Chapter 2
Divergence Operator

This chapter deals with solutions of the divergence in Sobolev spaces. We will say
that a domain Q C R” satisfies div,, if, for any f € LF(£2), there exists u € W, ”(€2)"
such that

diva=f in Q
and
H“HWl,p(.Q)n <C[|fller(@)

where the constant C depends only on € and p. First we consider the case of
domains which are star-shaped with respect to a ball and give the construction in-
troduced by Bogovskii [14]. In his original paper Bogovskii extended the existence
of solutions to the case of Lipschitz domains using that this kind of domains can be
written as a finite union of star-shaped domains. In the second section, we extend
the construction to the class of John domains, this kind of domains includes the
Lipschitz ones as well as many domains with fractal boundaries. The construction
analyzed here was given in [3]. The proof that we present is a modification of the
original one.

Of course, star-shaped domains are a particular case of John domains. The reason
why we present first Bogovskii’s construction is because it is simpler and allows to
present the main ideas with less technical difficulties. On the other hand, the analysis
was extended in [47] to generalize the results for right-hand sides in negative order
Sobolev spaces. We do not know whether the results in [47] can be extended to John
domains.
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14 2 Divergence Operator

2.1 Solutions of the Divergence on Star-Shaped Domains

Let us begin by recalling the class of star-shaped domains.

Definition 2.1.1 A bounded open €2 C R" is star-shaped with respect to a ball
B C Q if for every y € Q and every 7 € B the segment joining y and z is contained
in Q.

Actually, given an arbitrary domain Q and f € L'(£), Bogovskii’s construction
gives a solution of divu = f, but in general, u will not vanish on the boundary of
€. However, as we will show, if €2 is star-shaped with respect to a ball, then u =0
on dQ2.

Let Q C R” be a bounded domain with diameter §. Take @ € C;’(£2) such that
Jo @ =1 and define G = (Gy,--- ,G,) as

(;(x,y)z/o'1 (x:y)w(erx;y) ‘S{f 2.1.1)

The following lemma gives a bound for G(x,y) that will be fundamental in our
subsequent arguments.

Lemma 2.1. Fory € Q we have

6”
n—1)x—y"!
Proof. Since @ € Cy(£2), it follows that the integrand in (2.1.1) vanishes for

z=y+ (x—y)/s ¢ Q. Therefore, since y € Q, we can restrict the integral defin-
ing G(x,y) to those values of s such that |z —y| < 6, that is, |x —y|/d < s, and so,

|G(x,y)| < Hmeg)( (2.12)

1 ds
G(x,y)| < d| o]~ /
|G(x,y)| < 4|0l @ ) s

which immediately gives (2.1.2). O
In the next lemmas and theorem we introduce the explicit right inverse of the
divergence.

Lemma 2.2. For any ¢ € C5(£2) we define ¢ = [ ¢ . Then, fory € Q we have

(0= 0u)) =~ [ G(x3)-Voldx

Proof. Extending by zero we can think ¢ € Ci’(R"). Repeating the arguments given
in the introduction, see (1.0.11), we have, fory € Q,

(@ — o) // ) Voy+s(z—y) o) dsdz
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and interchanging the order of integration and making the change of variable
x=y+s(z—y) we obtain

(9~ o) // O oW y+ + )

and the proof concludes by observing that we can interchange again the order of
integration. Indeed, using the bound given in (2.1.2) for G, it is easy to see that the
integral of the absolute value of the integrand is finite. O

By duality, we obtain the following fundamental result.

Theorem 2.1. Let Q C R”" be an arbitrary bounded domain. Given f € L'(Q) such
that [ f =0, define

= [ 6t re)ay (2.13)

then,
diva=f in Q

Proof. First, observe that, in view of (2.1.2), u is well defined and all its components
belong to Ll »c- In particular, divu is well defined in the sense of distributions.
Now, using Lemma 2.2, for ¢ € CS"(Q) we have

| 16)00)dy = [ 1) (0= @o))dy == [ [ f0)G(x3)-Volx)ddy

and interchanging the order of integration, which can be done using again (2.1.2),

we obtain '
| 10001dy =~ [ u()-Vodx
Q JQ

which concludes the proof. 0O

Up to this point, we have not imposed any condition on the domain €2 other than
boundedness. Assume now that £2 C R” is star-shaped with respect to a ball B C €.
The following lemma shows that, if we choose @ supported in B, then the function
u defined in (2.1.3) vanishes on dQ. In principle, this will be true when f € LP(Q)
for some p > n since, in this case, one can see that u defined in (2.1.3) is continuous.
This will be proved in the next proposition. For other values of p, we can proceed
by density to show that u € WO1 7 once we have proved thatu € W7

In all what follows we extend f by zero outside of €2, and therefore, we can think
that f € LP(R") whenever f € LP(Q), but we will write f € LP(£) to emphasize
that f vanishes outside £2. Analogously functions in Ci’(£2) will be thought as being
in C5’(R™). Moreover, we can make the following important observation.

Remark 2.1. The definition of u given in (2.1.3) can be extended to every x € R".

Proposition 2.1. Ler f € LP(Q) for some p > n. If Q is star-shaped with respect to
a ball B and € C§ (B), then u defined in (2.1.3) is continuous in R" and vanishes
outside Q, in particular, u(x) = 0 for all x € Q.
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Proof. First we observe that
G(x,y) =0 whenever x ¢ Q,y € Q (2.1.4)

Indeed, in that case we have that, z =y + (x —y)/s ¢ B, for any s € [0, 1]. Other-
wise, since € is star-shaped with respect to B, x = (1 —s)y + sz would be in Q.
Therefore, recalling that @ € C7'(B) and the definition of G(x,y) we obtain (2.1.4.
Consequently, u = 0 for all x ¢ Q.

Therefore, it is enough to prove continuity of u in an open bounded set contain-
ing (2. Take x and X in a neighborhood of £2. We have

G(x,y)—G(x,y):Al{(x;y)w(wrx_y) - (i_y)a)(yjj:y)}ds

K s s

Now, for y and z varying in a bounded domain, the function z®(y + z) is Holder
a, for any 0 < o < 1, as a function of z, uniformly in y. Therefore, assuming, for
example, |x — y| < |x— y|, and using that the integrand in the definition of G(x,y)
vanishes if s < |x —y|/0 we obtain

1 ds |x — x|
= —|o
Gloy) —GEy) <cle—se [0 <c P,
with C depending only on 8, n, @, and o. Then,
ue) —u(@| <cle—ge [ O gy

Jo |x_y|n71+0£

and the proof concludes by observing that, since p > n, we can choose ¢ > 0 such
that (n — 1+ o) p’ < n, and using the Holder inequality. O

We want to prove that u € W'»(Q)". It is not difficult to prove that u € L (Q)".
Indeed, using the bound (2.1.2) we have

IF O

ulx)| <C ,
e U

and therefore, the Young inequality implies that u € L”(Q)" and that

lallzr@y < Cllfllzr (@) (2.1.5)

with C depending only on n, 8, and .
The difficult part is to show that, for 1 < p < oo, 8;4,: € LP(Q) whenever
J

f € LP(L), and this is our next goal.

