
Chapter 2
Basics of Stochastic Calculus

Let .˝;F ;F;P/ be a filtered probability space. We remark again that, unlike in
standard literature, we do not assume F D fFtg0�t�T satisfy the usual hypothesis.
This will be crucial for the fully nonlinear theory in Part III, and for fixed P this is
a very mild relaxation due to Proposition 1.2.1.

2.1 Brownian Motion

2.1.1 Definition

Definition 2.1.1 We say a process B W Œ0;T� � ˝ ! R is a (standard) Brownian
motion if

• B0 D 0, a.s.
• For any 0 D t0 < � � � < tn � T, Bt1 ;Bt1;t2 ; � � � ;Btn�1;tn are independent.
• For any 0 � s < t � T, Bs;t � N.0; t � s/.

Moreover, we call B an F-Brownian motion if B 2 L0.F/ and

• For any 0 � s < t � T, Bs;t and Fs are independent.

We note that as in the previous chapter we restrict B to a finite horizon Œ0;T�. But
the definition can be easily extended to Œ0;1/, by first extending the filtration F

to Œ0;1/. When necessary, we may interpret B as a Brownian motion on Œ0;1/

without mentioning it explicitly. Moreover, when there is a need to emphasize the
dependence on the probability measure P and/or the filtration F, we call B a P-
Brownian motion or .P;F/-Brownian motion. Since B has independent increments,
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22 2 Basics of Stochastic Calculus

clearly .Bt1 ; � � � ;Btn/ have Gaussian distribution, or say B is a Gaussian process.
Moreover, from the definition we can easily compute the finite distribution of B.
Then by the Kolmogorov’s Extension Theorem we know that Brownian motion does
exist. The following properties are immediate and left to the readers.

Proposition 2.1.2 Let B be a standard Brownian motion. For any t0 and any
constant c > 0, the processes Bt0

t WD Bt0;tCt0 and OBc
t WD 1p

c
Bct are also standard

Brownian motions.

Proposition 2.1.3 A Brownian motion is Markov, and an F-Brownian motion is an
F-martingale.

In the multidimensional case, we call B D .B1; � � � ;Bd/> a d-dimensional
Brownian motion if B1; � � � ;Bd are independent Brownian motions. In most cases
we do not emphasize the dimension and thus still call it a Brownian motion.

From now on, throughout this chapter, B is a d-dimensional F-Brownian motion.
All our results hold true in multidimensional setting. However, while we shall state
the results in multidimensional case, for notional simplicity quite often we will carry
out the proofs only in the case d D 1. The readers may extend the arguments to
multidimensional cases straightforwardly.

2.1.2 Pathwise Properties

We start with its pathwise continuity. Notice that Brownian motion is defined via
its distribution. As mentioned in the paragraph after Theorem 1.2.3, the pathwise
properties should be understood for a version of B.

Theorem 2.1.4 For any " 2 .0; 1
2
/, B is Hölder-. 1

2
� "/ continuous, a.s. In

particular, B is continuous, a.s.

Proof For notational simplicity, assume d D 1. For any s < t, since Bs;t � N.0; t �
s/, we have

E
h
jBs;tjp

i
D Cpjt � sj p

2 ; for all p � 1:

Apply the Kolmogorov’s Continuity Theorem 1.2.3, by considering a modification

if necessary, B is Hö-� continuous for � WD
p
2�1
p�1 . Since p is arbitrary, one can always

find p large enough so that � > 1
2

� ". �
From now on, we shall always consider a continuous version of B. We next study

the quadratic variation of B. For a time partition � W 0 D t0 < � � � < tn D T ,
denote j�j WD max1�i�n.ti � ti�1/. We recall that the total variation of a process
X 2 L0.F;Rd/ is defined pathwise by: for 0 � a < b � T ,

b_

a

.X/ WD sup
�

nX

iD1

jXa_ti�1^b; a_ti^bj; in particular ;
T_

0

.X/ WD sup
�

nX

iD1

jXti�1;ti j: (2.1.1)
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Definition 2.1.5 Let X 2 L0.F;Rd/. We say X has quadratic variation if the
following limit exists :

hXit WD limj�j!0

nX

iD1
Xti�1^t; ti^tX

>
ti�1^t; ti^t; in the sense of convergence in probability:

(2.1.2)

In this case we call hXi the quadratic variation process of X.
Note that hXi takes values in S

d, the set of d � d-symmetric matrices. Its .i; j/-th
component is:

hXii;j
t WD lim

j�j!0

nX

kD1
Xi

tk�1^t; tk^tX
j
tk�1^t; tk^t:

We also remark that, unlike total variation, the quadratic variation is not defined in a
pathwise manner. It is interesting to understand the pathwise definition of quadratic
variation, which we will study in Part III. See also Remark 2.2.6.

Theorem 2.1.6 It holds that

limj�j!0
E

h� nX

iD1
Bti�1^t; ti^tB

>
ti�1^t; ti^t � tId

�2i D 0; and consequently; hBit D tId:

Proof For notational simplicity we assume d D 1, and without loss of generality
we prove the theorem only at T . Fix a partition � W 0 D t0 < � � � < tn D T , and
denote


ti WD ti � ti�1; 	i WD jBti�1;ti j2 �
ti; i D 1; � � � ; n:

Then 	i, i D 1; � � � ; n, are independent. Since Bti�1;ti � N.0;
ti/, we have EŒ	i� D
0 and

Var.	i/ D Var.jBti�1;ti j2/ D EŒjBti�1;ti j4� �
�
EŒjBti�1;ti j2�

�2 D 3.
ti/
2 � .
ti/

2 D 2.
ti/
2:

Notice also that
Pn

iD1 
ti D T . Then

E
h� nX

iD1
jBti�1;ti j2 � T

�2i D E
h� nX

iD1
	i

�2i D Var
� nX

iD1
	i

�

D
nX

iD1
Var.	i/ D 2

nX

iD1
.
ti/

2 � 2j�j
nX

iD1

ti D 2Tj�j ! 0; as j�j ! 0:

Since L2 convergence implies convergence in probability, we conclude that
hBiT D T . �

As a corollary of Theorems 2.1.4 and 2.1.6, we have
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Corollary 2.1.7
Wb

a.B/ D 1 for any 0 � a < b � T, a.s.

Proof We proceed in two steps, again assuming d D 1.
Step 1. Fix 0 � a < b � T . For any partition � , denote Qti WD a _ ti ^ b and

notice that

nX

iD1
jBQti�1;Qti j2 �

�
sup
1�i�n

jBQti�1;Qti j
� nX

iD1
jBQti�1;Qti j �

b_

a

.B/ � sup
1�i�n

jBQti�1;Qti j

Send j�j ! 0, by Theorems 2.1.4 and 2.1.6 we have

sup
1�i�n

jBQti�1;Qti j ! 0; a.s. and
nX

iD1
jBQti�1;Qti j2 ! hBib � hBia D b � a > 0; in P:

This clearly implies that

b_

a

.B/ D 1; a.s.

Step 2. For any 0 � a < b � T , by Step 1 we have

P.N .a; b// D 0; where N .a; b/ WD
n
! W

b_

a

.B.!// < 1
o
:

Denote

N WD
[ h

N .r1; r2/ W 0 � r1 < r2 � T; r1; r2 2Q
i

Then P.N / D 0. Now for any ! … N , and for any 0 � a < b � T , there exist
r1; r2 2Q such that a � r1 < r2 � b. Then

b_

a

.B.!// �
r2_

r1

.B.!// D 1:

The proof is complete now. �

Remark 2.1.8

(i) Corollary 2.1.7 implies that B is nowhere absolutely continuous with respect
to dt. Let d D 1. We actually have the following so-called Law of Iterated
Logarithm: for any t 2 Œ0;T/,

lim sup
ı#0

Bt;tCı
q
2ı ln ln 1

ı

D 1; lim inf
ı#0

Bt;tCı
q
2ı ln ln 1

ı

D �1; a.s. (2.1.3)
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This implies that B is nowhere Hölder- 1
2

continuous. In particular, B is nowhere
differentiable.

(ii) The regularity (2.1.3) is right regularity. The left regularity Bt�ı;t is less clear.
Moreover, the null set in (2.1.3) depends on t. Indeed, the uniform regularities
supt Bt;tCı and sup0�s<t�T;t�s�ı jBs;tj are more involved. �

2.1.3 The Augmented Filtration

Let FB denote the filtration generated by B. We notice that neither FB nor its
completed filtration is right continuous. For example,

n
! 2 ˝ W lim sup

ı#0
Bı.!/

q
2ı ln ln 1

ı

D 1
o

2 F B
0CnF B

0 :

However, the augmented filtration, denoted as F
B
, is right continuous. We first have

the Blumenthal 0–1 law.

Theorem 2.1.9 For any random variable X 2 L0.F B
0C/, we have X D EŒX�, a.s.

Consequently, For any event A 2 F B
0C, we have P.A/ D 0 or 1.

Proof Let X 2 L0.F B
0C/. For any n � 1, let Gn WD �.Bn�1;s; n�1 � s � T/, the

� -field generated by fBn�1;s; n�1 � s � Tg. Since B has independent increments,
Gn and F B

0C � F B
n�1 are independent. Thus EŒXjGn� D EŒX�, a.s. for all n � 1.

On the other hand, denote G WD ._nGn/ _ N .F /. For any t > 0, Bt D B0;t D
limn!1 Bn�1;t, a.s. Since Bn�1;s 2 L0.Gn�1 / � L0.G /, we see that Bt 2 L0.G / for
any t > 0. Thus F B

0C � G . Note that Gn is increasing in n, then by Problem 1.4.2
(iii) we obtain

X D EŒXjG � D lim
n!1EŒXjGn� D EŒX�; a:s:

Finally, for any A 2 F B
0C, set X WD 1A, we see that P.A/ D 1A, a.s. and thus

P.A/ D 0 or 1. �

Corollary 2.1.10 The augmented filtration F
B

satisfies the usual hypotheses.

Proof It suffices to show that F
B

is right continuous. Theorem 2.1.9 implies that

F B
0C � N .F / � F

B
0 . Then F

B
0C D F

B
0 . Similarly, for any t, we have

F
B
tC D F

B
t . �
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Remark 2.1.11

(i) In this book, we shall use FB. When P is given, in most cases this is equivalent

to using the augmented filtration F
B

as in standard literature, in the spirit of
Proposition 1.2.1.

