2. LINEAR EQUATIONS AND INEQUALITIES

Overview

As we have observed, the constraints of a meaningful linear program must
include at least one linear inequality, but otherwise they may be composed
of linear equations, linear inequalities, or some of each. In this chapter,
we touch on two important topics within the very large subject of linear
equations and linear inequalities.

The first of these topics concerns equivalent forms of the linear program-
ming problem. To appreciate this subject, it is a good idea to think about
what we mean by the noun “form”. Webster’s New Collegiate Dictionary
defines form as “the shape and structure of something as distinguished from
its material.” In the present context, this has much to do with the types of
mathematical structures (sets, functions, equations, inequalities, etc.) used
to represent an object, such as a linear programming problem. It is equally
important to have a sense of what it means for two forms of an optimization
problem (or two optimization problems) to be “equivalent.” This concept
is a bit more subtle. Essentially, it means that there is a one-to-one corre-
spondence between the optimal solutions of one problem and those of the
other. Using the equivalence of optimization problems, one can sometimes
achieve remarkable computational efficiencies. In this chapter we illustrate
another use of equivalence by converting two special nonlinear optimization
problems to linear programs (see Example 2.1 on page 35 and Example 2.2
on page 38).

The second important topic introduced in this chapter is about properties
of polyhedral convex sets, by which we mean solution sets of linear inequality
systems. In discussing the geometry of polyhedral sets it is customary to
use words such as hyperplane, halfspace, vertex, and edge. In this chapter we
will cover these geometric concepts and relate them to algebraic structures.

The geometric study of polyhedral convex sets goes back to classical
antiquity. Much of what is now known about this subject makes use of
algebraic methods and was found in more “recent” times, which is to say
the 19th and 20th centuries.

In learning this material we gain valuable knowledge and useful vocabu-
lary for practical and theoretical work alike.
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2.1 Equivalent forms of the LP

The material covered in this section includes: the conversion of a linear in-
equality to an equivalent linear equation plus a nonnegative variable; the
equivalence of a linear equation to a pair of linear inequalities; the transfor-
mation of variables that are not required to be nonnegative to variables that
are so restricted; and, finally, the conversion of a maximization problem to
an equivalent minimization problem.

In Chapter 1, we introduced the term “standard form” for a linear pro-
gram: A linear programming problem will be said to be in standard form
if its constraints are all equations and its variables are all required to be
nonnegative. Such a problem has only constraints of the form

n
E aijxj:bi, ’L'Zl,...,m
Jj=1

x; >0, j=1,...,n.

More tersely, the row-oriented presentation of the standard form constraints
written above has the matrix form

Ax = b
x > 0.

Here A denotes an m x n matrix, and b is an m-vector.

The transportation problem discussed in Example 1.1 was presented in
standard form. Nevertheless, as we have seen in the other examples dis-
cussed in Chapter 1, some linear programs are not initially in standard form.
Granting for the moment that there is something advantageous about hav-
ing a linear program in standard form, we look at the matter of converting
the constraints of a linear program to standard form when they don’t hap-
pen to be that way initially. In so doing, we need to be sure that we do not
radically alter the salient properties of the problem. This statement alludes
to the notion of equivalence of optimization problems. We will have occasion
to use the concept of equivalence later in this and subsequent chapters.

But what is to be done with linear programs having constraints that are
not in standard form? For instance, the diet problem (Example 1.2), the
product-mix problem (Example 1.3) and the blending problem (page 13) all
have linear inequalities among the functional constraints, i.e., those which
are not just nonnegativity conditions or bound constraints as they are called.
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Conversion to standard form

A single linear inequality of the form

n
E aijz; < b;
j=1

can be converted to a linear equation by adding a nonnegative slack variable.
Thus, the inequality above is equivalent to

n
E A5 + Tnti = bi, Ln+i > 0.
j=1

In this case, x,4; is the added slack variable.

Here is a simple illustration of this process. Suppose we have the linear
inequality
3x1 — bxe < 15. (2.1)

At the moment, we are not imposing a nonnegativity constraint on the
variables x1 and xo. This linear inequality can be converted into a linear
equation by adding a nonnegative variable, x3 to the left-hand side so as to
obtain

3r1 —d5xo+x3 =15, x3>0. (2.2)

Figure 2.1 depicts how the sign of the slack variable x3 behaves with respect
to the values of x; and 9 in (2.2). The shaded region corresponds to the
values of x1 and z9 satisfying the given linear inequality.

A system of < linear inequalities can be converted to a system of linear
equations by adding a separate nonnegative slack variable in each linear
inequality. Thus

n
E aijxjgbi, izl,...,m
J=1

becomes
n
Zaij$j+$n+i =b;, Tpy; >0, i=1,...,m.
=1
To see the importance of using a separate slack variable for each individual
linear inequality in the system, consider the following system

3.T1 - 5$2 < 15
2$1 + 4$2 < 16.

(2.3)
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3 < 0 in this unshaded region

Figure 2.1: Solutions of linear inequality (2.1).

Giving each inequality a slack variable, we obtain the system

3r1 — 929 + x3 = 15, z3 >0

2x1 + 4xo + x4 = 16, x4 > 0. (2.4)

Solutions of these linear inequalities are shown in the darkest region of Fig-
ure 2.2 below.

In Figure 2.2, it is plain to see that there are solutions of one inequality
which are not solutions of the other. This, in turn, has a direct relationship
with the signs of z3 and x4. In short, it would be incorrect to use just one
slack variable for the two linear inequalities.

