
Chapter 4
Backward Stochastic Differential Equations

Let .˝;F ;F;P/ be given, and B a d-dimensional Brownian motion. In order to
apply the martingale representation theorem, in this chapter we shall always assume

F D FB: (4.0.1)

While SDE is a nonlinear extension of the stochastic integration, Backward SDE is
a nonlinear version of the martingale representation theorem. In fact, both the results
and the arguments in this chapter are analogous to those for SDEs, combined with
the martingale representation theorem.

Given � 2 L2.F/, it induces naturally a martingale Yt WD EŒ�jFt�. By the
martingale representation theorem, there exists unique Z 2 L2.F/ such that

dYt D ZtdBt; or equivalently; Yt D � �
Z T

t
ZsdBs: (4.0.2)

This is a linear SDE with terminal condition YT D � , and thus is called a Backward
SDE (BSDE, for short). We emphasize that the solution to a BSDE is a pair of
F-measurable processes .Y;Z/. As we will see more clearly in Section 9.4, the
component Z is essentially the derivative of Y with respect to B and thus is uniquely
determined by Y (and B). We also emphasize that the presence of Z is crucial
to ensure the F-measurability of Y . Indeed, if we consider a SDE with terminal
condition in the following form:

dYt D �t.Yt/dBt; YT D �:

Then typically the equation has no F-measurable solution Y . For example, if � D 0,
then the candidate solution has to be Yt D � for all t, which is not F-measurable
unless � 2 F0.
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80 4 Backward Stochastic Differential Equations

In this chapter we consider the following nonlinear BSDE:

Yt D � C
Z T

t
fs.Ys;Zs/ds �

Z T

t
ZsdBs; 0 � t � T; P-a.s. (4.0.3)

where Y 2 L2.F;Rd2 /, Z 2 L2.F;Rd2�d/ for some dimension d2. We call f the
(nonlinear) generator and � the terminal condition of the BSDE. We shall always
assume

Assumption 4.0.1

(i) (4.0.1) holds;
(ii) f W Œ0;T� �˝ � Rd2 � Rd2�d ! Rd2 is F-measurable in all variables;

(iii) f is uniformly Lipschitz continuous in .y; z/ with a Lipschitz constant L;
(iv) � 2 L2.FT ;R

d2 / and f 0 WD f .0; 0/ 2 L1;2.F;Rd2 /.

As in Chapter 3, for notational simplicity we shall assume d2 D d D 1 in most
proofs. We remark that, in the standard literature, it is required that f 0 2 L2.F/. Our
condition here is slightly weaker.

4.1 Linear Backward Stochastic Differential Equations

In this section we study the case when f is linear. We first have the following simple
result.

Proposition 4.1.1 Let � 2 L2.FT ;R
d2 / and f 0 2 L1;2.F;Rd2 /. Then, the following

linear BSDE has a unique solution .Y;Z/ 2 S
2.F;Rd2 / � L2.F;Rd2�d/:

Yt D � C
Z T

t
f 0s ds �

Z T

t
ZsdBs (4.1.1)

Proof It is obvious that

Yt D E
h
� C

Z T

t
f 0s ds

ˇ
ˇ
ˇFt

i
:

Note that

QYt WD Yt C
Z t

0

f 0s ds D E
h
� C

Z T

0

f 0s ds
ˇ
ˇ
ˇFt

i

is a square integrable martingale. By the martingale representation theorem, there
exists unique Z 2 L2.F;Rd2�d/ such that

d QYt D ZtdBt:
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One can check straightforwardly that the above pair .Y;Z/ satisfies (4.1.1), and,
from the above derivation, it is the unique solution. �

We next consider the general linear BSDE with d2 D 1:

Yt D � C
Z T

t
Œ˛sYs C Zsˇs C f 0s �ds �

Z T

t
ZsdBs: (4.1.2)

The well-posedness of this BSDE will follow from the general theory. Here we
provide a representation formula for its solution.

Proposition 4.1.2 Let d2 D 1, � 2 L2.FT ;R/, ˛ 2 L1.F;R/, ˇ 2 L1.F;Rd/,
and f 0 2 L1;2.F;R/. If .Y;Z/ 2 L2.F;R/ � L2.F;R1�d/ satisfies the linear
BSDE (4.1.2), then

Yt D � �1
t E

h
�T� C

Z T

t
�sf

0
s ds

ˇ
ˇ
ˇFt

i
; (4.1.3)

where

�t D 1C
Z t

0
�sŒ˛sdt C ˇs � dBs�; or say; �t WD exp

� Z t

0
ˇs � dBs C

Z t

0
Œ˛s � 1

2
jˇsj2�ds

�
:

(4.1.4)

Proof Applying Itô formula we have

d.�tYt/ D ��tf
0
t dt C �tŒYtˇ

>
t C Zt�dBt:

Denote

OYt WD �tYtI OZt WD �tŒYtˇ
>
t C Zt�I O� WD �T�I Of 0t WD �tf

0
t : (4.1.5)

Then, one may rewrite (4.1.2) as

OYt D O� C
Z T

t

Of 0s ds �
Z T

t

OZsdBs:

This is a linear BSDE in the form (4.1.1). By Lemma 2.6.1 and Problem 2.10.7 (i)
we see that

R t
0

OZsdBs is a martingale. Then

OYt WD E
h O� C

Z T

t

Of 0s ds
ˇ
ˇ
ˇFt

i
;

which implies (4.1.3) immediately. �
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4.2 A Priori Estimates for BSDEs

We now investigate the nonlinear BSDE (4.0.3).

