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Abstract

The delivery of proteins to the apoplast or protein secretion is an essential process in plant cells. Proteins are
secreted to perform various biological functions such as cell wall modification and defense response.
Conserved from yeast to mammals, both conventional and unconventional protein secretion pathways
have been demonstrated in plants. In the conventional protein secretion pathway, secretory proteins with an
N-terminal signal peptide are transported to the extracellular region via the endoplasmic reticulum–Golgi
apparatus and the subsequent endomembrane system. By contrast, multiple unconventional protein
secretion pathways are proposed to mediate the secretion of the leaderless secretory proteins. In this review,
we summarize the recent findings and provide a comprehensive overview of protein secretion pathways in
plant cells.
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1 Conventional Protein Secretion in Plants

1.1 Endoplasmic

Reticulum—The Port

of Entry to the

Secretory Pathway

In higher eukaryotes, the synthesis of nascent secretory proteins is
initiated on cytoplasmic ribosomes before their translocation across
the endoplasmic reticulum (ER) membrane through a channel
formed primarily by the Sec61 protein. Although Sec61 paralogs
are encoded in plant genomes, the function of Sec61 has remained
uncharacterized in plants. After translocation into the lumen of
the endoplasmic reticulum, secretory and membrane proteins
achieve their native conformations through interactions with
distinct molecular chaperones, lectins, as well as folding enzymes.
Incompletely folded or unassembled proteins are recognized by a
constitutively active ER-mediated protein quality control (ERQC)
system that recognizes aberrant proteins and targets them for
destruction in the cytosol via an evolutionarily conserved degrada-
tive process known as ER-associated degradation (ERAD) that
involves multiple steps including ubiquitination, retrotransloca-
tion, and the cytosolically located proteasome [1]. Conserved and
unique functions (involved in stress pathways and pathogen
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defense) of plant ERQC/ERAD mechanisms have been revealed
in recent studies combining biochemical approaches and genetic
analysis [2, 3].

1.2 ER-to-Golgi

Anterograde Transport

in Plants—Vesicles

Versus Tubules?

If correctly folded, the secretory proteins exit the ER and move to
the Golgi apparatus for further modifications. The molecular basis
for ER protein export has been built on the isolation and character-
ization of sec mutants in yeast by the Schekman laboratory that
accumulate ER membranes at the nonpermissive temperature [4,
5 ]. Combining this genetic approach with biochemical assays
(in vitro reconstitution), the vesicle coat proteins responsible for
ER–Golgi transport, collectively termed the coat protein complex
II (COPII), were discovered first in yeast and later in animal by the
Rothman laboratory [6, 7]. The COPII vesiculating machinery
mainly consists of five cytosolic components: Sar1, Sec23, Sec24,
Sec13, and Sec31. The small GTPase Sar1 is first activated and
recruited onto the ER membrane by the guanosine nucleotide
exchange factor (GEF) Sec12 [8–11], which is an ER-localized
integral membrane protein [12]. Subsequently, a GTPase activating
protein (GAP) Sec23 that stimulates the enzymatic activity of Sar1
[13] and the adaptor protein Sec24 [14], are recruited to ER
membrane as a heterodimer by Sar1-GTP to form the prebudding
complex [15]. This complex in turn recruits a Sec13/Sec31 het-
erotetramer, which forms the outer layer of the COPII coat, com-
pleting the vesicle formation process. Eventually, secretory proteins
recruited by Sec24 or cargo receptors into the nascent COPII
vesicles accumulate at ER export sites (ERESs) and will further
transport to the Golgi apparatus (Fig. 1).

Despite increasing progress being made in our understanding
of COPII function in the early secretory pathway of yeast and
mammals, comparable studies on plants are still in their infancy.
In higher plants, Sar1 and Sec12 were the first COPII components
to be being characterized in ER to Golgi trafficking [16, 17].
Recently, other COPII proteins have also been studied in terms of
their functions in the early secretory pathway as well as in plant
development and stress responses [18–26]. However, the existence
of large numbers of Arabidopsis COPII isoforms as opposed to
other eukaryotes remains a mystery. In Arabidopsis, there are five
Sar1, two Sec13, two Sec31, seven Sec23, and three Sec24 isoforms
encoded in the genome [27]. However, the significance of this
diversification remains poorly understood, but raises the question
whether tissue specificity or stress-related functional diversity exists
for plant COPII isoforms. Several recent studies have pointed
toward the functional diversity for COPII paralogs in ER protein
export and stress pathways in Arabidopsis. Genetic screening has
identified a recessive missense point mutation (R693K) in Sec24A,
which induces the formation of ER and Golgi membrane clusters
leading to a redistribution of Golgi and secretory proteins into
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these clusters [20, 21]. Interestingly, the expression of Sec24B and
Sec24C are incapable of complementing the missense mutation
phenotype, indicating the existence of functional diversity among
the Arabidopsis Sec24 paralogs. More strikingly, the Arabidopsis
Sar1 homolog AtSar1A was reported to exhibit distinct inhibitory
effects on ER protein export in both tobacco protoplasts and
Arabidopsis plants [19, 25]. Cell biology, biochemistry, and struc-
tural approaches have revealed the functional heterogeneity of

