1 Priority List
	2.5.2 Dynamic Programming
	2.5.3 Mixed Integer Linear Programming
	2.5.4 Lagrangian Relaxation
	2.5.5 Benders' Decomposition

	2.6 Summary
	References