Suppose we now introduce nonnegativity constraints on the variables x;
and x9 in the inequality system (2.3). The system could then be written as

3r1 — 929 + x3 =15
2z1 + 4z9 + x4 = 16 (2.5)
z; 20, 7=1,2,3,4.

The feasible solutions of this system are indicated by the most darkly shaded
region in Figure 2.3.
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Figure 2.2: Solutions of (2.3).

The same conversion in matrix notation is as follows. Constraints
Az <b

can be written as
Ax+1Is=b, s>0

where, componentwise, s; = x,,1;. Analogously, the constraints
Ax >0

can be written as
Ax—Is=b, s>0

where, componentwise, s; = xnp4+;. The components of the vector s are
sometimes called surplus variables.
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Figure 2.3: Nonnegative solutions of (2.3).

Linear programs with free variables

As you will recall, a linear programming problem is an optimization problem
in which a linear function is to be minimized (or maximized) subject to a
system of linear constraints (equations or inequalities) on its variables. We
insist that the system contain at least one linear inequality, but we impose no
further conditions on the number of equations or inequalities. In particular,
the variables of a linear program need not be nonnegative. Some linear
programming problems have variables that are unrestricted in sign. Such
variables are said to be free. Why do we care whether variables are free or
not? This has to do with the fact that the Simplex Algorithm (which we
shall take up in Chapter 3) is designed to solve linear programs in standard
form.

In the following example, we encounter a classic optimization problem
arising in statistics that does not appear to be a linear program. The prob-
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lem can, however, be converted to a linear program, albeit one that is def-
initely not in standard form. In particular, it will have linear inequality
constraints and free variables. Later, we show how to bring this linear pro-
gram into standard form.

Example 2.1: THE CHEBYSHEV PROBLEM'. Suppose we have a hypoth-
esis that a particular variable is a linear function of certain variables (that
is, a linear model). More specifically, suppose we believe that there are num-
bers x1, xa, ..., T, such that when the inputs? a1, as, ..., a, are supplied,
the output
b=ayr1 +aszs + -+ anxy,

will be observed. We would like to know what the numbers z1, zs, ..., T,
are, so we run an experiment: We select values for the inputs and observe
the output. In fact, we do this m times. On the i-th trial, we use inputs
a;1, a2, ..., G, and observe the output b;. The question arises: Does there
exist a single set of values for the numbers x1, xo, ..., x, such that all the
equations

a1 + aipxa + -+ amTy =0b;, i=1,...,m
hold? If not, can we choose a set of numbers z1, x2, ..., T, such that the
largest deviation is minimized? By “largest deviation” we mean

n n
E agj.Tj — b2 E amjxj — bm‘ .
j=1 J=1

We want to choose the “weights” 1, x9, ..., x, so as to minimize z.

’ [

n
2z := max ‘ E a;x; — by
Jj=1

For the sake of exposition, let us assume m = 2 and n = 3. Here is how
such a Chebyshev problem can be turned into a linear program. First note
that by definition

z > |a11x1 + a12x9 + a13r3 — b1| and =z > |021$1 + ag2x9 + ag3xr3 — b2|.

Since each of these 2 absolute values is nonnegative, we have z > 0, although
we shall not impose this explicitly as a constraint. Furthermore, since for
any real number ¢, |t| > £t, we have

la1121 + a1z + a1zxs — bi| > E(anz1 + arexe + a13z3 — by)

lag121 + agexa + agzxs — ba| > E(ag1z1 + axexs + agsrs — ba).

'For a treatment of this linear programming model and many others, see [77].
2Inputs are also called the independent variables and the output is called the dependent
variable.
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Hence we obtain the linear program

minimize 2z

subject to z — (a1121 + a12x2 + a13x3 — b1) > 0
z+ (a1171 + a1222 + ayzrz — b)) > 0
z — (@171 + a2 + agzxz — by) > 0
z + (a2171 + a2x2 + agzrz — by) > 0

The linear program in general is to minimize z subject to this system
of 2m linear inequalities in which all the variables—including z—are free.
Nevertheless, by our earlier discussion, we know that for any solution of
these inequalities, we must have z > 0.

Conversion of free variables to differences of nonnegative variables

A free variable can always be replaced by the difference of two nonnegative
variables. Thus
=0 -0", 0 >0, 0" >0.

Notice that if 6 = 6’ — ", it is not automatically true that the product of ¢’
and 0" is zero. (For example, —1 = 2 — 3.) Nevertheless, #' and 6" can be
chosen so that 8’6" = 0. When this is done, we have

0 =67 and 0" =67,
where, by definition,
0" = max{0,0} and 6 = —min{0,6}.

To illustrate, suppose # = 5. Then §7 =5 and 6~ = 0. On the other hand,
if @ = —5, then 0" =0and 6~ = 5. If § = 0, then 67 = 6~ = 0. In each
case, 070~ = 0.

Substituting for free variables

If x; is a free variable and we use the substitution z; = x; - x}’ , then, in the
objective function, the term c¢;jz; becomes ¢;z’; — cjz’!

§ 6Ty, and in a constraint,
the term a;jx; becomes Qi — aiay.
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We left Example 2.1 in the form of an inequality-constrained LP with
free variables. Using the techniques described above, you can convert this
linear program to one in standard form.