(ii) As we will see, all FB-local martingales are continuous. If we consider more
general càdlàg martingales, it is more convenient to use right continuous
filtration. �

2.2 Stochastic Integration

2.2.1 Some Heuristic Arguments

In this subsection we assume d D 1. We first recall the Rieman-Stieltjes integral.
Let A W Œ0;T� ! R be a function with bounded variation, and b W Œ0;T� ! R be
continuous. For a partition � W 0 D t0 < � � � < tn D T , define the Rieman-Stieltjes
partial sum:

n�1X

iD0
b.Oti/Ati;tiC1

where Oti 2 Œti; tiC1� is arbitrary:

It is well known that, as j�j ! 0, the above partial sum converges and the limit is
independent of the choices of � and Oti, and thus is defined as the integral of b with
respect to A:

Z T

0

btdAt WD lim
j�j!0

n�1X

iD0
b.Oti/Ati;tiC1

: (2.2.1)

Now assume A; b 2 L0.F/ such that A has bounded variation and b is continuous,
a.s. Then clearly we can define the integral pathwise:

� Z T

0

btdAt

�
.!/ WD

Z T

0

bt.!/d.At.!//:

We next discuss stochastic integrals with respect to B. Let � 2 L0.F/ be
continuous, a.s. We first notice that in this case the limits of the Rieman-Stieltjes
partial sum may depend on the choices of Oti. Indeed, let � D B and set Oti as the left
end point and right end point respectively, we have

SL.�/ WD
n�1X

iD0
Bti Bti;tiC1

; SR.�/ WD
n�1X

iD0
BtiC1

Bti;tiC1
:
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Then, by Theorem 2.1.6,

SR.�/ � SL.�/ D
n�1X

iD0
jBti;tiC1

j2 ! T; in P as j�j ! 0:

So SR.�/ and SL.�/ cannot converge to the same limit, and therefore, it is important
to choose appropriate points Oti. As in standard literature, we shall study the Itô
integral, which uses the left end points. The main reason is that, among others, in this
case we use �ti to approximate � on the interval Œti; tiC1/ and thus the approximating
process �� defined below is still F-measurable:

�� WD
n�1X

iD0
�ti 1Œti;tiC1/: (2.2.2)

Remark 2.2.1 If we use Oti WD tiCtiC1

2
, the corresponding limit is called the

Stratonovic Integral. We shall study Itô integral in this book, which has the following
advantages:

• The F-measurability of the �� in (2.2.2) is natural in many applications, see, e.g.,
Section 2.8;

• As we will see soon, the Itô integral has martingale property and thus allows us
to use the martingale theory;

• Unlike Stratonovic Integral, the Itô integral does not require any regularity on the
integrand � .

However, Stratonovic Integral is more convenient for pathwise analysis. In particu-
lar, under Stratonovic Integral, the chain rule same as the deterministic case remains
true. See Problem 2.10.13. �

2.2.2 Itô Integral for Elementary Processes

Definition 2.2.2 We say � 2 L2.F/ is an elementary process, denote as � 2 L20.F/,
if there exist a partition 0 D t0 < � � � < tn D T such that �t D �ti for all t 2 Œti; tiC1/,
i D 0; � � � ; n � 1.
Clearly, for � 2 L20.F;R

d/, we may define the stochastic integral in a pathwise
manner:

Z t

0

�s � dBs WD
n�1X

iD0
�ti � Bti^t; tiC1^t; 0 � t � T: (2.2.3)
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Lemma 2.2.3 Let � 2 L20.F;R
d/ and denote Mt WD R t

0
�s � dBs.

(i) M is an F-martingale. In particular, EŒMt� D 0.
(ii) M 2 L2.F/ and Nt WD M2

t � R t
0

j�sj2ds is a martingale. In particular,

E
h
jMtj2

i
D E

h Z t

0

j�sj2ds
i
: (2.2.4)

(iii) For any � i 2 L20.F;R
d/, 
i 2 L1.F0;R/, i D 1; 2, we have 
1�1 C 
2�

2 2
L20.F;R

d/ and

Z t

0

Œ
1�
1
s C 
2�

2
s � � dBs D 
1

Z t

0

�1s � dBs C 
2

Z t

0

�2s � dBs:

(iv) M is continuous, a.s.

Proof

(i) It suffices to show that, for any i,

Mt D EŒMtiC1
jFt�; ti � t � tiC1:

Indeed, note that �ti 2 Fti � Ft and B has independent increments, then

EŒMt;tiC1
jFt� D E

h
�ti � Bt;tjC1

ˇ
ˇ
ˇFt

i
D �ti � E

h
Bt;tjC1

ˇ
ˇ
ˇFt

i
D �ti � EŒBt;tjC1

� D 0:

(ii) The square integrability of M follows directly from (2.2.4). Then it suffices to
show that

Nt D EŒNtiC1
jFt�; ti � t � tiC1:

To illustrate the arguments, in this proof we use multidimensional notations.
Note that

Nt;tiC1
D M2

tiC1
� M2

t � j�ti j2.tiC1 � t/ D jMt;tiC1
j2 C 2MtMt;tiC1

� j�ti j2.tiC1 � t/

D Œ�ti�
>
ti � W ŒBt;tiC1

B>
t;tiC1

� .tiC1 � t/Id�C 2Mt�ti � Bt;tiC1
:

Then, similar to (i) we have

EŒNt;tiC1
jFt� D Œ�ti�

>
ti � W E

h
Bt;tiC1

B>
t;tiC1

� .tiC1 � t/Id

i
C 2Mt�ti � EŒBt;tiC1

� D 0:

(iii) and (iv) are obvious. �

The following estimates are important, and we leave a more general result in
Problem 2.10.3 below. Recall the notation X� in (1.2.4).
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Lemma 2.2.4 (Doob’s Maximum Inequality) Let � 2 L20.F;R
d/, Mt WD R t

0
�s �

dBs. Then

EŒjMT j2� � EŒjM�
T j2� � 4EŒjMT j2�: (2.2.5)

Proof The left inequality is obvious. We prove the right inequality in two steps.
Step 1. We first prove it under an additional assumption:

EŒjM�
T j2� < 1: (2.2.6)

Given 
 > 0, denote

�
 WD infft � 0 W jMtj � 
g ^ T: (2.2.7)

Since M is continuous, we see that

�
 2 T .F/; jM�
 j � 
; and fM�
T � 
g D fjM�
 j D 
g: (2.2.8)

Moreover, by (2.2.6) M is a u.i. martingale, then

jM�
 j D
ˇ
ˇ
ˇEŒMT jF�
 �

ˇ
ˇ
ˇ � E

h
jMT j

ˇ
ˇ
ˇF�


i
:

This implies

P.M�

T � 
/ D E

h
1

fjM�

jD
g

i
D E

h jM�
 j



1
fjM�


jD
g

i
� 1



E

h
E

�jMT jˇˇF�


�
1

fjM�

jD
g

i

D 1



E

h
E

�jMT j1
fjM�


jD
g

ˇ
ˇF�


�i D 1



E

h
jMT j1

fjM�

jD
g

i
D 1



E

h
jMT j1

fM�

T �
g

i
: (2.2.9)

Thus

EŒjM�
T j2� D 2

Z 1

0


P.M�
T � 
/d
 � 2

Z 1

0

E
h
jMT j1fM�

T �
g
i
d


D 2E
h Z 1

0

jMT j1fM�

T �
gd

i

D 2E
h
jMT jM�

T

i
� 2

�
EŒjMT j2�

� 1
2
�
EŒjM�

T j2�
� 1
2
;

where the last inequality thanks to the Hölder’s inequality. This implies (2.2.5)
immediately.

Step 2. In the general case, for each n � 1, let �n be defined by (2.2.7) and denote

�n WD �1Œ0;�n�; Mn
t WD

Z t

0

�n
s � dBs; Mn;�

t WD sup
0�s�t

jMn
s j:
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Since M is continuous, by Problem 1.4.8 (ii) we see that �n is increasing, and �n D T
when n is large enough. Then

Mn
t D M�n^t; Mn;�

T � n; and Mn;�
T " M�

T :

By Step 1 and (2.2.4) we have

E
h
jMn;�

T j2
i

� 4E
h
jMn

T j2
i

D 4E
h Z �n

0

j�sj2ds
i

� 4E
h Z T

0

j�sj2ds
i

D 4E
h
jMT j2

i
:

Now applying the Monotone Convergence Theorem we obtain (2.2.5). �

2.2.3 Itô Integral in L2.F/ and L2
loc.F/

We now extend the Itô stochastic integration to all processes in L2.F/. We first need
a lemma.

Lemma 2.2.5 For any � 2 L2.F;Rd/, there exist �n 2 L20.F;R
d/ such that

lim
n!1 k�n � �k2 D 0.

Proof We proceed in three steps.
Step 1. We first assume � is continuous and bounded. For each n, define

�n
t WD

n�1X

iD0
�ti 1Œti;tiC1/ where ti WD i

n
T; i D 0; � � � ; n:

Then by the Dominated Convergence Theorem we obtain the result immediately.
Step 2. We now assume only that j� j � C. For each ı > 0, define �ıt WD

1
ı

R t
.t�ı/_0 �sds. Clearly j�ıj � C, �ı is continuous, and by real analysis, in the

spirit of Problem 1.4.14, we have limı!0

R T
0

j�ıt ��tj2dt D 0, a.s. By the Dominated
Convergence Theorem again, we have limı!0 k�ı��tk2 D 0. Now for each n, there
exists ın such that k�ı��tk2 � 1

2n . Moreover, by Step 1, there exists �n 2 L20.F;R
d/

such that k�n � �ıt k2 � 1
2n . This implies k�n � �tk2 � 1

n ! 0, as n ! 1.
Step 3. For the general case, for each n, denote Q�n WD .�n/ _ � ^ n, where

the truncation is component wise. Then Q�n ! � and j�nj � j� j. Applying the
Dominated Convergence Theorem we get limn!1 k Q�n � �k2 D 0. Moreover, since
j�nj � n

p
d, by Step 2 there exists �n 2 L20.F;R

d/ such that k Q�n ��nk2 � 1
n . Thus

k�n � �k2 � kQ�n � �k2 C kQ�n � �nk2 � kQ�n � �k2 C 1

n
! 0:

The proof is complete now. �
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For the above �n 2 L20.F;R
d/, we have defined Mn

t WD R t
0
�n

s � dBs by (2.2.3).
Applying Lemma 2.2.4 we get

E
h
j.Mn � Mm/�T j2

i
� 4k�n � �mk22 ! 0; as m; n ! 1:

Thus there exists a (P-a.s.) unique continuous process M 2 L0.F;R/ such that

lim
n!1E

h
j.Mn � M/�T j2

i
D 0: (2.2.10)

Moreover, if there exist another sequence Q�n 2 L20.F;R
d/ such that limn!1 k Q�n �

�k2 D 0, then limn!1 k Q�n � �nk2 D 0. This implies that, for QMn
t WD R t

0
Q�n

s � dBs,

0 � E
h
j.Mn � QMn/�T j2

i
� 4k�n � Q�nk22 ! 0; as n ! 1:

Thus QMn also converges to M. That is, the process M does not depend on the choices
of �n. Therefore, we may define M as the stochastic integral of � : for each t 2 Œ0;T�,

Z t

0
�s � dBs WD lim

n!1

Z t

0
�n

s � dBs; where the convergence is in the sense of (2.2.10):

(2.2.11)

Remark 2.2.6 We emphasize that the convergence in (2.2.11) is in L2-sense, and
thus the above definition of stochastic integral is not in a pathwise manner. That is,

given �.!/ and B.!/, in general we cannot determine
� R t

0
�s � dBs

�
.!/. The theory

on pathwise stochastic integration is important and challenging, see some discussion
along this line in Sections 2.8.3 and 12.1.1, and Problem 2.10.14. �

By the uniform convergence in (2.2.10), it follows immediately that

Theorem 2.2.7 Let � 2 L2.F;Rd/ and Mt WD R t
0
�s � dBs. All the results in

Lemmas 2.2.3 and 2.2.4 still hold true.
We finally extend the stochastic integration to all processes � 2 L2loc.F;R

d/. For
n � 1, define

�n WD infft � 0 W
Z t

0

j�sj2ds � ng ^ T; �n
t WD �t1Œ0;�n/.t/:

Then �n 2 L2.F;Rd/, �n is increasing and �n D T for n large enough, a.s. Denote
Mn

t WD R t
0
�n

s � dBs. One can easily check that, for n < m,

Mn
t D Mm

t for t � �n:

Thus we may define
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Z t

0

�s � dBs WD Mn
t for t � �n: (2.2.12)

So Mt WD R t
0
�s � dBs is well defined for all t 2 Œ0;T�. By Theorem 2.2.7 it is

obvious that

Theorem 2.2.8 For any � 2 L2loc.F;R
d/, Mt WD R t

0
�s � dBs is a continuous local

martingale.

