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Chapter 2

Link of Zygotic Genome Activation and Cell Cycle Control

Boyang Liu and Jörg Grosshans

Abstract

The activation of the zygotic genome and onset of transcription in blastula embryos is linked to changes 
in cell behavior and remodeling of the cell cycle and constitutes a transition from exclusive maternal to 
zygotic control of development. This step in development is referred to as mid-blastula transition and has 
served as a paradigm for the link between developmental program and cell behavior and morphology. 
Here, we discuss the mechanism and functional relationships between the zygotic genome activation and 
cell cycle control during mid-blastula transition with a focus on Drosophila embryos.
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1  Introduction

In most animals, from nematodes to chordates, embryogenesis 
starts with a series of rapid cleavage cell cycles after fertilization. 
These fast divisions lead to an exponentially increasing number of 
cells without an accompanied growth of the embryo. After a species-
specific number of divisions, the cell cycle slows down and finally 
enters a pause. Subsequently, the embryo enters gastrulation with 
its characteristic morphogenetic movements, loss of symmetry, and 
cell type-specific differentiation. Mammalian embryogenesis is spe-
cial in that it begins with differentiation of inner cell mass (ICM) 
and trophoblast, and the fast embryonic cleavage cycles eventually 
arise at late blastocyst stage [1–3]. Maternally supplied materials, 
including proteins, RNAs, and conceivably also metabolites con-
tribute to the initial developmental processes. Maternal products 
exclusively control development during this first period, as the 
zygotic genome starts expression only with a delay after fertiliza-
tion. Following zygotic genome activation (ZGA), both maternal 
and zygotic factors contribute to developmental control. The 
switch from maternal to zygotic control is especially prominent in 
species with large, externally deposited eggs. ZGA coincides with 
striking changes in cell behavior and molecular processes, including 
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cell cycle, DNA replication, maternal RNAs degradation, chroma-
tin structure, metabolite composition, and status of DNA check-
point. This morphologically visible switch in early development 
during the blastula stage was first described 120 years ago in sea 
urchin Echinus microtuberculat and Sphaerechinus granularis, and 
later has been referred to as mid-blastula transition (MBT) [4, 5].

Many model organisms are well studied in terms of MBT. Amphibian 
Xenopus laevis, for instance, undergoes 12 short and synchronized 
cleavage cycles with a lack of gap phases, 35 min each and proceeds 
with a series of progressively longer and less synchronized divisions 
from cycles 13 to 15. The transition period is defined as the MBT 
[5–8]. S phase progressively lengthens, and the cell cycle pauses in 
G1 or G2 phases during the MBT [9]. Concomitantly, maternal 
transcripts are deadenylated and degraded. The first zygotic tran-
scripts are detected at cycle 7 and transcription rate increases up to 
and beyond MBT [10]. During the MBT, developmental control 
is handed over from maternal to zygotic factors (maternal-zygotic 
transition, MZT).

In zebrafish Danio rerio embryo, 9 rapid cycles with approxi-
mately 15 min each are followed by gradually longer cell cycles 
[11]. MBT begins at cycle 10, and the cell cycle loses synchrony 
with acquisition of a G1 phase in cycle 11 [12]. Similar to Xenopus, 
ZGA is regulated by the nuclear-cytoplasmic ratio, but DNA dam-
age checkpoint acquisition is independent of zygotic transcription 
[13]. Maternal factors Nanog, Pou5f1, and SoxB1 are required for 
de novo zygotic transcription as well as inducing maternal clear-
ance by activating the microRNA miR-430 expression [14].

In the nematode Caenorhabditis elegans (C. elegans), zygotic 
transcription is already activated in the 4-cell stage. Multiple mech-
anisms and maternal factors, including OMA-1 and OMA-2, are 
involved and regulated by phosphorylation, nuclear shuttling, and 
protein destabilization [15, 16]. In contrast to the other species 
discussed above, cells divide asynchronously and asymmetrically 
following fertilization in C. elegans embryos [17, 18].