Fig. 1 Overview of protein secretion pathways in plant cells. In the conventional
protein secretion pathway (indicated by black arrows), proteins with signal
peptides are translocated into the ER. Properly folded proteins are exported
from the ER and anterogradely transported to the Golgi and subsequently to the
TGN. In the TGN, certain proteins are sorted to the plasma membrane, while
others are sorted to the MVB which are then targeted to vacuole. In the
unconventional protein secretion pathway (indicated by red arrows), leaderless
secreted proteins are delivered to the extracellular space via different routes:
(1) Golgi-bypass pathway; (2) secretion through MVB–plasma membrane fusion;
(3) secretion through vacuole–plasma membrane fusion and (4) EXPO-mediated
secretion pathway
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AtSar1A through an evolutionary amino acid substitution, which is
crucial for the recognition of unique Sar1-GAP AtSec23a [25].
Further microarray analyses have demonstrated the specific pairing
of AtSar1A and AtSec23A, and their potential role in the plant ER
stress pathway [26].

Besides COPII-mediated protein ER export, nascent secretory
cargos have also been found to exit the ER in a COPII-independent
manner in mammals [28]. In higher plants, direct ER–Golgi tubu-
lar connections have been proposed to mediate ER-to-Golgi pro-
tein traffic (Fig. 1). Using osmium impregnation, ER–Golgi
connections were observed in tobacco leaves [29]. Although the
presence of tubules in electron micrographs does not prove they are
directly involved in protein transport, recent findings in mammals
have indicated that the ER–Golgi contact sites may be involved in
cargo protein as well as lipid transport in the early secretory path-
way [30].

1.3 Intra-Golgi

Transport in Plants

In mammals, newly synthesized secretory proteins are delivered to
an ER–Golgi intermediate compartment (ERGIC) in COPII vesi-
cles before arriving at the cis-Golgi and progressing through the
Golgi complex [31]. However, the presence of ERGIC in higher
plants remains doubtful, as Golgi stacks are closely associated with
ERES in plant cells. Nevertheless, a recent study suggests that the
cis-most Golgi cisternae are biosynthetically inactive and may func-
tion as a mammalian ERGIC equivalent, which is the site of mem-
brane assembly and cargo sorting [32]. Indeed, Brefeldin A (BFA)
treatments in tobacco BY-2 cells show that punctate structures
containing some cis-Golgi components near the ERES act as scaf-
folds for Golgi stack regeneration, suggesting their ERGIC-like
properties in plants [33, 34]. Thus, in contrast to mammals, the
cis-Golgi may function as a bona fide ERGIC in plants. Once
arriving at the cis-Golgi, secretory proteins then undergo carbohy-
drate modifications and proteolytic processing in a sequential man-
ner as the cargo passes through distinct Golgi compartments. In
mammals and yeast, there exists a long-lasting debate about how
secretory proteins are transported through the Golgi stack. There
are two major models: one is the COPI-dependent vesicular trans-
port (stable compartments) model, and the other is the cisternal
maturation model [35–37]. The stable compartment model, which
describes the Golgi as consisting of discrete unconnected subcom-
partments retaining distinct sets of matrix proteins that establish
Golgi compartmental identity and maintain Golgi architecture in
each stack, was first postulated by Rothman and colleagues. Such a
scenario is supported by the observation of COPI transport vesicles
at the cisternal rims [38, 39] as well as biochemically through cell-
free reconstitution assays [40]. The model was further modified by
having COPI vesicles move bidirectionally between intra-Golgi
cisternae, with anterograde vesicles carrying secretory proteins
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and retrograde vesicles recycling trafficking components [41].
Nevertheless, the basic concept of the cisternal maturation model
appears to be widely accepted for the following reasons: (1)
Cargoes much larger than conventional COPI vesicles can travel
across the Golgi stacks [35]. For instance, procollagen aggregates
in mammalian fibroblasts have been shown to progress across the
Golgi stack without entering small vesicles [42, 43]. (2) Retrograde
COPI-dependent cargo concentration and transport is favored,
while the existence of anterograde vesicles remains to be confirmed
[44]. In higher plants, the existence of COPI vesicles was first
demonstrated using a cell-free reconstitution assay [45]. Later,
distinct populations of COPI vesicles, COPIa and COPIb which
bud exclusively from cis-cisternae and exclusively from medial- and
trans-Golgi cisternae respectively, were observed used a combina-
tion of electron tomography and immunolabeling techniques in
plants [46]. These studies support the cisternal maturation model
in plants. Recently, observations of Golgi regeneration after BFA
treatment and removal in plant cells have revealed that the Golgi
stacks regenerate in a cis-to-trans manner, which is consistent with
the cisternal maturation model [33]. Therefore, the basic concept
of the cisternal maturation model appears to be more applicable in
higher plants as in other eukaryotes.