A fundamental tool for our arguments is the Calderén-Zygmund singular integral
operators theory [19, 20]. Also we will make use of the boundedness of the Hardy-
Littlewood maximal operator. For the sake of completeness, we state in the next
theorems the results on these subjects that we will use in this section and in the
next one. With X we denote the unit sphere and with do the corresponding surface
measure.
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Theorem 2.2. Let K(y,z) a function defined for y € R" and z € R", 7 # 0 satisfying
1. K(y,Az) =A""K(y,z) YA >0,ycR",0#£zeR"
2. [K(y,0)do =0 YyeR"
3 K(y,2)| < \S\l" VyeR" with C, independentof
Then, for any 1 < p < oo,

Tg(y) = lim Teg(y)

e—0
with
Teg(y) = / K(y,x—y)g(x)dx
[x—y|>€e

defines a bounded operator in L and the convergence holds in the L? norm. More-
over, there exists a constant C,, depending on p, n, and Cy such that, if

Tg(y) = sup|Teg(y)l,

e>0

then B
|Te|| , < Cllglor

Proof. See [20, Theorem 2]. O
For g € L}, (R") the Hardy-Littlewood maximal operator is defined by

1
M) =swp [ Jg(y)lay.
r>0 [B(x,7)| S
Theorem 2.3. For any 1 < p < e there exists a constant C depending only on p and
n such that

Mgl <Cligllzr

Proof. See, for example, [34]. O
In the next lemma we give an expression for 3}’:5 in terms of f. In order to do
J

that we introduce a singular integral operator. It is convenient to introduce yq(y),
the characteristic function of €2, in order to have a kernel which vanishes for y
outside €. Of course, for f vanishing outside €2 this will not make any change, but
to prove the bounds that we will need for the kernel it is important to have yq(y) in
its definition. We define

dG;
Tijg(y) = lim s () ox; (x,y)g(x) dx.
and its adjoint operator le The existence of this limit in L7 as well as the continuity
of T;;, for 1 < p < oo, will be proved below using Theorem 2.2. In particular, it will
follow that
. JG;
T7f(x) = lim xa(y) ox; (x,3)f (y) dy

£—0 [y—x|>¢
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Lemma 2.3. For 1 <i,j <nwe have

8ui * X

ax; T;f+w;f inQ (2.1.6)
where -

;j(y) :/Rn |;|'2](D(Y+z)dz 2.1.7)

Proof. From the definition of G; and using again (2.1.2) to interchange the order of
integration we have, for any ¢ € C5 (L),

(P
—/ i(x )ax, / / Gi(x,y)f ( )dxdy. (2.1.8)
Foranyy € €,
_ 1240 L lex0)
- /Q Gi(x,y) ox; (x)dx = —lim ‘HWG( y) ax,( x)dx

= lim {/‘ 9Gi (x,y)o(x)dx

e—0 y—x|>€ 8x.,-

ly—=¢|

Now, we can decompose the second term on the right-hand side in the following
way

[ GVt @19
y—El=¢

_ 0i=&) , =),
[ LG0T T dg=o0) / LG

i — ( C/) —
+ /‘ GO 0 [ G =T+

and it is easy to see that Il — 0. Indeed, using the bound given in (2.1.2) for G;
and the fact that ¢ has bounded derivatives we obtain that there exists a constant C
depending only on &, n and [|@||y1.~() such that

|IIe| < Ce

On the other hand, we have

St = —timot) [ 18 oy E ) 0T By

e—0 £—0 ly—_¢| s

Then, making the change of variables r = € /s and o = ({ —y) /€ and denoting with
2 the unit sphere we obtain
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. =), ( C—y)r”*l
—limIe = @(y)1 i
figle =oOlin [ @ T o ) drag
=0y hm// 0;0;® (y—i—r(r) "ldrdo
e—0
11m// %% o(y+ro)Vdrdo
8*)0 |C7|2

ZiZj
= ¢(y)lim S 0(y+2)dz= @(y)wi;(y)
-0 Jg|>e [2]

and therefore, replacing in (2.1.9) we obtain that, for y € 2,

/G "y ; x)dx =Tijo(y) + 0ij(y)@(y), (2.1.10)

Then, (2.1.6) follows from (2.1.10) and (2.1.8). O

Remark 2.2. The previous lemma provides a different way of proving that u is a
solution of the divergence. Moreover, we can consider f € L (£2), not necessarily
with vanishing integral, and we have

diva= f— (/Qf)w in Q @.1.11)

Indeed, using the expressions for the derivatives given in Lemma 2.3 and observing
that 37| @; = 1 we have that

n
divu=f+YT;f inQ
i=1

and so, we have to check that

< dG;

> / xe0) 5 (y)f(v)dy (2.1.12)
[y—x|>¢ Xi

and introducing n;(y, z) := z;®(y + z) we obtain from (2.1.1) that

dG; (Y omiy x—y\ ds
= [0 o @L13)

s
but,

(y7 7) = (y+Z)+Ziaw(y+Z)

27
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and so, making the change of variable r = 1 /s in (2.1.13) we obtain
 9Gi < [ I o
i:zi axi (xvy) ZL/l 8z,~ (y7r(x y)) r A dr[ (D(y—l—}’(x y)] r a)(x)

which together with (2.1.12) gives (2.1.11).

Next, we will use the expression given in Lemma 2.3 to prove that 3}’:5 eLr(Q).
J
The kernel yo(y) gff
J
as follows:

dG; e ani/ x—y\ ds o oni/ x—y\ ds
XQ(y) Idx; (xay) _/0 Xﬂ(y) aZj ( ) ) g+l _/1 XQ(y) azj (yv ) gl

j N N

(x,y), and so the operator 7;;, can be decomposed in two parts

=Ki(yx—y)+K(y.x—y)
and
T, =T +T (2.1.14)
with
T;g(y) = lim Ky(y,x—y)g(x)dx for (=12

€20 J]y—x|>e
First, we will show that the second part 7> defines a bounded operator in L?(€2) for
I<p<oo.

Lemma 2.4. We have

(1+96)

n

1T2gl r (@) < @1 12| gl r () (2.1.15)

Proof. From the definition of 17; we can see that

i [z |z|
9z (y’s) ‘ < <1+ o]y (gn) (2.1.16)

N

Now, since supp @ C B C Q it follows that Y (y) g?‘ (y,z/s) vanishes for |z|/s > 6.
"]

In particular, the integral defining K, can be restricted to those values of s such that
s > |z|/6, and so, from (2.1.16) we obtain

o) 2" (53) [ < (14 ) 0lyrmgen

J

Therefore,

ds 1+

= 0
Ko 2)| < 1+ O)@llyrmgany [ iy = 1 @l
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and then,

+06
7500 < 0l [ 800l

and by the Holder inequality we obtain (2.1.15). O

In view of the decomposition (2.1.14) it remains to analyze the continuity of 7;.
With this goal, we will show, in the next two lemmas, that the kernel K| (y, z) satisfies
the hypotheses of Theorem 2.2.

Lemma 2.5. We have

(1+9) 5"

[Ki(y2)| < [t () o] 2.1.17)

Proof. By the same arguments used in the proof of Lemma 2.4 we obtain

= ds
K102 < (8@l [ 00

which immediately gives (2.1.17). O

Lemma 2.6. K| (y,z) is homogeneous of degree —n and with vanishing mean value
on the unit sphere X, in the second variable.

Proof. Given A > 0, from the definition of K; and making the change of variable
t =s/A, we have

°° on; lz ds 811, z\ dt n
Ki(y,Az) :/0 xa0) 5 (y7 it = / xa(y )th =1""K1(y,2)
J

N

On the other hand, making the change of variable r = 1 /s in the integral defining K
we have

9= [ 2oy G ar

and therefore,

om
JKioordo = [ [ xa0) T roptardo = [ za() 3T (v2)dz =0

because 1;(y,z) is a smooth function with compact support in the z variable. O
We can now state and prove the main result of this section.

