Chapter 2
Basics of Stochastic Calculus

Let (2, %#,TF,P) be a filtered probability space. We remark again that, unlike in
standard literature, we do not assume I = {.%,}o<,<r satisfy the usual hypothesis.
This will be crucial for the fully nonlinear theory in Part III, and for fixed P this is
a very mild relaxation due to Proposition 1.2.1.

2.1 Brownian Motion

2.1.1 Definition

Definition 2.1.1 We say a process B : [0,T] x 2 — R is a (standard) Brownian
motion if

e By=0,a.s.
e ForanyO=ty<---<t, <T, By,By 1, ,By,_, 1, are independent.
o Forany0 <s<t<T,Bs; ~N(,1—ys).

Moreover, we call B an F-Brownian motion if B € L°(FF) and
e Forany0 <s <t <T, By, and % are independent.

We note that as in the previous chapter we restrict B to a finite horizon [0, 7]. But
the definition can be easily extended to [0, 00), by first extending the filtration I¥
to [0, c0). When necessary, we may interpret B as a Brownian motion on [0, co)
without mentioning it explicitly. Moreover, when there is a need to emphasize the
dependence on the probability measure P and/or the filtration I, we call B a PP-
Brownian motion or (IP, IF)-Brownian motion. Since B has independent increments,
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22 2 Basics of Stochastic Calculus

clearly (By,,:--,B,,) have Gaussian distribution, or say B is a Gaussian process.
Moreover, from the definition we can easily compute the finite distribution of B.
Then by the Kolmogorov’s Extension Theorem we know that Brownian motion does
exist. The following properties are immediate and left to the readers.

Proposition 2.1.2 Let B be a standard Brownian motion. For any t, and any
constant ¢ > 0, the processes BY = By 141y and By := %Bcl are also standard

Brownian motions.

Proposition 2.1.3 A Brownian motion is Markov, and an T-Brownian motion is an
F-martingale.

In the multidimensional case, we call B = (B1 S ,Bd)T a d-dimensional
Brownian motion if B!,--- , B¢ are independent Brownian motions. In most cases
we do not emphasize the dimension and thus still call it a Brownian motion.

From now on, throughout this chapter, B is a d-dimensional IF-Brownian motion.
All our results hold true in multidimensional setting. However, while we shall state
the results in multidimensional case, for notional simplicity quite often we will carry
out the proofs only in the case d = 1. The readers may extend the arguments to
multidimensional cases straightforwardly.

2.1.2 Pathwise Properties

We start with its pathwise continuity. Notice that Brownian motion is defined via
its distribution. As mentioned in the paragraph after Theorem 1.2.3, the pathwise
properties should be understood for a version of B.

Theorem 2.1.4 For any ¢ € (0, %), B is Holder- % — &) continuous, a.s. In
particular, B is continuous, a.s.

Proof For notational simplicity, assume d = 1. For any s < ¢, since B, ~ N(0, f —
s), we have

IE[|B”|”] = Cylt—s|%.forall p> 1.

Apply the Kolmogorov’s Continuity Theorem 1.2.3, by considering a modification

if necessary, B is H6-y continuous for y := ;Tl‘ Since p is arbitrary, one can always

find p large enough so that y > % —e. |

From now on, we shall always consider a continuous version of B. We next study
the quadratic variation of B. For a time partiton 7 : 0 = #) < --- < t, = T,
denote || := max;<j<,(t; — ti—1). We recall that the fotal variation of a process
X e LO(F, RY) is defined pathwise by: for0 <a <b < T,

b

n T n
\/(X) = supz |Xavtimy b, avi b, 10 particular ,\/(X) = supz X, .l (2.1.1)
a o g

i=1 0 i=1
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Definition 2.1.5 Let X € LYIF,RY). We say X has quadratic variation if the
following limit exists :

n

(X); = |;HEOZXZ' AL ,l,\,th (AL iAr N the sense of convergence in probability.
=1

2.1.2)

In this case we call (X) the quadratic variation process of X.
Note that (X) takes values in S¢, the set of d x d-symmetric matrices. Its (i,)-th
component is:

‘7}1‘1302 tk LAL te AT fk LAL AL

We also remark that, unlike total variation, the quadratic variation is not defined in a
pathwise manner. It is interesting to understand the pathwise definition of quadratic
variation, which we will study in Part III. See also Remark 2.2.6.

Theorem 2.1.6 It holds that

. . T 2
lim E[(ZB&—ML antBr_ ar t[d) ] =0, and consequently, (B); = tly.
i=1

|7 |—=0

Proof For notational simplicity we assume d = 1, and without loss of generality
we prove the theorem only at 7. Fix a partition w : 0 = < - < t, = T, and
denote

. . 2 .
At = t; — ti_q, n = |Bfi—l~,li| —At, i=1,---,n.

Then n;, i = 1,--- , n, are independent. Since B;,_, , ~ N(0, At;), we have E[n;] =
0 and

2
Var(m) = Var(Biy—.) = ElByy 11 = (BB 1) = 3(40)% = (41)* = 2(An)2.

Notice also that ) ;_, Az; = T. Then

n n n

(S -1)]=e{(E)] = w(E0)

i=1 i=1

= ZVar(n) = ZZ(AI,)2 <2|7| ZAI, =2T|n| - 0, as |z|—0.

i=1 i=1

Since I.?> convergence implies convergence in probability, we conclude that
(B)yr =T. ]
As a corollary of Theorems 2.1.4 and 2.1.6, we have
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Corollary 2.1.7 \/Z(B) =ooforany0<a<b<T,as.

Proof We proceed in two steps, again assuming d = 1.
Step 1. Fix 0 < a < b < T. For any partition m, denote ; := a V t; A b and
notice that

n n b
2
S 1Bi il = (sup 1B al) Do 1Bi il = \/B) x sup IB;_ ;]
i=1 ' i=1 a I=i=n

1<i<n

Send || — 0, by Theorems 2.1.4 and 2.1.6 we have

sup [B;_,z| —>0.as. and Y |B;_ ;> —> (B),— (B)}y=b—a>0, inP.

1<i<n i=1

This clearly implies that

b
\/(B) =00, as.
Step 2. Forany 0 < a < b < T, by Step 1 we have
b
P(AN (a,b)) =0, where A (a,b):= {a) :\/ (B()) < oo}.

Denote
N = U[JV(rl,rz):Ofrl <rn = T, r,r GQ]

Then P(.4") = 0. Now for any w ¢ .4, and forany 0 < a < b < T, there exist
ri,r, €Q such thata < ry < r, <b. Then

b rn
VB©) = \/B() = .
a r
The proof is complete now. ]

Remark 2.1.8

(i) Corollary 2.1.7 implies that B is nowhere absolutely continuous with respect
to dt. Let d = 1. We actually have the following so-called Law of Iterated
Logarithm: for any t € [0, T),

B B
limsup —=% — =1, liminf ——2

80 /26InIn} 0 /26 InIn}

=-1, as. (2.1.3)
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This implies that B is nowhere Hblder-% continuous. In particular, B is nowhere
differentiable.

(ii) The regularity (2.1.3) is right regularity. The left regularity B,_s, is less clear.
Moreover, the null set in (2.1.3) depends on ¢. Indeed, the uniform regularities
sup, B;;+5 and Supy ;<7 ,—s<s |Bs| are more involved. |

2.1.3 The Augmented Filtration

Let IF2 denote the filtration generated by B. We notice that neither IF® nor its
completed filtration is right continuous. For example,

o € 2 :limsup

540 \/281Inln }

However, the augmented filtration, denoted as FB, is right continuous. We first have
the Blumenthal 0-1 law.

{ Bs(w)

=1} e FE\FS.

Theorem 2.1.9 For any random variable X € ]Lo(ﬁ(f_‘_), we have X = E[X], a.s.
Consequently, For any event A € ﬁ(ﬁr, we have P(A) = 0 or 1.

Proof Let X € ]Lo(ﬁ(ﬂ). Foranyn > 1,1et ¥, := o(B,-1, n~! < s <T),the
o-field generated by {B,~i,, n=! < s < T}. Since B has independent increments,
%, and .Z§, C .F2 are independent. Thus E[X|%,] = E[X], as. for all n > 1.
On the other hand, denote ¥ := (V,%,) vV A (Z). For any t > 0, B, = By, =
lim,— o0 B,—1, a.s. Since B,-1 ; € L%(¥,-1) C L%(¥), we see that B, € L.°(¥) for
any t > 0. Thus ﬁ(ﬂ C ¢. Note that ¢, is increasing in n, then by Problem 1.4.2
(iii) we obtain

X = EX|¥9] = lim E[X|94,] = E[X], a.s.
n—>oo
Finally, for any A € f(ﬁ, set X := 1,, we see that IP(A) = 14, a.s. and thus
P(A) =0orl. |
Corollary 2.1.10 The augmented filtration 7 satisfies the usual hypotheses.
Proof 1t suffices to show that s right continuous. Theorem 2.1.9 implies that
Fg. < N(F) C ?{f. Then ?g L= ?03. Similarly, for any ¢, we have

—B

—B
F =7, m
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Remark 2.1.11

(i) In this book, we shall use IF2. When PP is given, in most cases this is equivalent

to using the augmented filtration F” as in standard literature, in the spirit of
Proposition 1.2.1.