Theorem 4.2.1 Let Assumption 4.0.1 hold and .Y;Z/ 2 L2.F;Rd2 /�L2.F;Rd2�d/
be a solution to BSDE (4.0.3). Then Y 2 S

2.F;Rd2 / and there exists a constant C,
depending only on T, L, and d; d2, such that

k.Y;Z/k2 WD E
h
jY�

T j2 C
Z T

0
jZtj2dt

i
� CI20 ; where I20 WD E

h
j�j2 C �

Z T

0
jf 0t jdt

�2
i
:

(4.2.1)

Proof Foy simplicity, we assume d D d2 D 1. We proceed in several steps.
Step 1. We first show that

EŒjY�
T j2� � CE

h Z T

0

ŒjYtj2 C jZtj2�dt
i

C CI20 < 1: (4.2.2)

Indeed, note that

jYtj � j�j C
Z T

t
Œjf 0s j C CjYsj C CjZsj�ds C j

Z T

t
ZsdBsj:

Then,

Y�
T � C

h
j�j C

Z T

0

Œjf 0t j C jYtj C jZtj�dt C sup
0�t�T

j
Z t

0

ZsdBsj
i
:

Applying Burkholder-Davis-Gundy inequality we have

EŒjY�
T j2� � CE

h
j�j2 C

� Z T

0

jf 0t jdt
�2 C

Z T

0

ŒjYtj2 C jZtj2�dt
i
;

which implies (4.2.2) immediately.
Step 2. We next show that, for any " > 0,

sup
0�t�T

EŒjYtj2�C E
h Z T

0

jZtj2dt
i

� "ŒjY�
T j2�C C"�1I20 : (4.2.3)

Indeed, by Itô formula,

djYtj2 D 2YtdYt C jZtj2dt D �2Ytft.Yt;Zt/dt C 2YtZtdBt C jZtj2dt: (4.2.4)

Thus,

jYtj2 C
Z T

t
jZsj2ds D j�j2 C 2

Z T

t
Ysfs.Ys;Zs/ds C 2

Z T

t
YsZsdBs: (4.2.5)
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By (4.2.2) and Problem 2.10.7 (i) we know
R t
0

YsZsdBs is a true martingale. Now,
taking expectation on both sides of (4.2.5) and noting that ab � 1

2
a2C 1

2
b2, we have

E
h
jYtj2 C

Z T

t
jZsj2ds

i
D E

h
j�j2 C 2

Z T

t
Ysfs.Ys;Zs/ds

i

� E
h
j�j2 C C

Z T

t
jYsjŒjf 0s j C jYsj C jZsj�ds

i

� E
h
j�j2 C CY�

T

Z T

0

jf 0s jds C C
Z T

0

ŒjYsj2 C jYsZsj�ds
i

� E
h
j�j2 C CY�

T

Z T

0

jf 0s jds C C
Z T

t
jYsj2ds C 1

2

Z T

t
jZsj2ds

i
:

This leads to

E
h
jYtj2 C 1

2

Z T

t
jZsj2ds

i
� E

h
C

Z T

t
jYsj2ds C j�j2 C CY�

T

Z T

0
jf 0s jds

i
; (4.2.6)

which, together with Fubini Theorem, implies that

EŒjYtj2� � E
h
j�j2 C CY�

T

Z T

0

jf 0s jds
i

C C
Z T

t
EŒjYsj2�ds:

Applying (backward) Gronwall inequality, we get

EŒjYtj2� � CE
h
j�j2 C Y�

T

Z T

0

jf 0s jds
i
; 8t 2 Œ0;T�: (4.2.7)

Then, by letting t D 0 and plug (4.2.7) into (4.2.6) we have

E
h Z T

0

jZsj2ds
i

� CE
h
j�j2 C Y�

T

Z T

0

jf 0s jds
i
: (4.2.8)

By (4.2.7) and (4.2.8) and noting that 2ab � "a2 C "�1b2, we obtain (4.2.3)
immediately.

Step 3. Plug (4.2.3) into (4.2.2), we get

EŒjY�
T j2� � C"EŒjY�

T j2�C C"�1I20 :

By choosing " D 1
2C for the constant C above, we obtain

EŒjY�
T j2� � CI20 :

This, together with (4.2.3), proves (4.2.1). �
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Remark 4.2.2 Similar to Remark 3.2.3, Theorem 4.2.1 remains true if we weaken
the Lipschitz condition of Assumption 4.0.1 (iii) to the linear growth condition:

jft.y; z/j � jf 0t j C LŒjyj C jzj�: (4.2.9)

�

Theorem 4.2.3 For i D 1; 2, assume .�i; f i/ satisfy Assumption 4.0.1 and
.Yi;Zi/ 2 L2.F;Rd2 /�L2.F;Rd2�d/ is a solution to BSDE (4.0.3) with coefficients
.�i; f i/. Then

k.
Y; 
Z/k2 � CE
h
j
�j2 C

� Z T

0

j
ft.Y
1
t ;Z

1
t /jdt

�2�
; (4.2.10)

where


Y WD Y1 � Y2; 
Z WD Z1 � Z2; 
� WD �1 � �2; 
f WD f 1 � f 2:

Proof Again assume d D d2 D 1. Note that


Yt D 
� C
Z T

t
Œf 1s .Y

1
s ;Z

1
s / � f 2s .Y

2
s ;Z

2
s /�ds �

Z T

t

ZsdBs

D 
� C
Z T

t
Œ
fs.Y

1
s ;Z

1
s /C ˛s
Ys C ˇs
Zs�ds �

Z T

t

ZsdBs;

where, similar to (3.2.10)

˛t WD f 2t .Y
1
t ;Z

1
t / � f 2t .Y

2
t ;Z

1
t /


Yt
1f
Yt¤0g; ˇt WD f 2t .Y

2
t ;Z

1
t / � f 2t .Y

2
t ;Z

2
t /


Zt
1f
Zt¤0g

(4.2.11)

are bounded by L. Then, by Theorem 4.2.1 we obtain the result immediately. �

4.3 Well-Posedness of BSDEs

We now establish the well-posedness of BSDE (4.0.3).

Theorem 4.3.1 Under Assumption 4.0.1, BSDE (4.0.3) has a unique solution
.Y;Z/ 2 L2.F;Rd2 / � L2.F;Rd2�d/.