Important notational conventions

We often need to single out a row or column of a matrix. Accordingly, it is
useful to have a clear and consistent way to do this. There are several such
systems in use, but the one described in the following is preferred in this
book. Suppose we have an m X n matrix A and a vector b € R™. If we wish
to consider the system Axz = b of m linear equations in n variables and need
to emphasize the representation of b as a linear combination of the columns
of A, then we let A.; denote the j-th column of A. The equation

iA.j.Tj =b
j=1

then gives a column-oriented representation of b. We say that column A.;
is used in the representation of b if the corresponding x; is nonzero. In the
notation A.;, the large dot “+” represents a “wildcard”. This means that
all row indices ¢ are included.

In like manner, we denote the i-th row of A by A;.. This notation is
useful for singling out an individual row from the matrix A which comes up
in the row-oriented presentation of the system Az = b. That is, we can use

n
A;ex = b; as an abbreviation for Zaijxj = b;.
j=1

By way of illustration, let us consider the matrix

5-1 0 8
A=12 1 2 3
0-1-1 4
Then we have
-1
Ay = 1 and Ag.=1[2 1 2 3]
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Example 2.2: LEAST-NORM SOLUTION OF A LINEAR SYSTEM. Suppose
we have a linear system given by the equations

n
E aijzcj:bi, ’L'Zl,...,m.
j=1

Assume the system has a solution. Note that if n > m, the linear system
could have infinitely many solutions. We seek a solution xz = (z1,...,zy,)
having the “least 1-norm,” meaning that |zi| + --- + |z,| is as small as
possible among all solutions of the system. So far, the problem is just

n
minimize Z £
W (2.6)
subject to ZA.jSL‘j =b
j=1

where b = (b1,...,by). This is not quite an LP at this point. For one
thing, there are no inequalities among the constraints. We can fix that by
replacing each variable x; by the difference of two nonnegative variables:
xj =u; —v; forall j =1,...,n. The constraints then become

ZA.jUj — ZA.jUj =b
j=1 j=1

u; >20,v; 20, j=1,...,n.

How do we—legitimately—get rid of the absolute value signs in (2.6)7 It is
easy to that if

rj=u; —vj, u; >0, v; >0, andujv;=0, forallj=1,...n,

lzj| =uj+v;, j=1,...,n.

The linear program to be solved becomes
n n
minimize E uj + E vj
=1 j=1

n n
subject to ZA.juj — ZA.jvj =b
Jj=1 Jj=1

u; >0, v; 20, j=1,...,n.
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An appreciation of why the above formulation is valid will be gotten from
reading the next section and Exercise 2.8, where you are asked to show that
the condition ujv; = 0 must hold at an optimal extreme point. Based on
this assertion and the notation introduced on page 36, we can also express
the problem to be solved as the LP

n n
minimize E x;r—k E x;
Jj=1 Jj=1

n n
subject to ZA.jx;r — ZA’J“; =p
j=1 j=1

af >0, 2, 20, j=1,...,n

Such linear programs come up in signal analysis problems in electrical engi-
neering where estimates of sparse solutions of underdetermined linear sys-
tems are needed.

Converting equations into inequalities

Sometimes it is necessary to convert an equation (involving two real num-
bers) into a pair of inequalities. Recall that for real numbers,  and y, the
equation x = y is equivalent to the pair of inequalities

T2y,
z < y.

n
Thus, the equation Zaijxj = b; is equivalent to the pair of inequalities
=1

n
E aijz; > by,
j=1

n
E aijxj E bz
j=1

Minimization versus maximization

Another general rule is that

max f(z) = —min{—f(z)}. (2.9)
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Note the effects of the two minus signs in this equation. The function — f is
the reflection of f with respect to the horizontal axis. Suppose £ minimizes
—f(z). Then by changing the sign of the function value — f(z), we find that
the maximum value of f(x) is f(Z). The maximum of f and the minimum
of —f occur at the same place. The maximum and minimum values of these
two functions sum to zero. Using this rule, we may convert a maximization
problem into a minimization problem, and vice versa.

This is a handy rule when one needs to convert a maximization problem to
a minimization problem. For example, if one had an optimization algorithm
that solves only minimization problems, it would be possible to use (2.9) to
recast any maximization problem to an equivalent minimization problem.

Figure 2.4, given below, depicts the general rule stated in (2.9) between
the maxima and minima of a function (solid curve) and the minima and
maxima (respectively) of the negative of that function (dotted curve).

/\ \

x1

8l

Figure 2.4: Illustration of (2.9).

Some important (LP) language

Consider an LP, say
minimize ¢z
subject to Az =1b

x > 0.

A vector T satisfying the constraints Az = b and x > 0 is called a feasible
vector for this LP. Even if an LP is not in standard form, the analogous
definition would apply. A feasible vector for an LP is simply one that satisfies
its constraints. In a minimization problem, a feasible vector Z is optimal if
c'z < cTx for every feasible vector .
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The feasible region of an LP

The feasible region of a linear program is the set of all its feasible vectors.
If this set is empty, then the LP is said to be infeasible. The feasible region
of an LP can be described as the intersection of the solution sets of a finite
number of linear inequalities. As a simple illustration of this idea, consider
again the linear inequalities

15
12

3.T1 — 5$2 g
211 4+ 4dxy <
and Figure 2.2 which depicts their solution set. These linear inequalities
could be the constraints of a linear programming problem in which case the
doubly shaded region would represent (a portion of) its feasible region.

2.2 Polyhedral sets

Linear equations and linear inequalities can be interpreted geometrically.
Let a € R™ be a nonzero vector and let b € R. Then the solution set of a
linear equation, say a'z = b, is called a hyperplane. On the other hand, the
solutions of the linear inequality a™ < b form what is called a halfspace,
and the same is true for the linear inequality a®z > b. For either of these
two types of halfspaces, the boundary is a hyperplane, namely the set of x
such that oz = b.

