Chapter 4
Backward Stochastic Differential Equations

Let (£2, #,TF,P) be given, and B a d-dimensional Brownian motion. In order to
apply the martingale representation theorem, in this chapter we shall always assume

F = T2, 4.0.1)

While SDE is a nonlinear extension of the stochastic integration, Backward SDE is
anonlinear version of the martingale representation theorem. In fact, both the results
and the arguments in this chapter are analogous to those for SDEs, combined with
the martingale representation theorem.

Given £ € L2(F), it induces naturally a martingale ¥, := IE[§|.%]. By the
martingale representation theorem, there exists unique Z € I>(IF) such that

T
dY, = Z,dB,, orequivalently, Y, =¢§ —/ ZdBy. 4.0.2)
t

This is a linear SDE with terminal condition Y7 = &, and thus is called a Backward
SDE (BSDE, for short). We emphasize that the solution to a BSDE is a pair of
IF-measurable processes (Y,Z). As we will see more clearly in Section 9.4, the
component Z is essentially the derivative of Y with respect to B and thus is uniquely
determined by Y (and B). We also emphasize that the presence of Z is crucial
to ensure the IF-measurability of Y. Indeed, if we consider a SDE with terminal
condition in the following form:

dY, = 0,(Y)dB,, Yr==¢&.

Then typically the equation has no IF-measurable solution Y. For example, if 0 = 0,
then the candidate solution has to be ¥, = & for all ¢, which is not IF-measurable
unless & € %.
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80 4 Backward Stochastic Differential Equations
In this chapter we consider the following nonlinear BSDE:
T T
Y, =&+ / fi(Ys, Zy)ds —/ ZdB;, 0<t<T, P-as. (4.0.3)
t t

where Y € L*(F,R%®), Z € L*(IF, R>*9) for some dimension d,. We call f the
(nonlinear) generator and & the terminal condition of the BSDE. We shall always
assume

Assumption 4.0.1

(i) (4.0.1) holds;

(ii) f:[0,T] x 2 x R% x R?*? — R® is F-measurable in all variables;
(iii) f is uniformly Lipschitz continuous in (y, z) with a Lipschitz constant L;
(iv) £ € L*(Zr.R®) and f° := £(0,0) € L2(IF, R®).

As in Chapter 3, for notational simplicity we shall assume d, = d = 1 in most
proofs. We remark that, in the standard literature, it is required that f© € I>(IF). Our
condition here is slightly weaker.

4.1 Linear Backward Stochastic Differential Equations

In this section we study the case when f is linear. We first have the following simple
result.

Proposition 4.1.1 Let £ € L?(Fr, R®?) and f° € L'2(IF, R%). Then, the following
linear BSDE has a unique solution (Y,Z) € S*(F, R%?) x L2(IF, R%*%):
T T
Yi=§+ / fsods _/ Z,dB; 4.1.1)
t t

Proof 1Tt is obvious that

Y, = B[ + /Tf?ds

Note that
5 t T
V=Y + / fods = B[ g +/ fds| 7]
0 0

is a square integrable martingale. By the martingale representation theorem, there
exists unique Z € IL2(IF, R%2*¢) such that

dY, = Z,dB,.
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One can check straightforwardly that the above pair (Y, Z) satisfies (4.1.1), and,

from the above derivation, it is the unique solution. |
We next consider the general linear BSDE with d, = 1:

T T
Y,=§£+ / [, Y + Z,By + f2lds — / Z,dB;. (4.1.2)
t t

The well-posedness of this BSDE will follow from the general theory. Here we
provide a representation formula for its solution.

Proposition 4.1.2 Letd, = 1, £ € L2(Z7, R), a € L®(F,R), B € L=(F, RY),
and f* € LY2(F,R). If (Y.Z) € L>(F,R) x L2(F,R"™) satisfies the linear
BSDE (4.1.2), then

T
Y, = Fr—‘E[[‘Té—i—/ Fxfsods‘,%], (4.13)
t

where

t t t
1
rL=1 +/ Ty[asdt + Bs - dB], or say, Ty = exp(f ﬂs-dBH—/ [as—§|,35|2]ds).
0 0 0

(4.1.4)
Proof Applying It6 formula we have
d(I7Y,) = —Ifdit + LIY.B, + Z]dB,.
Denote
Vi:=LY: Z=nLYe +2z; &=t =TI (4.15)
Then, one may rewrite (4.1.2) as
A ~ T A T A~
Y, =€+ / fods —/ Z,dB;.
t t

This is a linear BSDE in the form (4.1.1). By Lemma 2.6.1 and Problem 2.10.7 (i)
we see that fot Z,dBy is a martingale. Then

¥, = E[é + /ngods(%],

which implies (4.1.3) immediately. |
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4.2 A Priori Estimates for BSDEs

We now investigate the nonlinear BSDE (4.0.3).