Theorem 2.4. Let Q2 be bounded and star-shaped with respect to a ball B C Q. If
felP(Q), 1< p<eos and [of =0, then, the function u defined in (2.1.3) is in
WO1 P(Q)" and satisfies

diva=f in Q. (2.1.18)
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Moreover, there exists a constant C depending only on £ and p, such that
Il gy < Cllf Ner@) (2.1.19)
Proof. Thatu € LP(Q)" and

lullzr@y < Cllifller @)

follows from the definition of u using (2.1.2) and the Young inequality.
Now we show that, for 1 <1, j < n, there exists a constant C depending only on
p, 0, n, and @ such that

|5

v <Clfllr (@)
To do that we use the expression for the derivatives given in Lemma 2.3. From (2.1.7)
it follows immediately that @;; is a bounded function. Indeed, || ;|| z= < ||®|| ;-
Then, it remains to prove that the operator 7} is bounded in L7, for 1 < p < .
In view of Lemmas 2.5 and 2.6, it follows from Theorem 2.2 that the limit defining
T) exists in the L” norm and defines an operator which is continuous in L? for
1 < p < eo. Then, the boundedness of T;; in L?, for 1 < p < oo, follows from the
decomposition T;; = Tj + T recalling that, as we proved in Lemma 2.1.15, T is
continuous in L. By a standard duality argument it follows that le is also bounded

for 1 < p < . Therefore, we have proved that u € W!7(£) and satisfies

[allwir@y < Cllfllr@) (2.1.20)

Now, for p > n, it follows from Proposition 2.1 that u is continuous and vanishes on
dQ. But, in [85], it is proved that for an arbitrary open set €2, if a function is con-
tinuous and vanishes on 9 and belongs to W!7(), then it belongs to WOI’P (Q).

On the other hand, for 1 < p < n, take a sequence f, € L”(Q) such that f,, — f
in LP(Q) and let

w0 = [ Ge)fu)dy.

Then, from (2.1.20) applied to f — f,, it follows that u,, — u in W7 (Q)". But we
already know that u,, € WO1 7(Q)", and therefore, u € WO1 P(€)" and the theorem is
proved. O

Remark 2.3. For a Lipschitz domain €2, the existence of u satisfying (2.1.18) and
(2.1.19) can be proved using the previous theorem and the fact that £2 can be writ-
ten as a finite union of domains which are star-shaped with respect to a ball. We omit
details (which can be found in [14], see also the decomposition technique described
in Section 4.5) because in the next section we will generalize Bogovskii’s construc-
tion to a class of domains which contains the Lipschitz ones.
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2.2 Solutions of the Divergence on John Domains

In view of the results of the previous section, an interesting problem is to find
weaker sufficient conditions on a bounded domain € for the existence of u sat-
isfying (2.1.18) and (2.1.19).

It is known that the domain cannot be arbitrary, indeed, several counterexamples
of domains which do not satisfy this result have been published (see Section 4.4).
From these counterexamples it follows that we have to consider a class of domains
which excludes domains with external cusps. On the other hand, the Lipschitz con-
dition is not necessary. In fact, it is known that if the result holds for two domains
then it also holds for the union of them (see, for example, the argument given in
[14]), and consequently, domains having internal cusps are allowed although they
are not Lipschitz.

Consequently, it seems that a natural class of domains to be considered for our
problem is that of the John domains (see definition below). For instance, it is known
that a two dimensional domain with a piecewise smooth boundary is a John domain
if and only if it does not have external cusps. These domains were first considered
by F. John in his work on elasticity [61] and were named after him by Martio and
Sarvas [79]. Further, John domains were used in the study of several problems in
Analysis. For example, they were used by G. David and S. Semmes [30] in the
analysis of quasiminimal surfaces of codimension one and by S. Buckley and P.
Koskela [16] for the study of several inequalities. On the other hand, John domains
are closely related with the extension domains of P. Jones [62]. Indeed the (g,o0)
domains, also called uniform domains, are John domains (but the converse is not
true: a John domain can have an internal cusp while a uniform domain cannot).

As we will show in this section, the approach used to construct solutions of the
divergence on star-shaped domains can be generalized to John domains. This gener-
alization has been done in [3]. The key idea is to replace the segments used for the
integration in (1.0.10) by appropriate curves.

There are several equivalent definitions of John domains. A usual one is the fol-
lowing. We will denote with d(x) the distance from x to 0Q.

Definition 2.2.1 A bounded open €2 C R" is a John domain if there exist a positive
constant ¢ and xo € £ such that, for every y € Q there exists a rectifiable curve
Croy C L2 joining y and xo with the following property:

If £(y) denotes the length of €, and p : [0,£(y)] = Q is its parametrization by
arc-length such that p(0) =y, p(£(y)) = xo, then,

d(p(t)) >cit Vre0,4(y)] (2.2.1)

The property given in this definition means that one can reach each point y € Q2
by a curve %, such that any point x € €, , is at a distance from the boundary of
€ greater than a fixed proportion of the length of the curve between y and x. This is
why this property is sometimes called the “Twisted cone condition.”
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In some papers condition (2.2.1) is replaced by the following two conditions.
There exist two positive constants ¢, and c¢3 such that

() < e 2.2.2)
and
d(p(t)) > E&t v € [0,6(y)] (2.2.3)

where ¢; and c3 are positive constants.

It is not difficult to see that both definitions are equivalent. Indeed, it is obv-
ious that (2.2.2) and (2.2.3) imply (2.2.1) with ¢; = ¢3/cy. Conversely, taking
t = £(y) in (2.2.1) we obtain (2.2.2) with ¢; = d(xg)/c;. To prove (2.2.3), con-
sider first £(y) < d(x0)/2. In this case we have d(p(t)) > d(x0)/2 > d(x0)t/2((y)
forall ¢ € [0,4(y)]. On the other hand, if £(y) > d(x0)/2, it follows from (2.2.1) that
d(p(e)) > c1d(xo)t /26(y).

If Q2 is a John domain, there is an infinite number of possible choices for
the curves satisfying the properties required in Definition 2.2.1. To construct our
solution of the divergence we will choose a family of curves verifying some extra
conditions, in particular, close to y, the curve joining y and xy will be a segment.
Moreover, we need to have some control on the variability of the curves as functions
of y, indeed, measurability will be enough for our purposes. Also, for convenience
we re-scale the curves in order to have the parameter in [0, 1].

In the next lemma we state the properties that we will need and prove the exis-
tence of a family of curves satisfying them. We will make use of a Whitney decom-
position of an open set. We refer the reader to [84] for a proof of the existence of
such a decomposition for any open bounded set.

Definition 2.2.2 Given Q C R" an open bounded set, « Whitney decomposition
of Q is a family W of closed dyadic cubes with pairwise disjoint interiors and sat-
isfying the following properties:

1) Q=Ugew0Q

2) diam(Q) <d(Q,0Q) <4diam(Q) VQeW
3) idiam(Q) <diam(Q) < 4diam(Q) VQ,0€W  suchthat QNQ #0

Given Q € W, let x¢ be its center and Q* the cube with the same center but
expanded by a factor 9/8, namely, 0* = (Q —xg) + xo. We will make use of the
following facts which follow easily from the properties given in Definition 2.2.2.

d(Q",09Q2) ~diam(Q") ~d(y) ~ Vye Q" (2.2.4)

where A ~ B means that there are constants ¢ and C, which may depend on the
dimension n but on nothing else, such that cA < B < CA. We will use the notation

(s.y) = 9 (5,).
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Lemma 2.7. Let Q C R" be a bounded John domain and xy, ¢1 and p(t) be as
in Definition 2.2.1. Then, there exist a function y: [0,1] x Q — Q and positive
constants ¢y and k depending only on ¢y, diam(Q2), d(xo) and n, such that

1) 7(0,y) =y v(1,) = xo

2) d(y(s,y)) = css

3) sl < e

4){x e Q :x=1y(s,y),0 <s <kd(y)} is a segment and kd(y) < 1

5) y(s,y) and ¥(s,y) are measurable functions.