Any subset of R™ that can be represented as the intersection of a finite
collection of halfspaces is called a polyhedron, or polyhedral set. This section
covers some properties of polyhedral sets. In Chapter 7 we shall have more
to say about polyhedral sets and their structure.

An important consequence of this definition is that the solution set of
a linear inequality system is a polyhedron. And since a linear equation is
equivalent to a pair of linear inequalities, we can say that the solution set
of the following linear system is also polyhedral:

Fax < f (feR™)
Gr =g (g € R™2)
Hx > h (h € R™3).
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Within the class of linear inequality systems, we distinguish those for
which the right-hand side vector is zero. A very simple example of such
a system is Iz > 0. A linear inequality system of this form is said to be
homogeneous.

Let C be the solution set of a homogeneous linear inequality system, say

Fr <0
G =0
Hx > 0.
Then C has the property that
reC = MXxeC foral>0. (2.10)

Any set C' for which (2.10) holds is called a cone; a polyhedral set for which
(2.10) holds is called a polyhedral cone.

The feasible region of every linear programming problem is an example
of a polyhedron. Indeed, a linear program whose constraints are

1 +r2+ 23 <1

, (2.11)
.Ij Z Oa ] = 15253

would have a feasible region looking like the shaded tetrahedron in Figure 2.5
below.

€T3

x1

Figure 2.5: Feasible region of (2.11).

The polyhedral region specified by (2.11) is the intersection of four half-
spaces. This particular set happens to be bounded, that is to say, it is con-
tained within a ball of finite radius. Not every polyhedral set is a bounded,
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T3 o
/4

T

Figure 2.6: Feasible region of (2.12).

however. To illustrate this fact, we revise the example given above by mak-
ing a small change in the one of the constraints. Consider the polyhedral
set given by

xr1+ 22 + 23 > 1

. (2.12)
x; 20, j=1,2,3.

The feasible region corresponding to (2.12) is not bounded as Figure 2.6 is
intended to show.

Since a linear equation is equivalent to a pair of linear inequalities, we
can regard the feasible region of linear system

$1+$2+$3:1

) (2.13)
x; 20, 7=1,2,3

as a polyhedral set. It is depicted in Figure 2.7.

Convexity of polyhedral sets

A set X (not necessarily polyhedral) is defined to be convex if it contains
the line segment between any two of its point. The line segment between
the points 2! and 22 in R" is given by

{zeR":z=Xx' +(1-Nz% 0< A< 1}

Every element of the above set is called a convexr combination of z' and

x2. More generally, if 2!,...,2¥ € R® and Ay, ..., \; are nonnegative real
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€T3

X2

x1

Figure 2.7: Feasible region of (2.13).

numbers satisfying Ay + - - -+ A = 1, then

Mzt + -4 AzF

is called a convex combination of z!, ..., x".

The entire space R™ is clearly a convex set, and so is any halfspace. An
elementary property of convex sets is that the intersection of any two of
them is again a convex set.® It follows, then, that every polyhedron (and
hence the feasible region of every linear programming problem) is convex, as
is demonstrated in the next paragraph by an elementary argument. Asso-
ciated with any set S (convex or not), there is another set called its convex
hull which is defined as the intersection of all convex sets containing S.
Accordingly, a set is convex if and only if it equals its convex hull.

There is an alternate definition of a convex hull of the set S. Indeed, the
convex hull of S is the set of all points which can be expressed as a convex
combination of finitely many points belonging to S. The two definitions of
convex hull are equivalent.

The solution sets arising from (2.11), (2.12), and (2.13) are clearly convex.
To see that all polyhedral sets are convex, consider a linear inequality system
given by Az < b where A € R™*" and b € R™. We readily verify that if 2!
and 22 each satisfy this linear inequality system, then so does Az'+(1—\)z?

3By convention, the empty set (} is regarded as convex.
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for all X € [0,1]% Indeed, for all X € [0, 1] we have

Az + (1= N)z?) = AAz' + (1 - N)A2®> < Ab+ (1 - A\)b=1b.

The shaded set shown on the left in Figure 2.8 is not convex because it
does not contain the line segment between every pair of its elements. (It is
a nonconvex polygon.) The set shown on the right in Figure 2.8 is convex,
however. This set is polyhedral since it can be viewed as the intersection of
a finite collection of halfspaces (in this case five of them).

Figure 2.8: Nonconvex polygon (left) and convex polygon (right).

Furthermore, it should be noted that not all convex sets are polyhedral.
For instance, disks and ellipsoids are nonpolyhedral convex sets.

Extreme points and their importance in linear programming

Let  be an element of a convex set X. We say & is an extreme point of X
if whenever ! and 22 are distinct points in X, then

T=Mr' +(1-Nz% 0<A<1
implies that A = 0 or A = 1, in which case Z = 2! or Z = 22. Thus, Z does
not lie strictly between 2! and x2. This is the essence of the extreme point
property.
It is a well-established fact (theorem) that

“The notation [0, 1] means all numbers between 0 and 1 inclusive.
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if a linear programming problem in standard form has an optimal
solution, then it has an optimal extreme point solution.

This suggests that in trying to find an optimal solution to a linear program
in standard form®, it would be a reasonable idea to confine the search to the
(finite) set of extreme points of the feasible region.