(i) As we will see, all IF®-local martingales are continuous. If we consider more
general cadlag martingales, it is more convenient to use right continuous
filtration. ]

2.2 Stochastic Integration

2.2.1 Some Heuristic Arguments

In this subsection we assume d = 1. We first recall the Rieman-Stieltjes integral.
Let A : [0,7] — R be a function with bounded variation, and b : [0, T] — R be
continuous. For a partition 7 : 0 = #y < --- <, = T, define the Rieman-Stieltjes
partial sum:

n—I1
Z b(1)Ayy, Wherel; € [t;, ;4] is arbitrary.
i=0

It is well known that, as || — 0, the above partial sum converges and the limit is
independent of the choices of 7 and #, and thus is defined as the integral of b with
respect to A:

n—1

T
/0 bidA, = | lim ; b(I)A 4y 2.2.1)

Now assume A, b € I.° (IF') such that A has bounded variation and b is continuous,
a.s. Then clearly we can define the integral pathwise:

(/Orb,dAr)(w) = /Obe(“’)d(Ar(w)).

We next discuss stochastic integrals with respect to B. Let 0 € L°(F) be
continuous, a.s. We first notice that in this case the limits of the Rieman-Stieltjes
partial sum may depend on the choices of #;. Indeed, let © = B and set 7; as the left
end point and right end point respectively, we have

n—1 n—1

SL(T’:) = ZB[[BI[J[+]7 SR(”) = ZBt[JrlBt[,t[Jr]-
i=0 i=0
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Then, by Theorem 2.1.6,

n—1
Sp(m) = Sp(m) = > |Byyy, [P > T. inPas |x|— 0.
i=0

So Sg(7r) and Sy (7r) cannot converge to the same limit, and therefore, it is important
to choose appropriate points 7;. As in standard literature, we shall study the Ito
integral, which uses the left end points. The main reason is that, among others, in this
case we use oy, to approximate o on the interval [#;, #;+;) and thus the approximating
process ¢ defined below is still F-measurable:

n—1
0" =Y 0yl (2.2.2)
i=0
Remark 2.2.1 If we use #; := %, the corresponding limit is called the

Stratonovic Integral. We shall study It6 integral in this book, which has the following
advantages:

* The IF-measurability of the o™ in (2.2.2) is natural in many applications, see, €.g.,
Section 2.8;

* As we will see soon, the 1t6 integral has martingale property and thus allows us
to use the martingale theory;

» Unlike Stratonovic Integral, the It6 integral does not require any regularity on the
integrand o.

However, Stratonovic Integral is more convenient for pathwise analysis. In particu-
lar, under Stratonovic Integral, the chain rule same as the deterministic case remains
true. See Problem 2.10.13. |

2.2.2 It6 Integral for Elementary Processes

Definition 2.2.2 We say o € I.2(F) is an elementary process, denote as o € ]L% (Ir),
if there exist a partition0 =ty < --- < t, = T such that 6, = oy, forallt € [t;, t;11),
i=0,---,n—1

Clearly, for o € L%(IF, RY), we may define the stochastic integral in a pathwise
manner:

n—1

1
/ 0y dBy =) 0, By nyne 0<t<T. (2.2.3)
0 i=0
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Lemma 2.2.3 Let o € L2(F, RY) and denote M, := [, o, - dB,.

(i) M is an F-martingale. In particular, E[M;] = 0.
(ii) M € L2(F) and N, := M?* — fot |o|?ds is a martingale. In particular,

|M, = [|0Y|2ds (2.2.4)

(iii) Forany o' € L3(F,RY), A; € L®(F, R), i = 1,2, we have A" + A,0% €
L3(F,RY) and

t t t
[)klosl +120'52]'st 211/ O'S] -dBS—i-/\z/ O'sz'dBS.
0 0 0

(iv) M is continuous, a.s.
Proof

(i) It suffices to show that, for any i,
M, = EM, | F#], i <t=tiq.
Indeed, note that 0,, € .%,, C .%#; and B has independent increments, then

EMy1\| ) = B[, - Buy,

,%] = a, -E[B,,,Hl )%] = 0, - E[B,,,,] = 0.

(i) The square integrability of M follows directly from (2.2.4). Then it suffices to
show that

N; = E[N, |#A], 6 <t =<t

To illustrate the arguments, in this proof we use multidimensional notations.
Note that

M2

Ntl [+1

2
i1 —log|*(ti1 — 1) = |Mtl,+1| +2MiM 4y — log|"(tig1 — 1)

= [Ut,U,l ]: (B, z,+1B = (ti+1 — Dla] + 2M01; - Brygyy -

1t

Then, similar to (i) we have

Ny | 71] = o0, B By B,

ta — i1 — I)Id] + 2My0y; - E[B; 4y ] = 0.

(iii) and (iv) are obvious. ]

The following estimates are important, and we leave a more general result in
Problem 2.10.3 below. Recall the notation X* in (1.2.4).



2.2 Stochastic Integration 29

Lemma 2.2.4 (Doob’s Maximum Inequality) Leto € L2(F,R%), M, := [, o, -
dB,. Then

E[|M7"] < E[|M}|*] < 4E[|M7|*]. (2.2.5)

Proof The left inequality is obvious. We prove the right inequality in two steps.
Step 1. We first prove it under an additional assumption:

E[M;]*] < cc. (2.2.6)
Given A > 0, denote
o o=inf{t > 0: M| > A} AT. (2.2.7)
Since M is continuous, we see that
7€ T(F), M| <A, and {M;>A}={|M,]|= A} (2.2.8)
Moreover, by (2.2.6) M is a u.i. martingale, then

My | = [EWb717,]

< B[ Myl| 7, .

This implies

|M, | 1 ;
TAI{|MQ|=A;} < XE[E(WT\|f7u)1{|Mq\=u}

P(M7 > 2) = E[l{\Mu|=A}] = E[
= %E[E(WTUHMQ|=A}|3"u)] = %E[erl{wrx\:x}] = %E[Wﬂlwﬁzu]- (2.2.9)

Thus

E[M:] = 2/ AP(ME > A)d) < 2/ E[|MT|1{M;5ZA}]d/\
0 0

1
2

— 21@[/000 IMr (g2 | = 2B [1par 1] < 2(E[|MT|2])%(]E[|M7*~|2]) :

where the last inequality thanks to the Holder’s inequality. This implies (2.2.5)
immediately.
Step 2. In the general case, for each n > 1, let 7, be defined by (2.2.7) and denote

t
o" =0l M, :=/ ol -dB;, M* := sup |M}]|.
0

t
0<s<t
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Since M is continuous, by Problem 1.4.8 (ii) we see that t, is increasing, and 7, = T
when 7 is large enough. Then

n n,* n,* *
M} =M., Mp" <n, and M7" 1 M.

By Step 1 and (2.2.4) we have

B[ M) < 4m[ M ] = 4]E[[I" oy 2as] = 4E[/T 0y Pds| = 48] |7 ]
0 0

Now applying the Monotone Convergence Theorem we obtain (2.2.5). ]

2.2.3 Ito Integral in 1*(F) and 1.} _(F)

We now extend the Ito stochastic integration to all processes in IL?(IF). We first need
a lemma.

Lemma 2.2.5 For any 0 € L*(F,RY), there exist 0" € L3(F,RY) such that
l_i)m le" —all, = 0.
n—>oo

Proof We proceed in three steps.
Step 1. We first assume o is continuous and bounded. For each n, define

n—1 .
i
n.__ Pp— ; —
o/ = E 04 11.14,) Where t; 1= ;T, i=0,---,n.
i=0

Then by the Dominated Convergence Theorem we obtain the result immediately.
Step 2. We now assume only that |o| < C. For each § > 0, define o :=
% f(’;—a)vo o,ds. Clearly |0 < C, o is continuous, and by real analysis, in the

spirit of Problem 1.4.14, we have lims—_( fOT |cr,8 —0,|?dt = 0, a.s. By the Dominated
Convergence Theorem again, we have lims_,q [|o0® —o;||, = 0. Now for each #, there
exists 8, such that |0 —o; ||, < ﬁ Moreover, by Step 1, there exists 6" € L3(IF, RY)
such that [lo”" — o, < Zln This implies ||6”" — 0|2 < rll — 0,asn — oo.

Step 3. For the general case, for each n, denote 6" := (—n) V o A n, where
the truncation is component wise. Then 6" — o and |0"| < |o|. Applying the
Dominated Convergence Theorem we get lim,_,, [|6" — o || = 0. Moreover, since

|6”| < n+/d, by Step 2 there exists " € L2(F, RY) such that [|6" —0"||, < % Thus

~ - - 1
lo” —olla = 16" —oll2 + [l6" — 0|l < [|6" —ofl2 + — — 0.

The proof is complete now. |
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For the above 0 € L2(IF,RY), we have defined M" := [; 0! - dB, by (2.2.3).
Applying Lemma 2.2.4 we get

E[|(M” —M’");|2] < 40" —o™|3 -0, as m,n—> oo.
Thus there exists a (IP-a.s.) unique continuous process M € L°(FF, R) such that
lim IE[|(M” —M)’;|2] = 0. (2.2.10)
n—oo

Moreover, if there exist another sequence 6" € L3(IF, RY) such that lim,— e [|6" —
oll2 = 0, then lim, . [|6” — "], = 0. This implies that, for M := [ G! - dB;,

0< E[|(M” —M");P] < 40" — "2 =0, as n— oo

Thus M" also converges to M. That is, the process M does not depend on the choices
of 0”. Therefore, we may define M as the stochastic integral of o: for each ¢ € [0, T,

t t
/ 05 - dBg := lim / o;‘ -dBg, where the convergence is in the sense of (2.2.10).
0 n—>o00 0

(2.2.11)

Remark 2.2.6 We emphasize that the convergence in (2.2.11) is in IL?-sense, and
thus the above definition of stochastic integral is not in a pathwise manner. That is,

given o (w) and B(w), in general we cannot determine ( fol O -st) (w). The theory

on pathwise stochastic integration is important and challenging, see some discussion
along this line in Sections 2.8.3 and 12.1.1, and Problem 2.10.14. |
By the uniform convergence in (2.2.10), it follows immediately that

Theorem 2.2.7 Let 0 € L>(F,RY) and M, := fol o5 - dBs. All the results in
Lemmas 2.2.3 and 2.2.4 still hold true.