Proof. Let W be a Whitney decomposition of £2 and Qp € W be a cube contain-
ing xp. Given y € 2, let O € W be such that y € Q. We remark that if y belongs to
the boundary of some Q € W then it belongs to more than one cube. We choose any
of them arbitrarily (in any case this is not important because the set of those points
is of measure zero).

Suppose first that xo € Q*. In this case we can take the curve as a segment,
namely, y(s,y) = sxo + (1 — s)y. In fact, in view of (2.2.4), it is easy to see that
v(s,y) satisfies 2) and 3) with c¢; depending on d(xp). Also 4) is trivially satisfied
for any k such that kd(y) < 1, we can take, for example, k = 1/diam(Q).

Now, if xg ¢ OF, let xg be the center of Q and take p () as a parametrization of a
curve joining xp and xo satisfying the conditions given in the definition of John do-
mains. First we reparametrize p and define p(s) = p(sl(xg)). Then, d(u(s)) > cys
forcy ~c1l (xQ). But, since xo ¢ Q*, we obtain from properties 2) and 3) of Defini-
tion 2.2.2 that £(xp) > |xo —xg| > cd(xg) with ¢ depending only on n. Therefore, 2)
holds for u with ¢; ~ c¢1d(xg). Moreover, |1 (s)| < d(x0)/c1 and so we can choose
¢y small enough such that u also satisfies 3).

To define y(s,y) we modify () in the following way. Let s be the first s € [0,1]
such that i (s) € dQ*. Then we define

s/s)(s) + (1= (s/s if s € [0,
o) = { K (s s 0l

see Figure 2.1.

Q*

us1) ’
/

Fig. 2.1 Detail of the ending part of y
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Now, for s € [0,s1], 7(s,y) = (u(s1) —y)/s1. But, since |f(s)] < d(xp)/c1,
t(si) € dQ* and u(0) = xq, it is easy to check that s; > ccidiam(Q*)/d(xo) with
¢ depending only on n. Therefore, |y(s,y)| is bounded by a constant which depends
only on n, ¢y, and d(xp). So, we can choose ¢; small enough such that y(s,y) satis-
fies 3) on the interval [0,s;]. On the other hand, for s € [0,s1], both tt(s) and y(s,y)
belong to Q* and so d(y(s,y)) ~ d(u(s)) and therefore 2) holds on this interval.
Since y(s,y) = u(s) ons € [s1,1], 2) and 3) hold on all the interval [0, 1].

Using again that s; > ccidiam(Q*)/d(xp), 4) follows from (2.2.4).

Finally, observe that 5) holds because y(s,y) and }(s,y) are continuous for y
in the interior of each Q € W and so they are continuous up to a set of measure zero.
N

Our next goal is to introduce the solution of the divergence which generalizes to
John domains that given in (2.1.3). To simplify notation we will assume, without
loss of generality, that xy = 0.

Let ¢; be the constant appearing in 2) and 3) of Lemma 2.7 and w € Cy
(B(0,¢;/2)) be such that [, ® = 1. Given a function @ € C7 () we define
¢o = Jo 9. The key point in our construction is to recover ¢ — @, from its gra-
dient. To do this we replace the segments used in the case of star-shaped domains
by appropriate curves based on the function y defined in Lemma 2.7. Observe that,
taking s = 1 in 2) of Lemma 2.7, we obtain ¢; < d(0) and so B(0,¢;/2) C Q.

Now, for any y € © and any z € B(0,¢;/2) we define, for s € [0, 1],

Fig. 2.2 A twisted cone inside of an irregular domain

¥(s,3,2) = ¥(s,y) +s2 (2.2.5)
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Then, it follows immediately from 1) of Lemma 2.7 that
7(0,y,z) =y and ¥(1,y,z) =z (2.2.6)

Moreover,
¥(s,y,2) € Q Vs €10,1] 2.2.7)

Indeed, using 2) of Lemma 2.7, we obtain

7(s.309) = Asy) = sl2] < 7 < d(v(s.3)

and therefore, (2.2.7) holds (Figure 2.2).

We can now introduce the function G = (Gy,-- - , G,) which will be the kernel of
the right inverse of the divergence.

For x € R" and y € Q we define

G(x,y) = ./01 {Y(S,y) +7 D;(S’y) } ® (x_ ﬂs’”) ds (2.2.8)

s s

Observe that, from 5) of Lemma 2.7, we know that G(x,y) is a measurable
function.

Remark 2.4. The integral defining G(x,y) can be restricted to s > c¢|x — y| for ¢ de-
pending only on the constant ¢; given in Lemma 2.7. Indeed, if (x — y(s,y))/s is in
the support of ®, then

|'x_y| S |X—')/(S,y)| + |’}/(S7y) _Y(Ouy)| S CJS—F\/HC;IS.

An important consequence of this remark is the bound for G(x,y) given in the fol-
lowing lemma.

Lemma 2.8. There exists a constant C = C(n,c;, ®) such that
(22.9)

Proof. In view of Remark 2.4 we have

G(x,y):/C1 {7(s,y)+x_7;(s’y)}w<x_7(sa)’)> ds

=yl s s"
But, for (x — y(s,y))/s in the support of @, we have

x=y(s,y)

N

cJ

’gc,1+2

o)+
where we have used property 3) of Lemma 2.7. Then, the integrand is bounded by

(c;'+¢7/2)||@]|s™" and the estimate (2.2.9) follows by an elementary integration.
Il
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The next lemma shows how ¢ — ¢, can be recovered from its gradient by means
of the kernel G. As a consequence of this result we obtain our solution of the diver-
gence.

Lemma 2.9. For ¢ € C'(Q)NW!1(Q) we have that, for any y € Q,

(0= 00)(y) = —/Q G(x,y) - Vo(x)dx.

Proof. Since [, @ =1 we have, in view of (2.2.6), that for any y € Q,

. . 1
((P—(Pw)(y):/ ((P(y)—fp(Z))w(Z)dz:—/Q/o Y(s,3,2)- Vo(¥(s,,2)) 0(z)dsdz.

JQ

From (2.2.5) we obtain f/(s, ¥,z) = ¥(s,y) + z. Then, interchanging the order of inte-
gration and making the change of variables x = (s, y,z), we have z = (x — ¥(s,y)) /s
and dz = dx/s", and hence,

@-90)0) == [ [ {5+ o (7T D vpgan

s s
which in view of the definition (2.2.8) concludes the proof 11

Theorem 2.5. For f € L'(Q) such that [, f = 0 define

u( = [ Gley) /)y (2.2.10)

then
diva = f.

Proof. The proof is exactly as that of Theorem 2.1, using now (2.2.9) to see that
u is well defined and all its components belong to L}O .» and therefore, divu is well
defined in the sense of distributions.

Remark 2.5. As in the case of star-shaped domains, the definition of u given in (2.2.10)
can be extended to every x € R".

