PREFACE

The subject called “optimization” is concerned with maximization and min-
imization. More precisely, the purpose of optimization is to find the values
of variables that either maximize or minimize the value of a given function.
In many cases, especially among those studied in this book, the variables
are required to satisfy side conditions such as equations or inequalities in
which case the term constrained optimization is appropriately used. When
no such side conditions are imposed, the optimization problem is said to be
unconstrained.

In an effort to convey the importance of their subject, some contempo-
rary writers on optimization have joyfully quoted a line published in 1744 by
Leonhard Euler [60], arguably the most prolific mathematician of all time.
In a work on elastic curves, Euler proclaimed: Nihil omnino in mundo con-
tingit, in quo non mazximsi minimive ratio quapiam eluceat. That is: Nothing
at all takes place in the universe in which some rule of maximum or min-
imum does not appear. In addition to being a great mathematician, Euler
was a profoundly religious man. The quotation reproduced here should be
construed as a pious view in line with what is called Leibnizian optimism.
One sees this by considering the entire sentence from which Euler’s state-
ment is excerpted and the sentence that comes after it. As translated by
Oldfather, Ellis, and Brown [153, pp. 76-77], Euler wrote:

For since the fabric of the universe is most perfect, and is the
work of a most wise Creator, nothing at all takes place in the
universe in which some rule of maximum or minimum does not
appear. Wherefore there is absolutely no doubt that every ef-
fect in the universe can be explained as satisfactorily from final
causes, by the aid of mazrima and minima, as it can from the
effective causes themselves.
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This outlook brings to mind the character Dr. Pangloss in Voltaire’s Candide
who insisted that this is “the best of all possible worlds.”

Having strong connections with human activity, both practical and intel-
lectual, optimization has been studied since classical antiquity. Yet because
of these connections, optimization is as modern as today. In their handbook
on optimization [148], the editors, Nemhauser, Rinnooy Kan, and Todd,
declare that

No other class of techniques is so central to operations research
and management science, both as a solution tool and as a mod-
eling device. To translate a problem into a mathematical opti-
mization model is characteristic of the discipline, located as it is
at the crossroads of economics, mathematics and engineering.

Around the middle of the 20th century, some kinds of optimization came
to be known as “mathematical programming.” Linear programming came
first; soon thereafter came nonlinear programming, dynamic programming,
and several other types of programming. Together, these subjects and others
related to them were subsumed under the title mathematical programming.
The term “programming” was originally inspired by work on practical plan-
ning problems. Programming in this sense simply means the process of find-
ing the levels and timing of activities. This work came to entail mathemat-
ical modeling, the development and implementation of solution techniques,
and eventually the scientific study of model properties and algorithms for
their solution.

The terms “mathematical programming” and “computer programming”

came into existence at about the same time.! Whereas the latter has become
a household word, the same cannot be said of the former. When “mathe-
matical programming” turns up in everyday language, it is typically either
not understood at all or confused with “computer programming.” Adding
to the confusion is the fact that computers and computer programming are
used in the implementation of solution methods for mathematical program-
ming problems. The contemporary use of “optimization” as a synonym for
“mathematical programming” reflects the wide-spread desire among profes-

For a book on classical and “modern” optimization problems, see Nahin [146]. The
author invokes the Euler quotation given above, but it must be said that this publication
gives a little more of the context in which it was stated as well as a reference to Oldfather
et al. [153], an annotated English translation of Euler’s tract.
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sionals in the field to avoid the confusion between these different senses of
the word “programming.” It also helps to anchor the subject historically.

In 1971, the scientific journal Mathematical Programming came into ex-
istence and along with it, the Mathematical Programming Society (MPS)
which undertook the sponsorship of a series of triennial “International Sym-
posiums on Mathematical Programming” that had actually begun in 1949.
Today there are many journals dealing solely with mathematical program-
ming (optimization), and there are many more that cover it along with other
subjects. Likewise there are dozens of conferences every year that feature
this topic. In 2010 the MPS membership voted to change the name of their
organization to Mathematical Optimization Society (MOS). For the sake
of archival continuity, however, the name of the society’s journal was not
changed.

Faced with this linguistic transition from “mathematical programming”
to “optimization,” we use both terms. But when it comes to talking about
linear programming, for instance, we feel there is too much current literature
and lore to abandon the name altogether in favor of “linear optimization.”
Furthermore, it is traditional—even natural—to refer to a linear program-
ming problem as a “linear program.” (Analogous usage is applied to nonlin-
ear programming problems.) We are unaware of any suitable replacement
for this terminology. Accordingly, we use it frequently, without reservation.

The remarkable growth of optimization in the last half century is at-
tributable to many factors, not least of which is the effort exerted around the
world in the name of national defense. This brought forth a great upsurge of
activity in problem solving which, in turn, called for problem formulation,
analysis, and computational methods. These are aspects of optimization,
just as they are for many science and engineering disciplines.