We finally extend the stochastic integration to all processes o € L2 (IF, RY). For
n > 1, define

1
T, ;= inf{t > 0: / log|?ds > n} AT, 0, 1= oljo 1, (D).
0

Then ¢” € 1.2 (I, Rd), T, is increasing and t, = T for n large enough, a.s. Denote
M} = fot o - dBy. One can easily check that, for n < m,

M} =M for t < 1,.

Thus we may define
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t
/ 05 -dB; := M} for t < 1,. (2.2.12)
0

So M, = fot 05 - dBy is well defined for all + € [0,7]. By Theorem 2.2.7 it is
obvious that

Theorem 2.2.8 For any o € L} (F,RY), M, := fot 0, - dBy is a continuous local
martingale.

2.3 The It6 Formula

The It6 formula is the extension of the chain rule in calculus to stochastic calculus,
and plays a key role in stochastic calculus. In particular, it will be crucial to build
the connection between the martingale theory and partial differential equations, see,
e.g., Section 5.1 below.

2.3.1 Some Heuristic Arguments

Assume A € L°(IF, R) has bounded variation, a.s. and f € C'(RR) is a deterministic
function. The standard chain rule tells that

df(A) = f(A)dA,. (2.3.1)

The following simple example shows that the above formula fails if we replace A
with the Brownian motion B and thus dA becomes stochastic integration dB.

Example 2.3.1 Letd = 1 and set f(x) := x>. Then

T
|B7|* = 2/ B.dB, +T.
0

Proof For any partitionw : 0 =ty <--- <t, =T, we have

n—1 n—1

Brl2 = 3 [1Biss = 1BuP| = 3 [1Buis P + 2B, |
i=0 i=0
Send || — 0, we have
n—1
> |Byyy [P = T in L2 (Fp). (23.2)

i=0



2.3 The It6 Formula 33

Moreover, denote Bf := Z:’;& B, 1y ,)- Then B € ]L%(IF), and one can easily
check that

lim ||B”™ — BJj; = 0.

|| —0
This implies that

n—1

T
> BBy, — / BdB,, inL*(Fr),
0

i=0

which, together with (2.3.2), proves the result. |
Note that

f/(Bt) == 2B[, f//(Bf) == 2, (B)[ = 1.
Then Example 2.3.1 implies
T 1 T
180~ = [ r@pas s [ reaw. s
0 0
This is a special case of the It6 formula. We see that there is a correction term

% fOT f"(B,)d(B), for stochastic integrations. We prove the general case in the next
subsection.

2.3.2 The Ito Formula

In this subsection we focus on one-dimensional case. The multidimensional case
will be introduced in detail in the next subsection. Let b € L, (F), 0 € L; (F),
and denote

t t t
X, = Xo + / byds + / 0,dB; and (X),:= / o] ds. (2.3.4)
0 0 0
Theorem 2.3.2 (Ito Formula) Letf € C'2([0,T] x R, R). Then
1
df (¢, X,) = 0 (¢, X,)dt + 9,f (¢, X))dX; + Eaxxf(tv X)d(X) (2.3.5)

= [0 + 0o + S0l ] X0t + 04, X)01B,

Or equivalently,

t 1 t
7.0 =100 + [ [a + 0o+ Souflo s x0ds + [ auf (5. X0ud8.
(2.3.6)
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Proof We first note that, since X is continuous and f € C'2, for ¢ = 9,f, 0.f, 0. f,
we know that ¢(t, X;) is continuous and thus supy.,<7 |¢(#,X;)| < oo, a.s. This
implies that

[0 + 40 + S0f10P] . X) € Lhe(B), 04200 € L3, (B),

and thus the right side of (2.3.6) is well defined.

Without loss of generality, we prove (2.3.6) only for + = T. We proceed in
several steps.

Step 1. We first assume that b, = by, 0; = 0y are .%y-measurable and bounded,
and f is smooth enough with all related derivatives bounded.

For an arbitrary partition 7 : 0 =#) < --- <t, = T, we have

n—1
S X0) = £0.X0) = Y [Fltia1.Xey) =@ X,) | (237
i=0
Denote Af;y1 := t;+1 — t; and note that Xiiiy1 = boAtit1 + 00By - Then, by

Taylor expansion,

f(ti+17Xti+1) _f(ti7Xti) =f([l + A[i+1,Xli + Xl,‘,[l'_i,-]) _f(ti’Xti)
= 0f (ti, Xp;)) Atir1 + uf (8, Xi) Xy 014

+%8ﬁf(ti,X,l.)|Ati+1 1? + Ouef (81, X1) Atip1 Xy gy, + %3xxf(fi»xt,~)|xt,».z,-+1 ?+ RY
= [+ bodif + 5 dec Vool |1 ) At 1 + 000 5 Xe)Br (2338)
4300 5 Xlo0 Pl1By g, P = Atiga] + 1y
where

17y i= 3 [0uf + 0uf 100l (t:. X) | Atip1 | + [0nf + booodud (11, X)) Atig 1By, + RE .

and |RT | < C[|Atip1 P + Xy, IP] < Cl1AG1 1P+ |Bray, P

Send || — 0. First, applying the Dominated Convergence Theorem we have:

1

1
[3zf + bod.f + Eaxxf|00|2](li,xt;)Afi+1
0

n

l

-

~

[aJ + bodf + %|00|28mf] . X)di, in L2(Fr).  (23.9)
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Next, applying the Dominated Convergence Theorem again we have

=l g | ,
IE[; /, 104 (1. X)) — 0 (1. X,)| dt] -0,

and thus

n—1

T
> 000 (1 Xi)Brotyy, — f 000/ (. X))dB,, in L*(Z7). (2.3.10)
i=0 0

Moreover, note that, for any p > 1 and some constant ¢, > 0,

P
E[Bs.14, 1 = cpl Atiga]2.

Then
n—1 2 n—1
E[(Zlﬁl) ] = CE[Z (|Ati+1|2 + Ati+1|BtiJi+l| + |Bfi~,’i+1 |3)]
i=0 i=0
n—1 R .
< CY |At|? < Clr|? > 0. (2.3.11)
i=0

Finally, by Example 2.3.1 we see that
2 lit+1
1By iy |” — Atig = 2/ B, ,dB;.
ti

Clearly

T n—1

2
EI:/ ‘ Z 8xxf(tivXt,')Bt,',ll[t,'.ti+1) axxf(ti?Xti)B[,‘,l dt:l
0 =0

2 n—1 fig1
dt] - E[Z/
i=0 v
lit1 n—1

n—1
SCZ/;_ (t—t)dt = C Y |Atip|* < Clz| — 0.
=0 "

i=0
Then

n—1 7n—l

3 0 X B = B3] = [ 3 0 05 X,)By VB = 0. L)
i=0 i=0

(2.3.12)

Plug (2.3.9)—(2.3.12) into (2.3.7) and (2.3.8), we prove (2.3.6).
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Step 2. Assume that b, = by, 0, = 0y are Fy-measurable and bounded, and
f € C'? with all related derivatives bounded. Let " be a smooth mollifier of f, see
Problem 1.4.14. Then f” is smooth with all the related derivatives bounded with a
constant C,, which may depend on n, and for ¢ = 9,f, 0,f, 0,.f

" — ¢ and |¢"| < C where C is independent of n.

By Step 1, we have

T 1 T
70X =0 X0 + [ [+ 070+ 0ol Je Xode+ [ a0 X)onas

Send n — oo, we prove (2.3.6) for f immediately.

Step 3. Assume b = Y= by lpi ) € L3(F), 0 = Y1) oy ljn,, € L3(F)
are bounded, and f € C'? with all related derivatives bounded. Applying Step 2 on
[t;, ti+1] one can easily see that

tit1

i1 1
f(ti+lth,+1) =f([i7Xt,‘) + / I:aLf + axfbt,‘ + Eamflat,‘|2i|(tﬁxf)dl + / axf(l?xt)o-t,‘dBt-
ti fi

Sum over all i we obtain the result.

Step 4. Assume b € L'(F), 0 € L*(IF), and f € C'? with all related derivatives
bounded. Analogous to Lemma 2.2.5, one can easily show that there exist bounded
b", 0" € L3(F) such that

lim ||b" —b|; =0, lim |j6" -0l =0.
n—>o0 n—>o00
Denote
t t
X! =Xo+ / byds + / o0, dBs,
0 0
and note that

T
(x"—X);gf |b" — by|dt + sup
0

0<t<T

t
/ o) — o,]dB;|.
0
Then by (2.2.11) we have

lim E[(X" —X);] —0, andthus (X" —X)% — 0 in probability.

n—oo
By Step 3, we have

T

1 T
7P =£0.%0) + [ [0 + 000 + J0eflof Pl XD+ [ 07Xt as
0 2 0
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Send n — oo. Note that
T 2
]E[ / |0, (2, X)o7 — D (1, X,)o | dt]
0

T
< CE[ [ ot = ol + [0.X7) ~ 0. X) Pl L] — o
0

thanks to the Dominated Convergence Theorem. Then

T T
/ A (t,X")o!'dB; — / 0 (¢, X,)o,dB, in L>(Zr).
0 0

Similarly,

/0 ' [of + i + %anloﬂz](t,xf)dt N /0 ! [0 + a0 + %3uf|a,|2](z,x,)dt, in L (Fp).