Theorem 4.2.1 Let Assumption 4.0.1 hold and (Y, Z) € 1*(F, R%?)x L*(F, R%>*%)
be a solution to BSDE (4.0.3). Then Y € S*(F, R%) and there exists a constant C,
depending only on T, L, and d, d,, such that

T T
1Y, 2)|? == E[|Y}‘|2 +/ |Z,|2dz] < CI2. where I3 := E[|§|2 + (/ [f,o\dt)z].
0 0
@.2.1)

Proof Foy simplicity, we assume d = d, = 1. We proceed in several steps.
Step 1. We first show that

T
E[|Y;*] < CE[/ [Y,|* + |Z,|2]dt] + CI} < 0. (4.2.2)
0
Indeed, note that
T T
v <lél+ [ W0+ clvl+ clzlds +1 [ zas..
t t

Then,

T t
Y7 < C[|E| +/ [1f°] + |Y:| + |Z]]dt + sup | stBs|].
0 0

<t<T Jo

Applying Burkholder-Davis-Gundy inequality we have

E[|Y7?) < CE[jgP + ( / o) + / %P+ 2],

which implies (4.2.2) immediately.
Step 2. We next show that, for any ¢ > 0,

T
sup E[|Y,]?] + E[ [ |z,|2dt] < e[|V + Ce 2. 4.2.3)
0

0<t<T
Indeed, by It6 formula,
d|Y,|* = 2Y,dY; + |Z,?dt = =2Y,f,(Y;, Z)dt + 2Y,Z,dB, + |Z,|*dt. (4.2.4)

Thus,

T T T
7 / 1Z,Pds = £[2 + 2 / Y (Y, Z,)ds + 2 [ YZ,dB,. (4.2.5)
t t t
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By (4.2.2) and Problem 2.10.7 (i) we know fot Y,Z,dB; is a true martingale Now,
taking expectation on both sides of (4.2.5) and noting that ab < 1a” + b2 we have

E|[¥[* + / 2. Pds| = B[§ +2 / TYgﬁ(Yg,Zs)dS]

[
< B[P ¢ [ I+ 1 + e
E[|E|2+CY*/ [f°|ds+C/ [|Y|2+|YZ|]ds]
[

1
<E |§|2+CY*f [f0|ds+C/ |Y;|*ds + 2/ |Zs|2ds].

t t

This leads to
LN LI 2 « (70
B[, +7f 12,as] §E[C/ 1Y, [2ds + [£] +CYT/ 0lds]. (4.2.6)
2 ), ' 0

which, together with Fubini Theorem, implies that

T T
B < BJJsP + v [ 1]+ ¢ [ £ Plas.

Applying (backward) Gronwall inequality, we get

T
E[|Y;]}] < ClE[|s|2 + Y}"/ [f?|ds], Vre[0,7]. 4.2.7)
0

Then, by letting = 0 and plug (4.2.7) into (4.2.6) we have

E[/OT |ZY|2ds] < C]E[|$|2 e /OT Vf|ds]. 4.2.8)

By (4.2.7) and (4.2.8) and noting that 2ab < ea* + & 'b?, we obtain (4.2.3)
immediately.
Step 3. Plug (4.2.3) into (4.2.2), we get
E[|Y; ] < CeE[|Y;]?] + Ce™' .
By choosing ¢ = % for the constant C above, we obtain

E[|Y7’] < CI;.

This, together with (4.2.3), proves (4.2.1). [ |
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Remark 4.2.2 Similar to Remark 3.2.3, Theorem 4.2.1 remains true if we weaken
the Lipschitz condition of Assumption 4.0.1 (iii) to the linear growth condition:

iy 2 < ]+ LIyl + ). (4.2.9)
|
Theorem 4.2.3 For i = 1,2, assume (&.f") satisfy Assumption 4.0.1 and

(Y, Z) € L2(IF, R%) x L*(F, R%*%) is a solution to BSDE (4.0.3) with coefficients
(&.f"). Then

T 2
lay. a2)| = CE[|Ag” + ( /0 AR zhia) ] @210

where
AY :=Y' - Y2, AZ:=Z'-7%, At :=§&-&, Af:=f'—f1

Proof Again assume d = d, = 1. Note that
T T
AY, = At + / Fh(rl, zh — A2, 2%))ds —/ AZ,dB;
t t
T T
= a6+ [ 146002 +aar, + pazias— [ aza,
t t

where, similar to (3.2.10)

o zh - 22 zh ARz - fA(YE 22

: tt t 2t 1 , = tot 1
¢ a7, (av£0y, B (AZ,#0}

AZ,
4.2.11)

are bounded by L. Then, by Theorem 4.2.1 we obtain the result immediately. |

4.3 Well-Posedness of BSDEs

We now establish the well-posedness of BSDE (4.0.3).

Theorem 4.3.1 Under Assumption 4.0.1, BSDE (4.0.3) has a unique solution
(Y,Z) € L*(F, R%) x L2(F, R%*9).