Proof Uniqueness follows directly from Theorem 4.2.3. In particular, the unique-
ness means

Y1t D Y2t for all t 2 Œ0;T�; P-a.s. and Z1t D Z2t ; dt � dP-a.s. (4.3.1)
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We now prove the existence by using the Picard iteration. We shall use the local
approach similar to that used in the proof of Theorem 3.3.1 and leave the global
approach to Exercise. For simplicity we assume d D d2 D 1.

Step 1. Let ı > 0 be a constant which will be specified later, and assume
T � ı. We emphasize that ı will depend only on the Lipschitz constant L (and
the dimensions). In particular, it does not depend on the terminal condition � .

Denote Y0t WD 0;Z0t WD 0. For n D 1; 2; � � � , let

Yn
t D � C

Z T

t
fs.Y

n�1
s ;Zn�1

s /ds �
Z T

t
Zn

s dBs: (4.3.2)

Assume .Yn�1;Zn�1/ 2 L2.F/ � L2.F/. Note that

jft.Yn�1
t ;Zn�1

t /j � C
h
jf 0t j C jYn�1

t j C jZn�1
t j

i
:

Then, ft.Yn�1
t ;Zn�1

t / 2 L1;2.F/. By Proposition 4.1.1, the linear BSDE (4.3.2)
uniquely determines .Yn;Zn/ 2 L2.F/ � L2.F/, and then Theorem 4.2.1 implies
further that .Yn;Zn/ 2 S

2.F/ � L2.F/. By induction we have .Yn;Zn/ 2 S
2.F/ �

L2.F/ for all n � 0.
Denote 
Yn

t WD Yn
t � Yn�1

t ; 
Zn
t WD Zn

t � Zn�1
t . Then,


Yn
t D

Z T

t
Œ˛n�1

s 
Yn�1
s C ˇn�1

s 
Zn�1
s �ds �

Z T

t

Zn

s dBs;

where ˛n; ˇn are defined in a similar way as in (4.2.11) and are bounded by L.
Applying Itô formula we have

d.j
Yn
t j2/ D �2
Yn

t Œ˛
n�1
t 
Yn�1

t C ˇn�1
t 
Zn�1

t �dt C 2
Yn
t 
Zn

t dBt C j
Zn
t j2dt:

By Problem 2.10.7 (i),
Z t

0


Yn
s
Zn

s dBs is a true martingale. Noting that 
Yn
T D 0,

we get

E
h
j
Yn

t j2 C
Z T

t
j
Zn

s j2ds
i

D E
h
2

Z T

t
Œ
Yn

s Œ˛
n�1
s 
Yn�1

s C ˇn�1
s 
Zn�1

s �ds
i

� CE
h Z T

0

j
Yn
s jŒj
Yn�1

s j C j
Zn�1
s j�ds

i
: (4.3.3)

Thus

E
h Z T

0

j
Yn
t j2dt

i
� CıE

h Z T

0

j
Yn
s jŒj
Yn�1

s j C j
Zn�1
s j�ds

i

� CıE
h Z T

0

Œj
Yn
t j2 C j
Yn�1

t j2 C j
Zn�1
t j2�dt

i
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Assume ı < 1
2C for the above constant C and thus 1 � Cı � 1

2
, then,

E
h Z T

0

j
Yn
t j2dt

i
� CıE

h Z T

0

Œj
Yn�1
t j2 C j
Zn�1

t j2�dt
i
:

Moreover, by setting t D 0 in (4.3.3), we have

E
h Z T

0

j
Zn
t j2dt

i
� CE

h Z T

0

j
Yn
s j2dt

i
C 1

8
E

h Z T

0

Œj
Yn�1
t j2 C j
Zn�1

t j2�dt
i

�
h
Cı C 1

8

i
E

h Z T

0

Œj
Yn�1
t j2 C j
Zn�1

t j2�dt
i
:

Thus

E
h Z T

0

Œj
Yn
t j2 C j
Zn

t j2�dt
i

�
h
Cı C 1

8

i
E

h Z T

0

Œj
Yn�1
t j2 C j
Zn�1

t j2�dt
i
:

Set ı WD 1
8C for the above C. Then

E
h Z T

0

Œj
Yn
t j2 C j
Zn

t j2�dt
i

� 1

4
E

h Z T

0

Œj
Yn�1
t j2 C j
Zn�1

t j2�dt
i
:

By induction we have

E
h Z T

0

Œj
Yn
t j2 C j
Zn

t j2�dt
i

� C

4n
; 8n � 1:

Now following the arguments in Theorem 3.3.1 one can easily see that there exists
.Y;Z/ 2 S

2.F/ � L2.F/ such that

lim
n!1 k.Yn

t � Yt;Z
n
t � Zt/k D 0:

Therefore, by letting n ! 1 in BSDE (4.3.2) we know that .Y;Z/ satisfies
BSDE (4.0.3).

Step 2. We now prove the existence for arbitrary T . Let ı > 0 be the constant
in Step 1. Consider a partition 0 D t0 < � � � < tn D T such that tiC1 � ti � ı,
D 0; � � � ; n � 1. Define Ytn WD � , and for i D n � 1; � � � ; 0 and t 2 Œti; tiC1/, let
.Yt;Zt/ be the solution to the following BSDE on Œti; tiC1�:

Yt D YtiC1
C

Z tiC1

t
fs.Ys;Zs/ds �

Z tiC1

t
ZsdBs; t 2 Œti; tiC1�:
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Since tiC1 � ti � ı, by Step 1 the above BSDE is well posed. Moreover, since n is
finite here, we see that .Y;Z/ 2 L2.F/ � L2.F/, and thus they are a global solution
on the whole interval Œ0;T�. �

Remark 4.3.2 Assume f satisfies Assumption 4.0.1, � 2 T .F/, and � 2 L2.F� /.
Consider the following BSDE

Yt D � C
Z T

t

Qfs.Ys;Zs/ds �
Z T

t
ZsdBs; where Qfs.y; z/ WD fs.y; z/1Œ0;��.s/:

(4.3.4)

One can easily see that Qf also satisfies Assumption 4.0.1, and thus the above BSDE
has a unique solution. Since � 2 F� , we see immediately that Ys WD �;Zs WD 0

satisfy (4.3.4) for s 2 Œ�;T�. Therefore, we may rewrite (4.3.4) as

Yt D � C
Z �

t
fs.Ys;Zs/ds �

Z �

t
ZsdBs; 0 � t � �; (4.3.5)

and it is also well posed. �

4.4 Basic Properties of BSDEs

As in Section 3.4, we start with the comparison result, in the case d2 D 1.