MBT is observed in embryos of Drosophila melanogaster at about 
2 h post fertilization. Embryonic development starts with 13 rapid 
and meta-synchronized nuclear divisions, with extraordinary short 
S phases and no gap phases [19]. The extraordinary speed of about 
10 min per pre-blastoderm cell cycle is achieved by fast replication 
of DNA and the absence of cytokinesis [20–22]. The syncytial 
mode of early development is a special feature of insect embryo-
genesis [23]. Due to the absence of cytokinesis, the early cell cycles 
are often referred to as nuclear cycles (NC). The onset of the 
embryonic cell cycle is regulated by pan gu, plutonium, and giant 
nuclei [24–27]. From NC8 to 9, the nuclei move from the interior 
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of the egg toward the periphery, forming the syncytial blastoderm. 
From NC10 to 13, nuclei undergo four more divisions at the egg 
cell cortex, until the nuclei number reaches approximately 6000. 
Some nuclei remain in the interior egg to differentiate into poly-
ploid yolk nuclei. After mitosis 13, the cell cycle mode changes 
with the introduction of a long G2 phase, and the embryo enters 
into cellularization stage [19]. Following NC11, the cell cycle 
gradually slows down from 10 min in NC11 to 21 min in NC13 
and an hour-long G2 pause in interphase 14 (25 °C) [19]. The S 
phase lengthens and by cycle 14 a difference between early and late 
replicating euchromatin and the satellite DNA becomes obvious. 
In addition, the usage of replication origins changes [28].

Interphase 14 corresponds to the MBT in Drosophila. 
Interphase 14 is the stage when the cell cycle pauses in a G2 phase, 
zygotic transcription strongly increases, and DNA replication 
switches to a slow replication mode. During interphase 14, visible 
morphology changes from the syncytial to cellular blastoderm, in a 
process called cellularization. Cellularization is the first morpho-
logical process that depends on zygotic gene products [29, 30].

However, the first signs of MBT are already visible earlier. As 
mentioned above, the extending interphases in NC11–14 depend 
on zygotic transcription. The first transcripts and activated RNA 
polymerase II (Pol II) can be already detected in pre-blastoderm 
stages. Transcription slowly increases until cycle 12. In cycle 13 
many zygotic genes are clearly expressed [31]. Genome-wide anal-
ysis showed that gene expression is initiated at different time points 
throughout early development [32, 33], suggesting that rather 
than a sharp switch, MZT is likely regulated by multiple and diverse 
mechanisms [9, 34, 35]. The timing of these multiple and diverse 
mechanisms depends, to a certain degree, on the ratio of nuclear 
and cytoplasmic content (N:C ratio). This is further discussed in 
Subheading 5.

Approximately, two-thirds of all genes are contained in 
Drosophila eggs as maternal mRNAs [34, 36]. A third of all maternal 
transcripts are eliminated in stages leading to MBT in three ways 
[36]: First, maternally encoded factors activate mRNA degradation 
of over 20% of maternal transcripts after egg activation in a ZGA-
independent manner [34, 37–39]. The RNA-binding protein 
Smaug is such a factor, acting together with the CCR4/POP2/
NOT deadenylase complex [38, 40, 41]. Another RNA-binding 
protein, Brain Tumor, functions in a similar way [42]. Second, 15% 
of maternal mRNAs are eliminated depending on zygotic tran-
scription during MBT [43, 44]. Third, microRNAs induce mater-
nal RNA degradation. More than 100 maternal transcripts are 
degraded depending on zygotically expressed microRNAs from 
the miR-309 cluster, which is activated by the early zygotic tran-
scription factor Vielfältig/Zelda [45–47].

ZGA and Cell Cycle
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2  Mechanism of Zygotic Genome Activation

Transcription of the zygotic genome only begins shortly after fertil-
ization [48]. The highly dynamic transcription profile was charac-
terized by number of methods, including high-throughput 
strategies, global run-on sequencing (GRO-seq), and fluorescent 
labeling of nascent RNA [14, 49–52]. In general, the initiation of 
low-level zygotic transcription, mostly of signaling and patterning 
genes, already appears before NC10 ahead of large-scale ZGA [31, 
53]. These include small and intron-less genes, as well as genes with 
TAGteam DNA motif in the control region [36]. A comparable 
profile is also observed in that of the zebrafish [54]. Full activation 
of zygotic transcription is observed during MBT, when thousands 
of genes are transcriptionally activated and transcribed in high lev-
els. Taken together, the activation of the zygotic genome is a grad-
ual process rather than a single sharp switch. This suggests that 
ZGA is triggered by multiple and diverse events [9, 34, 35].