Proof Uniqueness follows directly from Theorem 4.2.3. In particular, the unique-
ness means

Y! = Y2 forallt € [0,T], P-as. and Z' = Z?, dt x dP-as.  (4.3.1)
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We now prove the existence by using the Picard iteration. We shall use the local
approach similar to that used in the proof of Theorem 3.3.1 and leave the global
approach to Exercise. For simplicity we assume d = d, = 1.

Step 1. Let § > 0 be a constant which will be specified later, and assume
T < §. We emphasize that § will depend only on the Lipschitz constant L (and
the dimensions). In particular, it does not depend on the terminal condition £.

Denote Y? := 0,20 :=0.Forn = 1,2,---, let

T T
Y, =&+ / S Ze ds — f Z"dB. 4.3.2)
t t
Assume (Y"1, Zz"=1) € L2(F) x LL?(F). Note that
Lz < [+ 1+ 177

Then, £,(Y""!,Z""!) e L'*(F). By Proposition 4.1.1, the linear BSDE (4.3.2)
uniquely determines (Y”,Z") € I>(IF) x LL?(IF), and then Theorem 4.2.1 implies
further that (Y",Z") € S*(F) x L?(F). By induction we have (Y",Z") € S*(IF) x
L2(F) forall n > 0.

Denote AY" := Y" — Y"" ! AZ" := 7" — Z"!. Then,

T T
ary = [frtart v praz - [ azas,
t t

where «”, " are defined in a similar way as in (4.2.11) and are bounded by L.
Applying Itd formula we have

d(|AY"?) = 2AY!M o AYPT + BT AZde + 2AY! AZNAB, + | AZ) L.

t
By Problem 2.10.7 (i), / AY? AZ?dB; is a true martingale. Noting that AY}. = 0,
0

we get

T T
E[lavp+ [ 1azpas] = B2 [ 1avie ant + gt az )
1 t
T
< ce[ [ 1avigar+ 2z s @33
0
Thus

T T
IE[/ |AY;’|2dt] < cm[/ |AY"|[AY" + |Az;?—‘|]ds]
0 0

T
< CS]E[/ AV + 1Ay~ + |Az,"—1|2]dt]
0
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Assume § < % for the above constant C and thus 1 — C§ < % then,

E[fOT |AY,"|2dt] < C8]E[/OT[|AY,”“|2 + |AZ,”_1|2]dt].
Moreover, by setting t = 0 in (4.3.3), we have
]E[/OT |AZ,”|2dt] < CE[/T|AY§|2dt] + %E[/THAY,”_‘IZ + |AZ?‘1|2]dt]
[c5+ / [1AY"™' 2 + Az P2 ]dt]
Thus
/ [1AY"2 + |AZ"] ]dz] [ca i / [1AY"™']? + | AZ 2 ]dt]
Setd := % for the above C. Then

T 1 T 3 B
E[/ (AP +1AZ Plar] < -E[/ Ay~ + A7 Pl
0 4 Lo

By induction we have

c
[/ [1AY"P + |AZ']? ]dt] o Vn=l

Now following the arguments in Theorem 3.3.1 one can easily see that there exists
(Y,Z) € S*(F) x L*(IF) such that

lim (Y} - Y. Z! — Z)|| = 0.
n—>o0

Therefore, by letting n — oo in BSDE (4.3.2) we know that (Y,Z) satisfies
BSDE (4.0.3).

Step 2. We now prove the existence for arbitrary 7. Let § > 0 be the constant
in Step 1. Consider a partition 0 = #y < --- < t, = T such that t;y; — ¢; < 6,
= 0,---,n— 1. Define ¥, := § andfori = n—1,---,0and t € [t;,t;41), let
(Y1, Z,) be the solution to the following BSDE on [t;, f;11]:

tit1 tit1
Yi=Y,, + fs(Ys, Zy)ds —/ ZdBy, t € [t tig1].
t

t
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Since ;41 — t; < &, by Step 1 the above BSDE is well posed. Moreover, since 7 is
finite here, we see that (¥, Z) € L2(IF) x I.>(IF), and thus they are a global solution
on the whole interval [0, 7. |

Remark 4.3.2 Assume f satisfies Assumption 4.0.1, t € 7 (IF), and £ € L?(%,).
Consider the following BSDE

T T
Y=+ / (Y, Z)ds — / ZdB,,  where J.(y.2) = £,(y. D10, (5).
4.3.4)

One can easily see thatf also satisfies Assumption 4.0.1, and thus the above BSDE
has a unique solution. Since £ € %, we see immediately that Y, := £,Z; := 0
satisfy (4.3.4) for s € [z, T]. Therefore, we may rewrite (4.3.4) as

Y, =§+ / fs(Ys, Zg)ds — / ZdB;, 0<r<r, 4.3.5)
t

t

and it is also well posed. ||

4.4 Basic Properties of BSDEs

As in Section 3.4, we start with the comparison result, in the case d, = 1.