Theorem 4.4.1 (Comparison Theorem) Let d2 D 1. Assume, for i D 1; 2, .�i; f i/

satisfies Assumption 4.0.1 and .Yi;Zi/ 2 S
2.F;R/ � L2.F;R1�d/ is the unique

solution to the following BSDE:

Yi
t D �i C

Z T

t
f i
s .Y

i
s;Z

i
s/ds �

Z T

t
Zi

sdBs: (4.4.1)

Assume further that �1 � �2, P-a.s., and f 1.y; z/ � f 2.y; z/, dt � dP�a.s. that for
any .y; z/. Then,

Y1t � Y2t ; 0 � t � T; P-a.s. (4.4.2)

Proof Denote


Yt WD Y1t � Y2t I 
Zt WD Z1t � Z2t I 
� WD �1 � �2; 
f WD f 1 � f 2:

Then,


Yt D 
� C
Z T

t
Œf 1s .Y

1
s ;Z

1
s / � f 2s .Y

2
s ;Z

2
s /�ds �

Z T

t

ZsdBs

D 
� C
Z T

t
Œ˛s
Ys C
Zsˇs C
fs.Y

2
s ;Z

2
s /�ds �

Z T

t

ZsdBs;
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where ˛ and ˇ are bounded. Define � by (4.1.4). By (4.1.3) we have


Yt D � �1
t E

h
�T
� C

Z T

t
�s
fs.Y

2
s ;Z

2
s /ds

ˇ
ˇ
ˇFt

i
: (4.4.3)

Similar to (3.4.1), by Problem 1.4.6 (ii) we have

f 1.y; z/ � f 2.y; z/ for all .y; z/; dt � dP-a.s.

This implies that
f .Y2;Z2/ � 0, dt�dP-a.s. Since � � 0 and
� � 0, then (4.4.2)
follows from (4.4.3) immediately. �

Remark 4.4.2 In the Comparison Theorem we require the process Y to be scalar.
The comparison principle for general multidimensional BSDEs is an important but
very challenging subject. See Problem 4.7.5 for some simple result. �

We next establish the stability result.

Theorem 4.4.3 (Stability) Let .�; f / and .�n; f n/, n D 1; 2; � � � , satisfy Assump-
tion 4.0.1 with the same Lipschitz constant L, and .Y;Z/; .Yn;Zn/ 2 S

2.F;Rd2 / �
L2.F;Rd2�d/ be the solution to the corresponding BSDE (4.0.3). Denote


Yn WD Yn � Y; 
Zn WD Zn � ZI 
�n WD �n � �; 
f n WD f n � f :

Assume

lim
n!1E

h
j
�nj2 C

� Z T

0

j
f n
t .0; 0/jdt

�2i D 0; (4.4.4)

and that 
f n.y; z/ ! 0 in measure dt � dP, for all .y; z/. Then,

lim
n!1 k.
Yn; 
Zn/k D 0: (4.4.5)

Proof First, by (4.2.10) we have

k.
Yn; 
Zn/k2 � CE
h
j
�nj2 C �

Z T

0

j
f n
t .Yt;Zt/jdt

�2
i

� CE
h
j
�nj2 C �

Z T

0

j
f n
t .0; 0/jdt

�2 C �
Z T

0

j
f n
t .Yt;Zt/ �
f n

t .0; 0/jdt
�2

i
:

(4.4.6)

By Problem 1.4.6 (iii), 
f n.Y;Z/ ! 0, in measure dt � dP. Note that

j
fn.t;Yt;Zt/ �
fn.t; 0; 0/j � CŒjYtj C jZtj�:
Applying the dominated convergence Theorem we have

lim
n!1E

h�
Z T

0

j
f n
t .Yt;Zt/ �
f n

t .0; 0/jdt
�2

i
D 0:

This, together with (4.4.4) and (4.4.6), leads to the result. �



4.4 Basic Properties of BSDEs 89

We conclude this section by extending the well-posedness result to Lp.F/ for
p � 2.

Theorem 4.4.4 Assume Assumption 4.0.1 holds and � 2 Lp.FT ;R
d2 /, f 0 2

L1;p.F;Rd2 / for some p � 2. Let .Y;Z/ 2 S
2.F;Rd2 /�L2.F;Rd2�d/ be the unique

solution to BSDE (4.0.3). Then,

E
h
jY�

T jp C �
Z T

0

jZtj2dt
� p
2

i
� CpIp

p ; where Ip
p WD E

h
j�jp C �

Z T

0

jf 0t jdt
�p

i
:

(4.4.7)

Proof As in Theorem 3.4.3 we proceed in two steps. Again assume d D d2 D 1 for
simplicity.