2.3 The Itô Formula

The Itô formula is the extension of the chain rule in calculus to stochastic calculus,
and plays a key role in stochastic calculus. In particular, it will be crucial to build
the connection between the martingale theory and partial differential equations, see,
e.g., Section 5.1 below.

2.3.1 Some Heuristic Arguments

Assume A 2 L0.F;R/ has bounded variation, a.s. and f 2 C1.R/ is a deterministic
function. The standard chain rule tells that

df .At/ D f 0.At/dAt: (2.3.1)

The following simple example shows that the above formula fails if we replace A
with the Brownian motion B and thus dA becomes stochastic integration dB.

Example 2.3.1 Let d D 1 and set f .x/ WD x2. Then

jBT j2 D 2

Z T

0

BtdBt C T:

Proof For any partition � W 0 D t0 < � � � < tn D T , we have

jBT j2 D
n�1X

iD0

h
jBtiC1

j2 � jBti j2
i

D
n�1X

iD0

h
jBti;tiC1

j2 C 2Bti Bti;tiC1

i
:

Send j�j ! 0, we have

n�1X

iD0
jBti;tiC1

j2 ! T in L2.FT/: (2.3.2)
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Moreover, denote B�t WD Pn�1
iD0 Bti 1Œti;tiC1/. Then B� 2 L20.F/, and one can easily

check that

lim
j�j!0

kB� � Bk2 D 0:

This implies that

n�1X

iD0
Bti Bti;tiC1

!
Z T

0

BtdBt; in L2.FT/;

which, together with (2.3.2), proves the result. �
Note that

f 0.Bt/ D 2Bt; f 00.Bt/ D 2; hBit D t:

Then Example 2.3.1 implies

f .BT/ � f .B0/ D
Z T

0

f 0.Bt/dBt C 1

2

Z T

0

f 00.Bt/dhBit: (2.3.3)

This is a special case of the Itô formula. We see that there is a correction term
1
2

R T
0

f 00.Bt/dhBit for stochastic integrations. We prove the general case in the next
subsection.

2.3.2 The Itô Formula

In this subsection we focus on one-dimensional case. The multidimensional case
will be introduced in detail in the next subsection. Let b 2 L1loc.F/; � 2 L2loc.F/,
and denote

Xt D X0 C
Z t

0

bsds C
Z t

0

�sdBs and hXit WD
Z t

0

j�sj2ds: (2.3.4)

Theorem 2.3.2 (Ito Formula) Let f 2 C1;2.Œ0;T� � R;R/. Then

df .t;Xt/ D @tf .t;Xt/dt C @xf .t;Xt/dXt C 1

2
@xxf .t;Xt/dhXit (2.3.5)

D
h
@tf C @xfbt C 1

2
@xxf j�tj2

i
.t;Xt/dt C @xf .t;Xt/�tdBt:

Or equivalently,

f .t;Xt/ D f .0;X0/C
Z t

0

h
@tf C @xfbs C 1

2
@xxf j�sj2

i
.s;Xs/ds C

Z t

0
@xf .s;Xs/�sdBs:

(2.3.6)
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Proof We first note that, since X is continuous and f 2 C1;2, for ' D @tf ; @xf ; @xxf ,
we know that '.t;Xt/ is continuous and thus sup0�t�T j'.t;Xt/j < 1, a.s. This
implies that

h
@tf C @xfb C 1

2
@xxf j� j2

i
.�;X/ 2 L1loc.F/; @xf .�;X/� 2 L2loc.F/;

and thus the right side of (2.3.6) is well defined.
Without loss of generality, we prove (2.3.6) only for t D T . We proceed in

several steps.
Step 1. We first assume that bt D b0, �t D �0 are F0-measurable and bounded,

and f is smooth enough with all related derivatives bounded.
For an arbitrary partition � W 0 D t0 < � � � < tn D T , we have

f .T;XT/ � f .0;X0/ D
n�1X

iD0

h
f .tiC1;XtiC1

/ � f .ti;Xti/
i
: (2.3.7)

Denote 
tiC1 WD tiC1 � ti and note that Xti;tiC1
D b0
tiC1 C �0Bti;tiC1

. Then, by
Taylor expansion,

f .tiC1;XtiC1
/ � f .ti;Xti/ D f .ti C
tiC1;Xti C Xti;tiC1

/ � f .ti;Xti/

D @tf .ti;Xti/
tiC1 C @xf .ti;Xti/Xti;tiC1

C1

2
@ttf .ti;Xti/j
tiC1j2 C @txf .ti;Xti/
tiC1Xti;tiC1

C 1

2
@xxf .ti;Xti/jXti;tiC1

j2 C R�iC1

D �
@tf C b0@xf C 1

2
@xxf j�0j2

�
.ti;Xti/
tiC1 C �0@xf .ti;Xti/Bti;tiC1

(2.3.8)

C1

2
@xxf .ti;Xti/j�0j2ŒjBti;tiC1

j2 �
tiC1�C I�iC1

where

I�iC1 WD 1
2

�
@tt f C @xxf jb0j2�.ti;Xti /j
tiC1j2 C �

@txf C b0�0@xxf
�
.ti;Xti /
tiC1Bti ;tiC1

C R�iC1;

and jR�iC1j � C
�j
tiC1j3 C jXti ;tiC1

j3� � C
�j
tiC1j3 C jBti ;tiC1

j3�:

Send j�j ! 0. First, applying the Dominated Convergence Theorem we have:

n�1X

iD0

h
@tf C b0@xf C 1

2
@xxf j�0j2

i
.ti;Xti/
tiC1

!
Z T

0

h
@tf C b0@xf C 1

2
j�0j2@xxf

i
.t;Xt/dt; in L2.FT/: (2.3.9)
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Next, applying the Dominated Convergence Theorem again we have

E
h n�1X

iD0

Z tiC1

ti

j@xf .t;Xt/ � @xf .ti;Xti/j2dt
i

! 0;

and thus

n�1X

iD0
�0@xf .ti;Xti/Bti;tiC1

!
Z T

0

�0@xf .t;Xt/dBt; in L2.FT/: (2.3.10)

Moreover, note that, for any p � 1 and some constant cp > 0,

EŒjBti;tiC1
jp� D cpj
tiC1j

p
2 :

Then

E
h� n�1X

iD0
I�iC1

�2i � CE
h n�1X

iD0

�j
tiC1j2 C
tiC1jBti;tiC1
j C jBti;tiC1

j3�
i

� C
n�1X

iD0
j
tiC1j 32 � Cj�j 12 ! 0: (2.3.11)

Finally, by Example 2.3.1 we see that

jBti;tiC1
j2 �
tiC1 D 2

Z tiC1

ti

Bti;tdBt:

Clearly

E
h Z T

0

ˇ
ˇ
ˇ

n�1X

iD0
@xxf .ti;Xti/Bti;t1Œti;tiC1/

ˇ
ˇ
ˇ
2

dt
i

D E
h n�1X

iD0

Z tiC1

ti

ˇ
ˇ
ˇ@xxf .ti;Xti/Bti;t

ˇ
ˇ
ˇ
2

dt
i

� C
n�1X

iD0

Z tiC1

ti

.t � ti/dt D C
n�1X

iD0
j
tiC1j2 � Cj�j ! 0:

Then

n�1X

iD0

@xxf .ti;Xti /ŒjBti;tiC1
j2 �
tiC1� D

Z T

0

n�1X

iD0

@xxf .ti;Xti /Bti ;t1Œti;tiC1/dBt ! 0; in L2.FT /:

(2.3.12)

Plug (2.3.9)–(2.3.12) into (2.3.7) and (2.3.8), we prove (2.3.6).
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Step 2. Assume that bt D b0, �t D �0 are F0-measurable and bounded, and
f 2 C1;2 with all related derivatives bounded. Let f n be a smooth mollifier of f , see
Problem 1.4.14. Then f n is smooth with all the related derivatives bounded with a
constant Cn which may depend on n, and for ' D @tf ; @xf ; @xxf ,

'n ! ' and j'nj � C where C is independent of n:

By Step 1, we have

f n.T;XT / D f n.0;X0/C
Z T

0

h
@t f

n C @xf nb0 C 1

2
@xxf nj�0j2

i
.t;Xt/dt C

Z T

0

@xf n.t;Xt/�0dBt:

Send n ! 1, we prove (2.3.6) for f immediately.
Step 3. Assume b D Pn�1

iD0 bti 1Œti;tiC1/ 2 L20.F/; � D Pn�1
iD0 �ti 1Œti;tiC1/ 2 L20.F/

are bounded, and f 2 C1;2 with all related derivatives bounded. Applying Step 2 on
Œti; tiC1� one can easily see that

f .tiC1;XtiC1
/ D f .ti;Xti /C

Z tiC1

ti

h
@t f C @xfbti C 1

2
@xxf j�ti j2

i
.t;Xt/dt C

Z tiC1

ti
@xf .t;Xt/�ti dBt:

Sum over all i we obtain the result.
Step 4. Assume b 2 L1.F/; � 2 L2.F/, and f 2 C1;2 with all related derivatives

bounded. Analogous to Lemma 2.2.5, one can easily show that there exist bounded
bn; �n 2 L20.F/ such that

lim
n!1 kbn � bk1 D 0; lim

n!1 k�n � �k2 D 0:

Denote

Xn
t WD X0 C

Z t

0

bn
s ds C

Z t

0

�n
s dBs;

and note that

.Xn � X/�T �
Z T

0

jbn
t � btjdt C sup

0�t�T

ˇ
ˇ
ˇ

Z t

0

Œ�n
s � �s�dBs

ˇ
ˇ
ˇ:

Then by (2.2.11) we have

lim
n!1E

h
.Xn � X/�T

i
D 0; and thus .Xn � X/�T ! 0 in probability:

By Step 3, we have

f .T;Xn
T / D f .0;X0/C

Z T

0

h
@tf C @xfbn

t C 1

2
@xxf j�n

t j2
i
.t;Xn

t /dt C
Z T

0
@xf .t;Xn

t /�
n
t dBt:
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Send n ! 1. Note that

E
h Z T

0

ˇ
ˇ@xf .t;Xn

t /�
n
t � @xf .t;Xt/�t

ˇ
ˇ2dt

i

� CE
h Z T

0

�j�n
t � �tj2 C j@xf .t;Xn

t / � @xf .t;Xt/j2j�tj2
�
dt

i
! 0;

thanks to the Dominated Convergence Theorem. Then

Z T

0

@xf .t;Xn
t /�

n
t dBt !