Proposition 2.2. Let f € LP(Q) for some p > n. Then, u defined in (2.2.10) is con-
tinuous in R" and vanishes outside Q, in particular, u(x) = 0 for all x € Q.

Proof. First we observe that
G(x,y) =0 whenever x ¢ Q,y € Q

Indeed, it is enough to see that

w(x—ﬂsvy)) —0 forx¢Q ,yeQ and se[0,1] (22.11)

N
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But, in this case we have from property 2) of Lemma 2.7,
crs <d(y(s,y)) < |v(s,y) — x|

hence,
|')/(S, y) - 'x|

N

>cy

and therefore, (2.2.11) follows immediately since supp @ C B(0,c¢;/2). Conse-
quently, u = 0 for all x ¢ Q. Take now x and ¥ in a neighborhood of 2. We have

6= 650) = [ { (o4 ™71 o (1)

- (ﬂs,y)ﬂ‘ys(w)) o (f—vs<s,y)) } d

and then, since |7(s,y)| < ¢; !,

Gey) - GEn| <" [ 1 w(x—vfsw) _w(x—y;s,y)) "
F [ (Yo (I (T (T

But o(z) and z®(z) are Holder o on bounded domains for any 0 < o < 1. Therefore,
assuming, for example, |x —y| < |¥—y|, and using that the integrand in the definition
of G(x,y) vanishes if s < c|x — y| we obtain

L ds |x — x|
= —|o
|G(x,y)—G(x,y)| < C|'x_'x| ./c\xfy\ gnto < |x—y|”*1+“

and then,

O

= Z|o
[u(x) —u@)] < Clx—5" | e — y|n- 1+

now, since p > n we can choose & > 0 such that (n — 1 4+ a)p’ < n and the proof
concludes using the Holder inequality. 0O

In what follows we will prove that u belongs to WOI”’ (€2). The argument is anal-
ogous to that used in the case of star-shaped domains, i, ., we will write the deriva-
tives of the components of u as a singular integral operator acting on f. With this
goal we introduce

. dG;i
Tijg(y) = lim xa0y) 5 - (xy)glx)dx.
J

€20 J|y—x|>¢
and its adjoint operator T;;. The existence of this limit in L”, for 1 < p < eo, will
be proved below using the Calderén-Zygmund operator theory. In particular, it will
follow that
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JG;
) =tim [ 00 s )y
J

£=0Jy—x|>¢
Lemma 2.10. For 1 <i,j < nwe have
8u[

o, = Tl +ouf in Q

where
ZiZj .
@) = [ o (-70.5) +2)dz

R 2]
Proof. Proceeding as in Lemma 2.3 we have, for ¢ € C5(22) and y € Q,
8u,-

0 9x; (X)p(x)dx = / 1) f (v)dy (2.2.12)

JQ

where

1) =tim{ [ wyewas— [ acwee 2

£—0 x—y|>¢ axj' ly—C¢|=¢ |y - C|
(2.2.13)
Proceeding as in Lemma 2.3, using now (2.2.9), the surface integral can be written
N 0=
~ [ GEne© Al = —eel) +0e)  @2.14)
ly—¢l=¢ ly—¢]
with

_ PNCEIOP
Aely) = /H\:EG'“ >|y ;e

But, from the definition of G we have

0= ool (e 1)1 )

and making the change of variables r = £/s we obtain

0= ey Crtten S0 Yo (ST 28 e

while a further change of variables o = ({ —y) /€ yields

- /\;ﬂ:n /:’ (%(s/r,y) + Soie_/z/i(g/ry) ) ¢ <Y+ Y V(S/’J)) o drdo

e/r
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where we have used that y = (0,y). But, from 4) of Lemma 2.7 we know that
¥(s,y) is continuous at s = 0, and therefore, the integrand tends to 6;0;® ( —7(0,y)+
rG) 7'~ for € — 0. Moreover, recalling that @ has compact support, we can restrict
the integral to bounded r, and since the integrand is bounded we can apply the
dominated convergence theorem to obtain

lim Ae (y) = — /w:l [ a0 (100 +ro) drdo =~ [ 0 (30,0 +2)de

£—0 R |2)?

Therefore, from (2.2.13) and (2.2.14), we conclude that

1(y) =Tij0(y) + @i;(y) o (v),

replacing in (2.2.12) the lemma is proved. O
Now, our goal is to prove the estimate

[ullwir@) < Cllf (@)

for 1 < p < co.

In view of Lemma 2.10, and observing that the function ®;; is bounded, our
problem reduces to show that T} is a bounded operator in L” for 1 < p < ee.

By duality, it is enough to prove that 7;; is bounded. To simplify notation we drop
the subscripts i, j from the operator and introduce the function

y(a,z) = aij ((a +Zi)w(2))

for a € R and z € R". Then, we have to prove the continuity of an operator of the
form

Tg(y) =limTzg(y) (2.2.15)

e—0

where, for € > 0, T; is given by
Teg) = [ Klxyg(ds (2.2.16)
|x—y|>¢
with

N

1 _ ) d
K(x,y) = 2a(») /0 v (%‘(s,y),x s y)> s”+s1 (2.2.17)

where v is a bounded function such that its support in z is contained in that of @.
Since y is a derivative of a function with compact support we have

/ v(a,z)dz=0. (2.2.18)
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Moreover, proceeding exactly as in Lemma 2.8 we can prove that

|K(x,y) (2.2.19)

| <
e =y
with C = C(n,cj, ).
Lemma 2.11. There exists a constant C3 = C3(n, c;) such that, if K(x,y) # 0, then
=yl < Gd(x)

Proof. Recalling that y(a,z) vanishes whenever z ¢ supp ® C B(0,c;/2), and using
2) of Lemma 2.7 we know that

d
s,y < &5 < AVED) (2.2.20)
2 2
and so, recalling that y(0,y) = y and that J(s,y) < c}l, we obtain
cjs ~1
=y < =l ))[+[¥(s,) = ¥Op)| < 7 + ey s
therefore, using again 2) of Lemma 2.7, it follows that
lx—y| < Cd(y(s,y)) (2.2.21)

with C = C(n,cy). But, the function d is Lipschitz with constant 1 and then, it fol-
lows from (2.2.20) that

a(y(5.9)) ~d(x) < ¥(5,2) ~xl < Jd(¥(5,7))

and therefore,
d(y(s,y)) < 2d(x)
which together with (2.2.21) concludes the proof. 0O

In order to prove the continuity of the operator defined in (2.2.15) and (2.2.16),
in the next lemma we decompose it in three parts. The first one will be bounded
using Theorem 2.2 while the other two parts using Theorem 2.3.