Theorem 4.4.1 (Comparison Theorem) Let d, = 1. Assume, fori = 1,2, (&, f7)
satisfies Assumption 4.0.1 and (Y',Z') € S*(F,R) x L2(F,R'*9) is the unique
solution to the following BSDE:

Y, =&+ /f’(Y’,Zl)ds—/ Z.dB. 4.4.1)

Assume further that £, < &, P-a.s., and f'(y,7) < f*(y,2), dt x dP—a.s. that for
any (v, 2). Then,

v' <Y, 0<i<T, Peas (4.42)

Proof Denote
AY, =Y =Y AZ =7 -7 As=& & Af=f-f.
Then,

T T
AY, = At + [ [ ZY) — (02 22 ds — / AZ,dB,
t t

T T
= At + / [0, AY, + AZ,B, + Af (Y. Z2)]ds f AZ,dB,
t t
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where o and § are bounded. Define I" by (4.1.4). By (4.1.3) we have

T
AY, = r;llE[rTAg n / FSAﬁ(Yf,Zf)ds‘%]. (4.4.3)
t
Similar to (3.4.1), by Problem 1.4.6 (ii) we have
f'0n2) <f*(,z) forall (v,z), dt x dP-as.

This implies that Af(Y?, Z?) < 0, dtxdP-a.s. Since I' > 0 and A§ < 0, then (4.4.2)
follows from (4.4.3) immediately. ]

Remark 4.4.2 In the Comparison Theorem we require the process Y to be scalar.

The comparison principle for general multidimensional BSDEs is an important but

very challenging subject. See Problem 4.7.5 for some simple result. ]
We next establish the stability result.

Theorem 4.4.3 (Stability) Let (¢,f) and (§,,f"), n = 1,2,---, satisfy Assump-
tion 4.0.1 with the same Lipschitz constant L, and (Y,Z), (Y",Z") € S*(F, R%) x
L2(F, R%*4) be the solution to the corresponding BSDE (4.0.3). Denote

AY":=Y"-Y, AZ":=27"-2Z7; A§, :=§&,—-§& A i=f"—-f.
Assume
T 2
lim ]E[|A§,1|2 + (/ |Af" (0, O)|dt) ] —0, (4.4.4)
n—>oo 0
and that Af"(y,z) — 0 in measure dt x dP, for all (y, z). Then,
lim ||(AY", AZ™)| = 0. (4.4.5)
n—>oo

Proof First, by (4.2.10) we have

r 2
Iar, Az = CE[1a& + ([ 1470 2o ]

T T
n 2 n n 2
< CE[1a6, + ([ 147000 + ([ 14720.2) - 770,00’
0 0
(4.4.6)
By Problem 1.4.6 (iii), Af"(Y,Z) — 0, in measure dt x dIP. Note that
A (0.7, 2) — Af(1,0,0)] = ClI¥,| + 2]

Applying the dominated convergence Theorem we have

lim IE[([OT \Af (Y, Z,) — Aftn(0,0)|dt)2] — 0.

n—>oQo

This, together with (4.4.4) and (4.4.6), leads to the result. |
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We conclude this section by extending the well-posedness result to I”(IF) for
p=>2.

Theorem 4.4.4 Assume Assumption 4.0.1 holds and & € 1P(Fp,R®), 0 ¢
L7 (IF, R%) for some p > 2. Let (Y, Z) € S*(F,R%) x I2(F, R%*) be the unique
solution to BSDE (4.0.3). Then,

(ST

T T
E[1y71 + (/O ZPar)* ]| < CIp. where It := E[ |6 + (/0 1)’ ]

4.4.7)

Proof As in Theorem 3.4.3 we proceed in two steps. Again assume d = d, = 1 for
simplicity.

Step 1. We first assume Y € L°?(F), Z € I??(F) and prove (4.4.7). Applying
1t6 formula we have

d|lY,)? = =2Y,f,(Y,, Z)dt + |Z,|>dt + 2Y,Z,dB;;

P
2

- 1 — —
d(¥il) = d(Y,)> = —plYi "2V, Z)dr + Spp = DIIPT2\Z, de + plY, "2 YiZ,dB;.

(4.4.8)

Following the arguments in Theorem 4.2.1 Steps 1 and 2 one can easily show that,
for any ¢ > 0,

T
JE[|Y;|P] < ¢, sup E[|Y,I] + c,,na[/ |Y,|p_2|Zt|2dt] + I
0

P'p
0<t<T

T
sup E[|Y,["] + E[/ |Yt|”_2|Z,|2dt] < eE[|Y;|P] + eI,
0

0<t<T

Then, by choosing ¢ > 0 small enough we obtain
E[|Y;" |P] <Gl (4.4.9)
Next, by (4.4.8) we see that
T T T
/ \ZPdt = |5 = [Yol* + 2 / Y, (i, Z)dt =2 / Y,Z,dB,
0 0 0

T T
< CvP ¢ [ IV + 1 + 120+ | [ vzas,
0 0

T 1 T T
< C|YF* + c(/ 1°1dr)” + 5[ |Z,|dt + C‘/ Y, Z:dB,
0 0 0
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Then, by (4.4.9) and Burkholder-Davis-Gundy inequality,

4
2

T P T
E[(/ ZPar)* ] < G2 + GE[ |V + 1/ Y.z, |
0 0

4
i

T , T

<L+ CPE[(/O |Y,z,|2dr)'1] <G>+ CPE[|Y;|%(/O \Z,2dr) ]
1 T P 1 T 4

< G2 + GE[|Y;I) + EE[(/O |Z,|2dt)2] <G>+ EE[(/0 |Z,|2dt)2].