Z T

0

@xf .t;Xt/�tdBt in L2.FT/:

Similarly,

Z T

0

h
@t f C @xfbn

t C 1

2
@xxf j�n

t j2
i
.t;Xn

t /dt !
Z T

0

h
@t f C @xfbt C 1

2
@xxf j�tj2

i
.t;Xt/dt; in L1.FT /:

We thus obtain the result.
Step 5. We now show the general case, namely b 2 L1loc.F/; � 2 L2loc.F/ and

f 2 C1;2. For each n � 1, define

�n WD inf
n
t � 0 W

Z t

0

jbsjds C
Z t

0

j�sj2ds C jXtj C
Z t

0

j@xf .s;Xs/�sj2ds � n
o

^ T;

(2.3.13)

and denote

bn WD b1Œ0;�n�; �n WD �1Œ0;�n�; Xn WD X�n^�;

and f n 2 C1;2 with bounded derivatives such that

f n.t; x/ D f .t; x/; for all 0 � t � T; jxj � n:

Then

Xn
t D X0 C

Z t

0

bn
s ds C

Z t

0

�n
s dBs and jXnj � n:

By Step 4, we have

f n.T;Xn
T/ D f n.0;X0/C

Z T

0

h
@tf

n C @xf nbn
t C 1

2
@xxf nj�n

t j2
i
.t;Xn

t /dt

C
Z T

0

@xf n.t;Xn
t /�

n
t dBt:
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This is equivalent to

f .T;X�n / D f .0;X0/C
Z T

0

h
@t f C @xfbn

t C 1

2
@xxf j�n

t j2
i
.t;Xn

t /dt C
Z T

0

@xf .t;Xn
t /�

n
t dBt:

(2.3.14)

Recall (2.2.12) for stochastic integration in L2loc.F/ and notice that (2.3.13) include
the term

R t
0

j@xf .s;Xs/�sj2ds, then

Z T

0

@xf .t;Xn
t /�

n
t dBt D

Z �n

0

@xf .t;Xn
t /�

n
t dBt D

Z �n

0

@xf .t;Xt/�tdBt:

Plug this into (2.3.14) and send n ! 1. Note that, for n large enough, �n D T ,
bn D b; �n D � , Xn D X, a.s. This implies that (2.3.6) holds a.s. �

2.3.3 Itô Formula in Multidimensional Case

Let B D .B1; � � � ;Bd/> be a d-dimensional F-Brownian Motion, bi 2 L1loc.F/, �
i;j 2

L2loc.F/, 1 � i � d1, 1 � j � d. Set b WD .b1; � � � ; bd1 /> and � WD .� i;j/1�i�d1;1�j�d

which take values in Rd1 and Rd1�d, respectively. Let X D .X1; � � � ;Xd1 /> satisfy

dXi
t WD bi

tdt C
dX

jD1
�

i;j
t dBj

t; i D 1; � � � ; d1I or equivalently; dXt D btdt C �tdBt:

(2.3.15)

Denote

hXit WD
Z t

0

�s�
>
s ds taking values in S

d1 : (2.3.16)

We have the following multidimensional Itô formula whose proof is analogous to
that of Theorem 2.3.2 and is omitted.

Theorem 2.3.3 Assume f W Œ0;T� � Rd1 ! R is in C1;2. Then

df .t;Xt/ D @t f .t;Xt/dt C @xf .t;Xt/dXt C 1

2
@xxf .t;Xt/ W dhXit

D
h
@t f C @xfbt C 1

2
@xxf W .�t�

>

t /
i
.t;Xt/dt C @xf .t;Xt/�tdBt (2.3.17)

D
h
@t f C

d1X

iD1

@xi fb
i
t C 1

2

d1X

i;jD1

dX

kD1

@xixj f�
i;k
t �

j;k
t

i
.t;Xt/dt C

d1X

iD1

dX

jD1

@xi f .t;Xt/�
i;j
t dBj

t:

Throughout the book, we take the convention that @xf D .@x1 f ; � � � ; @xd1
f / is a row

vector, and we note that @xxf takes values in S
d1 .
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2.3.4 An Extended Itô Formula

For future purpose, we need to extend the Itô formula to the case where the drift term
btdt is replaced with a bounded variational process A. For simplicity, we state the
result only for the case d1 D 1, but one may easily generalize it to multidimensional
cases. Let B be a d-dimensional F-Brownian Motion, � 2 L2loc.F;R

1�d/, A 2
L0.F;R/ is continuous in t and

WT
0 A < 1, a.s. Denote

dXt WD �tdBt C dAt; hXit WD
Z t

0

�s�
>
s ds: (2.3.18)

We have the following extended Itô formula whose proof is left to the readers in
Problem 2.10.4.

Theorem 2.3.4 Assume f W Œ0;T� � R ! R is in C1;2. Then

df .t;Xt/ D @tf .t;Xt/dt C @xf .t;Xt/dXt C 1

2
@xxf .t;Xt/ W dhXit

D
h
@tf C 1

2
@xxf .�t�

>
t /

i
.t;Xt/dt C @xf .t;Xt/�tdBt C @xf .t;Xt/dAt; (2.3.19)

where the last term in understood in the sense of (2.2.1).

2.4 The Burkholder-Davis-Gundy Inequality

As an application of the Itô formula, we prove the following important inequality
due to Burkholder-Davis-Gundy. For any p > 0 and � 2 L2;p.F;Rd/ �
L2loc.F;R

d/, define Mt WD R t
0
�s � dBs and M� by (1.2.4).

Theorem 2.4.1 (Burkholder-Davis-Gundy Inequality) For any p > 0, there
exist universal constants 0 < cp < Cp, depending only on p and d, such that

cpE
h�

Z T

0

j�tj2dt
� p
2

i
� EŒjM�

T jp� � CpE
h�

Z T

0

j�tj2dt
� p
2

i
: (2.4.1)

Proof We again assume d D 1. The case p D 2 is exactly the Doob’s maximum
inequality in Theorem 2.2.7 and Lemma 2.2.4. Note that hMit D R t

0
�2s ds. Following

the truncation arguments in Step 2 of Lemma 2.2.4, we may assume without loss of
generality that

M�
T and hMiT are bounded. (2.4.2)

However, we shall emphasize that the constants Cp; cp in the proof below will not
depend on this bound. We proceed in several steps.
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Step 1. We first prove the left inequality by using the right inequality. Apply Itô
formula, we have

djMtj2 D j�tj2dt C 2Mt�tdBt: (2.4.3)

Then

hMiT D
Z T

0

j�tj2dt D M2
T � M2

0 � 2
Z T

0

Mt�tdBt:

Thus, by the right inequality and noting that ab � 1
2
Œa2 C b2�, we have

EŒhMi
p
2

T � � CpEŒjM�

T jp�C CpE

hˇ
ˇ
Z T

0

Mt�tdBt

ˇ
ˇ

p
2

i
� CpEŒjM�

T jp�C CpE

h�
Z T

0

jMt�tj2dt
� p
4

i

� CpEŒjM�

T jp�C CpE

h
jM�

T j p
2 hMi

p
4

T

i
� CpEŒjM�

T jp�C 1

2
E

h
hMi

p
2

T

i
:

This, together with (2.4.2), implies the left inequality.
Step 2. We next prove the right inequality for p � 2. By the same arguments as

in (2.2.9), we have

EŒjM�
T jp� D p

Z 1

0

p�1P.M�

T � 
/d
 � p
Z 1

0

p�2E

h
jMT j1fM�

T �
g
i
d


D E
h
p

Z 1

0

p�2jMT j1fM�

T �
gd

i

D E
h
pjMT j

Z M�

T

0

p�2d


i
D p

p � 1E
h
jMT jjM�

T jp�1i:

Note that p and p
p�1 are conjugates. Then by Hölder inequality we have

EŒjM�
T jp� � p

p � 1
�
EŒjMT jp�

� 1
p
�
EŒjM�

T jp�
� p�1

p
:

This, together with (2.4.2), implies

EŒjM�
T jp� �

� p

p � 1
�p
EŒjMT jp�: (2.4.4)

On the other hand, by (2.4.3) and applying the Itô formula, we have

d.jMtjp/ D d
�
ŒjMtj2�

p
2

� D 1

2
p.p � 1/jMtjp�2j�tj2dt C jMtjp�2Mt�tdBt:

By (2.4.2), clearly jMjp�2M� 2 L2.F/. Then

E
h Z T

0

jMtjp�2Mt�tdBt

i
D 0:
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Thus

EŒjMT jp� D 1

2
p.p � 1/E

h Z T

0

jMtjp�2j�tj2dt
i

� CpE
h
jM�

T jp�2hMiT

i
:

Note that p
p�2 and p

2
are conjugates. Applying Hölder inequality again we obtain

EŒjMT jp� � CpE
h
jM�

T jp�2hMiT

i
� Cp

�
EŒjM�

T jp�
� p�2

p
�
E

h
hMi

p
2

T

i� 2
p
:

This, together with (2.4.4) and (2.4.2), implies the right inequality in (2.4.1)
immediately.

Step 3. We finally prove the right inequality for 0 < p < 2. Note that

E
h Z T

0

jhMi
p�2
4

t �tj2dt
i

D E
h Z T

0

hMi
p�2
2

t dhMit

i
D 2

p
EŒhMi

p
2

T � < 1:

Then Nt WD R t
0
hMi

p�2
4

t �tdBt is a square integrable martingale and EŒN2
T � D

2
pEŒhMi

p
2

T �. Apply Itô formula, we have

Mt D
Z t

0

hMi
2�p
4

s dNs D hMi
2�p
4

t Nt �
Z t

0

NsdhMi
2�p
4

s

Note that hMi is increasing in t. Then

M�
T � hMi

2�p
4

T N�
T C

Z T

0

jNsjdhMi
2�p
4

s � CN�
T hMi

2�p
4

T :

Note that 2
p and 2

2�p are conjugates. Applying the Hölder inequality and then the
Doob’s maximum inequality Lemma 2.2.4, we have

EŒjM�

T jp� � CpE

h
jN�

T jphMi
p.2�p/
4

T

i
� Cp

�
EŒjN�

T j2�
� p
2
�
E

�hMi
p
2
T

�� 2�p
2

� Cp

�
EŒjNT j2�

� p
2
�
E

�hMi
p
2
T

�� 2�p
2 D Cp

�
E

�hMi
p
2
T

�� p
2
�
E

�hMi
p
2
T

�� 2�p
2 D CpE

�hMi
p
2
T

�
:

This completes the proof. �

Corollary 2.4.2 Let � 2 L2;1.F;Rd/ � L2loc.F;R
d/. Then Mt WD R t

0
�s � dBs is a

u.i. martingale.

