Chapter 2
Rectangular Beams and One-Way Slabs

2.1 Introduction

This chapter covers the analysis (checking the strength) and the design (sizing the
concrete and steel) of reinforced concrete beams and slabs that span primarily
one way.

The previous chapter emphasized that concrete is very weak in tension, but
strong in compression. As a result, reinforcements are used to supply tensile
strength in concrete members (most commonly in the form of round reinforcing
bars or rebars). Like any other building system, reinforced concrete structures have
advantages and disadvantages.

2.2 Advantages of Reinforced Concrete

1. Can be cast into any shape This is the main advantage of reinforced concrete
compared to other building materials. Concrete members can be made into any
desired shape by using forms. Figure B2.1 in Appendix B shows the pleasing
exterior of a reinforced concrete building.

2. Has great resistance to fire and water Concrete loses its structural integrity
much more slowly than wood or steel when subjected to high temperature. In
fact, concrete is often used as fireproofing material. Concrete also better resists
exposure to water, does not corrode like steel, and does not lose strength as wood
does. Certain chemicals in water, however, can harm concrete.

3. Is a low-maintenance material Concrete does not corrode, so it does not need to
be painted and regularly maintained when exposed in the environment.

4. Has very long service life Reinforced concrete structures that are well designed
and built last a very long time.
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2.3 Disadvantages of Reinforced Concrete

1. Has very low tensile strength Concrete has a very low tensile strength in
comparison to its compressive strength. Consequently, reinforcing steel bars
are needed to counteract the development of tensions in concrete structures.

2. Requires shoring and forms This is a major disadvantage of concrete because it
raises the cost of concrete structures, especially in countries such as the United
States where labor costs are high. Shoring and formwork often constitute more
than half the total cost of the structure.

3. Has variations in properties The mechanical and physical properties of concrete
are sensitive and require careful proportioning, mixing, curing, and so
on. Eliminating large variation in these properties demands carefully monitored
procedures.

4. Results in heavy structural members Reinforced concrete structures are heavier
than similar steel or wood structures. This results in larger building dead loads,
which in turn result in larger foundations. Concrete structures are also more
sensitive to differential settlements. Thus, concrete structures require relatively
good soil conditions.

2.4 On the Nature of the Design Process

Before attending to the main topic of this chapter, which is the analysis and design
of bending members, a discussion on the concept of design is appropriate.

Ask ten people about the meaning of the word “design” and you probably will
get ten different answers. Design also has very different meanings to architects and
to engineers. And to top it all off, design is often viewed as synonymous with sizing
of members. So we hope that readers will forgive the rather loose usage of the term
design.

Structural design of reinforced concrete structures is an iterative process. It
begins with the layout of the structure or, in other words, with the selection of the
structural system. Any practitioner will admit that this initial step is by far the
hardest part of the process. It requires the designer to come up with a synthesized
whole for the building, laying out all the component elements (columns, girders,
beams (or joists), and slabs). Furthermore, the designer must also estimate the sizes
of the elements within the space in order to go to the next step, that is, to analysis.

The flowchart of Figure 2.1 presents a somewhat simplified picture of the
process. Oddly enough, it begins with a step in synthesis, or the conception of the
structure. This step is nonmathematical, for the aim of the study at this point is to
look at what the building structure should do. What spaces are required? What is the
minimum column spacing required to fit the architectural program?

But before we reach the part designated as “Analysis” or “Design,” we must
complete another exercise: identifying the loads that the structure may be subjected
to in its life span.
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Figure 2.1 The iterative nature of structural design

Loads generally fall into two major categories: gravity loads and lateral loads.
Gravity loads are further divided into two major groups: dead loads and live
loads. One can only guess how this nomenclature came into usage. Perhaps
people originally identified loads that were stationary as “dead,” and loads that
moved as “live.” Today, we make a somewhat different distinction between these
two loads. Dead loads are those that remain permanently attached to the structure,
while other loads that are transitory in nature are referred to as live loads. Thus,
furniture and stored items as well as loads from people’s activities are in the latter
category. For example, most of the weight in a library’s stack area is from the
stored books with only a very small part of the floor loads coming from the
visitors; nevertheless, the stacks and the books are considered live loads. In
addition, environmental effects such as moisture or temperature changes may
create stresses in the structure, so they also may be loosely defined as loads that
the structure must safely withstand.