We thus obtain the result.
Step 5. We now show the general case, namely b € L} (F),0 € L? (F) and
f € C"2. For each n > 1, define

T, = inf{t >0 /Ot Ibs|ds + /Ot |0y 2ds + X,| + fot 10,7 (s, X, )| 2ds > n} AT,
2.3.13)
and denote
b" :=bly,,, o":=o0lpg, X" :i=Xa.
and f* € C'? with bounded derivatives such that
f(t,x) =f(@t,x), forall 0<t<T,|x| <n.
Then

t t
X' = X, +/ blds +/ o/dB; and |X"| <n.
0 0

By Step 4, we have
T 1
g =00+ [ [0+ 0470 + S0 lof e X0

T
i / 3" (t. X")o"dB,.
0
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This is equivalent to

T 1 T
105, =50 X0 + [ [a7 + 0 + J0ul0! e xpar + [ o x0)otas,
(2.3.14)

Recall (2.2.12) for stochastic integration in ]leac (IF) and notice that (2.3.13) include
the term [, |3, (s, X,)o5|*ds, then

T T Tn
/ 8/ (1, X")o"dB, = / 8/ (1, X")o"dB, = / 3f (1. X,)0.dB,.
0 0 0

Plug this into (2.3.14) and send n — oo. Note that, for n large enough, v, = T,

b" = b,0" = 0, X" = X, a.s. This implies that (2.3.6) holds a.s. |
2.3.3 Ito Formula in Multidimensional Case

LetB = (B',---,B%)T be a d-dimensional IF-Brownian Motion, b’ € I} (FF), 0%/ €
L2 (F),1<i<d,1<j<d.Sethb:= ', ,b")T and o := (6V)1<i<s 15j<d

which take values in R% and R# >4, respectively. Let X = (X ... x4 )T satisfy

d
dX} :=bidt + ) 0,’dB], i =1.--- .dy: orequivalently, dX; = bidt + 0,dB;.
j=1

(2.3.15)

Denote
t
(X), .= / asosTds taking values in s, (2.3.16)
0

We have the following multidimensional Itd6 formula whose proof is analogous to
that of Theorem 2.3.2 and is omitted.

Theorem 2.3.3 Assume f : [0, T] x R" — R is in C"2. Then

AF(X) = X+ Def 0 X)X, + 50 (,X0) - dX),

= [EM + b + %8_mf : (U,UIT)](I,X,)dt + 04/(t. X,)0dB, (2.3.17)

d

d) dy d . dy » )
= [8J + )0+ % > ax,x}fa,"’ka,"k](z.x,)dz + ) 0uf(t. X))o dB;.
i=1

ij=1k=1 i=1j=1

Throughout the book, we take the convention that d,f = (0y,f, - , Oy, f) is a Tow
vector, and we note that . f takes values in S%.
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2.3.4 An Extended Ito Formula

For future purpose, we need to extend the Itd formula to the case where the drift term
b,dt is replaced with a bounded variational process A. For simplicity, we state the
result only for the case d; = 1, but one may easily generalize it to multidimensional
cases. Let B be a d-dimensional F-Brownian Motion, o € L} (F,R'™9), A €
LO(F, R) is continuous in ¢ and \/gA < 00, a.s. Denote

t
dX, = 0,dB, + dA,, (X), = / 0,0, ds. (2.3.18)
0

We have the following extended Itd formula whose proof is left to the readers in
Problem 2.10.4.

Theorem 2.3.4 Assume f : [0,T] x R — R is in C"2. Then
1
dF(1.X0) = D (1 Xo)di + 0f (. X)dX; + 2 0eef (1. X0) - d(X),
1
- [BJ + Eamf(o,o,-r)](t, X,)dt + 0f (1, X,)0:dB, + 0:f (1, X,)dA;, (2.3.19)

where the last term in understood in the sense of (2.2.1).

2.4 The Burkholder-Davis-Gundy Inequality

As an application of the It6 formula, we prove the following important inequality
due to Burkholder-Davis-Gundy. For any p > 0 and ¢ € L?>?(F,R% C
12 (F,R9), define M, := [; o, - dB, and M* by (1.2.4).

Theorem 2.4.1 (Burkholder-Davis-Gundy Inequality) For any p > O, there
exist universal constants 0 < ¢, < C,, depending only on p and d, such that

T » T p
cpIE[(/ |o,|2dt)f] < E[M:P] < C,,E[(/ |a,|2dt)f]. (2.4.1)
0 0

Proof We again assume d = 1. The case p = 2 is exactly the Doob’s maximum
inequality in Theorem 2.2.7 and Lemma 2.2.4. Note that (M), = fot 052ds. Following
the truncation arguments in Step 2 of Lemma 2.2.4, we may assume without loss of
generality that

M7 and (M) are bounded. (2.4.2)

However, we shall emphasize that the constants C,, ¢, in the proof below will not
depend on this bound. We proceed in several steps.



40 2 Basics of Stochastic Calculus

Step 1. We first prove the left inequality by using the right inequality. Apply It
formula, we have

d|M,|* = |o,|*dt + 2M,0,dB,. (2.4.3)

Then
T T
(M)r = / |ov|*dt = M7 — M§ — 2/ M,0,dB,.
0 0
Thus, by the right inequality and noting that ab < %[a2 + b?], we have

4 P
2 4

T T
< CE[M ] +C,,]E[|/0 ModB|* | < CEIIME ) + C,,E[(fo Mo ) |

=
=
3

A

IA

* * L i ) 1 5
CEIM; 1) + GE M 1% ) | < GEMF ) + SE[0)7 ]

This, together with (2.4.2), implies the left inequality.
Step 2. We next prove the right inequality for p > 2. By the same arguments as
in (2.2.9), we have

o0 o0
B =p [ A ROE = 0 <p [ B[ Mr It 2 0
0 0 -

_ E[p/ow )LP—2|MT|1{M;EA}dA] - E[p|MT| /OM%‘ AP—Zd)L] = p%llE[WTHMﬂp—l].

Note that p and ,;%1 are conjugates. Then by Holder inequality we have

1 p—1

BV ) < 2 (Bl )" (BOMEFT) T

This, together with (2.4.2), implies

P
BMP) < (2 ) BlMrF). (2.44)
On the other hand, by (2.4.3) and applying the 1t6 formula, we have
V4 218 1 p—2 2 p—2
(M) = d(IM*)2) = Sp(p = DIM"lor[*di + |M,["™*Mi0dB:.
By (2.4.2), clearly [M|"~*Mo € I.>(IF). Then

T
IE[ / |M,|p_2Mto*tdBl] = 0.
0
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Thus
P 1 ! p—2 2 * | p—2
E{M: '] = 5p(p— DE[ [ 1172l dr] = GE[ My )1 .
0

Note that [,%2 and § are conjugates. Applying Holder inequality again we obtain

BlM:P) < CE[ Mgy (m)r] < CP(EHM;V])%(E[(M)?])%.

This, together with (2.4.4) and (2.4.2), implies the right inequality in (2.4.1)
immediately.
Step 3. We finally prove the right inequality for 0 < p < 2. Note that

o [ 100 pa) =6 [ 00T awn.] = e <o

p—2

Then N, := fot (M), * 0,dB, is a square integrable martingale and E[NZ] =
P
%E[(M )7]. Apply It6 formula, we have
2—p t 2—p

tooamy 2p
M,:/(M)s“pdNS: M), Ni— [ Ny, ?
0

Note that (M) is increasing in ¢. Then
2—p r 2-p 2-p
M7 < 00, N7 + [ INJaon. T < evyon, T

0

Note that % and ﬁ are conjugates. Applying the Holder inequality and then the
Doob’s maximum inequality Lemma 2.2.4, we have

EIMEP] < R[NPy ] < 6 (BINF ) (BT ]) =
< 6y (etve) (E0n1) ™ = co(el0n 1)’ (Blond)) T = ¢ Bl0nf]
This completes the proof. |

Corollary 2.4.2 Let o € L2/(F,RY) C L2 (F,RY). Then M, := |;o0,-dB; isa
u.i. martingale.

Proof Apply the Burkholder-Davis-Gundy Inequality Theorem 2.4.1 with p = 1,
we have

E[M7] < CE[(/OT |a,|2dt)%] < 00.

Then the local martingale M is a u.i. martingale. ]
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2.5 The Martingale Representation Theorem

Given o € IL2(IF, RY), it is known that M, := fol o, - dBy is a square integrable IF-
martingale. The Martingale Representation Theorem deals with the opposite issue:
given a square integrable IF-martingale M, does there exist o € I>(IF, R¢) such that
M, = My + [y 0, - dBy?

The answer to the above question is in general negative.

Example 2.5.1 Letd = 1 and B, B be independent F-Brownian Motion. Then Bisa
square integrable F-martingale, but there is no o € 1L*>(IF) such that B, = fot 05dB;.

Proof We prove by contradiction. Assume B, = fot 0,dB, for some o € IL2(IF). On
one hand, for X! := [, 0,dB, and X? := [ 1dB,, applying It6 formula (2.3.17)
we have

d|B,)> = d(X!X?) = X'dB, + X?0,dB,

and thus |Bl |~2 is a local martingale. On the other hand, applying It6 formula (2.3.5)
directly on |B|*> we obtain

d|B,|* = 2B,dB, + dt
and thus it is not a local martingale. Contradiction. |

The key issue here is that B is independent of B and thus is not P¥-measurable.
We have the following important result by using the filtration IF2.