A contribution to ZGA is intrinsically provided by the division 
of nuclei and doubling of DNA with every nuclear cycle. Even with 
a constant activity of the individual zygotic transcription units, the 
total number of transcripts would exponentially increase. In gen-
eral, zygotic transcription is quantified in relation to the number of 
embryos, total mass of embryos (protein or total RNA content), or 
in comparison to an abundant maternal RNA, such as ribosomal 
RNA. Most of the older data are based on samples prepared from 
mixed stages comprising several nuclear division cycles. 
Alternatively, zygotic transcription may be normalized to the num-
ber of nuclei in an embryo. Given recent technological advances, 
transcription profiling can be conducted with few or even single 
Drosophila embryos, allowing highly accurate staging according to 
the nuclear division cycle [33, 55]. Such normalization is impor-
tant to reveal the actual transcriptional activity of a locus.

This hypothesis was tested with normalized transcriptional pro-
files of selected early zygotic genes (Fig. 1) based on a data set from 
manually staged embryos [56]. Normalization to the number of 
nuclei was performed with the assumption of a doubling with every 
cell cycle. In case of a doubling transcript number from one cycle to 
the next, this results in a zero value. An increase in transcript num-
ber higher than a factor two results in a positive number, whereas an 
increase less than a factor two, in a negative number (Fig. 1). This 
simple and exemplary calculation indicates that both the increasing 
number of nuclei and an increased activity of the transcription units 
contribute to the overall increase in zygotic transcripts per embryo. 
There is, however, also transcript-dependent variation. A similar 
finding was reported recently for dorsoventrally patterning genes 
[57]. This indicates that depending on the zygotic gene, both an 
increased activity of individual transcription units and an increased 
number of transcription units/nuclei contribute to ZGA.
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The zinc-finger protein Vielfältig/Zelda (Vfl/Zld) plays a major 
role in ZGA. Vfl/Zld specifically binds to TAGteam elements in 
the early Drosophila embryo. The TAGteam CAGGTAG sequence 
was identified by genome-wide studies as a general cis-regulatory 
element and as the most highly enriched regulatory motif in genes 
involved in anterior-posterior patterning [36, 58, 59]. Vfl/Zld is 
an essential transcriptional activator during early zygotic gene 
expression, as demonstrated by the strongly reduced (but not 
absent) expression of many early zygotic genes in embryos from 
females with Vfl/Zld mutant germline [60]. Vfl/Zld is maternally 
deposited and uniformly distributed throughout the egg and early 
embryo. The Vfl/Zld protein levels increase coincidently with the 
activation of zygotic genome during pre-blastoderm stage, prior to 
large-scale transcription [49, 61].

Vfl/Zld consists of a cluster of four zinc fingers and a low-
complexity activation domain, both of which are required for pro-
moting DNA binding and mediating transcriptional activation 
[62]. Vfl/Zld binding to promoters is detected already in NC8 for 
particular genes and roughly a thousand genes during NC10 [63, 
64]. The DNA binding is maintained at least until NC14 [49]. 
During ZGA, Vfl/Zld-binding sites are highly enriched specifically 
in regions of accessible chromatin, allowing transcription factors to 
subsequently bind and drive zygotic transcription [63, 64]. Thus, 
Vfl/Zld acts as a co-activator during MZT. Vfl/Zld also controls 
the accurate temporal and spatial expression of microRNAs [46].

2.1  Vielfältig/Zelda 
Functions in ZGA 
Regulation
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Fig. 1 Zygotic transcription and number of nuclei. (a) Number of selected zygotic transcripts based on 
NanoString analysis with extracts from manually staged embryos plotted on a logarithmic scale. (b) The num-
ber of transcripts was normalized to the number of nuclei that double with every cycle. Plotted is the difference 
of log2 of the number of transcripts from one cycle to the previous cycle minus 1. The number of transcripts in 
pre-blastoderm stages is not included. Transcripts for the ribosomal protein L32 serve as a reference. Staging 
by the nuclear cycle, pre-blastoderm stage (Pre) and late cellularization (14-l). Data are from Sung et al. [56]
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The binding of Pol II to promotor sequences is the key to tran-
scriptional activation and elongation. Pol II regulates ZGA by 
three distinct binding statuses: active, no binding, and stalled/
paused [65]. Among them, paused Pol II is critical in Drosophila 
ZGA, because approximately 100 genes are bound by active Pol II 
from NC8 to 12, yet in NC14, over 4000 promotors are occupied 
by Pol II at the transcription start site (TSS) [55, 66]. Furthermore, 
compared with NC12, loci with paused Pol II near the TSS show 
a significant increase in NC13 [67].