While the secretory proteins passing through distinct Golgi
compartments undergo carbohydrate modifications and proteolytic
processing, the immature cargos, escaped ER resident proteins, as
well as Golgi resident proteins need to be retrieved by COPI
vesicles to their proper loci. COPI-interacting signals such as the
canonical dilysine motif (KKXX and KXKXX) were first identified
on the cytoplasmic C terminus of adenoviral E3 19 kDa (E19)
protein in mammals [47, 48]. In plants, dilysine motifs can also
be found in many Type I integral membrane proteins, such as Cf-9
in Lycopersicon esculentum and the p24 family proteins in Arabi-
dopsis thaliana [49–51]. Interestingly, a novel COPI-interacting
signal, the KXD/E motif, is responsible for the Golgi retention of
polytopic integral membrane proteins inArabidopsis thaliana [52].
Sequence alignment analyses and further studies suggested the
conserved nature of the KXD/E motif function in COPI-
dependent Golgi retention in all eukaryotes [53, 54]. For tethering
of intra-Golgi COPI vesicles to designated membranes, distinct
proteins and complex such as coiled-coil tethers p115, golgin-84,
CASP, as well as multisubunit complexes like TRAPPII and COG
have been characterized in plants. For instance, an Arabidopsis
p115 homolog, identified as GOLGIN CANDIDATE 6 (GC6)
and MAIGO4, was shown to localize to the restricted domain of
cis-Golgi cisternae as well as COPII vesicles in Arabidopsis root and
tobacco BY-2 cells by confocal and immunoelectron microscopy
[55, 56]. Mutant analysis has shown that the maigo4 mutant accu-
mulates seed storage proteins in the ER, indicating its essential role
in the secretory pathway. Similarly, golgin-84 (identified as GC1
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and GC2) and AtCASP have also been shown to localize at the rims
of cis-Golgi cisternae [55]. However, the physiological roles and
tethering functions of p115, golgin-84, and AtCASP remain largely
uncharacterized in plants. Meanwhile, the distinct components of
the COG tethering complex, namely, COG7, COG3, and COG8,
have been shown to be responsible for plant Golgi morphology
maintenance, embryo development as well as pollen tube growth
[57, 58]. Nevertheless, the TRAPII complex components and their
functions in COPI vesicle tethering are still elusive. Further studies
are needed to elucidate how the tethering proteins mediate COPI
vesicle targeting to the designated membrane and their physiologi-
cal impacts on the plant development.