Note that this theorem does not say that every optimal solution of a
linear program is an extreme point. Indeed, there exist linear programs
having nonextreme optimal solutions. One such instance is the LP

maximize T
subject to 0<z; <1
0 S €T S 1

whose feasible region is the “unit square.” Every point of the form (z1, 1)
with 0 < 7 < 1 is feasible and optimal. Note that any such point lies on
an edge between two extreme points.

Linear independence of vectors

Let v!,v2,...,v" be a set of vectors in a finite-dimensional vector space V,
such as R™. The vectors v!,v2, ... v* are linearly independent if and only
if

a1v1+a2v2+---+akvk20

implies

o] =09 =---=qa =0.
Another way to put this implication is to say that there is no nontrivial
linear relationship among the vectors v!, v, ..., v*: none of them is a linear

combination of the others.

A set of objects possessing some property is mazimal if the set cannot
be enlarged by adjoining another element while at the same time preserving
the property. For instance, the set .S consisting of the vectors

(1,1,1), (0,1,1), and (0,0,1)

5The assumption of standard form guarantees that—if it is nonempty—the feasible
region of the LP contains an extreme point.
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has the property of linear independence. (Taken as an ensemble, the ele-
ments of S are linearly independent.) If we form a set of four vectors by
adjoining a vector, (b1, be,b3) to the set S, we no longer have a linearly
independent set of vectors. So, with respect to the property of linear inde-
pendence, the set S is maximal.

A maximal linearly independent set of vectors in a finite-dimensional
vector space is called a basis for that space. Any set of vectors that properly
includes a basis must be linearly dependent. For example, when (b, b, b3)
is adjoined to the set .S defined above, we obtain a linearly independent set.

An implication of linear independence

If w is a linear combination of the linearly independent vectors v', v?, ... v*
in the vector space V, that is, if
w = ozlvl + OZQUQ + -+ ozkvk,
then the scalars aq, as, ..., ar used in the representation of w are unique.
To see this, suppose
w= vt + agv® + -+ apo® = Brot 4 Bov? 4 -+ Bk
Then we must have
(o — Br)vt + (a0 — B2)v? + - - + (g — Br)v® = 0.
The linear independence of v!,v?,...,v* implies that aj — B =0,5 =
1,2,..., k. This, in turn, is another way of saying that there is only one way
to represent w as a linear combination of v',v?, ..., v,

Matrices and systems of linear equations
When we have a system of m equations in n unknowns (or variables), say
n
Zaijxj :bi, 1= 1,...,m, (214)
J=1

the associated matrix A = [a;;] € R™ " and vector b = (b1,...,by) € R™
allow us to express the system as

Az =b. (2.15)
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The m x n matrix A gives rise to two special sets of vectors, namely the
rows Ai., ..., Am. and the columns A.1,..., Aey.

In discussing (2.14), we are particularly interested in the columns of A
and their relationship to the column vector b. Note that (2.14) has a solution,
Z, if and only if the n+1 vectors A.1, ..., A.,, b are linearly dependent and,
in the equation expressing linear dependence, there is a nonzero coefficient
on b. Indeed, if T satisfies (2.14), we have

AaZy+ -+ AepZp +b(—1) =0,

and since (Z1, ..., Ty, —1) is nonzero, the vectors A.1, ..., A.y, b are linearly
dependent. Conversely, if these vectors are linearly dependent, there exist
scalars aq, ..., ay, aps1 not all zero such that

Agog + -+ Acpoy, + ban+1 = 0. (216)

If apeq # 0, then z = —(a1/ap41,- -, an/an+1) is a solution of (2.15).
On the other hand, if a;, 11 = 0, the columns of A are themselves linearly
dependent; in such a case, it may happen that there is no solution to (2.15).

For instance, if
11 -2 1
[P w2,

then (1,1,1,0) would be a nonzero solution of the corresponding equation
(2.16), yet clearly (2.15) has no solution since the system

1+ a9 — 223 =1

1+ x9 — 223 =0

is inconsistent. However, if the right-hand side vector b had been any mul-
tiple of (1,1), the system would have been consistent and hence solvable.

When b = 0 the system (2.15) is called homogeneous. Such systems
always have at least one solution, namely = = 0. Solutions to such systems
are called homogeneous solutions.

The rank of a matrix

The column rank of a matrix A is the maximal number of linearly indepen-
dent columns of A. The row rank of a matrix A is the maximal number of
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linearly independent rows of A. (This equals the column rank of AT, the
transpose of A.) From matrix theory we have the following theorem: If A
is an m X n matrix,

row rank(A) = column rank(A) = rank(A) < min{m, n}.

For example, let

111 = 111
A=) e A=

The rank of A is 1 whereas the rank of A is 2.

There is a procedure called reduction to row-echelon form for computing
the rank of a nonzero m x n matrix A. The idea is to perform elementary
row and column operations, including permutations, on A so as to arrive at
another matrix A with the property that for some r, 1 < r < m,

1. djj;é()foralljzl,...,r
2. dij:Oifi>jandj:1,...,r

3. a;;j=0ifi¢>rand j>r

The integer r turns out to be the rank of the matrix A and the matrix
A as well. Notice that the matrix

111
A‘[on]

in the example above is already in row-echelon form with r = 2. The
following matrix is also in row-echelon form:

4 1 0 -1
A=|0 -3 1 2
0 0 0 0

Notice that in this case the matrix A has a row of zeros. Here again r = 2.
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A theorem of the alternative for systems of linear equations

A system of linear equations, say Ax = b, is either consistent or inconsistent.
In the latter case, there is a consistent system of linear equations based on

the same data. namely
AT 0
A7, [0] a1

The right-hand side of this linear equality system is not uniquely deter-
mined. The component 1 can be replaced by any nonzero number, 6, in
which case 8y would be a solution if y solves (2.17). The italicized assertion
below is an example of an “alternative theorem” (also called a “transposition
theorem”).%

Ezactly one of the following two systems of equations has a so-
lution.