In view of the previous lemma we have

T:g(y) = / K(x,y)g(x)dx.
e<|x—y|<C3d(x)

Since for |x —y| < d(x)/2 we have d(y)/3 < d(x)/2, and assuming C3 > 1/2, we
can decompose the operator as

Teg(y) = Tie8(y) + T2g(y) + T38(y) (2.2.22)
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with
Tiesly) = [ K(x.y)g(x)dx, (2223)
Je<|x—y|<d(y)/3

Tog(y) = K(x,y)g(x)d
28(y) /d 0/ 3<lrsidt/z Y)g(x)dx

and

Tl = | K(x,y)g(x)dx
Ja()/2<)x-y|<C3d(x)

Lemma 2.12. For 1 < p < oo, there exists a constant C depending on C3, @, n, and
p such that

1T2gllr + 1 T3g]lr < Cligller (2.2.24)

Proof. To bound 75 observe that, |x — y| < d(x)/2 implies d(x) < 2d(y), and there-
fore, using (2.2.19), we have

|Tg(y)| < CMg(y), (2.2.25)

and therefore, it follows from Theorem 2.3 that 7> is bounded in L?.
On the other hand, for any f € LP, we have

Jrsoimar=[ [ Kes@ s 0226)

changing the order of integration and using again (2.2.19) we obtain

reoroin|<c[{ L] o sl < Ml

which by duality and using again the boundedness of the maximal operator given in
Theorem 2.3 gives the bound for 73. O

Finally, we will show that the singular part 77 ¢ can be bounded using Theo-
rems 2.2 and 2.3. With this goal we introduce

Sg(v) = lim Seg(y) = lim H(y,x—y)g(x)dx (2.2.27)

€20 J|x—y|>e

where

102 = 2a0) [ v (70,5~ 70.0) 17,

Lemma 2.13. The kernel H(y,z) satisfies the hypotheses of Theorem 2.2.

Proof. To prove 1), given A > 0 we make the change of variable t = s/A. Then, we
have
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Hoo = [Tw (yl(o 0" 7<o,y>) e
=A" / 7(0,y), " =10, y)) & | =ATH(b2)

To prove 2), we make now the change of variable r = 1/s in the integral defining
H(y,z) to obtain

H(.2) = 100) [ ¥ (0(0.9).r2 = 70.) 7" dr

and therefore,

JH0.00d0 = a(s) [ [ ((0.3),r0 = 10.)) 7 drdo
p) xJo
— %a0) [, w(0.9),2 = 70.3)) dz =0

where we have used (2.2.18).
Finally, since the support of y in its second variable is contained in B(0,c;/2)
and [7(0,y)] < c}l, there exists a constant C depending only on ¢, such that

ds
sntl

oI < [ [v (500~ 70.)

which, using that y is bounded, implies 3). O

Corollary 2.1. For 1 < p < oo, the operator

Sg(y) = lim Seg(y)

e—0

defined in (2.2.27) is a bounded operator in LP and the convergence holds in the LP
norm. Moreover, there exists a constant C, depending on p, n, c;, and ® such that, if

Sg(y) = sup|Seg(»)|,

e>0
then
Se|l < ,
3¢, < Clglu

Proof. Tt follows immediately from Lemma 2.13 and Theorem 2.2. 0O

Corollary 2.2. For 1 < p < oo, the operator
Tig(y) = lim Ty ¢g(y),
e—0

with T ¢ as in (2.2.23), defines a bounded operator in LP and the convergence holds
in the L” norm.
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Proof. According to 4) in Lemma 2.7, for 0 < s < kd(y), we have y(s,y) =y +
7(0,y)s, and therefore, the kernel defined in (2.2.17) can be written as

ko) a0 { [ (00" —50) &,

! . X—')/(S,y)) ds }
+/ (ACIR R
Jeat) w(y(s o il

and then, defining

° . xX—y . ds
J('xay) :xg(y){_/kd(y) W(%(Ouy)v s _Y(Ovy)> sntl
! . x—V(s,y)) ds }
+ i\%») )
St ¥ <7 (s,%) s il

we obtain
K(x,y) =H(y,x—y)+J(x,y)

or, in other words,
Tieg(s) = | H(yx—y)g(0ds+ [ I y)g(x)dx
Je<|x—y|<d(y)/3 e<|x—y|<d(y)/3

which can be rewritten as

T1e8(y) = Seg(y) — /

J(x,y)g(x)dx.
[x—y|>d(y)/3 3

H(yx=y)g(dr+ [
e<|x—y[<d(y)/

Now, it is easy to see that there exists a constant, depending only on n, k and the
L=-norm of y such that |[/(x,y)| < C/d(y)", and therefore, the third term on the
right-hand side is controlled by Mg(y). Then, it follows from Corollary 2.1, that
the limit defining 77 g(y) exists in L”, and moreover,

Tig(y)| < C{ISg(y)|+§g(y)+Mg(y)},

and we conclude the proof applying again Corollary 2.1 and Theorem 2.3. 0O
Summing up we obtain our main theorem.

Theorem 2.6. Let 2 C R” be a bounded John domain with constant ¢ with respect
toxog=0.If f€LP(Q), 1 <p<eo and [, f =0, then the function u defined
in(2.2.10) is in Wol’p(.Q)” and satisfies

diva=f in Q.
Moreover, there exists a constant C = C(cy,d(xo),diam(€2),n, p) such that

[allwiry <Cllfllr@) (2.2.28)
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Proof. First, using the bound for G given in (2.2.9) we obtain, by an application of
the Young inequality, that u € L ()" and

[allr@p < Cllfllria)- (2.2.29)

From Theorem 2.5 we know that divu = f. On the other hand, from Lemma 2.10
we know that

du; .
ax; Zﬂjfﬁ-wijf in Q.
with @;j(y) bounded, indeed, ||@;j|z~ < |®]||,1. Then, (2.2.28) is a consequence
of (2.2.29) and the boundedness of T}; or, by duality, of 7;;. But this follows
from (2.2.22), (2.2.24) and Corollary 2. 2 In all the estimates used to obtain (2.2.28)
the constants depends only on p, 1, ¢, diam (€2). But, from Lemma 2.7, the constant
¢y depend on ¢y and d(xg).

It only remains to show that u € WO1 . For p > n we have proved in Proposi-
tion 2.2 that u is continuous and vanishes on d€2, and then, as in the case of star-
shaped domains, it follows from [85] thatu € WO1 P (Q)". For 1 < p <n we proceed
by density as we have done in the proof of Theorem 2.4. O

In some applications it is of interest to have a generalization of Theorem 2.6 to
weighted Sobolev spaces. Below we will show that such a result can be obtained as
a consequence of a general theorem for singular integral operators for weights in the
Muckenhoupt class A,.

For 1 < p < o0, a non-negative function w defined in R" is in A, if

1 1 1/(171)>p1 < oo 2.2.30
o, (IQI /QW> <|Q| fy ’ (2:230)

where the supremum is taken over all cubes with edges parallel to the coordinate
axes.
In the following theorems we will use the sharp maximal function defined as

M f( d
Zg§|Q|/|f — foldy

and the Fefferman-Stein inequality which says that
gl < ClimM®sll,p (22.31)
forany g € L! (see, for example, [34]).

Theorem 2.7. Given a singular integral operator

Tf(x) = lim K(x,y)f(v)dy

e—0 |x—y|>¢e
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which is continuous in LP, for 1 < p < oo, and such that K (x,y) satisfies

Clx—x|

|K(X,y)—K()E,y)| < |x_y|”+1 )

Sfor |x—y|>2]x—x|

then, for any s > 1,

M*T f(x) < C(M|fI} (x))"/*
Proof. This estimate is well known and its proof can be found in several books,
although the hypotheses on the operator are not stated usually as we are doing here.