The recognition of a “problem” is an all-important element of practical

work, especially in management science. This can take many forms. For
example, one is the realization that something needs to be created or put in
place in order to get some job done. Today we are bombarded by advertiz-
ing for products described as “solutions,” for instance, “network solutions.”
Implicitly, these are responses to problems. Oftentimes, a problem of getting
something done requires choices whose consequences must satisfy given con-
ditions. There may even be a question of whether the given conditions can
be satisfied by the allowable choices. These are called feasibility issues. A
set of choices that result in the conditions being satisfied is called a feasible
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solution, or in everyday language, a solution. The problem may be to find a
feasible solution that in some sense is “better” than all others. Depending
on how goodness is judged, it may be necessary to find a feasible solution
for which the corresponding measure is cheapest, most profitable, closest,
most (or least) spacious, most (or least) numerous, etc. These goals suggest
maximization or minimization of an appropriate measure of goodness based
on feasible solutions. This, of course, means optimization, and a feasible
solution that maximizes or minimizes the measure of goodness in question
is called an optimal solution.

Modeling

After the problem is identified, there arises the question of how to represent
it.2 Some representations are graphic, others are verbal. The represen-
tations of interest in optimization are mathematical, most often algebraic.
The choices mentioned above are represented by wvariables (having suitable
units), the conditions imposed on the variables (either to restrict the val-
ues that are allowable or to describe what results the choices must achieve)
are represented by relations, equations, or inequalities involving mathemat-
ical functions. These are called constraints. When a measure of goodness
is present, it is expressed by a mathematical function called the objective
function or simply the objective. This mathematical representation of the
(optimization) problem is called a mathematical model.

Linear and nonlinear optimization models are so named according to the
nature of functions used as objective and constraints. In linear optimization,
all the functions used in the mathematical model must be linear (or strictly
speaking, affine), whereas in nonlinear optimization, at least one of them
must be nonlinear. An optimization model with a linear objective func-
tions would be classified as nonlinear as long as it had a nonlinear function
among its constraints. Some nonlinear optimization models have only linear
constraints, but then of course, their objective functions are nonlinear.

For example, ¢(z,y) = 3z + 4y is a linear function, and c(x,y) < 5, or
equivalently 3z + 4y < 5, is a linear inequality constraint. On the other
hand the function f(z,y) = x?+ 2 is a nonlinear function, and f(z,y) < 2,
or equivalently 2 + 3% < 2, is a nonlinear inequality constraint.

*For two books on modeling, see [4] and [191].
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In general, mathematical models of problems have several advantages
over mere verbal representations. Among these are precision, clarity, and
brevity. In effect, models get down to the essence of a real situation and
facilitate a precise way of discussing the problem. Some other advantages
of mathematical models are their predictive powers and economy. Using
mathematical models to represent real-world situations, it is possible to
perform experiments (simulations) that might otherwise be expensive and
time-consuming to implement in a real physical sense.

Of course, the value of a mathematical model has much to do with its
accuracy. It is customary to distinguish between the form of a model and its
data. In building a mathematical model, one chooses mathematical functions
by which to represent some aspect of reality. In an optimization problem,
there is an objective function, and there may be constraints. The represen-
tation of reality is usually achieved only by making some approrimations or
assumptions that affect the form of the model. This leaves room for ques-
tioning its adequacy or appropriateness. Mathematical models typically
require data, also known as parameter values. Here the question of accuracy
of the parameters is important as it can affect the results (the solution). If
optimization is to yield useful information, the matter of acquiring sufficient,
accurate data cannot be overlooked.

Computation (algorithms and software)

After the formulation of an optimization model and the collection of data,
there comes a desire to “get the answer,” that is, to find an optimal solu-
tion. As a rule, this cannot be done by inspection or by trial and error. It
requires specialized computational methods called algorithms. You should
have encountered maximization and minimization problems in the study of
calculus. These are usually not difficult to solve: you somehow find a root
of f/(z) = 0 or, in the multivariate case, Vf(x) = 0. Yet even this can
require some work. In mathematical programming, the task is ordinarily
more challenging due to the usually much greater number of variables and
the presence of constraints.

Typically, optimization algorithms are constructed so as to generate a
sequence of “trial solutions” (called iterates) that converge to an “optimal
solution.” In some instances (problem types), an algorithm may be guaran-
teed to terminate after a finite number of iterations, either with an optimal
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solution or with evidence that no optimal solution exists. This is true of the
Simplex Algorithm for (nondegenerate) linear programming problem.

Some of the terms used in the previous paragraph, and later in this book,
warrant further discussion. In particular, when speaking of a “finite algo-
rithm” one means an algorithm that generates a finite sequence of iterates
terminating in a resolution of the problem (usualy a solution or evidence
that there is no solution). By contrast, when speaking of a “convergent
algorithm” one means an algorithm that produces a convergent sequence
of iterates. In this case it is often said that the algorithm converges (even
though it is actually the sequence of iterates that converges).