Proof Apply the Burkholder-Davis-Gundy Inequality Theorem 2.4.1 with p D 1,
we have

EŒM�
T � � CE

h�
Z T

0

j�tj2dt
� 1
2

i
< 1:

Then the local martingale M is a u.i. martingale. �
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2.5 The Martingale Representation Theorem

Given � 2 L2.F;Rd/, it is known that Mt WD R t
0
�s � dBs is a square integrable F-

martingale. The Martingale Representation Theorem deals with the opposite issue:
given a square integrable F-martingale M, does there exist � 2 L2.F;Rd/ such that
Mt D M0 C R t

0
�s � dBs?

The answer to the above question is in general negative.

Example 2.5.1 Let d D 1 and B; QB be independent F-Brownian Motion. Then QB is a
square integrable F-martingale, but there is no � 2 L2.F/ such that QBt D R t

0
�sdBs.

Proof We prove by contradiction. Assume QBt D R t
0
�sdBs for some � 2 L2.F/. On

one hand, for X1t WD R t
0
�sdBs and X2t WD R t

0
1d QBs, applying Itô formula (2.3.17)

we have

dj QBtj2 D d.X1t X2t / D X1t d QBt C X2t �tdBt

and thus j QBtj2 is a local martingale. On the other hand, applying Itô formula (2.3.5)
directly on j QBj2 we obtain

dj QBtj2 D 2 QBtd QBt C dt

and thus it is not a local martingale. Contradiction. �
The key issue here is that QB is independent of B and thus is not FB-measurable.

We have the following important result by using the filtration FB.

Theorem 2.5.2 For any � 2 L2.F B
T /, there exists unique � 2 L2.FB;Rd/ such that

� D EŒ��C
Z T

0

�t � dBt: (2.5.1)

Consequently, for any FB-martingale M such that EŒjMT j2� < 1, there exists
unique � 2 L2.FB;Rd/ such that

Mt D M0 C
Z t

0

�s � dBs: (2.5.2)

Proof Again we assume d D 1 for simplicity. First note that (2.5.2) is a direct
consequence of (2.5.1). Indeed, for any FB-martingale M such that EŒjMT j2� < 1,
by (2.5.1) there exists unique � 2 L2.FB/ such that

MT D EŒMT �C
Z T

0

�tdBt:

Denote

QMt WD EŒMT �C
Z t

0

�sdBs:



2.5 The Martingale Representation Theorem 43

Then QM is an FB-martingale and QMT D MT . Thus

Mt D EŒMT jF B
t � D EŒ QMT jF B

t � D QMt:

In particular,

M0 D QM0 D EŒMT �:

This implies (2.5.2) immediately.
We next prove the uniqueness of � in (2.5.1). If there is another Q� 2 L2.FB/

satisfying (2.5.1). Then
Z T

0

.�t � Q�t/dBt D 0:

Square both sides and take expectations, we get

E
h Z T

0

j�t � Q�tj2dt
i

D 0:

That is,

Q� D �; dt � dP � a.s.

It remains to prove the existence in (2.5.1). We proceed in several steps.
Step 1. Assume � D g.BT/, where g 2 C2

b.R/. Define

u.t; x/ WD E
h
g.x C BT�t/

i
D

Z

R

g.y/p.T � t; y � x/dy; where p.t; x/ WD 1p
2� t

e� x2
2t :

(2.5.3)

Note that

@tp.t; x/ D 1p
2�

e� x2
2t

h
� 1

2
t� 3

2 C x2

2
t� 5

2

i

@xp.t; x/ D 1p
2� t

e� x2
2t .�x

t
/; @xxp.t; x/ D 1p

2� t
e� x2

2t

hx2

t2
� 1

t

i
:

Then

@tp.t; x/ � 1

2
@xxp.t; x/ D 0:

One can easily check that u 2 C1;2
b .Œ0;T� � R/ and

@tu.t; x/C 1

2
@xxu.t; x/ D 0; u.T; x/ D g.x/: (2.5.4)
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Now define

Mt WD u.t;Bt/; �t WD @xu.t;Bt/: (2.5.5)

Apply Itô formula we have

du.t;Bt/ D ux.t;Bt/dBt C Œ@tu C 1

2
@xxu�.t;Bt/dt D �tdBt:

Thus

g.BT/ D u.T;BT/ D u.0; 0/C
Z T

0

�tdBt D EŒg.BT/�C
Z T

0

�tdBt:

Since @xu is bounded, we see that � 2 L2.FB/, and therefore, (2.5.1) holds.
Step 2. Assume � D g.BT/ where g W R ! R is Borel measurable and bounded.

Let gn be a smooth mollifier of g as in Problem 1.4.14. Then gn 2 C2
b.R/ for

each n, jgnj � C for all n, and gn.x/ ! g.x/ for dx-a.e. x. Since BT has density,
the probability that BT lies in a Lebesgue null set is 0. Then gn.BT/ ! g.BT/

a.s. Applying the Dominated Convergence Theorem we get limn!1 EŒjgn.BT/ �
g.BT/j2� D 0. Now for each n, by Step 1 there exists �n 2 L2.F/ such that
gn.BT/ D EŒgn.BT/�C

R T
0
�n

t dBt. Then (2.5.1) follows from Problem 2.10.5.
Step 3. Assume � D g.Bt1 ; � � � ;Btn/, where 0 < t1 < � � � < tn � T and g W Rn !

R is Borel measurable and bounded. Denote gn.x1; � � � ; xn/ WD g.x1; � � � ; xn/. Apply
Step 2 on Œtn�1; tn�, there exists �n 2 L2.FB/ such that

gn.Bt1 ; � � � ;Btn/ D E
h
gn.Bt1 ; � � � ;Btn/jF B

tn�1

i
C

Z tn

tn�1

�n
t dBt

D gn�1.Bt1 ; � � � ;Btn�1 /C
Z tn

tn�1

�n
t dBt;

where, since B has independent increments,

gn�1.x1; � � � ; xn�1/ WD E
h
gn.x1; � � � ; xn�1; xn�1 C Btn�1;tn/

i

is also Borel measurable and bounded. Repeating the arguments backwardly in time,
we obtain

giC1.Bt1 ; � � � ;BtiC1
/ D gi.Bt1 ; � � � ;Bti/C

Z tiC1

ti

� iC1
t dBt;

where

gi.x1; � � � ; xi/ WD E
h
giC1.x1; � � � ; xi; xi C Bti;tiC1

/
i
:
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Define

� WD
nX

iD1
� i1Œti�1;ti/:

Then one can easily see that � 2 L2.FB/ and satisfies the requirement.
Step 4. Assume � 2 L1.F B

T /. For each n, denote tn
i WD iT

2n , i D 0; � � � ; 2n. Let
F n

T be the � -field generated by fBtni ; 0 � i � 2ng and define �n WD EŒ�jF n
T �: By the

Doob-Dynkin lemma we have

�n D gn.Btn1 ; � � � ;Btn2n / for some Borel measurable function gn:

Since � is bounded, then so is �n and thus gn is bounded. By Step 3 we get

�n D EŒ�n�C
Z T

0

�n
t dBt for some �n 2 L2.FB/:

Since B is continuous, it is clear that F B
T WD _nF

n
T . Note that EŒ�jF B

T � D � . Then
by Problem 1.4.2 (iii) and the Dominated Convergence Theorem we have

lim
n!1E

h
j�n � �j2

i
D 0:

Now (2.5.1) again follows from Problem 2.10.5.
Step 5. In the general case, for each n, let �n WD .�n/ _ � ^ n. Then j�nj � n and

thus by Step 4, there exists �n 2 L2.FB/ such that

�n D EŒ�n�C
Z T

0

�n
t dBt:

Clearly �n ! � for all !. Moreover, j�nj � j�j. Then by the Dominated Convergence
Theorem we have

lim
n!1E

h
j�n � �j2

i
D 0;

and thus (2.5.1) follows from Problem 2.10.5 again. �

Remark 2.5.3 In the financial application in Section 2.8, the stochastic integrand
� is related to the hedging portfolio. In particular, from (2.5.5) we see that � is the
derivative of M with respect to B, and thus is closely related to the so-called delta
hedging. In fact, this connection is true even in non-Markov case, by introducing
the path derivatives in Section 9.4. �

Remark 2.5.4 The condition that � is F B
T -measurable is clearly crucial in Theo-

rem 2.5.2. When � 2 L2.FT/ and F is larger than FB, we may have the following
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extended martingale representation theorem: there exists unique � 2 L2.F;Rd/

such that

� D EŒ��C
Z T

0

�tdBt C NT ; (2.5.6)

where N 2 L2.F/ is a martingale orthogonal to B, in the sense that the quadric
covariation hN;Bi D 0, or equivalently that NB is also a martingale. See, e.g., Protter
[196]. �

2.6 The Girsanov Theorem

In this section we shall derive another probability measure from P. To distinguish
the two probability measures, we shall write P explicitly. Recall that B is a d-
dimensional .P;F/-Brownian motion. Let � 2 L2loc.F;P;R

d/, and define

M�
t WD exp

� Z t

0

�s � dBs � 1

2

Z t

0

j�sj2ds
�
; which implies M�

t D 1C
Z t

0

M�
s �s � dBs:

(2.6.1)

Then M� is a P-local martingale. Moreover, we have

Lemma 2.6.1 Assume � 2 L1.F;PIRd/. Then M� 2 T
1�p<1 L1;p.F;P/. In

particular, M� is a u.i. .P;F/-martingale.

Proof For simplicity again we assume d D 1. Denote Xt WD R t
0
�sdBs. Since j� j �

C0 for some constant C0 > 0, by the Burkholder-Davis-Gundy Inequality we see
that X 2 T

n�1 L1;n.F;P/. For n � 1, applying Itô formula we have

X2n
t D 2n

Z t

0

X2n�1
s �sdBs C n.2n � 1/

Z t

0

X2n�2
s j�sj2ds:

Then

EPŒjXtj2n� D n.2n � 1/EP
h Z t

0
X2n�2

s j�sj2ds
i

� 1

2
C20.2n/.2n � 1/

Z t

0
EPŒjXsj2n�2�ds:

By induction one can easily check that

EPŒjXtj2n� � C2n
0

2n
t2n �

�C0Tp
2

�2n
: (2.6.2)

Then clearly EŒjXtjn� � Cn
1, n � 1, for some constant C1 > 0. Note that

jM�
t jp D exp

�
pXt � p

2

Z t

0

j�sj2ds
�

� exp.pXt/ D
1X

nD0

pnXn
t

nŠ
:
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Then

EPŒjM�
t jp� �

1X

nD0

pn

nŠ
EPŒjXtjn� �

1X

nD0

pnCn
1

nŠ
D epC1 < 1:

Now it follows from the Bukholder-Davis-Gunday inequality that M� 2T
1�p<1 L1;p.F;P/. �
Clearly M� > 0, and the above lemma implies EPŒM�

T � D M�
0 D 1. Then one

can easily check that the following P� is a probability measure equivalent to P:

P� .A/ WD EPŒM�
T 1A�; 8A 2 FT ; or equivalently; dP� WD M�

T dP: (2.6.3)

We have the following lemma whose proof is left to the exercise.