This leads to the desired estimate for Z, and together with (4.4.9), proves fur-
ther (4.4.7).

Step 2. In the general case, we shall use the space truncation arguments in
Theorem 3.4.3. We note that the time truncation does not work well here because
it will involve Y, which still lacks desired integrability. For each n > 1, denote
& :=(—n)VEAn,f, = (—n) Vf An. Clearly (&, f") satisfy all the conditions of
this theorem with the same Lipschitz constant L, and

Ennf") = ES). &l = ELII = Il |8l = If"] = n, forall (1, .y, 2).

Let (Y",Z") € S*(F) x IL>(IF) be the unique solution to BSDE (4.0.3) with
coefficients (§,,f"). Then

T t t
y" = E[gn + / ]‘;’(Y;’,Zf)ds‘%], / Z'dB, = Y" — V! + f F1(Y", 2 ds
t 0 0

are bounded. By the Burkholder-Davis-Gundy inequality, this implies further that
7" € I>P(IF). Then it follows from Step 1 that

E[|(Y");|P n (/OT |z;1|2dt)15] < CPJE[|&|” + (/OT [ﬁ”(0,0)|dt)”] <GP,

Now similar to the arguments in Theorem 4.2.1, (4.4.7) follows from Theorem 4.4.3
and Fatou lemma. |

4.5 Some Applications of BSDEs

The theory of BSDEs has wide applications in many fields, most notably in mathe-
matical finance, stochastic control theory, and probabilistic numerical methods for
nonlinear PDEs. We shall discuss its connection with PDE rigorously in the next
chapter. In this section we present the first two types of applications in very simple
settings and in a heuristic way, just to illustrate the idea.
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4.5.1 Application in Asset Pricing and Hedging Theory

Consider the Black-Scholes model in Section 2.8. Assume a self-financing portfolio
(A, h) hedges &. By (2.8.8) and (2.8.7) we have:

av, = [/\,re” n h,S,,u]dt + hS0dB,
- [r(v, _hS,) + htS,;L]dt + hS,0dB,. 4.5.1)
Denote
Y, =V, Z :=0Sh. 4.5.2)
Then (4.5.1) leads to

Wz
oS,

Z,
ay, = [r[Y, ) I ]dt Y ZdB, Yr=£ TP-as.  (453)
oS,

This is a linear BSDE. Once we solve it, we obtain that:

Z
Y is the price of the option £ and Z induces the hedging portfolio: i, = —;
09d¢

4.5.4)

We remark that BSDE (4.5.3) is under the market measure IP. In this approach, there
is no need to talk about the risk neutral measure.

Note that BSDE (4.5.3) is linear, which can be solved explicitly. In particular, for
the special example we are presenting, Yy can be computed via the well-known
Black-Scholes formula. To motivate nonlinear BSDEs, let us assume in a more
practical manner that the lending interest rate r; is less than the borrowing interest
rate r,. That is, the self-financing condition (4.5.1) should be replaced by

v, = [rl V= ,S)* = ra(V, — h[S,)_]dt + hdS,, (4.5.5)

and therefore, BSDE (4.5.3) becomes a nonlinear one:

HZ;
oS,

z z
dy, = [rl(y, B A ]d; +ZdB,. Y =£.(4.5.6)
oS, oS,

Nonlinear BSDEs typically do not have explicit formula. We shall discuss its
numerical method in the next chapter.
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4.5.2 Applications in Stochastic Control
Consider a controlled SDE:
t t
Xk =x+ / b(s, X*, ky)ds + / o(s, X" k)dB;, 0<t<T, P-as. (45.7)
0 0

Here B, X, b, o take values in RY, R, R%, and R%*¢, respectively, and k € %
are admissible controls. We assume k takes values in certain Polish space IK and
is IF-measurable. Our goal is the following stochastic optimization problem (with
superscript $ indicating strong formulation in contrast to the weak formulation
in (4.5.12) below):

Vs := sup Js(k) where Js(k): —]E]P g(X)+ / f(t.Xx k,)dt (4.5.8)
ket

where f and g are 1-dimensional and thus Js and VOS are scalars.

If we follow the standard stochastic maximum principle, the above problem will
lead to a forward-backward SDE, which is the main subject of Chapter 8 and is
in general not solvable. We thus transform the problem to weak formulation as
follows. We remark that the weak formulation, especially when there is diffusion
control (namely o depends on k), will be our main formulation for stochastic control
problems and will be explored in details in Part III. Here we just present some very
basic ideas. For this purpose, we assume

Assumption 4.5.1

(i) b, o, f, g are deterministic, Borel measurable in all variables, and bounded
(for simplicity);
(ii) o = o(t,x) does not contain the control k, and is uniformly Lipschitz in x;
(iii) There exists a bounded R¢-valued function 0(t,x,k) such that b(t,x,k) =
o(t,x)0(t, x, k).