Epigenetic marks, including histone modifications and chromatin 
remodeling, dramatically change in early embryogenesis and 
MBT.  Formation of heterochromatin correlates with the emer-
gence of late replication. Heterochromatin Protein 1 (HP1) 
together with histone modifications on H3K9 and H3K4 is 
involved in establishing of tightly packed chromatin structure [68, 
69]. Modifications of lysine acetylation and methylation in his-
tones H3 and H4 appear during MZT.  In zebrafish, a striking 
change in histone modification correlates with ZGA [70]. An 
increase in histone methylation during MZT matches high level of 
zygotic transcription [70, 71]. In Xenopus embryo, maternally 
provided histones H3/H4 and their modification states control 
the regulation of transcriptional activation and cell cycle lengthen-
ing [72, 73]. Similarly, during Drosophila early development, 
genome-wide studies showed that domains of histone methylation 
H3K4me1, H3K4me3, H3K27me3, and H3K36me3 increased 
from undetectable to widespread level at NC14 [48, 55, 74]. 
Levels of acetylation on H3K9 appear correspondingly to methyla-
tion marks, whereas H3K18ac, H3K27ac, and H4K8ac levels are 
evidently precocious at NC12 [48]. These early appearing acetyla-
tion marks are strongly correlated with maternal DNA-binding 
protein Vfl/Zld, demonstrating that Vfl/Zld may regulate tran-
scriptional activation by recruiting histone acetylation, thus 
allowing opening of genome state [34, 48]. In contrast, the mark 
H4K5ac, whose level was previously shown to bookmark active 
transcription in mammalian cells, decreases from NC8 with the 
slowdown of the cleavage cycles [48, 75]. In addition to histone 
modifications, remodeling of nucleosomes and linker histones with 
histone variants may contribute to ZGA. Drosophila maternal-
specific linker histone H1 dBigH1 is replaced by somatic H1  in 
early development [76]. dBigH1 seems to suppress ZGA, since 
increased levels of activated Pol II and expression of zygotic genes 
are observed in embryos with reduced dBigH1 levels [76].

Both histone modification and Vfl/Zld DNA binding ulti-
mately affect transcriptional activation by altering chromatin acces-
sibility. Highly accessible chromatin regions are locally and globally 
marked by H3/H4 acetylation and Vfl/Zld enrichment from NC8 
to 12  in Drosophila [77]. In NC13, however, thousands of 
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enhancers and promotors with nucleosome-free regions accumu-
late additional transcription factors in a cascade way [48, 78]. This 
phenomenon has also been observed in zebrafish [79].

Drosophila zygotic transcription is modulated by multiple factors 
including cis-regulatory elements. For instance, TATA-dependent 
promoters, as well as enhancers, are central in transcriptional regu-
lation [80, 81]. Distinct enhancer-core-promoter specificities 
ensure that developmental and housekeeping genes are activated 
precisely across the entire genome [81]. Likewise, the post-
transcriptional regulation of TATA-binding protein (TBP) affects 
transcription pattern together with the earliest transcribed genes 
during the MZT [55]. Smaug may involve ZGA regulation through 
maternal clearance of transcription factor tramtrack mRNA, which 
is involved in triggering transcription of transcripts depending on 
the N:C ratio [38, 53].

3  Switch in Cell Cycle Mode During the MBT

The cell cycle switch from a fast syncytial mode to a mode with 
slow replication and extended G2 phase is the most obvious aspect 
of MBT in morphological terms. A long-standing question is the 
functional relationship of the cell cycle switch with ZGA. According 
to one model, the cell cycle switch allows for the strong increase in 
zygotic transcription (Fig. 2) [82]. In the opposing model, zygotic 
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transcription triggers the remodeling of the cell cycle [56, 67]. 
Depending on the experimental system, strong experimental evi-
dence speaks in favor of the first or the second model. A synthesis 
has not been achieved, yet.

Cyclin and its partner cyclin-dependent kinase (Cdk) are essential 
for cell cycle control. In Drosophila, cyclin A/B/B3:Cdk1 com-
plexes regulate entry into M phase [20, 83]. The rapid S phases in 
pre-MBT cycles are maternally controlled, and the catalytic activity 
level of cyclin:Cdk1 complexes determines the timing for mitotic 
entry [21, 84]. Distinct mechanisms regulate cyclin:Cdk1 com-
plexes in pre-MBT: First, during each nuclear division, Cyclin A, B 
and B3 proteins are synthesized in S phase by maternally supplied 
mRNA [85, 86], and degraded in mitosis by the ubiquitin pathway 
[87, 88]. Cyclin A, B, and B3 fulfill a redundant but essential func-
tion, as RNAi-mediated depletion stops the syncytial cycles [20, 
89]. Cyclin B levels also contribute to the cell cycle switch as 
changes in cyclin B gene dose affect the number of nuclear divi-
sions [90]. Second, the inhibitory phosphorylation of T14Y15 
sites of Cdk1 are pairwise regulated by maternally supplied kinases 
Wee1/Myt1 and phosphatase Cdc25/Twine [85, 91–95]. 
Therefore, Cdk1 is timely activated and inactivated by controlling 
T14Y15 inhibitory phosphorylation sites [96].