Lemma 2.6.2 Let � 2 L0.FT/. Then EP� Œj�j� < 1 if and only if EPŒM�
T j�j� < 1.

Moreover,

EP� Œ�� D EPŒM�
T��:

The next result is crucial.

Lemma 2.6.3 Let X 2 L0.F/ such that EP� ŒjXtj� < 1 for each t. Then X is a
P� -martingale if and only if M�X is a P-martingale. In particular, .M� /�1 is a
P� -martingale.

Proof First, by Lemma 2.6.2 we see that EP� ŒjXtj� < 1 implies

EPŒM�
t jXtj� D EP

h
EPŒM�

T jFt�jXtj
i

D EPŒM�
T jXtj� D EP� ŒjXtj� < 1:

We claim that, for any � 2 L1.FT ;P
� /,

EP� Œ�jFt� D .M�
t /

�1EPŒM�
T�jFt�; (2.6.4)

Notice that X is a P� -martingale if and only if Xt D EP� ŒXT jFt�. By (2.6.4), this
is equivalent to M�

t Xt D EPŒM�
T�jFt�, which amounts to saying that M�X is a

P-martingale.
We now prove (2.6.4). For any 	 2 L1.Ft;P/ D L1.Ft;P

� /, applying
Lemma 2.6.2 twice and noting that M� is a P-martingale we have

EP�
h
.M�

t /
�1EPŒM�

T�jFt�	
i

D EP
h
M�

T.M
�
t /

�1EPŒM�
T�jFt�	

i

D EP
h
EPŒM�

T�jFt�	
i

D EP
h
M�

T�	
i

D EP�
h
�	

i
;

which implies (2.6.4) immediately. �
We now prove the main result of this section.
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Theorem 2.6.4 Let � 2 L1.F;P;Rd/. The following B� is a .P� ;F/-Brownian
motion:

B�t WD Bt �
Z t

0

�sds: (2.6.5)

Proof For simplicity we assume d D 1. Apply Itô formula, we have

d.M�
t B�t / D M�

t Œ�tB
�
t C 1�dBtI d

�
M�

t ŒjB�t j2 � t�
�

D M�
t

h
2B�t C .jB�t j2 � t��t

i
dBt:

By Lemmas 2.6.1 and 2.6.3 we see that B� and jB�t j2 � t are P� -martingales.
To show that B� is a .P� ;F/-Brownian motion, we follow the arguments of

the so-called Levy’s characterization theorem. Fix 0 � s < T . By the martingale
properties we have

EP� ŒB�s;tjFs� D 0; EP� Œ.B�s;t/
2jFs� D t � s; s � t � T: (2.6.6)

Denote N�
t WD .M�

s /
�1M�

t . For each n � 2, applying Itô formula we have

d
h
N�

t .B
�
s;t/

n
i

D Œ� � � �dBt C n.n � 1/
2

N�
t .B

�
s;t/

n�2dt:

Then

EP�
h
.B�s;t/

n
ˇ
ˇ
ˇFs

i
D EP

h
N�

t .B
�
s;t/

n
ˇ
ˇ
ˇFs

i
D n.n � 1/

2

Z t

s
EP

h
N�

r .B
�
s;r/

n�2
ˇ
ˇ
ˇFs

i
dr

D n.n � 1/
2

Z t

s
EP�

h
.B�s;r/

n�2
ˇ
ˇ
ˇFs

i
dr:

By induction one can easily derive from (2.6.6) that

EP� Œ.B�s;t/
2nC1jFs� D 0; EP� Œ.B�s;t/

2njFs� D .2n/Š

2nnŠ
.t � s/n: (2.6.7)

Then, for any ˛ 2 R,

EP� Œe˛B�s;t jFs� D
1X

nD0

˛n

nŠ
EP� Œ.B�s;t/

njFs� D
1X

nD0

˛n.t � s/n

2nnŠ
D e

˛.t�s/
2 : (2.6.8)

This implies that, under P� , B�s;t is independent of Fs and has distribution N.0; t�s/.
That is, B� is a .P� ;F/-Brownian motion. �

Remark 2.6.5 The above theorem is a special case of the Levy’s martingale
characterization of Brownian motion (see, e.g., Karatzas & Shreve [117]):
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Let M be a continuous process with M0 D 0 and denote Nt WD M2
t � t:

Then M is a Brownian motion if and only if both M and N are martingales.

(2.6.9)

The result follows similar arguments, but involves the general martingale theory,
and we omit it. �

We conclude the section with the martingale representation theorem for .P� ;B� /.
For � 2 L2.F B�

T ;P� /, the result follows from the standard martingale representation
Theorem 2.5.2. For � 2 L2.FT ;P

� /, as seen in Example 2.5.1, the result is in
general not true. The nontrivial interesting case is � 2 L2.F B

T ;P
� /. We note that

for � 2 L1.FB;P/, we have FB� � FB, but in general FB� ¤ FB. (2.6.10)

A counterexample for FB� ¤ FB is provided by Tsirelson [229]. Nevertheless, we
still have

Theorem 2.6.6 Assume � 2 L1.FB;P;Rd/. Then for any � 2 L2.F B
T ;P

� /, there
exists (P� -a.s.) unique � 2 L2.FB

T ;P
� ;Rd/ such that

� D EP� Œ��C
Z T

0

�t � dB�t :

We remark that in general we cannot expect � to be FB� -measurable.

Proof Assume for simplicity that d D 1. By the truncation arguments in Step 5 of
Theorem 2.5.2, we may assume without loss of generality that � is bounded. Denote
Xt WD EP� Œ�jF B

t �. Then X is a bounded .P� ;FB/-martingale. By Lemmas 2.6.1
and 2.6.3, M�X is a .P;FB/-square integrable martingale. By Theorem 2.5.2, there
exists Q� 2 L2.FB;P/ such that

d.M�
t Xt/ D Q�tdBt:

Apply Itô formula, we have

d.M�
t /

�1 D �.M�
t /

�2M�
t �tdBt C .M�

t /
�3jM�

t �tj2dt D .M�
t /

�1h � �tdBt C j�tj2dt
i
I

dXt D d
h
.M�

t /
�1.M�

t Xt/
i

D .M�
t /

�1 Q�tdBt C M�
t Xt.M

�
t /

�1h � �tdBt C j�tj2dt
i

� Q�t.M
�
t /

�1�tdt

D
h
.M�

t /
�1 Q�t � Xt�t

i
dB�t :

This proves the result with �t WD .M�
t /

�1 Q�t � Xt�t. �
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Remark 2.6.7

(i) In the option pricing theory in Section 2.8, Girsanov theorem is a convenient
tool to find the so-called risk neutral probability measure.

(ii) In stochastic control theory, see Section 4.5.2, Girsanov theorem is a powerful
tool to stochastic optimization problem with drift control in weak formulation.

(iii) Note that P� is equivalent to P. For stochastic optimization problem with
diffusion control in weak formulation, the involved probability measures are
typically mutually singular. Then Girsanov theorem is not enough. We shall
introduce new tools in Part III to address these problems. �

Remark 2.6.8 The Girsanov theorem holds true under weaker assumptions on � ,
see Theorem 7.2.3 and Problem 7.5.2 below. �

2.7 The Doob-Meyer Decomposition

The result in this section actually holds for general setting and under much weaker
conditions, see, e.g., Karatzas & Shreve [117]. However, for simplicity we shall only
present a special case.

Theorem 2.7.1 Assume F D FB and let X 2 S
2.F/ be a continuous submartingale.

Then there exists unique decomposition Xt D X0 C R t
0

Zs � dBs C Kt, where Z 2
L2.F;Rd/, K 2 I2.F/ with K0 D 0. Moreover, there exists a constant C > 0,
depending only on d, such that

E
h Z T

0

jZtj2dt C jKT j2
i

� CEŒjX�
T j2�: (2.7.1)

Proof For simplicity we assume d D 1. We first prove the uniqueness. Assume
Z0 2 L2.F/ and K0 2 I2.F/ with K0

0 D 0 provide another decomposition. Then,
denoting 
Z WD Z � Z0; 
K WD K � K0,

Z t

0


ZsdBs D �
Kt; 0 � t � T:

For each n � 1, denote ti WD tn
i WD i

n T , i D 0; � � � ; n. Then, noting that K;K0 are
increasing,

E
h Z T

0

j
Ztj2dt
i

D
n�1X

iD0
E

h� Z tiC1

ti


ZtdBt

�2i D
n�1X

iD0
E

h
j
KtiC1

�
Kti j2
i

D
n�1X

iD0
E

h
jKti;tiC1

� K0
ti;tiC1

j2
i

�
n�1X

iD0
E

h
jKti;tiC1

C K0
ti;tiC1

j2
i

� E
h

sup
0�i�n�1

ŒKti;tiC1
C K0

ti;tiC1
�ŒKT C K0

T �
i
:
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Since K;K0 are continuous, send n ! 1 and apply the Dominated Convergence

Theorem, we obtain E
h R T

0
j
Ztj2dt

i
D 0. Then Z D Z0, which implies further that

K D K0.
We now prove the existence. Let ti be as above, Mn

t0 WD Kn
t0 WD 0, and for i D

0; � � � ; n � 1,

Mn
tiC1

WD Mn
ti C XtiC1

� Eti ŒXtiC1
�; Kn

tiC1
WD Kn

ti C Eti ŒXtiC1
� � Xti : (2.7.2)

Then clearly Mn
ti is an fFtig0�i�n-martingale and, since X is a submartingale, Kn

ti 2
L0.Fti�1 / is increasing in i. Note that

E
h
jXtiC1

j2 � jXti j2
i

D E
h
jMn

ti;tiC1
C Kn

ti;tiC1
C Xti j2 � jXti j2

i

D E
h
jMn

ti;tiC1
j2 C jKn

ti;tiC1
j2 C 2Xti K

n
ti;tiC1

i

� E
h
jMn

ti;tiC1
j2 � 2X�

T Kn
ti;tiC1

i
:

This implies, noting that Mn is a martingale,

EŒjMn
T j2� D

n�1X

iD0
E

h
jMn

ti;tiC1
j2

i
� E

h
jXT j2 � jX0j2 C 2X�

T Kn
T

i

D E
h
jXT j2 � jX0j2 C 2X�

T ŒXT � X0 � Mn
T �

i
� E

h
CjX�

T j2 C 1

2
jMn

T j2
i
:

Then

EŒjMn
T j2� � CEŒjX�

T j2�; which implies further that EŒjKn
T j2� � CEŒjX�

T j2�: (2.7.3)

Now by the martingale representation Theorem 2.5.2, for each n there exists
Zn 2 L2.F/ such that Mn

T D R T
0

Zn
t dBt. Denote Kn

t WD P
i�0 Kn

ti 1Œti;tiC1/. By (2.7.3)
and applying Theorem 1.3.7, we may assume without loss of generality that .Zn;Kn/

converges weakly to certain .Z;K/ 2 L2.F/. Applying Problem 2.10.11 (ii) and (iii)
we see that Mn converges weakly to M� WD R �

0
ZsdBs and EŒ

R T
0

jZtj2dt� � CEŒjX�
T j2�.