Before any meaningful analysis can be performed to calculate and appropriately
size any component element within a structure, designers must establish the
loads that such an element can safely support, or at least must reasonably
approximate them.

In a concrete structure, the self-weight is a very significant part of the dead loads.
Because self-weight depends on the size of the particular member, a reasonable
estimate must be made on the size. After the designer estimates the size, he or she
can calculate the loads from the self-weight, assuming that reinforced concrete
weighs about 150 1b/ft’. At this point we do not want to tax the student’s attention
with detailed discussion on the selection of an appropriately sized beam or slab, and
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all of the reasons thereof. This subject will be discussed later in this chapter. In any
case, if during the design process the designer determines that an initial estimate of
the member’s size, and thus the self-weight, was significantly in error, he or she has
to re-analyze the member, taking into account the newly adjusted size; thus, the
iterative nature of the design and sizing.

Superimposed dead loads (SDL) are somewhat ambiguous. Often these items
and their precise location in space are not completely known at this stage of the
design (see Figure 2.1). Partition layouts have not been decided yet, or may change
in the future. Ductwork, piping, and light fixtures may go anywhere. So the designer
is forced to make a blanket estimate on these. Most practitioners estimate that the
combination of these items will exert about 15-20 Ib/ft* of floor area. (The only
areas that need more careful attention are those where some special flooring, such as
stone or terrazzo, is planned. These items exert about 12—13 Ib/ft?/in. thickness.
Thus, a 2 in. terrazzo flooring weighs about 25 psf.)

Live loads (LL) are prescribed by building codes for the particular usage of a
space. These loads are listed as uniformly distributed minimum loads and represent
the current professional wisdom. Because live loads are not uniformly distributed
except in very isolated cases, they have very little, if anything, to do with the real
loads that may occur on structures. Actual surveys show that total loads, uniformly
averaged out over the whole floor area, amount to only about 15-20 % of the codes’
mandated minimums in spaces like hotels, residential buildings, and offices. These
minimums, however, represent a statistical probability of the loads that the structure
may experience in a projected lifetime of 50 or 100 years. Furthermore, these code-
prescribed live loads also try to account for the dynamic nature of many loads by
treating them as equivalent static loads.

This discussion of loads should suffice to show that any calculation made during
the load analysis phase will contain unavoidable inaccuracies and uncertainties.
These errors are inevitable no matter how carefully the designer tries to evaluate the
currently envisioned, but essentially future loads.

Example 2.1 In this simple floor plan, beams 12 in. wide and 20 in. deep are
spanning 30 ft. The beams are located 9'—0" center to center. A 5-in. thick slab
spans from beam to beam. (See Figure 2.2.) The floor structure will be used in a
general office building, thus (per Code) the minimum uniformly distributed live
load is 50 Ib/ft*. Calculate the dead and live loads that one interior beam has to
carry. Assume 20 psf for the superimposed dead load for the partitions, mechanical
and electrical systems, and so on.

Solution The beams are 9 ft apart, so each beam is assumed to be responsible for
the loads that occur 4.5 ft from either side of the beam’s centerline. Thus, each
linear foot of beam will support loads from 9 ft* of floor in addition to the weight of
the stem.
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Figure 2.2 Floor plan and section

Loads from the slab:

5 in. slab self-weight (5/12) x 150 62.5 pst
Superimposed dead loads, estimated 20.0 psf
Total dead load on slab 82.5 psf
Dead loads on beam from slab: 9 ft x 82.5 = 742.5 1b/ft
Volume of stem per foot: (12 x 15)/144 x 1 ft=1.25 ft3/ft of beam

Weight of stem: 1.25 x 150 = 187.5 Ib/ft
TOTAL DEAD LOADS: wp = 930 Ib/ft

In addition, the beam will support live loads from 9 ft* of floor area on each
linear foot of beam. Thus:

TOTAL LIVE LOADS: w; =9 x 50 psf =450 Ib/ft

Summary: See Figure 2.3.

— w, = 450 lb/ft
«— wp = 930 Ib/ft

. 77

| 30'-0" |

Figure 2.3 Floor beam

2.5 Live Load Reduction Factors

We complete this discussion of loads by dealing with the concept of live load
reduction factors. These are derived from statistical analyses of the probability of
having the maximum amount of live loads everywhere on a floor of a building.
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Figure 2.4 Influence areas for different structural members

Studies indicate that the larger the floor area that contributes loads to a particular
member, the less likely it is that every square foot of that area will bear the
maximum amount of live loads.