In NC14 and to a certain degree already in NC12 and 13, S phase 
lengthens and a G2 phase is introduced. Central to these changes 
is the induced inactivation and final degradation of the phospha-
tase Cdc25/Twine [97, 98] (Fig. 3). Drosophila Cdc25/Twine is 
a dual specificity phosphatase that activates cyclin:Cdk1 complexes 
by removing inhibitory phosphates from the ATP-binding sites 
T14 and Y15 [22, 87, 99, 100]. Twine protein is present in high 
levels during the pre-MBT cycles. Twine protein localization is 
dynamic with a nuclear accumulation during interphases and uni-
form dispersal during mitosis [98]. The half-life of Twine was esti-
mated to about 20 min during pre-MBT cycles [98]. Yet with the 
beginning of NC14, Twine becomes destabilized as indicated by 
the shortening of its half-life to only about 5 min [98]. Degradation 
of Twine is required for the cell cycle switch because embryos 
expressing a more stable version of Twine protein (Twine106-180) 
undergo an extra mitotic division [98]. The rapid destabilization is 
the key to the cell cycle switch during MBT, as it depends on the 
N:C ratio and on zygotic transcription [98].

Prior to MBT, the steady-state level of Twine is relatively stable 
due to balanced synthesis and degradation. The link of zygotic 
transcription and the switch-like decrease in the half-life of 
Twine  suggests that zygotic factors may be involved. One of 
these  factors is the pseudokinase Tribbles [101–103], as RNAi-
mediated depletion of tribbles accelerates Twine degradation [97]. 
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However, tribbles is not essential for the cell cycle switch, since 
embryos deficient for maternal and zygotic tribbles do not undergo 
an extra nuclear cycle [101, 102]. The mechanism for how tribbles 
induces Twine degradation remains unknown, but in other organ-
isms such as yeast, Xenopus, and human cells, Cdc25 (or Cdc25C) 
degradation is induced by phosphorylation due to multiple path-
ways [56, 104, 105]. In addition to induced destabilization of 
Cdc25/Twine at NC14, additional mechanisms control pre-MBT 
levels and activity of Twine. The number of pre-MBT cell cycles is 
rather insensitive to changes in twine gene dose. A tripling of twine 
gene dose to 6×twine[+] induces an extra nuclear division in only 
a few embryos [106], suggesting that mechanisms exist that make 
Twine protein levels independent of gene dose.

The second Drosophila homologue of Cdc25, String, has dis-
tinct developmental functions in cell cycle control [84, 107]. String 
but not Twine is required for mitotic entry in zygotically controlled 
cycles 14–16. In contrast to these later stages, string is not required 
for progression of the syncytial cell cycles [84]. Premature expres-
sion of string is sufficient to trigger mitotic entry during later stages 
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Fig. 3 Model of cell cycle remodeling in Drosophila. Cyclin:Cdk1 is activated by 
the phosphatase Cdc25 and inactivated by the kinases Myt1/Wee1. In pre-MBT 
Cyclin:Cdk1 activity is high and promotes fast cell cycles. During MBT the bal-
ance of Cyclin:Cdk1 control is shifted toward low activity. Cdc25 is inhibited by 
the DNA checkpoint, which is activated by DNA stress caused by interference of 
DNA replication and zygotic transcription. In addition, the zygotic mitotic inhibi-
tors, Tribbles and Frühstart, promote Cdc25 degradation and inhibition of the 
Cyclin:Cdk1 complexes, respectively
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of embryonic development but not in pre-MBT stages [84]. 
Although both string and twine mRNAs are destructed in inter-
phase 14 [106], String protein stability gradually decreases during 
syncytial cycle without a sharp switch before MBT [97]. String 
protein turnover is due to increased checkpoint activity [98].