However, it is easy to check that the proof given in [34, Lemma 7.9] only uses the
hypotheses given above. 0O

Theorem 2.8. Under the hypotheses of Theorem 2.6, if w € A, there exists a con-
stant C = C(cy,d(x0),diam(Q),n, p,w) such that

[allwir@u < ClA L@ (2.2.32)

Proof. Tt is enough to bound du;/dx;. The estimate for u will follow from the
Poincaré inequality, which is known to hold for A, weights (see, for example, [33]).
Now, using Lemma 2.10 and that @; ; is bounded, we have to prove that

where

T*f(x) = lim K(x,y)f(y)dy

=0/ |x—y|>e
with K (x,y) given in (2.2.17). Proceeding again as in Lemma 2.8 we obtain

|VxK(.X7y)| < |X—y|”+1 )

and consequently,

Clx—x|

PRINMEE for |x—y|>2x—x,

therefore, since we already know that 7* is a continuous operator in L?, for 1 < p <
oo, T* satisfies the hypotheses of Theorem 2.7. Consequently, we have
M*T™ f(x) < C(M|f[* (x))'/*

forany s > 1.
Now the result follows from this estimate combined with (2.2.31) for g = T* f.
We omit details and refer the reader to the proof of Theorem 7.11in [34]. O
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2.3 Improved Poincaré Inequality and Equivalences

This section deals with the so-called improved Poincaré inequality, namely, for
feL5(Q),

£ llri@) < CllaVilwiea (23.1)
where the constant C depends only on the domain Q.

This inequality has many applications. In fact, we will show below that it pro-
vides a different way to prove the existence of solutions of the divergence in Sobolev
spaces. Moreover, we will see in Chapter 3 that it can be used to prove Korn type
inequalities.

The next theorem is a particular case of results given in [33]. In its proof we will
use the following well-known result.

Lemma 2.14. For § >0andg € L)

loc’

/" lg)] dy < CBMg(x)

—l<p =y
with a constant C independent of B and g.

Proof.

lg(y) / le()
d
/\x>\<ﬁ |x — yl” = Z () famyl<atp [x— 1Y

<CBY g 180 1dy < CBM()

[x—y|<27%B
O

Theorem 2.9. If 2 C R”" is a bounded John domain, then the improved Poincaré
inequality (2.3.1) holds for 1 < p < oo,

Proof. By Lemma 3.1 it is enough to prove

If = follr@) < CldV £l @)

with o is as in the previous section.

By density we can assume that f € C'(Q). Indeed, the density of C!'(Q) in
W1P(Q,1,dP) can be proved by the same argument used in the unweighted case
(see, for example, [40]).

As in Lemma 2.9 we can show that

J0) = fo == [ Gly)- VS (x)dx
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with G(x,y) given in (2.2.8). Then, given g € L” (Q), we have

LU0 =fdetlay= [ [ Gey)-Vrtet)sdy
Q QJQ

Interchanging the order of integration and using Lemmas 2.8 and 2.11, we obtain

/Q(f(y)—fm)g(y)dyﬁc./g{/xy<czd(x ) dy} |V £(x)|dx,

) e —y[rt

and therefore, using Lemma 2.14,
| 0) = fulg)dy € | Mel)d)| V£ (o)l < CMgl o g 4V ey

and the proof concludes using the continuity of the maximal operator in L” and
duality. O

Remark 2.6. Note that the previous theorem includes the limit case p = 1. Clearly,
the argument does not apply to p = oo because it would require the continuity of the
maximal operator in L'. Moreover, the improved Poincaré is not valid in L, indeed,
an easy counterexample can be given taking Q = (0, 1) and f(x) = logx.

The improved Poincaré can be used to prove a decomposition of functions with
vanishing integral as a sum of locally supported functions with the same property,
actually, it is equivalent to the existence of this decomposition. This decomposition
is useful to obtain global from local results, more precisely, to extend to very general
domains results which are known for cubes.

In the next theorem we analyze the relation between the existence of solutions
of the divergence, the improved Poincaré inequality and the decomposition of func-
tions. The arguments are contained in [35, 36, 60].

We will make use of the Whitney decomposition introduced in (2.2.2) denot-
ing now Q;, j € N, the cubes. It is known (see, for example, [84]) that there ex-
ists a family of functions ¢; € C (Q*]‘) associated with the decomposition such that
Y0 = xa |9l < Cand ||V¢;||.~ < C/dj, where d; denotes the distance of Q;
to the boundary of €2.

Theorem 2.10. Let 2 C R" be an arbitrary domain and 1 < p < co. Consider the

following statements,

1 Hf”Uv’(_Q) < C||de||U,/(Q),, vfe Lg (-Q)
2.Vf € L5(Q), there exists u € LP ()" such that
dva=f inQ ,u-n=0 ondQ

and

u
<C
Hﬂmw—'wwm
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3.Vf € LE(Q), there exists a decomposition
f=210
J
such that

fi€ Lg(Q), supp fj C ij and Hf”ZP(Q) ~ ZHfJ”Zp(Qj)
j

4.Vf € LE(Q), there existsu € WOI”’(Q)” such that
diva=f inQ
and
1Dulzr @y < Cllfller (@)

Then,
(1) = (2) = 3)= )

and the constants are equivalent, i.e., the ratio between two of them is bounded by
above and below by positive constants depending only on n and p.

Proof. (1) = (2): For f € L5(Q)
if(Vg):=/;fg

defines a linear form on the subspace of L (Q)" formed by the gradient vector
fields. Note that . is well defined because [, f = 0. Moreover, it follows from (1)

that
290 = [ e~ 20| < Ul 149y

By the Hahn-Banach theorem . can be extended as a linear continuous functional

Z:17(Q,d") — R
and therefore, by duality, there exists u € LP(Q,dP)" such that

f(v):./gu-v and H;

<C p
vy S [Ralyagey

in particular,
/WW:/k vg e W' (Q)
JQ Q
which is equivalent to
divu=f inQ,u-n=0 ondQ
and so (2) holds.
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(2) = (1): Given f € L§(£2) we have

W= sw [ fs (2.32)

SELH (), ]1gllp=1

Now, for g € L5 (£2), letu € LP(£)" be the solution of divu = g given by (2). Then,

/Qfg:/gfdivu:/QVf-u

< HdfoLp/(g)n

u
d HLP(Q) < C||de||Lp’(g)n||g||LP(Q)
which together with (2.3.2) implies (1).
(2) = (3): Given f € L§(£2) letu € LP(£2)" given by (2). We define
fi=div(¢ju)
then

f =divu = div (uZ(I)j) = ZdiV (pju) = Zf;
J J J

Since supp¢; C Q; we have supp f; C Qj and Jofi=0.
Moreover, from the finite superposition of the Whitney decomposition we have

F)IP <CRIfi )"
J

and then
J

where the constant C depends only on p and n.
To prove the other inequality we use again the finite superposition and that

|¢illz= <1 and ||V@;||z= < C/d;. Then, we have
P
Lr(Q})"
and therefore it follows from (2) that

S 10 <o

P 4 "
HfJHLP(Q}*.) < C{|f|| (07) * Hd}

(3) = (2): Given f € L{(2) we write f = ¥, f; according to (3). From the
results in Section 2.1 we know that, for each j, there exists u; € Wol’l7 (Qj-)” such
that

divu; = f; and |[Dujl|Lr(g) < CllfjllLrir)
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where the constant is independent of the size of the cube. Then, u = 3 ;u; €
WO1 P(Q)" is the required u. Indeed, divu = f and the estimate

CllAllr 2

H dlirrQ)

follows applying the Poincaré inequality on each Q7. Indeed

p * < D * < p *
vy Hu/HLl (5 < ClIDujl| gy < Cllfillr o)

then

<cx[5l;

J

Hd LP(Q5)" LP(Q5)"

as we wanted to show.
(3) = (4): It is proved exactly as (3) = (2).
The equivalence between the constants follows easily from the proofs. 0O
As we mentioned above, the results given in this section provide a different ar-

gument to prove the existence of solutions of the divergence. This is summarized in
the following corollary. The same argument has been used in [32]