Different codes deal with this concept somewhat differently. Some codes relate
the live load reduction to the tributary area (A7), or the area directly loading the
particular element under investigation. Other codes relate the live load reduction to
the so-called influence area (A;), the area in which a part, however small, of any
load may contribute to the loading of a particular element under investigation. In
other words, the influence area for a structural member is the part of the building
structure that may fail if that member is removed.

As an example consider Figure 2.4, which shows the floor framing plan for
a reinforced concrete building. To determine the influence area for beam B-1,
assume that this beam is removed. This will cause the slabs supported by B-1 to
fail. As a result, the influence area for B-1 is (A;)g.;, the area between column
lines 1, 2, A, and B. Following this logic, if we remove girder G-1, the beams it
supports will fail, and consequently the slabs supported by the beams. Thus, the
area between column lines 1, 2, B, and D (A,)g.; will collapse. A similar study will
show that the influence area for column C-1 is the area between column lines
1,3,D, and F.

One variation of the live load reduction formula is given in Equation (2.1):

15
Leea = Lo <0.25 + \/—A_1> (2.1)

where

L..q = the reduced design live load per square foot of area supported by the member

Ly =the unreduced design live load per square foot of area supported by the
member

A; =the influence area of the member in square feet
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Equation (2.1) is applicable whenever A;>400 ft*>. The usage of live load
reduction is limited in that the reduction cannot exceed 50 % (L..q > 0.5Lg) for
members supporting one floor and cannot exceed 60 % (L,.q > 0.4 Ly) for members
supporting two or more floors. Live load reductions do not apply for live loads in
excess of 100 psf, except for members supporting two or more floors, in which case
the live load can only be reduced up to 20 %.

Example 2.2 For the interior beam of Example 2.1, determine the reduced
live loads.

Solution The influence area, A;, for the beam is:
A; =2 x 9 x 30 = 540ft*

Because this area is larger than 400 ft?, a reduced live load may be used in the
design of the beam. The reduced design live load is:

15
L =50]0.254 ——=| =50 x 0.895 = 44.8psf
[ \/540} P

Thus, the reduced design live load on this beam is:
wy = 44.8 x 9 = 4031b/ft

rather than the previously calculated load of 450 Ib/ft.

2.6 Continuity in Reinforced Concrete Construction

Many readers may have encountered only statically determined structural elements.
These are simply supported beams (with or without cantilevers at their ends),
cantilevers fixed at one end and free to move at the other, simple posts, and so
on. These elements are all characterized by needing only the equations representing
static equilibrium (}_H =0, >,V =0, > M = 0) to solve for the reactions.

A review of what “reactions” means may be needed here. A building element
does not exist in a stand-alone vacuum. It is connected to other elements. At a point
of connection the free relative displacement between the element under study and
the rest of the structure is denied. This denial of free movement results in the
transmission of a force (or moment) at the connection between the supporting and
the supported elements. Look at Figure 2.5a for example. Here a beam end is
supported on a wall. Elsewhere within the span the beam is free to deflect, or move
vertically. But this ability to displace vertically is denied at the place of the support.

Figures 2.5b, ¢ show the symbols of a hinge type of support and a roller. In the
hinge support, the two relative displacement components (vertical and horizontal)
are denied between the beam (the member under investigation) and the support
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Figure 2.5 The meaning of the different support conditions: (a) wall supporting a beam (roller),
(b) a hinge support, (¢) a roller support, (d) wall supporting a beam (fixed), (e) a fixed support

Figure 2.6 Joist before and —1 End rotation
after deformation

below it. Thus, vertical and horizontal forces could be transmitted at the point
between the beam and the support. (The forces coming from the support to the
supported member are called reaction forces.) At a roller support (Figure 2.5¢) only
relative vertical displacement is denied; the beam could still freely roll horizontally
without resistance. Correspondingly only a vertical force could be transmitted
between the beam and the support. Figure 2.5d shows a beam end built into a
large mass. The beam end cannot move horizontally or vertically, and it cannot
rotate with respect to the mass. This condition is called fixity. The usual symbol of
fixity is shown in Figure 2.5e. In this condition, horizontal force, vertical force, and
a moment may be transmitted between the member and the support at that location.