Theorem 2.5.2 Forany § € 12(F5), there exists unique o € 1L>(IF2, RY) such that

T
£ = E[§] +/0 o; - dB,. (2.5.1)

Consequently, for any ¥B-martingale M such that E[|Mr|*] < oo, there exists
unique o € L>(F8, RY) such that

t
M, = My + [ 0, - dB;. (2.5.2)
0

Proof Again we assume d = 1 for simplicity. First note that (2.5.2) is a direct
consequence of (2.5.1). Indeed, for any IF2-martingale M such that E[|M7|?] < oo,
by (2.5.1) there exists unique o € I>(IF?) such that

T
MT = E[MT] + f O'tdBt.
0
Denote

t
M, = E[M7] + / 0ydBs.
0
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Then M is an IF3-martingale and MT = Mr. Thus
M; = E[MTL?IB] = ]E[Mﬂﬂ\f] = Mr
In particular,
My = My = E[M7].

This implies (2.5.2) immediately.
We next prove the uniqueness of ¢ in (2.5.1). If there is another 6 € L2(IF)
satisfying (2.5.1). Then

T
/ (0—[ - 6[)dBt - 0
0
Square both sides and take expectations, we get
T
E[/ |a,—6,|2dt] — 0.
0

That is,

0 =0, dtxdP—as.

It remains to prove the existence in (2.5.1). We proceed in several steps.
Step 1. Assume & = g(Br), where g € C2(R). Define

1 X
u(t,x) ;= ]E[g(x—i— BT—:)] = /]Rg(y)p(T— t,y —x)dy, where p(t,x) = me_f.

Note that

_ﬁl: lt_%+x l‘_%:l
e u| —— —_
2 2

1
Ip(t,x) = Ner

1 2 X 1 27X 1
e 7 (—=), Oup(t,x) = e_f[— - —].
p ( t) p(t,x) o 2

dup(t,x) =
Then
1
atp(t9x) - Ea)@xp(t»x) = 0.
One can easily check that u € C, ,1,’2 ([0,7] x R) and

du(t,x) + %Bxxu(t, x) =0, u(T, x) =gkx). (2.5.4)
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Now define
M, := u(t,B;), o0;:= dul(t,B,). (2.5.5)

Apply Itd formula we have
1
du(t, B,) = u,(t, B,)dB, + [0,u + Eaxxu](t, B))dt = 0,dB,.

Thus

T T
A&FWUﬁﬁ=MQ®+A(W&=EM&H+LoMﬁ

Since d,u is bounded, we see that o € IL2(IF?), and therefore, (2.5.1) holds.

Step 2. Assume £ = g(By) where g : R — R is Borel measurable and bounded.
Let g, be a smooth mollifier of g as in Problem 1.4.14. Then g, € C;(R) for
each n, |g,| < C for all n, and g,(x) — g(x) for dx-a.e. x. Since By has density,
the probability that By lies in a Lebesgue null set is 0. Then g,(Br) — g(Br)
a.s. Applying the Dominated Convergence Theorem we get lim,—.oo E[|g,(Br) —
g(Br)|?] = 0. Now for each n, by Step 1 there exists 6" € IL*(IF) such that
&n(Br) = E[g,(Br)] + fOT o0/'dB;. Then (2.5.1) follows from Problem 2.10.5.

Step 3. Assume § = g(By,,-- ,B;,), where0 <t <. <t, <Tandg:R" —
RR is Borel measurable and bounded. Denote g, (x;, - ,x,) := g(x1, -+, x,). Apply
Step 2 on [t,—1, t,], there exists 0" € I.>(IF?) such that

tn
&@M~£M=Eb@m~ﬂwﬁﬁj+[ oy dB,
1,

n—1

th
= gnfl(Bll’ ce ’Bln—l) + / UtndB,,

In—1

where, since B has independent increments,

8n—1 (X] P axn—l) = E[gn(xl sttt s Xn—1, Xp—1 + Bt,l_l.f”)il

is also Borel measurable and bounded. Repeating the arguments backwardly in time,
we obtain

fit1 |
&H@W~ﬂﬂo=mm~~ﬁg+/ oit1aB,,
ti

where

gilxr, -+, x;) i= E[gi+1(xl,"' , Xiy X +Bti,l,~+1)]~
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Define
n
0 .= Zo—ll[ti—qui)'
i=1

Then one can easily see that o € IL2(IF?) and satisfies the requirement.

Step 4. Assume £ € ]L"O(ﬂf). For each n, denote ! := ’z—f i=20,---,2" Let
Zr be the o-field generated by {B,0 < i < 2"} and define &, := E[§|.7]]. By the
Doob-Dynkin lemma we have

& =g (B’T’ . ,Blrzln) for some Borel measurable function g,.

Since £ is bounded, then so is &, and thus g, is bounded. By Step 3 we get
T
£, = E[E,] + / o/'dB, forsome o" € I*(IF%).
0

Since B is continuous, it is clear that Z2 := v,,. 7. Note that E[§|.#£] = &. Then
by Problem 1.4.2 (iii) and the Dominated Convergence Theorem we have

i, B —¢P] =0

Now (2.5.1) again follows from Problem 2.10.5.
Step 5. In the general case, for each n, let &, := (—n) vV € A n. Then |§,| < n and
thus by Step 4, there exists 6" € I?>(IF?) such that

T
& = Elt,] + /0 o7 dB,

Clearly &, — & for all w. Moreover, |§,| < |£|. Then by the Dominated Convergence
Theorem we have

s el -] <o

and thus (2.5.1) follows from Problem 2.10.5 again. |

Remark 2.5.3 In the financial application in Section 2.8, the stochastic integrand
o is related to the hedging portfolio. In particular, from (2.5.5) we see that ¢ is the
derivative of M with respect to B, and thus is closely related to the so-called delta
hedging. In fact, this connection is true even in non-Markov case, by introducing
the path derivatives in Section 9.4. |

Remark 2.5.4 The condition that £ is .#2-measurable is clearly crucial in Theo-
rem 2.5.2. When £ € I.2(.%7) and F is larger than IF2, we may have the following



46 2 Basics of Stochastic Calculus

extended martingale representation theorem: there exists unique o € IL*(F,R¢)
such that

T
£ =E[§] + / 0:dB; + Nr, (2.5.6)
0

where N € IL?(F) is a martingale orthogonal to B, in the sense that the quadric
covariation (N, B) = 0, or equivalently that NB is also a martingale. See, e.g., Protter
[196]. |

2.6 The Girsanov Theorem

In this section we shall derive another probability measure from P. To distinguish
the two probability measures, we shall write IP explicitly. Recall that B is a d-
dimensional (IP, IF)-Brownian motion. Let 6 € 1.2 (I, P, IE{”’), and define

loc

t 1 t t

MY = exp(/ 0, -d S_E/ |95|2ds>,whichimplies M? =1+/ M°0, - dB,.
0 0 0

(2.6.1)

Then M? is a P-local martingale. Moreover, we have

Lemma 2.6.1 Assume § € L®(F,P;RY). Then M? € ()., o, Lo7(F, P). In
particular, M? is a w.i. (P, F)-martingale.

Proof For simplicity again we assume d = 1. Denote X, := fot 0,dB,. Since |0| <
Cy for some constant Cp > 0, by the Burkholder-Davis-Gundy Inequality we see
that X € (), L°°"(IF, P). For n > 1, applying It6 formula we have

n>1
t t
X" =2n / X*"10.dB; + n(2n — 1) / X2"7210,)ds.
0 0
Then
t 1 t
E[1X%,)?"] = n(2n — l)E]P[ / xf”—2|93|2ds] < 5cg(zn)(zn— 1) / EP[1X, >~ %]ds.
0 0

By induction one can easily check that

C2n C()T 2n
P 2n 0 2n
E [|Xl| ] = on = ( ﬁ) ) (262)

Then clearly E[|X;|"] < C, n > 1, for some constant C; > 0. Note that

anlil

nl

t o0
Ml = exp (px, =% [ 16d5) < expirx) = 3
2 0 n=0
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Then
o n o nen
Priagfp PP n p"Cy e
EPM] 1] < 30 EPIX [ < 30 = < o0
n=0 n=0

Now it follows from the Bukholder-Davis-Gunday inequality that M? €

ﬂ1§p<oo Leer (I, P). |
Clearly M? > 0, and the above lemma implies E¥[MY] = M{ = 1. Then one

can easily check that the following IP? is a probability measure equivalent to IP:

PY(A) := EP[MY14], VA € Zr. orequivalently, dP?:=MidP. (2.6.3)

We have the following lemma whose proof is left to the exercise.

Lemma 2.6.2 Let § € L°(Fy). Then EF'[|€]] < oo if and only if EF [MO€|] < oo.
Moreover,

E’[€] = EF [M£].

The next result is crucial.

Lemma 2.6.3 Let X € L°(IF) such that IE]PG[|X,|] < oo for each t. Then X is a
P?-martingale if and only if M°X is a P-martingale. In particular, (M?)™" is a
P?-martingale.

Proof First, by Lemma 2.6.2 we see that EF’ [|X:]] < oo implies
0
EF[M/|X,]] = B[ EP(M{|7]1X,1| = EF [M{1X,]] = B [1X,]] < oo.

We claim that, for any & € I.' (%7, P?),

E'[§]7] = (M) EF [M75| 7], (2.6.4)
Notice that X is a P?-martingale if and only if X, = EF’ [X7|-Z:]. By (2.6.4), this
is equivalent to M?X, = TEF[M.£|.Z,], which amounts to saying that M?X is a
P-martingale.