Step 1. We first assume Y 2 L1;p.F/;Z 2 L2;p.F/ and prove (4.4.7). Applying
Itô formula we have

djYtj2 D �2Ytft.Yt; Zt/dt C jZtj2dt C 2YtZtdBtI
d.jYtjp/ D d.jYtj2/ p

2 D �pjYtjp�2Ytft.Yt; Zt/dt C 1

2
p.p � 1/jYtjp�2jZtj2dt C pjYtjp�2YtZtdBt:

(4.4.8)

Following the arguments in Theorem 4.2.1 Steps 1 and 2 one can easily show that,
for any " > 0,

E
h
jY�

T jp
i

� Cp sup
0�t�T

EŒjYtjp�C CpE
h Z T

0

jYtjp�2jZtj2dt
i

C CpIp
p I

sup
0�t�T

EŒjYtjp�C E
h Z T

0

jYtjp�2jZtj2dt
i

� "E
h
jY�

T jp
i

C Cp"
�1Ip

p :

Then, by choosing " > 0 small enough we obtain

E
h
jY�

T jp
i

� CpIp
p : (4.4.9)

Next, by (4.4.8) we see that

Z T

0

jZtj2dt D j�j2 � jY0j2 C 2

Z T

0

Ytft.Yt;Zt/dt � 2
Z T

0

YtZtdBt

� CjY�
T j2 C C

Z T

0

jYtjŒjf 0t j C jYtj C jZtj�dt C C
ˇ
ˇ
ˇ

Z T

0

YtZtdBt

ˇ
ˇ
ˇ

� CjY�
T j2 C C

�
Z T

0

jf 0t jdt
�2 C 1

2

Z T

0

jZtj2dt C C
ˇ
ˇ
ˇ

Z T

0

YtZtdBt

ˇ
ˇ
ˇ:
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Then, by (4.4.9) and Burkholder-Davis-Gundy inequality,

E
h�

Z T

0

jZtj2dt
� p
2

i
� CpI2p C CpE

h
jY�

T jp C ˇ
ˇ
Z T

0

YtZtdBt

ˇ
ˇ

p
2

i

� CpI2p C CpE
h�

Z T

0

jYtZtj2dt
� p
4

i
� CpI2p C CpE

h
jY�

T j p
2

�
Z T

0

jZtj2dt
� p
4

i

� CpI2p C CpEŒjY�
T jp�C 1

2
E

h�
Z T

0

jZtj2dt
� p
2

i
� CpI2p C 1

2
E

h�
Z T

0

jZtj2dt
� p
2

i
:

This leads to the desired estimate for Z, and together with (4.4.9), proves fur-
ther (4.4.7).

Step 2. In the general case, we shall use the space truncation arguments in
Theorem 3.4.3. We note that the time truncation does not work well here because
it will involve Y�n which still lacks desired integrability. For each n � 1, denote
�n WD .�n/ _ � ^ n, fn WD .�n/ _ f ^ n. Clearly .�n; f n/ satisfy all the conditions of
this theorem with the same Lipschitz constant L, and

.�n; f
n/ ! .�; f /; j�nj � j�j; jf nj � jf j; j�nj � n; jf nj � n; for all .t; !; y; z/:

Let .Yn;Zn/ 2 S
2.F/ � L2.F/ be the unique solution to BSDE (4.0.3) with

coefficients .�n; f n/. Then

Yn
t D E

h
�n C

Z T

t
f n
s .Y

n
s ;Z

n
s /ds

ˇ
ˇ
ˇFt

i
;

Z t

0

Zn
s dBs D Yn

t � Yn
0 C

Z t

0

f n
s .Y

n
s ;Z

n
s /ds

are bounded. By the Burkholder-Davis-Gundy inequality, this implies further that
Zn 2 L2;p.F/. Then it follows from Step 1 that

E
h
j.Yn/�T jp C �

Z T

0

jZn
t j2dt

� p
2

i
� CpE

h
j�njp C �

Z T

0

jf n
t .0; 0/jdt

�p
i

� CpIp
p :

Now similar to the arguments in Theorem 4.2.1, (4.4.7) follows from Theorem 4.4.3
and Fatou lemma. �

4.5 Some Applications of BSDEs

The theory of BSDEs has wide applications in many fields, most notably in mathe-
matical finance, stochastic control theory, and probabilistic numerical methods for
nonlinear PDEs. We shall discuss its connection with PDE rigorously in the next
chapter. In this section we present the first two types of applications in very simple
settings and in a heuristic way, just to illustrate the idea.
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4.5.1 Application in Asset Pricing and Hedging Theory

Consider the Black-Scholes model in Section 2.8. Assume a self-financing portfolio
.
; h/ hedges � . By (2.8.8) and (2.8.7) we have:

dVt D
h

tre

rt C htSt�
i
dt C htSt�dBt

D
h
r.Vt � hsSt/C htSt�

i
dt C htSt�dBt: (4.5.1)

Denote

Yt WD Vt; Zt WD �Stht: (4.5.2)

Then (4.5.1) leads to

dYt D
h
rŒYt � Zt

�St
�C �Zt

�St

i
dt C ZtdBt; YT D �; P-a.s. (4.5.3)

This is a linear BSDE. Once we solve it, we obtain that:

Y is the price of the option � and Z induces the hedging portfolio: ht D Zt

�St
.

(4.5.4)

We remark that BSDE (4.5.3) is under the market measure P. In this approach, there
is no need to talk about the risk neutral measure.

Note that BSDE (4.5.3) is linear, which can be solved explicitly. In particular, for
the special example we are presenting, Y0 can be computed via the well-known
Black-Scholes formula. To motivate nonlinear BSDEs, let us assume in a more
practical manner that the lending interest rate r1 is less than the borrowing interest
rate r2. That is, the self-financing condition (4.5.1) should be replaced by

dVt WD
h
r1.Vt � htSt/

C � r2.Vt � htSt/
�i

dt C htdSt; (4.5.5)

and therefore, BSDE (4.5.3) becomes a nonlinear one:

dYt D
h
r1.Yt � Zt

�St
/C � r2.Yt � Zt

�St
/� C �Zt

�St

i
dt C ZtdBt; YT D �: (4.5.6)

Nonlinear BSDEs typically do not have explicit formula. We shall discuss its
numerical method in the next chapter.
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4.5.2 Applications in Stochastic Control

Consider a controlled SDE:

Xk
t D x C

Z t

0

b.s;Xk
s ; ks/ds C

Z t

0

�.s;Xk
s ; ks/dBs; 0 � t � T; P-a.s. (4.5.7)

Here B, X, b, � take values in Rd, Rd1 ,Rd1 , and Rd1�d, respectively, and k 2 K
are admissible controls. We assume k takes values in certain Polish space K and
is F-measurable. Our goal is the following stochastic optimization problem (with
superscript S indicating strong formulation in contrast to the weak formulation
in (4.5.12) below):

VS
0 WD sup

k2K
JS.k/ where JS.k/ WD EP

h
g.Xk

T/C
Z T

0

f .t;Xk
t ; kt/dt

i
; (4.5.8)

where f and g are 1-dimensional and thus JS and VS
0 are scalars.