We note that, when d = d; and 0 € S¢ is invertible, it is clear that 0(t,x, k) =
o~ (¢, x)b(t, x, k) and is unique.
Let X be the unique solution to the following SDE (without control):

t
X, =x+ / o(s,X;)dB;, 0=<t<T, P-as. (4.5.9)
0
For each k € J#, recall the notations in Section 2.6 and denote

t
0% :=0(1.X,.k). BF:= B,—/ okds, M*:=m", P*:=P% (45.10)

t
0
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Under Assumption 4.5.1 (iii), 6% is bounded and thus it follows from the Girsanov
Theorem that B¥ is a IP*-Brownian motion. Since IP* is equivalent to IP, then (4.5.9)
leads to

t t
X, =x~|—/ b(s,Xs,ks)ds~|—/ o(s,X,)dB*, 0<1t<T, Pras. (4.5.11)
0 0
Compare (4.5.11) with (4.5.7), we modify (4.5.8) as

T
Vo := sup J(k), where J(k):= E” [g(XT) + / f, X,,k[)dt].(4.5.12)
ke 0

This is the stochastic optimization problem under weak formulation (with drift
control only).

Remark 4.5.2

(i) In strong formulation (4.5.8), PP is fixed and one controls the state process X*,
while in weak formulation (4.5.8), the state process X is fixed and one controls
the probability IP¥, or more precisely controls the distribution of X.

(i) Although formally (4.5.11) looks very much like (4.5.7), the P¥-distribution
of k is different from the P-distribution of &, then the joint P*-distribution of
(B*, k, X) is different from the joint P-distribution of (B, k, X¥). Consequently,
for given k € 7, typically J(k) # Js(k).

(ii1) In most interesting applications, it holds that Vg = Vy. However, in general it
is possible that they are not equal. Nevertheless, in this section we investigate
V. This is partially because the optimization problem (4.5.12) is technically
easier, and more importantly because the weak formulation is more appropriate
in many applications, as we discuss next.

(iv) As discussed in Section 2.8.3, in many applications one can actually observe
the state process X, rather than the noise B. So it makes more sense to assume
the control k depends on X, instead of on B (or w). That is, weak formulation
is more appropriate than strong formulation in many applications, based on the
information one observes. In this case, of course, we shall either restrict .7 to
FX-measurable processes or assume X = F? (e.g., when d = d; and ¢ > 0).

(v) Even when Vg = V), it is much more likely to have the existence of optimal
control in weak formulation than in strong formulation. See Remark 4.5.4
below. |

We now solve (4.5.12). For each k € £, applying Theorem 2.6.6, the martingale
representation theorem under Girsanov setting, one can easily see that the following
linear BSDE under P¥ has a unique solution (Y*, Z¥):

T T
YF=g(Xr) + / £, Xy, ky)ds — [ ZkdBY,  P*as. (4.5.13)
t t
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Clearly J(k) = Yg. By (4.5.10) and noting that IP* and IP are equivalent, we may
rewrite (4.5.13) as

Yr = g(Xr) + [ ' [f(s,xs,ks) n Zf@(s,Xs,ks)]ds - [ Tz;‘st, P-as.
(4.5.14)
Define the Hamiltonians:
H*(t,x,2) := lfuﬂ[zH(t,x,z, k), where H(t,x,z,k) :=f(t,x, k) + z0(t, x, k).
=

(4.5.15)

By Assumption 4.5.1 (iii) and (i), H* is uniformly Lipschitz continuous in z and
H*(t,x,0) is bounded. Then the following BSDE has a unique solution (Y*, Z*):

T T
' =g(Xr) + / H*(s, X;,Z})ds — / ZrdB,, P-as. (4.5.16)
t t
We have the following main result for this subsection.
Theorem 4.5.3 Under Assumption 4.5.1, we have
Vo =Y. (4.5.17)

Moreover, if there exists a Borel measurable function I : [0,T] x R" x R? - K
such that

H*(t,x,z) = H(t,x,2,1(t, x, 2)). (4.5.18)
Then
k' = 1(t,X,,Z) is an optimal control. (4.5.19)
Proof First, applying comparison theorem, we have Y(’)‘ < Yy forall k € X, and
thus Vo < Yé‘. On the other hand, for any ¢ > 0, by standard measurable selection
there exists a Borel measurable function I* : [0, 7] x RY x R¢ — K such that

H*(t,x,2) < H(t,x,z,I°(t,x,2)) + ¢.