All of these support conditions are quite familiar to students who have had a first
course in structures. These support conditions represent what may be called abso-
lute conditions: The displacement (vertical, horizontal, or rotational) is either freely
available, or completely denied. As will be pointed out later, there is an infinite
number of conditions in between, especially as related to rotations. Consider, for
example, a flexible joist supported by a wall or beam at its ends (Figure 2.6). The
mere supporting certainly precludes vertical displacement of the joist, thus a force
transfer occurs. An action force is transmitted from the joist to the wall or beam, and
an equal but opposite reaction force is transmitted from the supporting element to
the joist. As the joist deflects under load, its supported ends can rotate freely; thus,
the moments at the ends are zero.

Reinforced concrete construction is monolithic, which means that members are
intimately built together with neighboring members. Slabs are continuous over
supporting beams and girders; beams and girders are continuous over supporting
interior columns, and so on.

Figure 2.7 illustrates the point. The slab in the beam and slab structure is
continuous in both horizontal directions over the beams. The beams are continuous
over other beams or columns.

A simple problem is presented here to clarify the concept. Admittedly, this
problem does not occur in reinforced concrete structures, but it serves to illustrate
the concept. A continuous structural member is represented by an imaginary center
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Figure 2.8 Deformations and moments in a two-span beam
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line (see Figure 2.8). On this two-span beam, Span 2 is larger than Span 1. If the

loads are about the same, Span 2 will deflect more. Consequently this deflection

will try to force Span 1 to curve upward slightly near the center support to follow
Span 2. (The tangent to the deformation curve will rotate toward Span 2.) Study of
the deformation curve shows that the beam bends into an upward curvature, that is,
tension develops at the top of the beam, between the two points of inflection (where
the moment in the beam is zero), whereas elsewhere the beam bends downward,
resulting in tensions at the bottom. The moment diagram is shown below the
deformation line of the beam. The moments are referred to as positive when tension

is on the bottom, and negative when tension is on the top.
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The deformation line in Figure 2.8 shows that the longer span (Span 2) will force
the beam to rotate toward itself at the center support. The resistance against this
rotation comes from the bending stiffness of the member in Span 1. Stiffness is the
ability of a member to resist deformation. There are several different types of
stiffness, such as flexural, shear, axial, and torsional. Each type refers to a specific
ability to resist a certain type of deformation. The greater the stiffness, the more is
the effort required to bring about the specific deformation.

The flexural stiffness of a member is linearly related to the moment of inertia, /,
which is a cross-sectional property, and to the modulus of elasticity, E, the ease of

extendibility or compressibility of the material; and is inversely related to the

EI
length, ¢, of the member. Thus, if K represents the flexural stiffness, K = k7,

where k is a numerical constant that depends on the support conditions of the other
end of the member.

In the simple beam shown in Figure 2.8, if the flexural stiffness of Span 1 is
infinitely large, it will resist any attempt by Span 2 to rotate the section over the
center support toward itself. Hence the condition for Span 2 will approach that of
full fixity at its left end. On the other hand, if the stiffness of Span 1 is very small, it
will offer very little resistance against the efforts of Span 2 to rotate freely at the
center support. Thus, as far as Span 2 is concerned, such a condition might be a
“simple support,” regardless of the continuity.

2.7 Propagation of Internal Forces

The free-body diagrams that resulted from the continuity are shown in Figure 2.9.
Double subscripts identify the locations of shears and moments. Thus, if the first
span is from a to b then V,;, represents the shear in that span at end a, and so on.

The two-span continuous beam is dissected to show the propagation of loads and
moments. Each “cut” shows every force and every moment as they act on the part
under consideration. For example, My, is shown as a clockwise arrow on Span
1, whereas it is shown as a counterclockwise arrow on the small part over the
b support. These are two manifestations of the same moment, a concept well known
from Newtonian physics (action and reaction). Similarly, Vy, is shown at the same
cut as an upward force on Span 1 that comes from the support to the beam, as well
as a downward force that comes from the beam to the support.
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Figure 2.9 Propagation of internal forces on a two-span beam
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Figure 2.10 Deformations of a three-bay and three-story monolithic structure

Consider now the following self-evident statement: When a structure is in
equilibrium, every part must be in equilibrium. Thus the well known equilibrium
conditions of ) _H =0, >V = 0,and Y M = 0 apply for each individual part that
is arbitrarily cut out of the structure. For example, the reaction force on the left-
hand support, R,, must equal the shear force, V,y, transferred by the beam to that
support. If we consider that Y, M = 0 on the same piece, we conclude that M, must
equal zero, for there is no other moment on the piece to maintain equilibrium. On
the small piece just above the b support, the reaction force from the support R, must
equal the sum of Vi, and Vy.. Note also that My, = My, in order to satisfy equilib-
rium conditions.