We now prove (2.6.4). For any n € L®(%,P) = L*(%,P?), applying
Lemma 2.6.2 twice and noting that M? is a IP-martingale we have

EF'[ (M) EP Mg 7 0] = B [ My () ER MG | 7
= EF[E*Mp1 70| = EF [ Mjén| = B[],

which implies (2.6.4) immediately. ]
We now prove the main result of this section.
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Theorem 2.6.4 Let § € IL°(F, P, RY). The following B? is a (P?,T)-Brownian
motion:

t
— / O,ds. (2.6.5)
0
Proof For simplicity we assume d = 1. Apply It6 formula, we have
dM{BY) = M{10B] + 1) d(M{(B]1> - t]) =M’ [23? + (B - t]e,]dB,.
By Lemmas 2.6.1 and 2.6.3 we see that B’ and |Bt9 |> — t are P?-martingales.
To show that B? is a (P, F)-Brownian motion, we follow the arguments of

the so-called Levy’s characterization theorem. Fix 0 < s < T. By the martingale
properties we have

EF[BY|7] =0, EF (B )| F]=1—s5, s<t<T. (2.6.6)

Denote NV := (M?)~'M?. For each n > 2, applying It6 formula we have

nn—1)

> N@(B t)n zdt

d[ N/ (BL,)"] = ---JaB, +

Then

EP’ [(Bf’,)"

ﬁs] =E" [N?(Bf,t)n

ys] _ n(nz— 1) /IEP[Nf(B N 2) ]dr

_ 1)/]E1P9 (B )nZ‘ ]

By induction one can easily derive from (2.6.6) that

(2n)!

=926

EF[(B0)" |7 = 0. BV ()17 =

Then, for any o € R,

P aBl,| o - o Pp? 0 \n| g .- an(t_s)n a(t =
EY [ F] = ) —BU B F] =)~ =e T . (268)

! 2"n!
n=0 n=0
This implies that, under P, Bf’t is independent of .%; and has distribution N (0, —s).
That is, BY is a (IPQ, IF)-Brownian motion. |

Remark 2.6.5 The above theorem is a special case of the Levy’s martingale
characterization of Brownian motion (see, e.g., Karatzas & Shreve [117]):
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Let M be a continuous process with My = 0 and denote N, := Mt2 —t.
Then M is a Brownian motion if and only if both M and N are martingales.

(2.6.9)

The result follows similar arguments, but involves the general martingale theory,
and we omit it. ]
We conclude the section with the martingale representation theorem for (IP?, BY).
For £ € I.? (9}39 , P%), the result follows from the standard martingale representation
Theorem 2.5.2. For £ € E2(ﬂT,IP9), as seen in Example 2.5.1, the result is in
general not true. The nontrivial interesting case is § € L*(.Z#2, IP?). We note that

for @ e ]L°°(IFB, P), we have ]FBG c F2, but in general ]E‘Be #* F8. (2.6.10)

A counterexample for 5’ # TF® is provided by Tsirelson [229]. Nevertheless, we
still have

Theorem 2.6.6 Assume 0 € 1L°(F5, P, RY). Then for any & € 12(F5,P?), there
exists (P?-a.s.) unique o € 12(FE, P?, RY) such that

T
=E" .- dB!.
: [s1+/0 0, - dB’

: 0
We remark that in general we cannot expect o to be P2 -measurable.

Proof Assume for simplicity that d = 1. By the truncation arguments in Step 5 of
Theorem 2.5.2, we may assume without loss of generality that £ is bounded. Denote
X, := E¥ [£|.ZE]. Then X is a bounded (P?, F®)-martingale. By Lemmas 2.6.1
and 2.6.3, M?X is a (IP, I'®)-square integrable martingale. By Theorem 2.5.2, there
exists & € IL2(IF8, P) such that
dMPX,) = 6,dB,.
Apply It6 formula, we have
A = (M) M 6B, + (M) M0, Pr = (M) | — OB, + 16,
ax, = d (M)~ M1/ x,)]
= (M*)"'5,dB, + MO X,(M®)"! [ — 6,dB, + |9f|2dz] — G(M®) " O,dr
- [(Mf’)—lé, —Xﬁ,]dBf.

This proves the result with o, := (Mf)_l(}, — X,0,. [ |
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Remark 2.6.7

(i) In the option pricing theory in Section 2.8, Girsanov theorem is a convenient
tool to find the so-called risk neutral probability measure.

(i1) In stochastic control theory, see Section 4.5.2, Girsanov theorem is a powerful

tool to stochastic optimization problem with drift control in weak formulation.

(iii) Note that P? is equivalent to IP. For stochastic optimization problem with

diffusion control in weak formulation, the involved probability measures are

typically mutually singular. Then Girsanov theorem is not enough. We shall

introduce new tools in Part III to address these problems. |

Remark 2.6.8 The Girsanov theorem holds true under weaker assumptions on 6,
see Theorem 7.2.3 and Problem 7.5.2 below. |

2.7 The Doob-Meyer Decomposition

The result in this section actually holds for general setting and under much weaker
conditions, see, e.g., Karatzas & Shreve [117]. However, for simplicity we shall only
present a special case.

Theorem 2.7.1 Assume F = F58 and let X € S*(F) be a continuous submartingale.
Then there exists unique decomposition X, = Xo + fOtZ‘Y -dB; + K,;, where Z €
L2(F,RY), K € I*(F) with Ky = 0. Moreover, there exists a constant C > 0,
depending only on d, such that

T
E[/ \Z,|2dr + |KT|2] < CE[IX2]?]. 2.7.1)
0

Proof For simplicity we assume d = 1. We first prove the uniqueness. Assume
€ LX(F) and K’ € I*(F) with K, = 0 provide another decomposition. Then,
denoting AZ :=7Z—-7,AK :=K—-K/,

t
/ AZdB; = —AK;,, 0<t<T.
0

For each n > 1, denote t; := ] := ,%T, i = 0,---,n. Then, noting that K, K" are
increasing,

n—1

T R tit1 ) n—1 R
E[/O |AZ,| dt] - ZE[(/{{ AZ,dB,) ] - ZE[lAK,HH — AK,| ]

i=0 i=0

n—1

= ZEDKﬁJH—l t, tit1 ] ZEI]KQ i1 + Kr/, z,+1| ]

=

<E[ s (K, + Ky K+ K71,

0<i<n—1
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Since K, K’ are continuous, send n — oo and apply the Dominated Convergence
Theorem, we obtain ]E[ fOT |AZt|2dt] = 0. Then Z = Z’, which implies further that
K=XK.

We now prove the existence. Let #; be as above, Mg) = K,’é = 0, and for i =
0,---,n—1,

MZ+1 =M+ Xy, — Ey[X ], KZ+1 =K+ E X, ] - X, 272)
Then clearly Mj, is an {7, }o<i<,-martingale and, since X is a submartingale, K}, €
IL°(.%,_,) is increasing in i. Note that

E[|X,,.+1 2 |X,l.|2] = E[|M" +K"

titi41 titi41

+ X, 2 = 1%, ]

- E[|Mg.ti+1 *+ |K2J:‘+1 *+ 2X’iKZ"i+1]
= EI:|MZJ,'+1 > - 2X;K;:,li+1:|'

This implies, noting that M" is a martingale,

n—1
E[|M; ] = ZE[W;;W |2] < E[|XT|2 — [Xol* + 2X§‘~K¥]
i=0

1
= B[ 1X7” — X0 + 2X7 X7 — X0 — M) | < E[CIXG P + S5 ]
Then

E[|M}|?] < CE[|X5[*], which implies further that E[|K%|?] < CE[|X5[*]. (2.7.3)

Now by the martingale representation Theorem 2.5.2, for each n there exists
Z" € 12(F) such that M} = fOT Z}dB,. Denote K} := > oo Ki'1j;1., ). By (2.7.3)
and applying Theorem 1.3.7, we may assume without loss of generality that (Z", K")
converges weakly to certain (Z, K) € IL?(IF). Applying Problem 2.10.11 (ii) and (iii)
we see that M" converges weakly to M. := [ Z,dB, and ]E[fOT |Z,|*df] < CE[|X}|?].
Moreover, since X;, = Xo + Mj; + K7’ and X is continuous. By Problem 2.10.11 (i) it
is clear that X, = X, + M, + K. In particular, this implies that K is continuous and
E[lk7[2] < CE[|x}[].

It remains to show that K is increasing. Note that each K" is increasing. Let K" be
the convex combination of K" as in Theorem 1.3.8, then K" is also increasing and

lim,— 00 ]E[ fOT K" — K,|2dt] = 0. By otherwise choosing a further subsequence,

we have fOT |kf — K;|>dt — 0, a.s. This clearly implies that K is increasing, a.s. W
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2.8 A Financial Application

Consider the Black-Scholes model on a filtered probability space (£2, %, I, P)
with a one-dimensional (IP, IF)-Brownian motion B. The financial market consists
of two assets: a bank account (or bond) with constant interest rate r (continuously
compounded), and a stock with price S;:

1
das, = S,[;Ldt + adB,:I, or equivalently S; = Sp exp (UB, +(n— 502)1), (2.8.1)

where the constants 1 and 0 > 0 stand for the appreciation and volatility of the
stock, respectively. Let £ € I.2(.%7) be a European option with maturity time 7,
namely at time T the option is worth &. Now our goal is to find the fair price Y, of &
at time 0, or more generally the fair price Y; at time ¢ € [0, T]. Clearly Y7 = &.