Denote k! := I°(t,X;, Z}"), and thus H*(¢,X;, Z}) < H(t, X;. Z} , k{) + €. Note that

T T
Y¥ = g(Xr) + / H(s. X, Z¥ K )ds — / Z¥ dB.
t t
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Denote AY® := Y* — Y AZe := Z* — Z¥  Then

T T
AY? =f [H*(s,XS,Zf)—H(s,Xs,Z;‘,kﬁ)+AZ§9(s,Xs,kfj)]ds—/ AZEdB,

t t

T T T

= / [H*(s,Xs,Z;k) —H(s,Xs,Z;‘,kj)]ds—/ AZEdBY < (T —1) —f AZEdBY .
t t t

This implies that AY§ < Te. Since € > 0 is arbitrary, we obtain YO* < Vy, and hence
the equality holds.

Finally, under (4.5.18) it is clear that Y* = Y"*, which implies (4.5.19)
immediately. n

Remark 4.5.4 We emphasize that the optimal control £* in (4.5.19) is optimal in
weak formulation, but not necessarily in strong formulation. To illustrate the main
idea, let us consider a special case: d = d; = 1,0 = 1,x = 0, and then X = B.
Since k* is IF8-measurable, so we may write k* = k*(B) = k*(X). Assume Vjy =
Vo, then the above k* provides an optimal control in strong formulation amounts to
say the following SDE admits a strong solution:

12 t
X, =x+ / b(s. Xy, kK*(X.))ds + / o(s.X,)dB;, P-as.  (4.5.20)
0 0

We remark that, in this special case here, actually one can show that & = k* (¢, X}")
depends only on X}*. However, k* may be discontinuous in X, and thus it is difficult
to establish a general theory for the strong solvability of SDE (4.5.20). Moreover,
one may easily extend Theorem 4.5.3 to the path dependent case, namely b, f,
and/or g depend on the paths of X. In this case k* may also depend on the paths
of X* and thus (4.5.20) becomes path dependent. Typically this SDE does not have
a strong solution, see a counterexample in Wang & Zhang [231] which is based on
Tsirelson’s [229] counterexample. Consequently, the optimization problem (4.5.8)
(or its extension to path dependent case) in strong formulation may not have an
optimal control. |

4.6 Bibliographical Notes

The linear BSDE was first proposed by Bismut [16], motivated from applications
in stochastic control, and the well-posedness of nonlinear BSDEs was established
by the seminal paper Paradox & Peng [167]. There is an excellent exposition on the
basic theory and applications of BSDEs in El Karoui, Peng, & Quenez [81], and
Peng [182] provides a detailed survey on the theory and its further developments.
Another application which independently leads to the connection with BSDE is the
recursive utility proposed by Duffie and Epstein [69, 70]. We also refer to some
book chapters El Karoui & Mazliak [80], Peng [175], Yong & Zhou [242], Pham
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[190], Cvitanic & Zhang [52], Touzi [227], as well as the recent book Pardoux &
Rascanu [170] on theory and applications of BSDEs. In particular, many materials
of this and the next chapter follow from the presentation in [52].

We note that the materials in this chapter are very basic. There have been various
extensions of the theory, with some important ones presented in the next chapter and
Part II. The further extension to fully nonlinear situation is the subject of Part III.
Besides those and among many others, we note that Lepeltier & San Martin [135]
studied BSDEs with non-Lipschitz continuous generators, Tang & Li [223] studied
BSDEs driven by jump processes, Fuhrman & Tessitore [95] studied BSDEs in
infinite dimensional spaces, Darling & Pardoux [54] studied BSDEs with random
terminal time, Buckdahn, Engelbert, & Rascanu [24] studied weak solutions of
BSDEs, and Pardoux & Peng [169] studied backward doubly SDEs which provides
a representation for solutions to (forward) stochastic PDEs. Moreover, we note that
Hu & Peng [110] provided some general result concerning comparison principle for
multidimensional BSDEs, and Hamadene & Lepeltier [103] extended the stochastic
optimization problem to a zero-sum stochastic differential game problem, again in
weak formulation. Another closely related concept is the g-expectation developed
by Peng [176, 179], see also Coquet, Hu, Memin, & Peng [38], Chen & Epstein [30],
and Delbaen, Peng, & Rosazza Gianin [53]. This is a special type of the nonlinear
expectation which we will introduce in Chapter 10.

4.7 Exercises

Problem 4.7.1 Similar to Problem 3.7.2, this problem consider the decoupling
strategy for multidimensional linear BSDE. For simplicity, we consider the follow-
ing linear BSDE withd = 1 and d, = 2:

r. 2 t
Yj=§,-+/ [§ [a;‘fY§+/3;'fzg]+y;]ds+/ ZidBs, i=1,2. (4.7.1)
0 : 0
J=1

Here § € I*(7,R), @/, B¥ € L®(F,R), and y' € L'*(IF,R). Show that there
exists a process I” such that Y := Y' 4 I'Y? solves a one-dimensional BSDE, whose
coefficients may depend on I". |

Problem 4.7.2

(i) Provide an alternative proof for Theorem 4.3.1 by using the global approach
similar to that used in the proof of Theorem 3.3.1. (Hint: first provide a priori
estimate for |[(Y.Z)||? := supy,<r E[e|Y,[] + E[[OT e’\’|Z,|2dt] for some
A > 0 large enough.)