1.4 Post-Golgi

Trafficking

of Secretory Proteins

to the Plasma

Membrane in Plants

After modification in Golgi apparatus, secretory proteins continue
to be processed by resident enzymes and are eventually sorted at the
trans-Golgi network (TGN), which is defined as a specialized com-
partment on the trans-most cisterna of the Golgi and is composed
of tubular-like membrane structures [59]. In plant cells, the ultra-
structure of the TGN was observed in the EM as a branched and
tubular membrane structure with clathrin-coated buds [60, 61].
Intriguingly, besides acting as a sorting station for post-Golgi path-
ways, the plant TGN may also function as an early endosome (EE),
and is therefore distinct from yeast and mammals [62]. Further-
more, live-cell analysis using spinning disk confocal and superreso-
lution confocal microscopy shows the existence of two types of
TGN in plant cells [63]: (1) a Golgi-associated TGN, which is
located at the trans-side of the Golgi apparatus, (2) a Golgi-
released TGN, which is a mobile and independent organelle located
away from the Golgi apparatus. The functional significance of these
distinct TGN populations in plants is unclear. Furthermore, unlike
in mammalian cells, the trafficking of secretory proteins en route to
the plasma membrane in plants remains underinvestigated. Using
fluorescently tagged SCAMP2, a secretory vesicle cluster (SVC)
generated from TGN that moves toward and eventually fuses with
plasma membrane has been identified. SVCs have been found in
Arabidopsis thaliana as well as in rice (Oryza sativa) cells and move
to the cell plate in dividing tobacco cells, indicating that the SVC is
a dynamic mobile structure [64, 65]. In addition, a recent study on
the Arabidopsis adaptor protein complex 1 (AP1), a conserved
protein complex that participates in TGN to PM protein trafficking
in mammals, has shown that loss of function of the AP-1 adaptins
lead to defects in secretory protein trafficking to the plasma mem-
brane and cell plate formation [66]. These studies point to the
conserved nature of the TGN to PM trafficking pathway in higher
plants (Fig. 1). However, the vesicles mediating this trafficking
process and the underlying mechanism remain elusive. Future
study on the TGN to PM trafficking pathway in plant cells will
certainly shed light on plant cell polarity and development.
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2 Unconventional Protein Secretion in Plants

2.1 Conventional vs.

Unconventional

Protein Secretion

in Plants

Being highly conserved in yeast, animals, and plants, conventional
protein secretion is a classical and well-defined pathway mediating
the extracellular delivery of proteins via endomembrane system.
However, analysis of the plant secretome has revealed that more
than 50% of the secreted proteins lack a signal peptide [67]. These
leaderless secretory proteins (LSP) are not translocated into the ER
and do not enter the conventional protein secretion pathway, thus
raising the possibilities of an alternative route termed unconven-
tional protein secretion (UPS). In general, LSP bypassing the
ER–Golgi protein transport pathway, (1) traffic unaffected by
BFA and (2) are without posttranslational modification, probably
make use of the UPS pathway for their extracellular delivery [68,
69]. Proteomic studies have revealed that the majority of the LSP
are related to stress or pathogen infection [70], implicating the
essence of the UPS pathway in dealing with various environmental
cues in plants.

2.2 Direct

Translocation of LSP

Across the Plasma

Membrane via a

Golgi-Bypass Pathway

Different types of UPS pathway have been described in plants over
the last decade. For instance, certain LSPs may be secreted directly
from cytosol without the involvement of other organelles, while in
some cases the secretion of LSPs are mediated by the fusion of
vacuoles, multivesicular bodies (MVB) or exocyst-positive orga-
nelles (EXPO) with the plasma membrane [71] (Fig. 1). Although
the direct translocation of LSPs across the plasma membrane has
not yet been proven in plants, previous studies have suggested that
the leaderless cytosolic enzyme mannitol dehydrogenase (MTD) is
directly secreted into the apoplast in response to salicylic acid, a
plant defense hormone, in tobacco [72]. It was shown that MTD
secretion is Golgi-independent since BFA treatment did not inter-
fere with its extracellular trafficking [73]. Similarly, another cyto-
plasmic enzyme hygromycin phosphotransferase (HYGR), which is
commonly used for the selection of hygromycin B resistance, was
found to be secreted into the extracellular space in a BFA-
insensitive manner in Arabidopsis thaliana [74]. In yeast, it has
been shown that farnesylated peptides such as α-factor and M-
factor are transported via a plasma membrane-localized ABC-
transporter based secretion [75]. However, it is not clear whether
any protein or channel present on the plasma membrane could
assist in the translocation and secretion of the cytoplasmic MTD
and HYGR in plants. Nevertheless, MTD and HYGR represent
LSPs that utilize a Golgi-independent pathway for secretion and
therefore belong to the UPS category.
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2.3 UPS via Vacuole-