Figure 2.10 shows a three-story-high, three-bay-wide reinforced concrete frame
with all the joints numbered. The two outer bays are shown as somewhat wider than
the inner bay. Thus, when they are all loaded in an approximately uniform way,
the larger spans will try to rotate the ends of the inner bay (between column lines
B and C) toward themselves. Thus, the joints on line B will rotate counterclockwise,
and the joints on line C will rotate clockwise. At the exterior ends, the loads on
the beams will rotate the joints on line A clockwise, and the joints on line D
counterclockwise.

From the study of the deformation lines, we can draw some important general
conclusions. The beams will have two curvature reversals (inflection points or
points of counterflexure). They curve downward in their midspans, resulting in
tensions at the bottom (positive moment region). They will curve upward near their
ends, resulting in tensions at the top (negative moment region).
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Figure 2.11 The propagation of forces and moments between beams and columns

The columns on the two upper floors, due to the forced rotations of their ends,
will bend into a double curve (S curve). Depending on the amount of fixity available
at the footing level, the lower columns will bend either into a double curve when the
fixity at the base is significant, or into a single curve when the resistance against
rotation at the base approaches that of a hinge.

Figure 2.11 shows free-body diagrams for part of the frame. Again > H =0,
>V =0,and> M =0 apply for each individual part. Thus, the axial force in
beam 13-14 must equal the shear at the top of column 9—13 for Node 13 to be in
equilibrium. The axial force in the column equals the shear at the left end of beam
13—14. And the moment at the end of column 9—13 must maintain equilibrium with
the moment at the left end of beam 13—14. Mathematically:

ForZH =0 Vizo—Pi31a=0
FOI‘Z V=0 P13_9 — V13_14 =0
FOI‘ZM:O M13_14—M13_9:0

The reader may want to study and write out the equilibrium equations for other free-
body parts.
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2.8 On the “Fickleness” of Live Loads

As stated earlier, loads permanently attached to the structure are referred to as dead
loads, and transitory loads are referred to as live loads. The nature of live loads is
that sometimes they are there and sometimes they are not, so it is entirely possible
that the live loads are fully present in one bay, while completely missing in other
bays. Figures 2.12a—d show the effects of loading one span at a time on a four-bay
continuous beam. In each case the deformation and the moment diagram are shown
schematically under different /ive loading conditions. Deformations are shown as
dashed lines.

A study of the deformation lines and the moment diagrams of these four different
cases leads to the following conclusions:

1. The largest positive moments due to /ive loads in a given span occur when live
loads are on that span and on every second span on either side. This is known as a
checker-board pattern loading. See Figure 2.13a, b.

2. The largest negative moments due to /ive loads near a support occur when live
loads are on neighboring spans and on every other span on either side. See
Figure 2.13c—e.

Thus, on a continuous beam the number of live loading patterns that result in
maximum moment effects equals the number of supports. For example, in a four-
span beam with five supports, five different live loading patterns need to be
considered to find the possible absolute maximums in each of the positive and
negative moment zones.

These are only the moments that are due to the effects of the live loads. The
cases, shown in Figure 2.13a—e must be combined with the moments resulting from
the dead loads, that is, the loads that are permanently present on the structure,
whose effects are not variable. The combinations of the dead load moments and the
live load moments will result in a maximum possible moment at every location
along the beam. The live and dead loads, when plotted into a graph such as the one
shown in Figure 2.14, produce a diagram that represents all these combinations.
This is called the diagram of maximum moments or the moment envelope.

Two important points must be noted here. Figure 2.14 shows that in some
portions of each span, only positive moments occur, and in others, only negative
moments, regardless of the distribution of the live loads. There are portions of each
span, however, where either positive or negative moments may occur. This fact is
significant in that it affects how a continuous beam must be reinforced.