Before the switch in cell cycle mode in NC14  in Drosophila, S 
phases show a progressive lengthening from 3.4 min in NC8 to 
14 min in NC13 [21, 108]. A critical regulator of the slowdown of 
replication is the Drosophila homologue of checkpoint kinase 
Chk1, Grapes [109]. Grapes starts to inhibit cyclin:Cdk1 activity 
by promoting the activity of kinases Wee1/Myt1 and suppressing 
the activity of phosphatase Cdc25, thereby shifting the balance to 
T14Y15 inhibitory phosphorylation of Cdk1 from NC11 onward 
[109, 110]. Grapes mediates the DNA replication checkpoint and 
ensures that cells do not enter mitosis while replication is ongoing. 
grapes mutants prematurely enter mitosis during syncytial divi-
sions, which leads to mitotic catastrophe, as incompletely repli-
cated chromosomes cannot be segregated in anaphase [109, 110]. 
The checkpoint kinase, ataxia telangiectasia and Rad3-related 
(ATR, Mei-41 in Drosophila), acts upstream and activates Chk1/
Grapes similar as in Xenopus [111, 112]. mei-41 mutants show a 
similar phenotype during syncytial divisions as grapes, indicating a 
functional replication checkpoint is required at the MBT [67].

In Drosophila the DNA checkpoint is triggered by ZGA. 
Blocking transcription by α-amanitin in Drosophila pre-MBT 
embryos does not suppress lethality of mei-41 mutant [67]. 
Nonetheless, embryos from mei-41 Vfl/Zld double mutant moth-
ers could partially suppress the mitotic catastrophe, indicating that 
replication has been finished in time [67]. These observations are 
consistent with the model that zygotic transcription reduces repli-
cation speed and induces DNA stress, leading to DNA checkpoint 
activation at ZGA [56, 67].

In Drosophila, cyclin-dependent kinase inhibitor (CKI) Frühstart is 
another zygotic regulator, which functions to inhibit cyclin:Cdk1 
activity by binding the hydrophobic patch of cyclins, thereby inter-
fering with Cdk1 substrate recognition [101, 113, 114]. Together 
with large-scale ZGA, frühstart starts transcription immediately 
after mitosis 13, and generates a uniform cell cycle pause in cycle 
14 [114]. In the absence of Frühstart, embryos enter an extra 
round of nuclear division especially in embryos with extra copies of 
twine[+] [114]. The expression of Frühstart depends on the N:C 
ratio, suggesting that Frühstart is involved in the link of N:C with 
cell cycle regulation [115]. Wee1 and Myt1 kinases are Cdk1 
inhibitors that oppose functions to Cdc25 phosphatases [91–93, 
116, 117] (Fig. 3). Wee1 can be activated by Grapes, and inhibits 
Cdk1 activity by adding inhibitory phosphorylation at T14 and 
Y15 sites [9, 118, 119]. Cyclin:Cdk1 activity is also influenced by 
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some other factors such as mitotic kinase Aurora-A and acquisition 
of late-replicating heterochromatin domains [95, 120].

In summary, the switch of the cell cycle from a fast syncytial 
mode to a slow embryonic mode is controlled on two levels of 
inhibition: (1) indirectly by interference of zygotic transcription 
with DNA replication and subsequent activation of the DNA 
checkpoint, (2) directly by expression of zygotic genes encoding 
mitosis inhibitors.

4  What Is the Trigger for MBT?

The MBT cell cycle switch depends on ZGA (Fig. 2). First, injec-
tion of α-amanitin, a Pol II inhibitor, before MBT induces an extra 
synchronized mitotic division, indicating that widespread zygotic 
transcription is required for the cell cycle switch in Drosophila 
[106]. Second, ZGA correlates with DNA stress. About 80% of the 
RpA-70-GFP-binding sites in early MBT cycles also have RNA Pol 
II bound [67]. RpA70-GFP marks sites of DNA stress [121]. This 
indicates that ZGA causes DNA stress and activates the DNA 
checkpoint [67]. Third, a precocious onset of zygotic transcription 
is sufficient for an earlier MBT [56]. Fourth, dependent on ZGA, 
Tribbles and other factors trigger Twine destruction in NC14, 
resulting in inhibition of Cdk1 activation, thereby pausing the cell 
cycle [101, 102].