(i) Az =0,
(ii) Aly=0, bly=1.

These two systems cannot both have solutions, for otherwise
0=y Az =y =1

which is plainly absurd. That (ii) must have a solution if (i) does not follows
easily from the form of system (i) after reduction to row echelon form.

The reduction of the system to row echelon form is based on the re-
duction of the coefficient matrix A to row echelon form. Indeed, the key
idea, as noted by Strang [182, p. 79], is expressed by the theorem that to
any m X n matrix A, there exists a permutation matriz P, a unit lower
triangular L, and an upper trapezoidal matriz U with its nonzero entries in
echelon form such that PA = LU. This being so, the system (i) is equiv-
alent to L™'PAz = Uz = L~'Pb. The inconsistency of the system (i) will

5In the literature, this result has been incorrectly attributed to David Gale in whose
1960 textbook [75, p. 41] it can, indeed, be found. Actually, it goes back at least as far
as the doctoral dissertation of T.S. Motzkin published in 1936 where a theorem is proved
[139, p. 51] that gives the one stated here as a special case. Versions of the theorem can
also be found as exercise 39 in L. Mirsky’s 1955 textbook [136, p. 166] and in a 1956
paper [116, p. 222] by H-W. Kuhn discussing solvability and consistency of linear equation
systems.
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be revealed by the presence of a zero row, say k, in U for which the corre-
sponding entry in b = L~!'Pb is nonzero. A solution of system (ii) can then
be constructed using this information.

This alternative theorem will be applied in Chapter 11.

Subspaces associated with a matrix

When the system (2.15) has a solution, we say that the columns A.q, ..., A.,
span the vector b. The set of all vectors b € R™ spanned by the columns
of A € R™*" is a vector space (in fact, a subspace of R™). This vector
space goes by various names; one of these is column space of A. Others are
affine hull of A or span of A. Furthermore, when we think of the linear
transformation z — Ax associated with A, then the column space is just
the range of this linear transformation, and is often called the range space.
However it may be called, the object we have in mind is the vector space

R(A)={b: b= Az for some z € R"}.

As we have already noted, R(A) is a subspace of R™. The dimension
r of R(A) is called the column rank of A. This is just the cardinality of a
maximal linearly independent subset of columns of A. For A € R™*", the
relationship
r=dimR(A4A) <m

always holds.

Another vector space associated with A is the subspace N (A) of R"
consisting of all vectors that are mapped into the zero vector. Thus

N(A) ={z: Az = 0}.

This set is called the null space of A. Its elements belong to the kernel of
the linear transformation = — Ax.

Just as the subspaces R(A) and N (A) are defined for the matrix A, so,
too, the subspaces R(AT) and N'(AT) are defined with respect to the matrix
AT the transpose of A.

An important theorem of matrix algebra states that
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the column rank of A equals the column rank of AT (or, equiva-
lently, the row rank of A).

This number, r, is therefore called the rank of A, denoted by rank(A).

Returning to the four subspaces we have mentioned, we can say that

a

(A)  has dimension r

N(A)  has dimension n—r
R(AY)  has dimension 7
N(AT)  has dimension m —r.

The numbers n—r and m —r are called the nullity of A and AT, respectively.

For any subspace V' of R", there is another subspace called the orthogonal
complement, V+, defined as follows:

Vi={u:uw=0forallveV}.

The subspaces V and V1 are orthogonal to each other. The dimensions of
V and V* are always “complementary” in the sense that

dimV +dimV+' =n.

In the special case of the subspaces associated with the m x n matrix A, we
have

R(A) = (W (AT)*

N(A) = (R(AT))*
R(AT) = (N(4)*
N(AT) = (R(A))™.

as well as

Like any finite-dimensional vector space, the column space of A has a
basis—a maximal linearly independent subset of vectors that span R(A).
In fact, the basis can be taken as a set of r = dim R(A) suitable columns of
A itself. For further details see Strang [182, p. 102-114].
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Basic solutions of systems of linear equations

In assuming that the matrix A in (2.15) is of order m x n, it is reasonable to
assume further that m < n. (Otherwise, the equations in (2.14) are either
redundant or inconsistent.) When r = m = min{m, n}, we say that A has
full rank. Note that when A has full rank, it follows that R(A) = R™ which
is a way of saying that the system (2.15) has a solution for every b € R™.
Moreover, A has full rank if and only if there are m columns in A, say
A, ..., Asj,, that are linearly independent. Writing

B=[Ay - A,
we refer to B as a basis in A.

Here is an example to illustrate some of these concepts. Let

2 -1 0 -1 1
A=|-1 2 -1 1| and b= |1]. (2.18)
0 -1 1 0 1

We leave it as an exercise to show that the first three columns of A are
linearly independent, hence

2 —1 0
B=|-1 2 —1|=[Ag Aus A3
0 —1 1

is a basis in A as are [A. A.o Aey and [Ae Aes Aey]. Observe that
[Ae2 Aez A.s4] is not a basis in A since its columns are linearly dependent as
shown by the fact that the equation

Agoxg + Aezxs + Auyry =0

has the nonzero solution (z9, z3,z4) = (1,1, —1).