A major factor in the development of optimization (and many other
fields) has been the computer. To put this briefly, the steady growth of
computing power since the mid-twentieth century has strongly influenced
the kinds of models that can be solved. New advances in computer hardware
and software have made it possible to consider new problems and methods
for solving them. These, in turn, contribute to the motivation for building
even more powerful computers and the relevant mathematical apparatus.

It should go without saying that algorithms are normally implemented
in computer software. The best of these are eventually distributed interna-
tionally for research purposes and in many cases are made into commercially
available products for use on real-world problems.

Analysis (theory)

Optimization cannot proceed without a clear and tractable definition of
what is meant by an optimal solution to a problem. In everyday language
(especially in advertising) we encounter the word optimal (and many related
words such as optimize, minimize, marimize, MiNiMum, MATIMUM, MINI-
mal, mazimal) used rather loosely. In management science, when we speak
of optimization, we mean something stronger than “improving the status
quo” or “making things better.” The definition needs to be precise, and
it needs to be verifiable. For example, in a minimization problem, if the
objective function is f(z) and & € S, where S is the set of all allowable
(feasible) values for z, then

z*eS and f(z") < f(x) forallzesS
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is a clear definition of what we mean by saying z* is a (global) minimizer
of f on S. But in almost all instances, this definition by itself is not useful
because it cannot always be checked (especially when the set S has a very
large number of elements).

It is the job of analysis to define what an optimal solution is and to de-
velop tractable tests for deciding when a proposed “solution” is “optimal.”
This is done by first exhibiting nontrivial properties that optimal solutions
must have. As a prototype of this idea, we can point to the familiar equa-
tion f’(xz) = 0 as a condition that must be satisfied by a local (relative)
minimizer® x = z* of a differentiable function on an open interval of the
real line. We call this a necessary condition of local minimality. But, as we
know, a value T that satisfies f/(z) = 0 is not guaranteed to be a local min-
imizer of f. It could also be a local maximizer or a point of inflection. We
need a stronger sufficient condition to help us distinguish between first-order
stationary points, that is, solutions of f'(x) = 0.

We use mathematical analysis (theory) to develop conditions such as
those described above. In doing so, we need to take account of the proper-
ties of the functions and sets involved in specifying the optimization model.
We also need to take account of what is computable so that the conditions
we propose are useful. But optimization theory is concerned with much more
than just characterization of optimal solutions. It studies properties of the
types of functions and sets encountered in optimization models. Ordinarily,
optimization problems are classified according to such properties. Examples
are linear programming, nonlinear programming, quadratic programmming,
convex programming, .... Optimization theory also studies questions per-
taining to the existence and uniqueness (or lack of it) of solutions to classes
of optimization problems.

The analysis of the behavior of algorithms (both in practice and in the
abstract) is a big part of optimization theory. Work of this kind contributes
to the creation of efficient algorithms for solving optimization models.

Synergy

Modeling, computing, and theory influence each other in many ways. In
practice, deeper understanding of real-world problems comes from the com-

3The same would be true for a local maximizer.
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bination of mathematical modeling, computation, and analysis. It very often
happens that the results of computation and analysis lead to the redefinition
of a model or even an entirely new formulation of the problem. Sometimes
the creation of a new formulation spurs the development of algorithms for its
solution. This in turn can engender the need for the analysis of the model
and the algorithmic proposals. Ultimately, the aim is to solve problems
having a business, social, or scientific purpose.

About this book

This book is based on lecture notes we have used in numerous optimiza-
tion courses we have taught at Stanford University. It is an introduction
to linear and nonlinear optimization intended primarily for master’s degree
students; the book is also suitable for qualified undergraduates and doctoral
students. It emphasizes modeling and numerical algorithms for optimiza-
tion with continuous (not integer) variables. The discussion presents the
underlying theory without always focusing on formal mathematical proofs
(which can be found in cited references). Another feature of this book is its
emphasis on cultural and historical matters, most often appearing among
the footnotes.

Reading this book requires no prior course in optimization, but it does
require some knowledge of linear algebra and multivariate differential calcu-
lus. This means that readers should be familiar with the concept of a finite-
dimensional vector space, most importantly R™ (real n-space), the algebraic
manipulation of vectors and matrices, the property of linear independence of
vectors, elimination methods for solving systems of linear equations in many
variables, the elementary handling of inequalities, and a good grasp of such
analytic concepts as continuity, differentiability, the gradient vector, and the
Hessian matrix. These and other topics are discussed in the Appendix.

Other sources of information

The bibliography at the end of the book contains an extensive list of text-
books and papers on optimization. Among these are Bertsimas and Freund
[14], Hillier and Lieberman [96], Luenberger and Ye [125], Bradley et al. [20],
Murty [144], and Nash and Sofer [147]. After consulting only a few other
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references, you will discover that there are many approaches to the topics we
study in this book and quite a few different notational schemes in use. The
same can be said of many fields of study. Some people find this downright
confusing or even disturbing. But this conceptual and notational diversity
is a fact of life we eventually learn to accept. It is part of the price we pay
for gaining professional sophistication.
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