The essential role of the DNA checkpoint for triggering MBT 
was initially shown by the analysis of the checkpoint mutants, 
grapes/Chk1 and mei-41/ATR, in Drosophila [109, 111]. Embryos 
from grapes females do not switch the cell cycle mode and do not 
enter MBT, indicating that the DNA checkpoint is required for 
MBT in Drosophila [67, 109]. Based on the observation that grapes 
embryos would not express zygotic genes, the authors concluded 
that the checkpoint would be upstream of ZGA [109]. Recent data 
clearly show, however, that ZGA is normal in checkpoint-deficient 
embryos and that the initial observation was probably due to tech-
nical difficulties in detecting expression of early zygotic genes [67].

An alternative source for checkpoint activation beside interfer-
ence of replication and transcription are limiting amounts of repli-
cations factors. Experiments from mostly Xenopus support this 
model (Fig. 2). In Xenopus embryos slowdown of DNA replication 
has been proposed to be upstream of ZGA [82]. The replications 
factors Cut5, RecQ4, Treslin, and Drf1 become limiting in MBT, 
which leads to an activation of the DNA checkpoint, slowdown of 
the cell cycle, and ZGA [82].

In summary, in vivo and genetic experiments provide strong 
evidence for the model that ZGA is the trigger for MBT in 
Drosophila. ZGA acts upstream of cell cycle control, including the 
DNA checkpoint and degradation of Cdc25/Twine. First, ZGA is 
required for MBT and timely cell cycle pause; second, ZGA is 
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associated with induction of replication stress in time and space (on 
the chromosome); third, precocious ZGA leads to precocious 
MBT. In other organisms experimental evidence mainly in Xenopus 
speaks in favor of the alternative model, i.e., that cell cycle control 
acts upstream ZGA.  However not all three criteria are fulfilled 
in vivo: the mechanism should be necessary, sufficient, and tempo-
rally and spatially associated with MBT.

5  What Is the Timer for MBT?

A central unresolved question concerning MBT is the timing 
mechanism for the associated processes including ZGA and num-
ber of pre-MBT cell cycles. Tight control of the cell cycle is impor-
tant for further embryonic development, since the number of 
divisions determines the cell number and size. Too few cells may be 
incompatible with the formation of stripes of pair-rule gene expres-
sion, for example, as stripes should be at least one cell wide.

With the onset of embryonic development, fertilization may trig-
ger a molecular clock, on which MBT and its associated processes 
may depend. A conceivable mechanism is translation of certain 
maternal mRNAs, which would lead to a time-dependent accumu-
lation of the product following onset after fertilization. Translational 
regulators such as FMRP are required for MBT regulation in 
Drosophila, through dynamically regulating RNA metabolism and 
controlling the availability of specific transcripts, as well as mediat-
ing the frühstart mRNA activation level [122, 123]. A target for 
translational regulation may be Vfl/Zld, whose protein level 
increases during blastoderm concomitantly with activation of 
zygotic transcription [34, 124].

Maternal RNA degradation may represent a second such a 
mechanism constituting a molecular clock. A large fraction of these 
maternal RNAs is degraded following egg activation and indepen-
dent of zygotic transcription. For some RNAs at least, the degrada-
tion proceeds with a constant speed [38, 56], and may in this 
manner constitute a molecular clock. It has been proposed that the 
speed of RNA degradation affects the number of nuclear divisions, 
as expression levels of smaug affect the timing of MBT [40, 125]. 
Distinct from Vfl/Zld, Smaug reaches its peak expression level at 
NC10, and performs downregulation at the MBT [38, 125]. Smaug 
is functional to mRNA clearance, and times the ZGA through 
inducing the destruction of maternal transcriptional inhibitor [27].

In contrast to a molecular clock as an absolute timer, more evi-
dence speaks in favor of a regulatory process. The morphologically 
visible MBT depends on genome ploidy, because haploid embryos 
undergo one more division and tetraploid embryos, one less 

5.1  Molecular Clocks

5.2  N:C Ratio 
as a Clock
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division [11]. It has been proposed that the N:C ratio represents 
the timer for MBT. Nuclear content is determined by the amount 
of DNA or chromatin, which doubles with every cell cycle, whereas 
cytoplasmic content remains constant during cleavage divisions. 
The embryo may measure the N:C in that the increasing amount 
of chromatin titrates a constant cytoplasmic factor until this 
becomes rate-limiting [6, 53]. Potential cytoplasmic factors are 
repressors of transcription, replication, or the cell cycle, for exam-
ple. In Xenopus embryos, DNA content is important for MBT [5, 
7]. Injection of purified DNA leads to precocious onset of zygotic 
transcription, as measured by total transcription rate [7]. However, 
the amount of DNA seems not to be the only determinant, since 
an increased or decreased nuclear volume, while keeping the DNA 
content unchanged, leads to a precocious or delayed MBT includ-
ing zygotic activation and corresponding cell cycle remodeling 
[126]. Similar findings come from zebrafish that the timing of 
ZGA is governed by the N:C ratio [13].