Just as it is useful to have a notation A.; for the j-th column of a matrix
A, so it is useful to have a notation for a set of columns that specify a
submatrix of A. A case in point occurs in the designation of a basis. To this
end, let 8 = {j1,...,Jm} and write

Ap =[Awjy -+ Auj].
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Analogously, we could let a = {i1, ..., i} and write
Ai.
Ao = :
Ao
Putting these two notational devices together, we can define

Qiygy " Qig g

Aaﬁ = ’
Qiggr " Qiggm

which is a k x m submatriz of A.

This notational scheme for denoting a submatrix often requires that the
index sets « and 3 be ordered in the sense that

i1<ip< - <ip and j1<jo< o < jm.

In singling out a particular set of columns of A corresponding to the
index set 3, we can do the same sort of thing with a vector x writing xg =
(j,,...,2j,) when (3 is chosen as above. If x; = 0 for all j ¢ 3, then (2.15)
becomes

A.pzg = b, (2.19)
and when A, is a basis (with inverse A:é), this equation has the unique
solution

rg = A:ﬁlb.

If we let v denote the set of indices j € {1,...,n} such that j ¢ 3, we then
obtain a submatrix A., and a subvector z, such that (2.15) is expressible
as

A.gzg + Auyzy, =b.
When A.s is a basis and we set z, = 0, we obtain what is called a basic
solution to (2.15), namely the vector Z having Tz = A:ﬁlb and z, = 0.

With reference to the system of linear equations given by the data in
(2.18), we have

Basic index set 4 Nonbasic index set ¥ Basic solution Z
{1,2,4} 3 (3,-1, 0, 6)
{1,3,4} 2 (3, 0, 1, 6)
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When 7 is a solution of a system (2.15), we say that the columns of A
represent b. The representation of b in terms of A and Z uses column A, ; if
Zj # 0. Thus, when Z is a basic solution, it uses only linearly independent
columns of A. This can be taken as the definition of a basic solution in cases
where the rank of A is less than m (i.e., where the rows of A are linearly
dependent).

If Ais a m x n matrix of rank m, there are exactly

<:@> " oml (nn!— m)!

ways to choose m columns from the n columns of A, or equivalently the index
set § from {1,2,...,n}. In some cases, the chosen columns maybe linearly
dependent, in which case they will not form a basis. For even modest size
matrices, this number is extremely large and it is impractical to generate
and test every such m x m submatrix, A.gs.

From what has already been said, it follows that a linear program in
standard form can have only finitely many basic feasible solutions. By the
same token, there can be only finitely many feasible bases in the matrix A.

Basic feasible solutions of linear programs

Let Z be a feasible solution of a linear program with constraints Az = b and
x > 0. The vector 7 is a basic feasible solution if the columns A.; associated
with all the Z; > 0 are linearly independent. That is, when 8 = {j : ; > 0},
then the submatrix A.z has linearly independent columns. When A has full
rank, m, it will contain at least one m x m basis A.3. Relative to the
system (2.15), such a matrix is a feasible basis if the unique solution of
(2.19) is nonnegative. This amounts to saying that A.s is a feasible basis if
and only if
Ig= A:é b>0,

and as before, the corresponding basic feasible solution (BFS) z has
Tp=A_b, z, = 0.

Note that in some cases, the T can be a basic feasible solution without having
all the components of g greater than zero; some of the components of Zg
might be zero. A solution of this sort is said to be degenerate.



56 LINEAR AND NONLINEAR OPTIMIZATION

Basic and nonbasic variables

When A.g is a basis in A and 7 is a basic solution of (2.15), the x; with
j € [ are called basic variables (with respect to (3), and those with j € v
are known as nonbasic variables. To illustrate, we recall the data given in
(2.18), the basic solutions of which are given in the table (2.20). Notice
that only the first and third basic solutions are feasible relative the given
system; the second basic solution listed is not feasible because it is not a
nonnegative vector. It can, however, be said that each of the basic solutions
is nondegenerate since the components corresponding to the basic columns
are nonzero in each case.

Suppose we now change the right-hand side vector b to b = (1,1,-1).
The analog of the table given in (2.20) would then be

Basic index set 4 Nonbasic index set ¥ Basic solution Z

{1,2,3) {4) (L1, 0,00y
{1,2,4} {3} (1,1, 0,0)
{1,3,4} {2} (1,0,-1,1)

There are a few things to notice about this case. First, because A is the
same as before, there is no change in the bases. Second, we see that two
different bases give rise to the same degenerate basic feasible solution. Third,
we note that one of the basic solutions is infeasible but nondegenerate. With
a different right-hand vector, it would be possible to have a basic solution
that is infeasible and degenerate at the same time.

Basic feasible solutions and extreme points

Suppose the feasible region is given by the set X:
X={z:Az=0b, z>0}.

The following theorem is of great importance:

A vector T is an extreme point of X if and only if it is a basic
feasible solution of the constraints Ax = b, © > 0.
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This theorem is a useful link between the algebraic notion of basic feasible
solution and the intuitively appealing geometric notion of extreme point.
Recall the theorem, stated on page 46, that if an LP in standard form has an
optimal solution, then it has an optimal extreme point solution. Combining
this theorem with the one stated just above, we see that to solve an LP it
suffices to consider only basic feasible solutions as candidates for optimal
solutions. There are only finitely many bases in A and hence Ax = b,
x > 0, can have only finitely many basic feasible solutions. Equivalently,
X can have only finitely many extreme points. But, this finite number can
be extremely large, even for problems of modest size. For this reason, an
algorithm that examines basic feasible solutions must be efficient in selecting
them.