If we follow the standard stochastic maximum principle, the above problem will
lead to a forward-backward SDE, which is the main subject of Chapter 8 and is
in general not solvable. We thus transform the problem to weak formulation as
follows. We remark that the weak formulation, especially when there is diffusion
control (namely � depends on k), will be our main formulation for stochastic control
problems and will be explored in details in Part III. Here we just present some very
basic ideas. For this purpose, we assume

Assumption 4.5.1

(i) b, � , f , g are deterministic, Borel measurable in all variables, and bounded
(for simplicity);

(ii) � D �.t; x/ does not contain the control k, and is uniformly Lipschitz in x;
(iii) There exists a bounded Rd-valued function �.t; x; k/ such that b.t; x; k/ D

�.t; x/�.t; x; k/.

We note that, when d D d1 and � 2 S
d is invertible, it is clear that �.t; x; k/ D

��1.t; x/b.t; x; k/ and is unique.
Let X be the unique solution to the following SDE (without control):

Xt D x C
Z t

0

�.s;Xs/dBs; 0 � t � T; P-a.s. (4.5.9)

For each k 2 K , recall the notations in Section 2.6 and denote

� k
t WD �.t;Xt; kt/; Bk

t WD Bt �
Z t

0

� k
s ds; Mk WD M�k

; Pk WD P�
k
: (4.5.10)
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Under Assumption 4.5.1 (iii), � k is bounded and thus it follows from the Girsanov
Theorem that Bk is a Pk-Brownian motion. Since Pk is equivalent to P, then (4.5.9)
leads to

Xt D x C
Z t

0

b.s;Xs; ks/ds C
Z t

0

�.s;Xs/dBk
s ; 0 � t � T; Pk-a.s. (4.5.11)

Compare (4.5.11) with (4.5.7), we modify (4.5.8) as

V0 WD sup
k2K

J.k/; where J.k/ WD EPk
h
g.XT/C

Z T

0

f .t;Xt; kt/dt
i
: (4.5.12)

This is the stochastic optimization problem under weak formulation (with drift
control only).

Remark 4.5.2

(i) In strong formulation (4.5.8), P is fixed and one controls the state process Xk,
while in weak formulation (4.5.8), the state process X is fixed and one controls
the probability Pk, or more precisely controls the distribution of X.

(ii) Although formally (4.5.11) looks very much like (4.5.7), the Pk-distribution
of k is different from the P-distribution of k, then the joint Pk-distribution of
.Bk; k;X/ is different from the joint P-distribution of .B; k;Xk/. Consequently,
for given k 2 K , typically J.k/ ¤ JS.k/.

(iii) In most interesting applications, it holds that VS
0 D V0. However, in general it

is possible that they are not equal. Nevertheless, in this section we investigate
V0. This is partially because the optimization problem (4.5.12) is technically
easier, and more importantly because the weak formulation is more appropriate
in many applications, as we discuss next.

(iv) As discussed in Section 2.8.3, in many applications one can actually observe
the state process X, rather than the noise B. So it makes more sense to assume
the control k depends on X, instead of on B (or !). That is, weak formulation
is more appropriate than strong formulation in many applications, based on the
information one observes. In this case, of course, we shall either restrict K to
FX-measurable processes or assume FX D FB (e.g., when d D d1 and � > 0).

(v) Even when VS
0 D V0, it is much more likely to have the existence of optimal

control in weak formulation than in strong formulation. See Remark 4.5.4
below. �

We now solve (4.5.12). For each k 2 K , applying Theorem 2.6.6, the martingale
representation theorem under Girsanov setting, one can easily see that the following
linear BSDE under Pk has a unique solution .Yk;Zk/:

Yk
t D g.XT/C

Z T

t
f .s;Xs; ks/ds �

Z T

t
Zk

s dBk
s ; Pk-a.s. (4.5.13)
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Clearly J.k/ D Yk
0 . By (4.5.10) and noting that Pk and P are equivalent, we may

rewrite (4.5.13) as

Yk
t D g.XT/C

Z T

t

h
f .s;Xs; ks/C Zk

s �.s;Xs; ks/
i
ds �

Z T

t
Zk

s dBs; P-a.s.

(4.5.14)

Define the Hamiltonians:

H�.t; x; z/ WD sup
k2K

H.t; x; z; k/; where H.t; x; z; k/ WD f .t; x; k/C z�.t; x; k/:

(4.5.15)

By Assumption 4.5.1 (iii) and (i), H� is uniformly Lipschitz continuous in z and
H�.t; x; 0/ is bounded. Then the following BSDE has a unique solution .Y�;Z�/:

Y�
t D g.XT/C

Z T

t
H�.s;Xs;Z

�
s /ds �

Z T

t
Z�

s dBs; P-a.s. (4.5.16)

We have the following main result for this subsection.