Moreover, since Xti D X0 C Mn
ti C Kn

ti and X is continuous. By Problem 2.10.11 (i) it
is clear that Xt D X0 C Mt C Kt. In particular, this implies that K is continuous and
EŒjKT j2� � CEŒjX�

T j2�.
It remains to show that K is increasing. Note that each Kn is increasing. Let OKn be

the convex combination of Kn as in Theorem 1.3.8, then OKn is also increasing and

limn!1 E
h R T

0
j OKn

t � Ktj2dt
i

D 0. By otherwise choosing a further subsequence,

we have
R T
0

j OKn
t � Ktj2dt ! 0, a.s. This clearly implies that K is increasing, a.s. �
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2.8 A Financial Application

Consider the Black-Scholes model on a filtered probability space .˝;F ;F;P/
with a one-dimensional .P;F/-Brownian motion B. The financial market consists
of two assets: a bank account (or bond) with constant interest rate r (continuously
compounded), and a stock with price St:

dSt D St

h
�dt C �dBt

i
; or equivalently St D S0 exp

�
�Bt C .� � 1

2
�2/t

�
; (2.8.1)

where the constants � and � > 0 stand for the appreciation and volatility of the
stock, respectively. Let � 2 L2.FT/ be a European option with maturity time T ,
namely at time T the option is worth � . Now our goal is to find the fair price Y0 of �
at time 0, or more generally the fair price Yt at time t 2 Œ0;T�. Clearly YT D � .

2.8.1 Pricing via Risk Neutral Measure

We first note that, due to the presence of the interest, we should consider the
discounted prices:

St D e�rtSt; Yt D e�rtYt: (2.8.2)

One natural guess for the option price is that

Y0 D Y0 D EPŒYT � D EPŒe�rT��: (2.8.3)

However, the above guess cannot be true in general. Indeed, if we set � D ST , then
following (2.8.3) we should have Y0 D EPŒST �, or more generally Yt D EPŒST jFt�.
That is, Y should be a P-martingale. However, obviously in this case we should have
Yt D St and thus Yt D St. Applying Itô formula we have

dSt D St

h
.� � r/dt C �dBt

i
: (2.8.4)

Then S is not a P-martingale unless � D r.
If we want to use price formula in the form of (2.8.3), from the above discussion

it seems necessary that S needs to be martingale. We thus introduce the following
concept.

Definition 2.8.1 A probability measure P on ˝ is called a risk neutral measure,
also called martingale measure, if

(i) P is equivalent to P;
(ii) S is a P-martingale.

In contrast to P, we call the original P the market measure.
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To construct P, our main tool is the Girsanov theorem. By (2.8.4), it is clear that

dSt D St�dB��
t ; (2.8.5)

where � WD ��r
�

is the Sharpe ratio of the stock, and dB��
t WD dBt C �dt. Consider

the P�� in Section 2.6. Then P�� � P and B�� is a P�� -Brownian motion. Now it
follows from (2.8.5) that S is a P�� -martingale, and thus P D P�� is a risk neutral
measure.

We will justify in the next subsection that Y should also be a P-martingale. Then
we obtain the following pricing formula, in the spirit of (2.8.3) but under the risk
neutral measure P instead of the market measure P:

Yt D EPŒe�rT�jFt�; or equivalently; Yt D EPŒe�r.T�t/�jFt�: (2.8.6)

2.8.2 Hedging the Option

Assume an investor invests in the market with portfolio .
t; ht/0�t�T . The corre-
sponding portfolio value is:

Vt WD 
te
rt C htSt: (2.8.7)

Note that F stands for the information flow, thus it is natural to require .
; h/ to be
F-measurable. Moreover, we shall assume the investor invests only in this market,
which induces the following concept:

Definition 2.8.2 An F-measurable portfolio .
; h/ is called self-financing if, in
addition to certain integrability conditions which we do not discuss in detail,

dVt D 
tdert C htdSt: (2.8.8)

The fairness of the price is based on the following arbitrage free principle.

Definition 2.8.3

(i) We say a self-financing portfolio .
; h/ has arbitrage opportunity if

V0 D 0; VT � 0; P-a.s.; and P.VT > 0/ > 0: (2.8.9)

(ii) We say the market consisting of the bond and stock is arbitrage free if there is
no self-financing portfolio .
; h/ admitting arbitrage opportunity.

The following theorem is called the first fundamental theorem of mathematical
finance, which holds true in much more general models.
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Theorem 2.8.4 The market is arbitrage free if and only if there exists a risk neutral
measure P.

By the previous subsection, the Black-Scholes market is arbitrage free.
We remark that, since P is equivalent to P, so (2.8.9) holds under P as well.

Now given an option � , let Yt denote its market price. We may consider an
extended market .ert; St;Yt/, and we can easily extend the concept of arbitrage free
to this market.

Definition 2.8.5 We say Y is a fair price, also called arbitrage free price, if the
market .ert; St;Yt/ is arbitrage free.

Definition 2.8.6 Given � , we say a self-financing portfolio .
; h/ is a hedging
portfolio of � if VT D � , P-a.s.

Proposition 2.8.7 If .
; h/ is a hedging portfolio of � , then Yt WD Vt is the unique
fair price.

Proof The fairness of V involves the martingale properties and we leave the proof
to interested readers. To illustrate the main idea, we prove only that, if Y0 > V0,
then there will be arbitrage opportunity in the extended market .ert; St;Yt/. Indeed,
in this case, consider the portfolio: .
t C Y0 � V0; ht;�1/, with value

QVt WD Œ
t C Y0 � V0�e
rt C htSt � Yt D Vt � Yt C ŒY0 � V0�e

rt:

Note that

d QVt D dVt � dYt C ŒY0 � V0�dert D 
tdert C htSt � dYt C ŒY0 � V0�dert

D Œ
t C Y0 � V0�dert C htdSt C .�1/dYt:

That is, the portfolio is self-financing. Note that

QV0 D V0 � Y0 C ŒY0 � V0�e
r0 D 0I

QVT D VT � YT C ŒY0 � V0�e
rT D � � � C ŒY0 � V0�e

rT D ŒY0 � V0�e
rT > 0; P-a.s.

Then the portfolio .
t C Y0 � V0; ht;�1/ has arbitrage opportunity. �
We next find the hedging portfolio in the Black-Scholes model. Our main tool

is the martingale representation theorem. Consider the discounted portfolio value
Vt WD e�rtVt. By (2.8.8) and (2.8.5) we have

dVt D htdSt D htSt�dB��
t : (2.8.10)

That is, V is a P-martingale, where, again, P WD P�� . Note that VT D e�rT� .
Assume

� 2 L2.F B
T ;P/: (2.8.11)
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Then by the generalized martingale representation Theorem 2.6.6, there exists Z 2
L2.FB;P/ such that

e�rT� D EPŒe�rT��C
Z T

0

ZtdB��
t : (2.8.12)

This induces the hedging portfolio (and the price) immediately:

Vt WD EPŒe�rT�jF B
t �; ht WD Zt

St�
; 
t WD Vt � htSt D Vt � Zt

�
: (2.8.13)

The hedging portfolio is closely related to the important notion of completeness
of the market.

Definition 2.8.8 The market is called complete if all option � 2 L0.FT/ satisfying
appropriate integrability condition can be hedged.
From the above analysis we see that the Black-Scholes market is complete if

F D FB: (2.8.14)

We conclude this subsection with the second fundamental theorem of mathemat-
ical finance, which also holds true in much more general models.

Theorem 2.8.9 Assume the market is arbitrage free. Then the market is complete if
and only if the risk neutral measure P is unique.

2.8.3 Some Further Discussion

We first note that one rationale of using Brownian motion to model the stock price
lies in the central limit Theorem 1.1.2. As a basic principle in finance, the supply and
demand have great impact on the price. That is, the buy orders will push the stock
price up, while the sell orders will push the stock price down. Assume there are
many small investors in the market and they place their order independently. Then
by the central limit Theorem 1.1.2, the accumulative price impact of their trading
induces the normal distribution. In the rest of this subsection we discuss two subtle
issues.

First, as we see in (2.8.14), even for Black-Scholes model, the completeness
relies on the information setting. In a more general model, F, FB, and FS can
be all different. The investor’s portfolio .
; h/ has to be measurable with respect
to the filtration the investor actually observes. While in different situation the real
information can be different, typically the investor indeed observes S and thus FS

is accessible to the investor. As discussed in the previous paragraph, observing
B essentially means the investor observes numerous other (small) investors (and
possibly other random factors). This is not that natural in practice. Moreover, note
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that in Theorem 1.1.2, the convergence is in distribution sense, not in pointwise
sense. Then even one observes a path of the portfolios of all small investors, one
typically does not know a corresponding path of B. So in this sense, at least in some
applications, it makes more sense to use FS than to use FB. This implies that in these
applications one should use weak formulation, as we will do in Part III. In Parts I
and II, however, we will nevertheless use strong formulation, namely use FB. This
could be reasonable in some other applications, and still makes perfect sense in this
particular application when FS D FB, which is true in, e.g., Black-Scholes model.

The next is the pathwise stochastic integration. Recall that for an elementary
process � 2 L20.F/, the Itô integral .

R T
0
�tdBt/.!/ D R T

0
�t.!/dBt.!/ is defined

in pathwise manner. For general � 2 L2.F/, however,
R T
0
�tdBt is defined as

the L2-limit of
R T
0
�n

t dBt, where �n 2 L20.F/ is an approximation of � . As a

consequence,
R T
0
�tdBt is defined only in a.s. sense, with the null set arbitrary and

up to the particular version we want to choose. In particular, for any given !, since
P.f!g/ D 0, the value .

R T
0
�tdBt/.!/ is arbitrary. In other words, in our application,

assume we have observed a path St.!/ and decided a path ht.!/, the value of
R T
0

htdSt at this particular observed ! is actually arbitrary. This is of course not
desirable. We shall mention that in real practice, the portfolio h should be discrete,
and thus the issue does not exist. But nevertheless, theoretically this is a subtle issue
we face in such applications.

One way to get around of this difficulty is to use pathwise integration. Assume,
under certain conditions, limn!1

R T
0
�n

t dBt D R T
0
�tdBt in a.s. sense, with a

common exceptional null set E0 independent of our choice of the approximation

�n. Then we may fix a version:
� R T

0
�tdBt

�
.!/ WD limn!1

� R T
0
�n

t dBt

�
.!/1Ec

0
.!/.

If we are lucky that the observed path ! is not in E0, then we may use the limit

of
� R T

0
�n

t dBt

�
.!/ as the value of

� R T
0
�tdBt

�
.!/. Another powerful tool to study

pathwise analysis is the rough path theory, which approximates B.!/ by smooth
paths. We have some discussion along this line in Problem 2.10.14.