2.8.1 Pricing via Risk Neutral Measure

We first note that, due to the presence of the interest, we should consider the
discounted prices:

S, =¢7S, Y, =e"Y,. (2.8.2)
One natural guess for the option price is that
Yo =Y = EF[Y;] = EF[e™Tg]. (2.8.3)

However, the above guess cannot be true in general. Indeed, if we set £ = S7, then
following (2.8.3) we should have Y, = EP[S7], or more generally Y, = EF[S;|.%].
That is, ¥ should be a P-martingale. However, obviously in this case we should have
Y, = S, and thus Y, = S,. Applying It6 formula we have

ds, = E,[(;L — Pydi + adB,]. (2.8.4)

Then S is not a P-martingale unless j1 = r.

If we want to use price formula in the form of (2.8.3), from the above discussion
it seems necessary that S needs to be martingale. We thus introduce the following
concept.

Definition 2.8.1 A probability measure P on 2 is called a risk neutral measure,
also called martingale measure, if

(i) ? is equivalent to IP;
(ii) S is a P-martingale.

In contrast to IP, we call the original IP the market measure.
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To construct IP, our main tool is the Girsanov theorem. By (2.8.4), it is clear that

dS; = S,0dB;”, (2.8.5)

where 0 := = is the Sharpe ratio of the stock, and dB;? := dB, + 0dt. Consider

o
the P~ in Section 2.6. Then P~ ~ P and B~? is a P~?-Brownian motion. Now it

follows from (2.8.5) that S is a P~?-martingale, and thus P = P~ is a risk neutral
measure.

We will justify in the next subsection that ¥ should also be a P-martingale. Then
we obtain the following pricing formula, in the spirit of (2.8.3) but under the risk
neutral measure P instead of the market measure IP:

Y, =EP[e"E|7], orequivalentdy, Y, = EF[e"TV¢EZ].  (2.8.6)

2.8.2 Hedging the Option

Assume an investor invests in the market with portfolio (A;, 4;)o</<7. The corre-
sponding portfolio value is:

V[ = )\,[ert + h[St. (2.8.7)

Note that I stands for the information flow, thus it is natural to require (1, &) to be
F-measurable. Moreover, we shall assume the investor invests only in this market,
which induces the following concept:

Definition 2.8.2 An IF-measurable portfolio (A, h) is called self-financing if, in
addition to certain integrability conditions which we do not discuss in detail,

dv, = Ade" + h,dS,. (2.8.8)

The fairness of the price is based on the following arbitrage free principle.
Definition 2.8.3
(i) We say a self-financing portfolio (A, h) has arbitrage opportunity if

Vo=0, Vr>0, P-as., and P(Vy>0)>0. (2.8.9)

(ii) We say the market consisting of the bond and stock is arbitrage free if there is
no self-financing portfolio (A, h) admitting arbitrage opportunity.

The following theorem is called the first fundamental theorem of mathematical
finance, which holds true in much more general models.
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Theorem 2.8.4 The market is arbitrage free if and only if there exists a risk neutral
measure .

By the previous subsection, the Black-Scholes market is arbitrage free.
We remark that, since P is equivalent to IP, so (2.8.9) holds under P as well.

Now given an option &, let Y, denote its market price. We may consider an
extended market (¢”’, S;, Y;), and we can easily extend the concept of arbitrage free
to this market.

Definition 2.8.5 We say Y is a fair price, also called arbitrage free price, if the
market (e", S;,Y,) is arbitrage free.

Definition 2.8.6 Given &, we say a self-financing portfolio (A, h) is a hedging
portfolio of € if Vy = &, P-a.s.

Proposition 2.8.7 If (A, h) is a hedging portfolio of &, then Y, := V, is the unique
fair price.

Proof The fairness of V involves the martingale properties and we leave the proof
to interested readers. To illustrate the main idea, we prove only that, if Yy > Vj,
then there will be arbitrage opportunity in the extended market (¢”’, S;, Y;). Indeed,
in this case, consider the portfolio: (A, + Yo — Vo, h;, —1), with value

Vii=[A+Yo—Vole" + hS,— Y, =V, — Y, + [Yo — Vole".
Note that

dV, = dV, — dY, + [Yo — Volde" = A de™ + h,S, — dY, + [Yo — Volde"
== [A[ + Y() - V()]dert + htdS[ + (_l)dY[.
That is, the portfolio is self-financing. Note that
Vo = Vo— Yo+ [Yo — Vole® = 0;

VT =Vr—Yr+ [Y() — V()]e‘rT = S— i: + [YO — V()]e‘rT = [YO — Vo]e’T >0, P-as.

Then the portfolio (A, + Yo — Vo, h;, —1) has arbitrage opportunity. ]

We next find the hedging portfolio in the Black-Scholes model. Our main tool
is the martingale representation theorem. Consider the discounted portfolio value
V, 1= e7"V,. By (2.8.8) and (2.8.5) we have

dV, = hdS, = h,S,0dB;". (2.8.10)

That is, V is a F-martingale, where, again, P := PY. Note that Vy = e_’TE .
Assume

£ e LX(FE P). (2.8.11)



2.8 A Financial Application 55

Then by the generalized martingale representation Theorem 2.6.6, there exists Z €

L2(F2, P) such that

_ T
e Te =E" g + / Z,dB". (2.8.12)
0

This induces the hedging portfolio (and the price) immediately:

Z - - — oz

V,:=EP[eTE1FE), hi=—=, A :=V,—hS =V,—=. (28.13)
S0 o

The hedging portfolio is closely related to the important notion of completeness
of the market.

Definition 2.8.8 The market is called complete if all option § € 1.°(Fr) satisfying
appropriate integrability condition can be hedged.
From the above analysis we see that the Black-Scholes market is complete if

F = F5. (2.8.14)

We conclude this subsection with the second fundamental theorem of mathemat-
ical finance, which also holds true in much more general models.

Theorem 2.8.9 Assume the market is arbitrage free. Then the market is complete if
and only if the risk neutral measure P is unique.

2.8.3 Some Further Discussion

We first note that one rationale of using Brownian motion to model the stock price
lies in the central limit Theorem 1.1.2. As a basic principle in finance, the supply and
demand have great impact on the price. That is, the buy orders will push the stock
price up, while the sell orders will push the stock price down. Assume there are
many small investors in the market and they place their order independently. Then
by the central limit Theorem 1.1.2, the accumulative price impact of their trading
induces the normal distribution. In the rest of this subsection we discuss two subtle
issues.

First, as we see in (2.8.14), even for Black-Scholes model, the completeness
relies on the information setting. In a more general model, I, FZ, and TS can
be all different. The investor’s portfolio (A, /) has to be measurable with respect
to the filtration the investor actually observes. While in different situation the real
information can be different, typically the investor indeed observes S and thus IS
is accessible to the investor. As discussed in the previous paragraph, observing
B essentially means the investor observes numerous other (small) investors (and
possibly other random factors). This is not that natural in practice. Moreover, note
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that in Theorem 1.1.2, the convergence is in distribution sense, not in pointwise
sense. Then even one observes a path of the portfolios of all small investors, one
typically does not know a corresponding path of B. So in this sense, at least in some
applications, it makes more sense to use IS than to use IF?. This implies that in these
applications one should use weak formulation, as we will do in Part III. In Parts I
and II, however, we will nevertheless use strong formulation, namely use 5. This
could be reasonable in some other applications, and still makes perfect sense in this
particular application when IS = IF2, which is true in, e.g., Black-Scholes model.
The next is the pathwise stochastic integration. Recall that for an elementary
process o € L3(F), the Ito integral ( fOT 0,dB;)(w) = fOT 0,(w)dB:(w) is defined
in pathwise manner. For general o € ]Lz(]F), however, fOT 0,dB; is defined as
the IL2-limit of fOT o/'dB,, where 0" € L}(IF) is an approximation of o. As a

consequence, fOT 0:dB; is defined only in a.s. sense, with the null set arbitrary and
up to the particular version we want to choose. In particular, for any given w, since
P({w}) = 0, the value ( fOT 0:dB;)(w) is arbitrary. In other words, in our application,
assume we have observed a path S,(w) and decided a path &, (w), the value of
fOT h,dS; at this particular observed w is actually arbitrary. This is of course not
desirable. We shall mention that in real practice, the portfolio 4 should be discrete,
and thus the issue does not exist. But nevertheless, theoretically this is a subtle issue
we face in such applications.

One way to get around of this difficulty is to use pathwise integration. Assume,
under certain conditions, lim,—s o fOT oldB, = fOT 0,dB; in a.s. sense, with a
common exceptional null set Ey independent of our choice of the approximation

o". Then we may fix a version: (fOT G,dB,) (@) 1= limy— 00 (fOT O't"dB,> ()1 (w).
If we are lucky that the observed path w is not in Ej, then we may use the limit
of ( fOT ot”dB,> (w) as the value of ( fOT o,dB,) (w). Another powerful tool to study

pathwise analysis is the rough path theory, which approximates B(w) by smooth
paths. We have some discussion along this line in Problem 2.10.14.

2.9 Bibliographical Notes

The materials in this section are very standard in the literature. We refer to the
classical reference Karatzas & Shreve [117] for a comprehensive presentation of
properties of Brownian motions, some of which are more general or deeper than
the results here. We also refer to Revuz & Yor [206] for a more general continuous
martingale theory, and Protter [196] for a general semimartingale theory, including
semimartingales with jumps.