Corollary 2.3. If Q C R" is a bounded John domain and 1 < p < eo then for any
f € L§(Q) there exists u € W()Lp(_Q)” such that

divu=f inQ

and
lallwir@y < Cllfllzr @)

Proof. Tt is an immediate consequence of Theorems 2.9 and 2.10. O

Remark 2.7. We don’t know whether (4) implies the other statements given in The-
orem 2.10 for a general domain. However, it is easy to see that (4) = (2) holds for
domains satisfying the Hardy inequality, i.e., there exists a constant depending only
on Q and p such that

HdHLP(Q) <CIWlray  WEWT(Q)

Moreover, it is known that this inequality is valid for any domain different from R"
when p > n [73]. Therefore, for p > n we have the stronger statement

(1) == (2) &= () = 4

for any domain Q Z R".
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2.4 A Partial Converse Result

An interesting problem is to characterize the bounded domains for which the results
considered in Theorem 2.10 are valid. According to the previous section we know
that all of them hold for John domains. As we have mentioned at the beginning of
Section 2.2, it is known that div), is not valid for some domains with external cusps.
Since the class of John domains is very general and excludes external cusps it seems
a natural question whether

Q satisfies div, <= Q is a John domain. 2.4.1)

As far as we know the answer is not known. However, a partial answer can be
given. Indeed, (2.4.1) is true if the bounded domain 2 satisfies the separation prop-
erty. We omit the technical definition of this property and refer the reader to [16]
where it was introduced. In that paper it is also proved that, in the two dimensional
case, any simply connected domain satisfies the separation property.

For 1 < p < n we say that 2 satisfies the Sobolev-Poincaré inequality for p if
there exists a constant depending only on p and €2 such that

£l @) S CIVAlr@y YV eWP(Q)NLE(Q),

where p* = pn/(n— p). In [16] the authors prove that, if £ is a bounded domain
that satisfies the separation property as well as the Sobolev-Poincaré inequality for
some 1 < p < n, then it is a John domain.

Theorem 2.11. Let Q C R” be a bounded domain satisfying the separation prop-
erty. Then, 2 satisfies div,, for some 1 < p < oo, if and only if Q is a John domain.

Proof. From the previous section we already know that if €2 is a John domain then
divp is valid for all 1 < p < eo. The converse was provedin [3]inthecase 1 <p <n
showing that div,, implies the Sobolev-Poincaré for ¢ = (p*)’ and applying the result
in [16]. Indeed, given f € W"4(Q) NLL(Q2) and g € L(Q), take u € W, " (Q)"
such that diva = g and |[ully1,(gp < Cl|g]|Lr(@)- Now, by the Sobolev-Poincaré

for functions in WO1 P (£2)" and observing that ¢ = p* we have

| re= [ saivu=— [ Vr-u< VS luoplul g,
< CIVflla@pllallwiry < CIVF @ llglire)

and the argument concludes observing that p = (¢*)’ and using duality.

For the case n < p the result was proved in [60] generalizing the arguments of
[16] to show that, under the separation property, the improved Poincaré inequality
implies that £ is a John domain, and then using that div, implies the improved
Poincaré for p’ (see Theorem 2.10 and Remark 2.7). We can also use the following
argument: in [35] it is proved that, if the improved Poincaré is valid for some g > 1
then it is valid for all r such that ¢ < r < oo, actually, in that paper the proof is written
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for g = 1 but the argument can be easily extended to any g. Now, assuming div,, for
some p > n we have that Q satisfies the improved Poincaré for p’, and therefore,
for p. Then, using again Theorem 2.10, we obtain that €2 satisfies div,,/. But p’ < n,
and so, €2 is a John domain. Finally, the case p = n was proved in [59]. O

2.5 Comments and References

An interesting problem that has been widely considered is that of the dependence
on the domain of the constants involved in all the inequalities considered. Ideally,
given a particular €2 and an inequality, one would like to know the best constant
possible, but this is a too difficult problem that can be solved only in very particular
cases. For example, the constant for div, is known for circles, ellipses, spheres, and
spherical shells. We refer the reader to [56] and the references therein.

A less ambitious problem is to obtain estimates of the constants in terms of geo-
metric properties of the domains. There are many works in this direction. Important
tools in this problem are results like Theorem 2.10 which allow to translate infor-
mation for some inequality to another one.

Consider, for example, the estimate

1Dl 1p (@) < Cpamellfllr@): (2.5.1)

where u € Wol’p(!))” is some solution of divu = f.

One could try to obtain information tracing constants in the proofs given in the
previous sections for the estimates for the solutions of the divergence defined there.
However, the arguments are based on the general Calderén-Zygmund singular in-
tegral operators theory and the constant that one obtains from that theory seems to
be nonoptimal for our particular case. As it was pointed out in [46], for the case of
a domain of diameter d which is star-shaped with respect to a ball B of radius p, it
follows from [21] that, for 1 < p < o, Cp giva < Cup(d/p)" L.

However, at least in the case p = 2, this estimate can be improved. Indeed, this
has been done in [36] where the result given in Section 2.1 is proved for the case
p =2 using a different argument. Instead of relying on the general theory, the proof
in [36] is based on elementary properties of the Fourier transform. In this way it is
proved that, for the solution u defined in Section 2.1,

n—2 n
d (|Q]Y 21 |2 201
Cr givo <C 1 252
Z,le,Q — +~n p ( |B| ) ( Og |B| ( )
In particular, in the two dimensional case we have, for any € > 0,
Craina < Ce(d/p)'T*

This estimate has been improved in [28] removing the € and obtaining

Craive <C(d/p) (2.5.3)
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The result in that paper is not for the solution analyzed in Section 2.1 but for a
different one. The authors use the equivalence between C, 4, o and the constant
in the so-called Friedrichs inequality. Let # and g be real valued functions such that
Jo h=0and h+ig is an holomorphic function in 2. Under appropriate assumptions
on the domain €2, Friedrichs proved that there exists a constant Cy,. o such that

2]l 2(0) < Crrallgllz i) (2.5.4)

Assuming that £ is a smooth domain it was proved in [57] that, if C; 4,0 and Cy,. 0
are the best possible constants in (2.5.1) (with p = 2) and (2.5.4), respectively, then

> 2
G aio =Crro+1

This result was extended for arbitrary bounded domains in [28], and using this
equivalence and complex variable arguments the authors proved (2.5.3).

This result is optimal, indeed, consider the rectangular domain , = (—a,+a) x
(—&,¢€), with a and € positive constants, and take A (x,x;) = x; and g(x1,x2) = x5.
Then, an elementary computation shows that the Friedrichs inequality applied to
these functions gives

Crra,. > (a/€)

and consequently, for these domains,

Craive > c1(d/p) (2.5.5)

where ¢ is a constant independent of 2.

We do not know whether (2.5.2) can be improved for #n > 3 nor whether similar
estimates can be proved for p # 2.

For the particular case of convex domains it is possible to use (1) = (4) in
Theorem 2.10 to prove, for 1 < p < o and arbitrary dimension 7, that

Cp,div,Q < C(d/P)

with C depending only on n and p. This has been done in [36] for p = 2 but the
arguments there can be easily extended to 1 < p < .

To end our comments on the constant in (2.5.1) let us mention the papers [27]
and [11] where the behavior of the constant for domains with corners and continuity
with respect to the domain were analyzed.

Finally, several papers have considered the existence of solutions of the diver-
gence in higher order Sobolev spaces under appropriate assumptions on the right-
hand side f (see [9, 83, 29]).
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