Theorem 4.5.3 Under Assumption 4.5.1, we have

V0 D Y�
0 : (4.5.17)

Moreover, if there exists a Borel measurable function I W Œ0;T� � Rd1 � Rd ! K

such that

H�.t; x; z/ D H.t; x; z; I.t; x; z//: (4.5.18)

Then

k�
t WD I.t;Xt;Z

�
t / is an optimal control: (4.5.19)

Proof First, applying comparison theorem, we have Yk
0 � Y�

0 for all k 2 K , and
thus V0 � Y�

0 . On the other hand, for any " > 0, by standard measurable selection
there exists a Borel measurable function I" W Œ0;T� � Rd1 � Rd ! K such that

H�.t; x; z/ � H.t; x; z; I".t; x; z//C ":

Denote k"t WD I".t;Xt;Z�
t /, and thus H�.t;Xt;Z�

t / � H.t;Xt;Z�
t ; k

"
t /C ". Note that

Yk"
t D g.XT/C

Z T

t
H.s;Xs;Z

k"
s ; k

"
s /ds �

Z T

t
Zk"

s dBs:
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Denote 
Y" WD Y� � Yk" , 
Z" WD Z� � Zk" . Then


Y"t D
Z T

t

h
H�.s;Xs; Z

�

s /� H.s;Xs; Z
�

s ; k
"
s /C
Z"s �.s;Xs; k

"
s /

i
ds �

Z T

t

Z"s dBs

D
Z T

t

h
H�.s;Xs; Z

�

s /� H.s;Xs; Z
�

s ; k
"
s /

i
ds �

Z T

t

Z"s dBk"

s � ".T � t/�
Z T

t

Z"s dBk"

s :

This implies that
Y"0 � T". Since " > 0 is arbitrary, we obtain Y�
0 � V0, and hence

the equality holds.
Finally, under (4.5.18) it is clear that Y� D Yk�

, which implies (4.5.19)
immediately. �

Remark 4.5.4 We emphasize that the optimal control k� in (4.5.19) is optimal in
weak formulation, but not necessarily in strong formulation. To illustrate the main
idea, let us consider a special case: d D d1 D 1, � D 1, x D 0, and then X D B.
Since k� is FB-measurable, so we may write k� D k�.B/ D k�.X/. Assume VS

0 D
V0, then the above k� provides an optimal control in strong formulation amounts to
say the following SDE admits a strong solution:

Xt D x C
Z t

0

b.s;Xs; k
�
s .X�//ds C

Z t

0

�.s;Xs/dBs; P-a.s. (4.5.20)

We remark that, in this special case here, actually one can show that k�
t D k�.t;X�

t /

depends only on X�
t . However, k� may be discontinuous in X, and thus it is difficult

to establish a general theory for the strong solvability of SDE (4.5.20). Moreover,
one may easily extend Theorem 4.5.3 to the path dependent case, namely b, f ,
and/or g depend on the paths of X. In this case k� may also depend on the paths
of X� and thus (4.5.20) becomes path dependent. Typically this SDE does not have
a strong solution, see a counterexample in Wang & Zhang [231] which is based on
Tsirelson’s [229] counterexample. Consequently, the optimization problem (4.5.8)
(or its extension to path dependent case) in strong formulation may not have an
optimal control. �

4.6 Bibliographical Notes

The linear BSDE was first proposed by Bismut [16], motivated from applications
in stochastic control, and the well-posedness of nonlinear BSDEs was established
by the seminal paper Paradox & Peng [167]. There is an excellent exposition on the
basic theory and applications of BSDEs in El Karoui, Peng, & Quenez [81], and
Peng [182] provides a detailed survey on the theory and its further developments.
Another application which independently leads to the connection with BSDE is the
recursive utility proposed by Duffie and Epstein [69, 70]. We also refer to some
book chapters El Karoui & Mazliak [80], Peng [175], Yong & Zhou [242], Pham
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[190], Cvitanic & Zhang [52], Touzi [227], as well as the recent book Pardoux &
Rascanu [170] on theory and applications of BSDEs. In particular, many materials
of this and the next chapter follow from the presentation in [52].

We note that the materials in this chapter are very basic. There have been various
extensions of the theory, with some important ones presented in the next chapter and
Part II. The further extension to fully nonlinear situation is the subject of Part III.
Besides those and among many others, we note that Lepeltier & San Martin [135]
studied BSDEs with non-Lipschitz continuous generators, Tang & Li [223] studied
BSDEs driven by jump processes, Fuhrman & Tessitore [95] studied BSDEs in
infinite dimensional spaces, Darling & Pardoux [54] studied BSDEs with random
terminal time, Buckdahn, Engelbert, & Rascanu [24] studied weak solutions of
BSDEs, and Pardoux & Peng [169] studied backward doubly SDEs which provides
a representation for solutions to (forward) stochastic PDEs. Moreover, we note that
Hu & Peng [110] provided some general result concerning comparison principle for
multidimensional BSDEs, and Hamadene & Lepeltier [103] extended the stochastic
optimization problem to a zero-sum stochastic differential game problem, again in
weak formulation. Another closely related concept is the g-expectation developed
by Peng [176, 179], see also Coquet, Hu, Memin, & Peng [38], Chen & Epstein [30],
and Delbaen, Peng, & Rosazza Gianin [53]. This is a special type of the nonlinear
expectation which we will introduce in Chapter 10.