and Multivesicular

Bodies-Plasma

Membrane Fusion

In addition to direct translocation through the plasma membrane,
LSPs could be secreted with the help of other organelles as carriers.
Upon pathogen infection, fusion of the vacuole with the plasma
membrane at the site of attack has been reported in Arabidopsis
thaliana [76, 77]. UPS mediated by vacuole–plasma membrane
fusion enables the release of vacuolar enzymes in response to path-
ogen attacks, thus representing a strategy for plant survival [78].
During fungal infection, it has also been reported that MVBs
accumulate at the site of the invasion papillae [79]. It is plausible
that the fusion of MVB with the plasma membrane causes the
release of the intraluminal vesicles (known as exosomes) into the
fungal haustorium [80]. Indeed, previous studies have implicated
the presence of exosome-like structures in the papilla matrix
[81–83]. In barley leaves infected by powdery mildew fungus,
vesicle-like bodies were frequently observed, and some of them
were identified as MVB and paramural bodies (PVB). It was sug-
gested that antimicrobial compounds were contained in the MVB
and PVB and their subsequent discharge could be used to prevent
fungal penetration [79]. However, how the LSPs that block papilla
building block and other antimicrobial compounds get sequestered
into the MVB and undergo UPS is still unclear.

2.4 Exocyst-Positive

Organelle (EXPO)-

Mediated Secretion

Pathway

UPS is not only involved in pathogen response but may also be
responsible for plant growth and development. S-
adenosylmethionine synthetase 2 (SAMS2), an enzyme involved
in lignin biosynthesis which contributes to cell wall architecture,
has been suggested to be secreted into the extracellular space via
EXPO [84, 85]. EXPO is a novel double-membrane compartment
that is characterized by the exocyst subunit AtExo70E2 [86].
Although the origin and the mechanism for EXPO formation are
still currently unknown, it is proposed that cytosolic LSP cargos are
sequestered into the forming EXPO, and the completed EXPO
would then eventually fuse with the plasma membrane and release
a single-membrane bound vesicle to the extracellular space [69].
Interestingly, EXPO showed no response to BFA, wortmannin
(known to affect MVB) nor concanamycin A (known to affect
TGN) treatment, suggesting its distinctive nature and is indepen-
dent of the conventional protein trafficking pathway. Consistently,
fluorescence signals of AtExo70E2-GFP did not overlap with other
fluorescence-tagged organelle-specific markers including the Golgi,
TGN, and MVB. Transmission electron microscopy and immuno-
gold labeling revealed the ultrastructure of EXPO and confirmed its
presence in the extracellular space, indicating that EXPO together
with its LSP cargos are ultimately secreted [87].

2.5 Techniques and

Approaches for Future

UPS Studies

Although the mechanisms underlying the UPS pathway in plants
remain elusive, enormous efforts have beenmade toward advancing
our knowledge in this field. Amongst the various approaches, pro-
teomic studies on the plant secretome represent a major technique
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in studying plant UPS. However, it should be noted that the purity
of the fractions obtained for analysis is a matter of the utmost
importance. Contamination with cytosolic proteins caused by the
breakage of cells during homogenization would cause deviation
and discrepancy of the secretome data. Strikingly, a recent study
reported a successful purification of the extracellular vesicle (EV)
fraction from the leaf apoplast [88]. Proteomic data suggested that
proteins involved in biotic and abiotic stress were enriched in the
purified EV, while the amount of secreted EV is increased upon
pathogen attack and salicylic acid treatments [88]. It is reasonable
that plant secretome and the secretion activity are altered in
response to different conditions. Thus, by exposing plants toward
various environmental cues and comparing the corresponding pro-
tein secretome data may aid in the identification of specific LSPs in
plants. On the other hand, in-depth studies of the proteins involved
in UPS, for instance AtExo70E2, are required to elucidate the
molecular mechanisms for EXPO biogenesis. Superresolution
in vivo real time imaging can be used to monitor the LSP trafficking
and their dynamic behavior with the UPS machinery. For instance,
the sequestration of SAMS2 into EXPOmay be able to be followed
using advanced imaging techniques. In the ultrastructural perspec-
tive, cryo-electron microscopy is a promising tool in studying the
architecture of EXPO as well as the structure of the exocyst com-
plex, and could provide insight into the formation of EXPO.

In summary, more and more evidence points to the existence
and importance of UPS in plants. UPS has not only been reported
in model plant Arabidopsis thaliana but also in many plant species
such as tobacco, barley and sunflower, indicating that it is an
efficient protein trafficking pathway which is widely adopted. Due
to the complexity and lack of genetic mutant information, UPS
studies in plants remain challenging and are underinvestigated.
Nevertheless, combining the proteomic data with the latest cell
biological techniques would certainly help to elucidate the detailed
mechanisms for UPS in plants.
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