It is unclear what is titrated by the exponentially increasing 
amount of DNA and chromatin, but maternal histones proteins 
H3/H4 may be a central factor [72]. Depletion and overexpression 
of H3/H4 delay the cell cycle switch, and also induce premature 
transcriptional activation [72]. In Drosophila embryos, the maternal 
form of the linker histone H1 dBigH1 has been implicated in the 
timing of MBT [76]. Maternal dBigH1 is replaced by the somatic 
form in early embryogenesis. Embryos with half of the maternal 
contribution and lacking zygotic expression show increased levels 
of activated Pol II and zygotic gene expression. However, the link 
of dBigH1 to MBT remains unclear as mutant defects and embry-
onic genotypes were not analyzed with sufficiently high temporal 
resolution and with respect to MBT and ZGA.

The replication factors Cut5, RecQ4, Treslin, and Drf1 have 
been found to be limiting for replication initiation during MBT in 
Xenopus embryos [82]. Titration of the maternal pool of these rep-
lication factors by the exponentially increasing chromatin leads to 
slower replication initiation, ZGA, longer interphases, and DNA 
checkpoint activation.

Other cytoplasmic factors may also be titrated, such as metabo-
lites. It has been proposed that deoxynucleotides may serve as a 
marker for the cytoplasm [127]. The maternal pool may be incor-
porated in the exponentially increasing amounts of DNA. The 
existence of such a maternal pool is well known, as inhibition of 
zygotic synthesis by hydroxyurea (HU), which inhibits the NDP 
reductase, causes a cell cycle arrest only briefly before MBT [127].

Although it is clear that ploidy determines the number of pre-
MBT cell cycles in model organisms, it is much less clear whether 
all of the MBT-associated processes, including ZGA, cell cycle, 
RNA degradation, are controlled by the N:C ratio. Haploid 
Drosophila embryos switch the cell cycle mode only after an extra 
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	 1.	 Hiiragi T, Solter D (2004) First cleavage 
plane of the mouse egg is not predetermined 
but defined by the topology of the two appos-
ing pronuclei. Nature 430(6997):360–364. 
doi:10.1038/nature02595

	 2.	 O’Farrell PH, Stumpff J, Su TT (2004) 
Embryonic cleavage cycles: how is a mouse 
like a fly? Curr Biol 14(1):R35–R45

	 3.	 O’Farrell PH (2015) Growing an embryo 
from a single cell: a hurdle in animal life. Cold 

division 14 in NC15 [115, 128]. In contrast, ZGA does not depend 
on the N:C ratio in Drosophila. Although older data indicated a link 
of ploidy and ZGA in Drosophila [53], genome-wide analysis of 
embryonic transcripts with carefully staged Drosophila embryos 
revealed that the majority of zygotic transcripts (127 out of 215 
genes) show an expression profile comparable between haploid and 
diploid embryos [115]. These data suggest that ZGA timing is 
controlled by a molecular clock in Drosophila. However, a small set 
of zygotic transcripts (88 out of 215 genes) shows clearly delayed 
expression in haploid embryos [115]. This small gene set includes 
genes encoding mitotic inhibitors such as Frühstart [114], which 
are involved in the MBT-associated remodeling of the cell cycle.

6  Conclusions

Recent years brought striking advances in our understanding of 
zygotic genome activation and its relation to MBT. This is mainly 
due to improved technology now allowing to analyze transcrip-
tional activity and chromosome status with high resolution and 
importantly with very little material, down to single embryos. In 
this way, the variation and limited temporal resolution of mixtures 
of many embryos can be overcome. Despite this progress, there is 
no unifying model for zygotic genome activation, MBT, and cell 
cycle control. Conclusion on central questions and favored models 
depend on the experimental system. Strong evidence supports the 
model that DNA replication onset triggers MBT and ZGA in 
Xenopus. However, the alternative model is supported by convinc-
ing experiments from Drosophila, where ZGA triggers MBT and 
cell cycle remodeling. It will be the task for future work to reconcile 
these opposing views. Having the new technologies available and 
standardized, we can expect new and surprising findings to come.
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