2.9 Bibliographical Notes

The materials in this section are very standard in the literature. We refer to the
classical reference Karatzas & Shreve [117] for a comprehensive presentation of
properties of Brownian motions, some of which are more general or deeper than
the results here. We also refer to Revuz & Yor [206] for a more general continuous
martingale theory, and Protter [196] for a general semimartingale theory, including
semimartingales with jumps.

For the financial application in Section 2.8, Shreve [209, 210] provides an
excellent exposition. For the pathwise stochastic integration, we refer to Wong &
Zakai [236, 237], Bichteler [17], Follmer [91], Willinger & Taqqu [235], Karandikar
[119], and Nutz [160]. The rough path theory was initiated by Lyons [140]. We refer
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interested readers to the book Friz & Hairer [94]. We also note that the pathwise
stochastic integration is closely related to the quasi-sure stochastic integration in
Section 12.1.1.

2.10 Exercises

Problem 2.10.1 Prove Propositions 2.1.2 and 2.1.3. �

Problem 2.10.2

(i) Let Xt WD R t
0

bsds for some b 2 L1loc.F/ and 0 � s < t � T . Show that
Wt

s.X/ D R t
s jbrjdr, a.s.

(ii) Let X be as in Definition 2.1.5. Show that hXi is increasing in t, a.s. That is,
hXit � hXis 2 S

d is nonnegatively definite for all 0 � s < t � T .
(iii) Let xi 2 R, bi 2 L1;2.F;R/, � i 2 L2.F;Rd/, and Xi

t WD xiC
R t
0

bi
sdsCR t

0
� i

s �dBs,
i D 1; 2. For any � W 0 D t0 < � � � < tn D T , denote

hX1;X2i�T WD
n�1X

iD0
X1ti;tiC1

X2ti;tiC1
:

Show that hX1;X2i�T ! R T
0
�1t � �2t dt in L1.FT/, as j�j ! 0. �

Problem 2.10.3 This problem concerns the general Doob’s maximum inequality,
extending Lemma 2.2.4. Let X 2 L1.F/ be a right continuous nonnegative
submartingale. Then

P.X�
T � 
/ � 1


p E
h
jXT jp1fX�

T �
g
i
; for all 
 > 0; p � 1I

EŒjX�
T jp� � .

p
p�1 /pEŒjXT jp�; for all p > 1I and EŒX�

T � � e
e�1E

h
1C XT

�
ln.XT /

�C
�
i
:

We remark that the jMj in Lemma 2.2.4 is a nonnegative submartingale, thanks to
Jensen’s inequality. Thus Lemma 2.2.4 is indeed a special case here. �

Problem 2.10.4 Prove the extended Itô formula Theorem 2.3.4. �

Problem 2.10.5 Let 	n 2 L2.F0/, �n 2 L2.F;Rd/, and denote �n WD 	n C
R T
0
�n

t � dBt, n � 1. Assume limn!1 EŒj�n � �j2� D 0 for some � 2 L2.FT/.

Then there exists unique � 2 L2.F;Rd/ such that � D EŒ�jF0�C
R T
0
�t � dBt, and

limn!1 E
h
j	n � EŒ�jF0�j2 C R T

0
j�n

t � �tj2dt
i

D 0. �

Problem 2.10.6 Let � 2 L2.FB;Sd/ such that � > 0, and Xt WD R t
0
�sdBs. Show

that the augmented filtrations of X and B are equal: FX
P D FB

P
. �
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Problem 2.10.7 Let p; q 2 Œ1;1� be conjugates.

(i) Assume X 2 L1;p.F/, Y 2 L2;q.F/ with appropriate dimensions so that XY
takes values in Rd. Show that Mt WD R t

0
.XsYs/ � dBs is a u.i. F-martingale.

(ii) Find a counterexample such that X 2 L2;p.F/, Y 2 L2;q.F/, but Mt WDR t
0
.XsYs/ � dBs is not uniformly integrable.

(iii) Find a counterexample such that M is a local martingale, but not a martingale.
(iv) Find a counterexample such that M is a martingale, but not uniformly

integrable.

Note that the M in (ii) is a local martingale, so it serves as a counterexample either
for (iii) or for (iv). �

Problem 2.10.8 Let d D 1 (for simplicity). Prove the following stochastic Fubini
theorem:

Z T

0

h
ut

Z t

0

vsds
i
dBt D

Z T

0

h
vs

Z T

s
utdBt

i
ds; 8u; v 2 L1.F;R/:

We remark that, unless u is deterministic, the following result is not true:

Z T

0

h
ut

Z t

0

vsdBs

i
dt D

Z T

0

h
vs

Z T

s
utdt

i
dBs:

In fact, the stochastic integrand in the right side above is in general not
F-adapted. �

Problem 2.10.9 This problem concerns general martingale theory. Let d D 1, M a
continuous F-martingale with EŒjMT j2� < 1, K 2 I1.F/ with K0 D 0, and M2 � K
is also a martingale.

(i) For any bounded � D Pn�1
iD0 �ti 1Œti;tiC1/ 2 L0.F/, denote

R T
0
�sdMs WD

Pn�1
iD0 �ti Mti;tiC1

. Show that

E
hˇ
ˇ
ˇ

Z T

0

�sdMsj2
i

D E
h Z T

0

j�sj2dKs

i
:

(ii) For any � 2 L0.F/ such that E
h R T

0
j�sj2dKs

i
< 1, show that there exist

bounded elementary processes �n 2 L0.F/ such that limn!1 E
h R T

0
j�n

s �
�sj2dKs

i
D 0.

(iii) For � and �n as in (ii), show that
R T
0
�ndMs converges in L2, and the limit

is independent of the choices of �n. Thus we may define
R T
0
�sdMs WD

limn!1
R T
0
�n

s dMs.
(iv) For � as in (iii), define Yt WD R t

0
�sdMs similarly. Show that Y is still an

F-martingale.
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We remark that the above process K is called the quadratic variation of M,
and is also denoted as hMi. Its existence can actually be proved. �

Problem 2.10.10 Prove Lemma 2.6.2. �

Problem 2.10.11 Assume Xn ! X, Yn ! Y weakly in L2.F/ and have appropriate
dimensions.

(i) Xn C Yn ! X C Y weakly in L2.F/.
(ii)

R �
0

Xn
s � dBs ! R �

0
Xs � dBs weakly in L2.F/.

(iii) E
� R T

0
jXtj2dt

� � lim infn!1 E
� R T

0
jXn

t j2dt
�
. �

Problem 2.10.12 We note that Theorem 2.7.1 does not hold true for semimartin-
gales in the following sense. Let d D 1. For any n, find a counterexample Xt DR t
0

bsds C R t
0
�sdBs, where b 2 L1;2.F/ and � 2 L2.F/ such that

E
h� Z T

0

jbtjdt
�2 C

Z T

0

j�tj2dt
i
> nEŒjX�

T j2�:
�

Problem 2.10.13 This problem concerns the Stratonovich integral
R T
0

Xt ı dBt, for
which the integrand X requires some regularity. To be specific, let Xt WD xCR t

0
bsdsC

R t
0
�sdBs, where x 2 Rd, b 2 L1;2.F;Rd/, and � 2 L2.F;Rd�d/.

(i) For any � W 0 D t0 < � � � < tn D T , denote

S.�/ WD
n�1X

iD0
X tiCtiC1

2

� Bti;tiC1
:

Show that SM.�/ ! R T
0

Xt � dBt C 1
2

R T
0

tr.�t/dt in L2.FT/, as j�j ! 0. We
thus define the Stratonovich integral as

Z T

0

Xt ı dBt WD lim
j�j!0

SM.�/ D
Z T

0

Xt � dBt C 1

2

Z T

0

tr.�t/dt: (2.10.1)

(ii) The Stratonovich integral can be approximated in a different way. For each � ,
let B� denote the linear interpolation of .ti;Bti/0�i�n, namely

B�t WD
n�1X

iD0

h
Bti

tiC1 � t

tiC1 � ti
C BtiC1

t � ti
tiC1 � ti

i
1.ti;tiC1�:

Then B� is absolutely continuous in t and thus the following integration is well
defined:

QS.�/ WD
Z T

0

Xt � dB�t :

Show that limj�j!0
QS.�/ D R T

0
Xt ı dBt in L2-sense.
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(iii) Similarly we may define Yt WD R t
0

Xs ı dBs D R t
0

Xs � dBs C 1
2

R t
0

tr.�s/ds. We
shall note that Y is in general not a martingale. Prove the following chain rule
for Stratonovich integral:

df .t;Yt/ D @tf .t;Yt/dt C Œ@yf .t;Yt/Xt� ı dBt;

for any f W Œ0;T� � R ! R smooth enough. �

Problem 2.10.14 This problem concerns a.s. convergence of stochastic integration.
Given X 2 L2.F;Rd/, denote YT WD R T

0
Xt � dBt, and, for a partition � W 0 D t0 <

� � � < tn D T ,

Y�T WD
n�1X

iD0
Xti � Bti;tiC1

: (2.10.2)

Let ˛ 2 .0; 1� and ˇ > 0 be two constants, and f�mgm�1 a sequence of partitions
such that j�mj � m�ˇ . At below, all limits are in the sense of a.s. convergence.

(i) Assume X is uniformly Hölder-˛ continuous and ˇ > 1
2˛

. Show that

limm!1 Y�m
T D YT , a.s. (Hint: show that E

h P1
mD1 jY�m

T � YT j2
i
< 1.)

(ii) Assume dXt D �tdBt, � 2 L2.F;Rd�d/, and ˇ > 1. Show that limm!1 Y�m
T D

YT , a.s.
(iii) Assume dXt D �tdBt, � 2 L1.F;Rd�d/, and ˇ > 1

2
. Show that

limm!1 Y�m
T D YT , a.s.

(iv) Assume d D 1, X is as in (ii), � is uniformly Hölder-˛ continuous, and ˇ >
1

1C2˛ . Denote

Y2;�T WD
n�1X

iD0

h
Xti Bti;tiC1

C �ti

jBti;tiC1
j2 � .tiC1 � ti/

2

i
; (2.10.3)

which we call the second order approximation. Show that limm!1 Y2;�m
T D

YT , a.s.
(v) Consider the same setting as in (iv). Assume further that d�t D �tdBt, � is

uniformly Hölder-˛ continuous, and ˇ > 1
1C3˛ . Denote

Y3;�t WD
n�1X

iD0

h
Xti Bti;tiC1

C �ti

jBti;tiC1
j2 � .tiC1 � ti/

2
C �ti

.Bti ;tiC1
/3 � 3Bti;tiC1

.tiC1 � ti/

6

i
;

(2.10.4)

which we call the third order approximation. Show that limm!1 Y3;�m
T D

YT , a.s.
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We remark that in all the above cases, j�mj converges to 0 with a rate ˇ, and the
exceptional null set of the a.s. convergence depends on f�mgm�1. In the setting of
(iv), by rough path theory one can show that there is a common null set E0 such that
limj�j!0 Y2;�T .!/ exists for all ! … E0. �
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