For the financial application in Section 2.8, Shreve [209, 210] provides an
excellent exposition. For the pathwise stochastic integration, we refer to Wong &
Zakai [236,237], Bichteler [17], Follmer [91], Willinger & Taqqu [235], Karandikar
[119], and Nutz [160]. The rough path theory was initiated by Lyons [140]. We refer



2.10 Exercises 57

interested readers to the book Friz & Hairer [94]. We also note that the pathwise
stochastic integration is closely related to the quasi-sure stochastic integration in
Section 12.1.1.

2.10 Exercises

Problem 2.10.1 Prove Propositions 2.1.2 and 2.1.3. ||
Problem 2.10.2

(i) Let X, := folbsds for some b € I (F)and 0 < s < ¢t < T. Show that

loc
ViX) = [ |b,ldr, as.
(i) Let X be as in Definition 2.1.5. Show that (X) is increasing in 7, a.s. That is,
(X); — (X)s € S¢is nonnegatively definite forall0 < s <t < T.
(i) Letx; € R, 0" € L'*(F,R), 0’ € L2(F,RY), and X! := x;+ [, bids+ [, o!-dB,
i=12Foranywr:0=1 <--- <t, =T,denote

n—1
1 2\ . __ E 1 2
(X ’X )T T Xt;.t,-+1Xt,',t,-+1'
i=0

Show that (X', X2)7 — [ o} - o2dt in L' (F7), as || — 0. [ ]

t

Problem 2.10.3 This problem concerns the general Doob’s maximum inequality,
extending Lemma 2.2.4. Let X € L'(IF) be a right continuous nonnegative
submartingale. Then

PX7 =2) < ALPEDXTPI{X;Z)‘}], forall A > 0,p > 1;

e—1

E(IX}1] < GEPE[X7P), forallp > 1: and  E[X}] < LE[] +XT(ln(XT))+]].

We remark that the |[M| in Lemma 2.2.4 is a nonnegative submartingale, thanks to
Jensen’s inequality. Thus Lemma 2.2.4 is indeed a special case here. |

Problem 2.10.4 Prove the extended It6 formula Theorem 2.3.4. |
Problem 2.10.5 Let 7, € I%(%), 0" € L*(F,RY), and denote £, := 75, +
fOT ol - dB;, n > 1. Assume lim,— oo E[|§, — £]*] = 0 for some § € L*(Fp).
Then there exists unique o € IL>(FF, R¥) such that § = E[£|.%] + fOT o; - dB;, and
limy oo B[ 92 — EIELZ + fy lo7 = o1di] = 0. n
Problem 2.10.6 Let o € I>(IF?,S7) such that ¢ > 0, and X, := fO' 0,dB,. Show

—P P
that the augmented filtrations of X and B are equal: FX = T8 . |
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Problem 2.10.7 Let p, g € [1, 0] be conjugates.

(i) Assume X € L®”(F), Y € L?9(F) with appropriate dimensions so that XY
takes values in R?. Show that M, := fOt(XxYS) - dB, is a u.i. F-martingale.
(ii) Find a counterexample such that X € L2P(IF), ¥ € L*4(F), but M, :=
[y (X,Yy) - dB is not uniformly integrable.
(iii)) Find a counterexample such that M is a local martingale, but not a martingale.
(iv) Find a counterexample such that M is a martingale, but not uniformly
integrable.

Note that the M in (ii) is a local martingale, so it serves as a counterexample either
for (iii) or for (iv). |

Problem 2.10.8 Let d = 1 (for simplicity). Prove the following stochastic Fubini
theorem:

[ ' [u, / tvsds]dB, = / ' [vs / Tu,dB,]ds, Vi, v € L®(F, R).
0 0 0 K

We remark that, unless u is deterministic, the following result is not true:

/(;T [u,/(;tvsst]dt = /OT [vs/;Tutdt]st.

In fact, the stochastic integrand in the right side above is in general not
F-adapted. ]

Problem 2.10.9 This problem concerns general martingale theory. Letd = 1, M a
continuous IF-martingale with E[|M7|*] < oo, K € I'(IF) with Ky = 0, and M?> — K
is also a martingale.
(i) For any bounded 0 = Z?;é 0l € LO(F), denote fOT o dM; =
1 04uMy,, . Show that

E[‘/OTUSdMSP] - E[/0T|as|2dl(x].

(i) For any o € LL°(F) such that ]E[ fOT |05|2dKS] < 00, show that there exist
bounded elementary processes 6" € IL°(F) such that lim,_ ]E[ fOT lo) —
os|2dKS] — 0.

(iii) For o and ¢” as in (ii), show that j;)T o"dM, converges in 1%, and the limit
is independent of the choices of ¢”. Thus we may define fOT o, dM; =
1,00 fy 07dM.

(iv) For o as in (iii), define Y, := fol 05dM; similarly. Show that Y is still an
F-martingale.
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We remark that the above process K is called the quadratic variation of M,
and is also denoted as (M). Its existence can actually be proved. |

Problem 2.10.10 Prove Lemma 2.6.2. |

Problem 2.10.11 Assume X, — X, ¥, — Y weakly in I>(IF) and have appropriate
dimensions.

(i) X, + Y, = X + Y weakly in L2(IF).

(i) [, X?-dB; — [, X, -dB, weakly in L*(IF).
(i) E[ S [X,[2dr] < liminf,_o0 E[ [, |X7|?d1]. |
Problem 2.10.12 We note that Theorem 2.7.1 does not hold true for semimartin-

gales in the following sense. Let d = 1. For any n, find a counterexample X, =
[y bsds + [, 05dBy, where b € L'*(F) and o € IL2(F) such that

E[(/Or|b,|dt)2+/or|o,|2dt] > nE[|X2[).

Problem 2.10.13 This problem concerns the Stratonovich integral fOT X, o dB;, for
which the integrand X requires some regularity. To be specific, let X; := x+ f(; byds+
fot o0,dB,, where x € R?, b € L'2(IF,RY), and o € L*(IF, R¥*9).

(i) Forany 7w : 0 =1y <--- <t, =T, denote

n—1

S(m) = E Xitig 'Bti,t;+1'
2
=0

Show that Sy(7) — [ X, -dB, + L [l tr(o)dr in LA(Fr), as || — 0. We
thus define the Stratonovich integral as

T T 1 7T
/ X, 0dB; := lim Sy(m) =/ X, -dB; + —/ tr(o;)dt. (2.10.1)
0 |]—0 0 2 Jo

(i) The Stratonovich integral can be approximated in a different way. For each 7,
let B* denote the linear interpolation of (#;, By,)o<i<x, Namely

n
fiy1 —1t -t
B} := E [B. +Bti+1m]1(n,f,’+1]'
1

ti
‘=0 lit1 — 1 i

Then B” is absolutely continuous in ¢ and thus the following integration is well
defined:

T
S(r) :=/ X, - dBT.
0

Show that lim, |0 S(7) = fOT X; o dB, in I?-sense.
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(iii) Similarly we may define ¥, := f; X, 0 dB, = [, X, - dB, + } [; tr(0,)ds. We
shall note that Y is in general not a martingale. Prove the following chain rule
for Stratonovich integral:

df (1, Y,) = 3£ (1, V)t + [0, (1, Y)X,] o dB,,

for any f : [0, T] x R — R smooth enough. ]

Problem 2.10.14 This problem concerns a.s. convergence of stochastic integration.
Given X € IL*(TF, IRd), denote Y7 := foT X, - dB;, and, for a partition 7 : 0 = 1) <
e <ty = T’

n—1

Yi =Y X, By, (2.10.2)
i=0

Leta € (0,1] and B > 0 be two constants, and {7,,}m>1 @ sequence of partitions
such that |7,,| < m™#. At below, all limits are in the sense of a.s. convergence.

(i) Assume X is uniformly Holder-« continuous and f > ﬁ Show that
lim,—o0 Y7 = Yr, a.s. (Hint: show that IE[ Yoo Y — YT|2] < 00.)

(i) Assume dX, = 0,dB,, 0 € I>(IF, R%*¢), and B > 1. Show that lim,,_; Y=
Yr, a.s.

(iii) Assume dX;, = 0,dB;, 0 € L®IF,R%Y), and B > % Show that
lim, o0 Y7 = Y7, ass.

(iv) Assume d = 1, X is as in (ii), o is uniformly Holder-o continuous, and 8 >
1

952 Denote
n—1 2
1Bty |© — (tir1 — 1)
ﬁ“=§h@wﬁ%’”‘2 | BCA T

which we call the second order approximation. Show that lim,,—, Y%”’" =

Yr, as.
(v) Consider the same setting as in (iv). Assume further that do, = 6,dB,, 0 is

uniformly Holder-« continuous, and 8 > ﬁ Denote
o

n—1

1By iy I = (i1 — 1)

Biitii1)? =3By gy, (i1 — i
V7= 3 [XuBuss + o > + g, Lutee o s )]
i=0
(2.10.4)
which we call the third order approximation. Show that lim,— e Y;’”’” =

Yr, a.s.
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We remark that in all the above cases, |m,,| converges to 0 with a rate 8, and the
exceptional null set of the a.s. convergence depends on {m,,},>1. In the setting of
(iv), by rough path theory one can show that there is a common null set Ej such that
limy o Y7 () exists for all & ¢ Eq. [ |



2 Springer
http://www.springer.com/978-1-4939-7254-8

Backward Stochastic Differential Equations
From Linear to Fully Monlinear Theory
Zhang, J.

2017, X\, 388 p., Hardcover

ISBN: 978-1-4939-7254-8



		2017-08-11T02:45:10+0530
	Certified PDF 2 Signature