4.7 Exercises

Problem 4.7.1 Similar to Problem 3.7.2, this problem consider the decoupling
strategy for multidimensional linear BSDE. For simplicity, we consider the follow-
ing linear BSDE with d D 1 and d2 D 2:

Yi
t D �i C

Z t

0

h 2X

jD1
Œ˛ij

s Yj
s C ˇij

s Zj
s�C � i

s

i
ds C

Z t

0

Zi
sdBs; i D 1; 2: (4.7.1)

Here �i 2 L2.FT ;R/, ˛ij; ˇij 2 L1.F;R/, and � i 2 L1;2.F;R/. Show that there
exists a process � such that Y WD Y1C� Y2 solves a one-dimensional BSDE, whose
coefficients may depend on � . �

Problem 4.7.2

(i) Provide an alternative proof for Theorem 4.3.1 by using the global approach
similar to that used in the proof of Theorem 3.3.1. (Hint: first provide a priori

estimate for k.Y;Z/k2
 WD sup0�t�T EŒe

tjYtj2� C E

h R T
0

e
tjZtj2dt
i

for some


 > 0 large enough.)
(ii) Provide another proof for Theorem 4.3.1 by using contraction mapping. That is,

define a mapping F W L2.F;Rd2 /�L2.F;Rd2�d/ ! L2.F;Rd2 /�L2.F;Rd2�d/
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by F.Y;Z/ WD . QY; QZ/, where

QYt WD � C
Z T

t
fs.Ys;Zs/ds �

Z T

t
ZsdBs:

Show that F is a contraction mapping under the norm k.Y;Z/k2
 for 
 > 0 large
enough. �

Problem 4.7.3 Show that the result of Theorem 4.3.1 still holds if, in Assump-
tion 4.0.1, the Lipschitz continuity of f in y is replaced with the following slightly
weaker monotonicity condition:

Œft.y1; z/ � ft.y2; z/� � Œy1 � y2� � Ljy1 � y2j2; 8.t; !/; y1; y2; z:
�

Problem 4.7.4 Let f satisfy Assumption 4.0.1 (i), (ii), (iv), and the linear growth
condition (4.2.9).

(i) If � 2 L2.FT ;R
d2 / and .Y;Z/ 2 L2.F;Rd2 / � L2.F;Rd2�d/ is a solution to

BSDE (4.0.3). Show that .Y;Z/ satisfies the a priori estimate (4.2.1).
(ii) Let .Yn;Zn/ 2 L2.F;Rd2 / � L2.F;Rd2�d/ be a solution to BSDE (4.0.3) with

terminal condition �n 2 L2.FT ;R
d2 /. Assume lim

n!1E
h
j�n � �j2 C

Z T

0

jYn
t �

Ytj2dt
i

D 0 for some � 2 L2.FT ;R
d2 / and Y 2 L2.F;Rd2 /. Show that there

exists Z 2 L2.F;Rd2�d/ such that lim
n!1E

h Z T

0

jZn
t � Ztj2dt

i
D 0 and .Y;Z/ is

a solution to BSDE (4.0.3) with terminal condition � .
(iii) Assume d2 D 1, � 2 L2.FT ;R/, and f is continuous in .y; z/. Show that

BSDE (4.0.3) has a solution .Y;Z/ 2 S
2.F;R/ � L2.F;R1�d/.

(iv) Under the conditions in (iii), find a counterexample such that the BSDE has
multiple solutions. �

Problem 4.7.5

(i) Find a counterexample for comparison principle of multidimensional BSDEs.
To be precise, let d2 D 2; d D 1, .�; f ;Y;Z/ be as in (4.0.3), and . Q�; Qf ; QY; QZ/ be
another system. We want �i � Q�i and f i � Qf i, i D 1; 2, but it does not hold that
Yi � QYi, i D 1; 2.

(ii) Prove the comparison for the following special multidimensional BSDE. Let
.�; f / and . Q�; Qf / satisfy Assumption 4.0.1, and .Y;Z/, . QY; QZ/ be the correspond-
ing solution to BSDE (4.0.3). Assume

�i � Q�i; f i � Qf i; i D 1; � � � ; d2:
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Moreover, for i D 1; � � � ; d2, assume f i does not depend on zj and is increasing
in yj for all j ¤ i. Show that

Yi
t � QYi

t ; 0 � t � T; P-a.s.; i D 1; � � � ; d2:
�

Problem 4.7.6 This problem extends the optimization problem in Subsection 4.5.2
to a game problem, still in weak formulation. Assume K D K1 � K2, its
elements are denoted as k D .k1; k2/, and denote K1;K2 in obvious sense. Assume
Assumption 4.5.1 holds true. Denote

H.t; x; z/ WD inf
k12K1

sup
k22K2

H.t; x; z; u/; H.t; x; z/ WD sup
k22K2

inf
k12K1

H.t; x; z; u/;

(4.7.2)

and let .Y;Z/, .Y;Z/ denote the solution to the following BSDEs:

Yt D g.XT/C
Z T

t
H.s;Xs;Zs/ds �

Z T

t
ZsdBs;

Yt D g.XT/C
Z T

t
H.s;Xs;Zs/ds �

Z T

t
ZsdBs;

P-a.s. (4.7.3)

(i) Show that

Y0 D inf
k12K1

sup
k22K2

Yk1;k2
0 ; Y0 D sup

k22K2

inf
k12K1

Yk1;k2
0 (4.7.4)

Moreover, if the following Isaacs condition holds:

H D H DW H�; (4.7.5)

then the game value exists, namely

inf
k12K1

sup
k22K2

Yk1;k2
0 D sup

k22K2

inf
k12K1

Yk1;k2
0 D Y�

0 ; (4.7.6)

where Y� is the solution to BSDE (4.5.16) with the generator H� defined
by (4.7.5).

(ii) Assume further that there exists Borel measurable functions I1.t; x; z/ 2 K1 and
I2.t; x; z/ 2 K2 such that, for all .t; x; z/ and all .k1; k2/ 2 K1 � K2,

H.t; x; z; k1; I2.t; x; z// � H.t; x; z; I1.t; x; z/; I2.t; x; z// � H.t; x; z; I1.t; x; z/; k2/:

(4.7.7)
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Then Isaacs condition (4.7.5) holds and the game has a saddle point:

k1;�t WD I1.t;Xt;Z
�
t /; k2;�t WD I2.t;Xt;Z

�
t /; (4.7.8)

where H�;Y�;Z� are as in (i). Here the saddle point, also called equilibrium,
means:

Yk1;k2;�

0 � Y�
0 � Yk1;�;k2

0 ; 8.k1; k2/ 2 K1 � K2: (4.7.9)

�
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