(ii) Provide another proof for Theorem 4.3.1 by using contraction mapping. That is,
define a mapping F : I>(IF, R?) x IL.2(F, R2*?) — IL2(F, R%) x IL2(F, R%*4)
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by F(Y,Z) := (Y,Z), where

T T
?,;=g+/ fS(YS,ZS)ds—/ Z.dB;.
t t

Show that F is a contraction mapping under the norm ||(Y, Z) |3 for A > 0 large
enough. ]

Problem 4.7.3 Show that the result of Theorem 4.3.1 still holds if, in Assump-
tion 4.0.1, the Lipschitz continuity of f in y is replaced with the following slightly
weaker monotonicity condition:

[fi51.2) = fi(302. D] - bt =2l <Ly =y’ V(o). y1. 3.2
|

Problem 4.7.4 Let f satisfy Assumption 4.0.1 (i), (ii), (iv), and the linear growth
condition (4.2.9).

() If £ € L2(Fr,R%) and (Y,Z) € L*(F, R%) x L*(F, R%*9) is a solution to
BSDE (4.0.3). Show that (Y, Z) satisfies the a priori estimate (4.2.1).
(i) Let (Y",Z") € I*>(IF,R®) x I>(IF, R%*) be a solution to BSDE (4.0.3) with

T
terminal condition &, € I.2(%r, R%). Assume lim E[|§,, — £+ / |Y; —
n—>oo 0
Yt|2dt] = 0 for some § € IL>(%7,R®) and Y € L*(FF, R*). Show that there

T
exists Z € L2(IF, R%*?) such that l_i)m E[/ |Z — Z,|2dt] =0and (Y,Z)is
n—>oo 0

a solution to BSDE (4.0.3) with terminal condition £.

(iii) Assume d, = 1, £ € I2(%7.R), and f is continuous in (y, z). Show that
BSDE (4.0.3) has a solution (Y, Z) € S*(IF, R) x L>(IF, R'*9).

(iv) Under the conditions in (iii), find a counterexample such that the BSDE has
multiple solutions. ]

Problem 4.7.5

(i) Find a counterexample for comparison principle of multidimensional BSDEs.
To be precise, letd, = 2,d = 1, (£.f,Y,Z) be as in (4.0.3), and (E,f, Y, Z) be
another system. We want &; < &; and fi< fi, i = 1,2, but it does not hold that
Yi<Yii=1,2.

(ii) Prove the comparison for the following special multidimensional BSDE. Let
(€.f) and (&, f) satisfy Assumption 4.0.1, and (Y, Z), (Y, Z) be the correspond-
ing solution to BSDE (4.0.3). Assume

gif’éiv fiffi’ i=1,"',d2.
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Moreover, fori = 1,--- , d», assume f' does not depend on z; and is increasing
in y; for all j # i. Show that

Yi<Y, 0<t<T, Pas, i=1,-,d.
|

Problem 4.7.6 This problem extends the optimization problem in Subsection 4.5.2
to a game problem, still in weak formulation. Assume K = K; x K,, its
elements are denoted as k = (ky, k»), and denote %1, %5 in obvious sense. Assume
Assumption 4.5.1 holds true. Denote

ﬁ(t,x, z) ;= inf sup H(t,x,z,u), H(t,x,z):= sup inf H(t,x,z,u),
k€Ki ek, k€K, k1€Ky
(4.7.2)
and let (Y, Z), (Y, Z) denote the solution to the following BSDEs:
Y, = g(Xr) +/ H(s,XS,ZS)ds—/ ZdB;,
"r “r P-as. (4.7.3)
X[ = g(XT) + / ﬂ(sv XS" Zs)ds - / ngBm
t t
(i) Show that
Yo= inf sup ¥;", Y,= sup inf Y;' 4.7.4
0 k€1 /QGE/Z 0 =0 kzetlz)/z k1€ 0 ( )
Moreover, if the following Isaacs condition holds:
H=H=:H", 4.7.5)
then the game value exists, namely
inf sup Y, = sup inf Y3 =Yy, (4.7.6)

KI€EX ke x5 ko€t k1€

where Y* is the solution to BSDE (4.5.16) with the generator H* defined
by (4.7.5).

(i) Assume further that there exists Borel measurable functions 7, (¢, x, z) € K; and
DI (t,x,7) € K, such that, for all (¢, x, z) and all (k, k) € K; x K>,

H(t,x,z,k1,(t,x,2)) > H(t,x,z,11(t, x,2), [ (t,x,2)) > H(t, x,z, 11 (t, x,2), k).
4.7.7)
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Then Isaacs condition (4.7.5) holds and the game has a saddle point:
k*=0(tX0ZF), k" =LtX.Z)). (4.7.8)

where H*, Y*,Z* are as in (i). Here the saddle point, also called equilibrium,
means:

YERT >y > v V(L) € A x A5 (4.7.9)
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