2.3 Exercises

2.1 (a) Graph the feasible region of the product-mix problem given in Ex-
ample 1.3.

(b) On the same graph plot the set of points where the objective function
value equals 750. Are any of these points optimal? Why?

(¢) Do the same for the objective function value 850. Are any of these
points optimal? Why?

2.2 (a) Write the coefficient matrix for the left-hand side of Exercise 1.1.

(b) Are the rows of this matrix linearly independent? Justify your an-
swer.

(c) What is the rank of this matrix?
(d) Write the coeflicient matrix for the general problem (with equality
constraints, m sources and n destinations).

(e) What is the percentage of nonzero entries to total entries in the matrix
given in your answer to (d)? (This is called the density of the matrix.
When the percentage is low, the matrix is said to be sparse. When it
is high, the matrix is said to be dense.)

2.3 There is a variant of the transportation problem in which the sum of the
supplies is allowed to be larger than the sum of the demands, that is,

m n
Z a; > Z bj .
i=1 j=1
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2.4

2.5

2.6

2.7

2.8

2.9
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This is done by adjoining an extra (fictitious) demand

m n
b1 = @i =) b
i=1 j=1

and then allowing each supply location 7 to “ship” an amount z; 41 to
destination n+1 at unit cost ¢; 1 = 0. Modify Exercise 1.1 by assuming
that there is a supply of 600 units at Singapore. Using the technique
described above, write the corresponding transportation problem with
equality constraints. (Abbreviate the fictitious destination by “FIC.”)

Write down the equations of the (quadrilateral) feasible region of (2.5)
depicted in Figure 2.3. Identify all the extreme points of the feasible
region by their coordinates and as the intersections of the sides of the
feasible region (described, as above, by their equations).

A nonempty polyhedral convex set has at most a finite number of extreme
points. Why is this true?

The following table gives data for an experiment in which the linear model
b=a1x1 + asxrs + asxs
is postulated.
al as as b
14.92 -19.89 10.66 985.62
17.76 9.16 18.29 846.21
16.45 -23.07 15.77 742.67

15,93 12.04 16.85 780.32
13.99  10.47 19.55 689.62

Write down the linear program for the associated Chebyshev problem.
(You need not convert the LP to standard form for this exercise.)

In general does the linear program for the Chebyshev problem always
have a feasible solution? Why?

Suppose (u1,. .., Un,v1,...,v) is an optimal extreme point solution of the
linear program proposed in Example 2.2. Why does u;v; = 0 hold for
all j =1,...,n? Explain why solving the LP formulated in Example 2.2
with a method that uses only extreme points of the feasible region will
solve the least 1-norm problem stated there.

In (2.6) the variables x; are free. Each of these variables can be expressed
as the difference of two nonnegative variables :L’]+ and T The latter
variables appear in the objective function of the linear program (2.8)
with a plus sign between them. Given that (2.8) will have an optimal
basic feasible solution (a fact covered in Chapter 3), explain why this
formulation is valid.
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2.10

2.11

2.12

2.13

2.14

Suppose you are given a system of linear equations given by Ax = b where
the matrix A is of order m x n, but you wish to express the solution set of
the system as a polyhedron i.e., as the solution set of finitely many linear
inequalities. This can be done by replacing each equation A;.x = b; by
two linear inequalities: A;.x < b; and A,z > b;, ¢ = 1,...,m, thereby
leading to an equivalent system of 2m linear inequalities. Can this be
done with fewer than 2m linear inequalities? If so, how?

We have seen that in a linear system with k free variables, each of these
free variables can be replaced by the difference of two nonnegative vari-
ables. This would add k& more variables to the system. Would it be
possible to do this with fewer than k£ more variables? Justify your an-
swer.

In the text it is asserted that for any (b1, b, bs) the vectors

(17171)7 (07171)7 (07071)7 and (b17b27b3)

are linearly dependent. Denote these vectors by v!, v2, v3, v*, respectively,

and find a set of scalar coefficients o, g, g, ag such that
awl + 042112 + a3v3 + a4v4 = 0.
How many such sets of coefficients are there in this case?

Verify the linear independence of columns A.; A.o2, Aes, where A is the
matrix given in (2.18).

A square matrix X of order n whose elements x;; satisfy the linear con-
ditions

n
E CEUZI, iil,...,n
Jj=1

n
dwy =1, j=1,....n
i=1

CEUZO, i,jil,...,n
is said to be doubly stochastic.

(a) Verify that the set of all doubly stochastic matrices is convex.

(b) What is the order (size) of the matrix of coefficients in the equations
through which a doubly stochastic matrix of order n is defined?

(c) Write down a verbose version of the conditions satisfied by a doubly
stochastic matrix of order 3.

(d) Explain why the rank of the matrix of coeflicients in your answer to
(c) is at most 5.
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(e) Find a basis in the matrix of coeflicients in your answer to (c).
(f) Is the basic feasible solution corresponding to your answer in (e) non-
degenerate? Justify your answer.

Consider the linear program

maximize 4xr; + 9
subject to 1 — 3o
1 + 219

[=p}

<
<

(a) Plot the feasible region of the above linear program.

(b) List all the extreme points of the feasible region.

(c) Write the equivalent standard form as defined in (1.1).

(d) Show that the extreme points are basic feasible solutions of the LP.

(e) Evaluate the objective function at the extreme points and find the
optimal extreme point solution.

(f) Modify the objective function so that the optimal solution is at a
different extreme point.
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