The second point is that so far we have assumed that the continuous beam is
similar to a mathematical line supported on knife-edge supports. The result of such
a simplified assumption is that the reactions appear as concentrated forces and the
moment diagram has a sharp peak (cusp) at those points. This result, however, is not
in conformance with the physical reality. Supports (columns) have a width over
which the reactions are distributed. This modifies the moment diagram within
the width of the support to something similar to the sketch shown in Figure 2.15.
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Figure 2.12 (a) The effects of live loads on span A-B. (b) The effects of live loads on span B-C.
(c) The effects of live loads on span C-D. (d) The effects of live loads on span D-E

The exact shape of the moment diagram at this location is quite immaterial, for both
theoretical studies and numerous test results clearly show that the critical negative
moments in the beam occur at the faces of the supports. (Refer to ACI Code,
Section 7.4.2.1 and Section 9.4.2.1)
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Figure 2.13 (a) Live loads in the first and third bays. Largest positive moments in first and
third spans. (b) Live loads in the second and fourth bays. Largest positive moments in second and
fourth spans. (c¢) Live loads in the first, second, and fourth bays. Largest negative moments
at second support. (d) Live loads in the second and third bays. Largest negative moment at
third support. (e) Live loads in the first, third, and fourth bays. Largest negative moment at
fourth support
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Figure 2.15 The true moments in beams at columns

2.9 The ACI Code Moment and Shear Coefficients

The complexities involved in the design of a very simple continuous beam may
seem quite bewildering. In practice, however, a vastly simplified procedure is
available in most cases.

Any moment along a span may be expressed as follows:

M, = coefficient - w, (2 (2.2)

where

w, is the intensity of the total factored load (see Section 2.10), or the load per unit
length. This variable should be evaluated and applied separately for each span
if the live loads are different in each one

¢, 1is the net (clear) span for positive moment or shear, or the average of adjacent
net (clear) spans for negative moment
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When certain conditions are satisfied, the ACI Code permits the use of approx-
imate moments and shears in the design of continuous beams and one-way slabs in
lieu of the detailed analysis for maximum moments outlined in the previous section.
Approximate moments and shears usually provide reasonable and sufficiently
conservative values for the design of these horizontal flexural elements.

ACI Code Section 6.5.1 requires the following conditions for the use of these
coefficients:

= There are two or more spans The beam or slab is continuous; that is, the
approximation does not apply to a single span only.

= Spans are approximately equal, with the longer of two adjacent spans not
greater than the shorter by more than 20 % The larger span tends to pull the
shorter neighboring span upward if there are significant differences between
adjacent spans.

= Loads are uniformly distributed.

= Unit live load does not exceed three times the unit dead load This is usually the
case with reinforced concrete structures.

= Members are prismatic This means that the cross section is constant along the
length of the span.

The ACI Code design moments and shears are applicable when these precondi-
tions are satisfied. Table A2.1 and the accompanying figure list the coefficients for
the moments and shears according to the end conditions and number of spans. In the
authors’ experience, the ACI coefficients are somewhat more conservative than
values obtained from detailed computerized analysis; thus, their use will result in
additional safety for the structure.

In actual practice the use of simplified methods to find the design moments and
shears is in decline. Many proprietary computer programs are available that not
only help evaluate all the most critical loading combinations, but also aid in the
design of the required reinforcing. These programs require the sizes of the members
as input, for the analysis of an indeterminate structure. (The result, or the output,
depends on the relative stiffnesses of the members.) Thus, the application of these
coefficients is still very useful for obtaining quick results that can be used in
preliminary sizing of the members, which in turn enables the development of
input data for a more detailed computerized analysis.

2.10 The Concept of Strength Design

The first design theory of reinforced concrete, developed near the end of the
nineteenth century, simply borrowed its approach from the prevailing theory of
elasticity. The method assumed that reinforced concrete elements at usual actual
loads will have stress levels that might be considered to fall within the elastic zone.
Figure 1.8 indicates that concrete in compression may follow an approximately
linear stress/strain relationship as long as the stress level does not exceed 50 % of its
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ultimate strength level. Steel reinforcing behaves elastically below its yield point.
So the concept of working stress design (WSD) was not an unreasonable method-
ology, and the underlying calculation technique is still used when estimating
deformations (deflections) in structural elements. (See Section 3.3 for a more
detailed discussion.)

The WSD method, however, has many conceptual drawbacks. First and fore-
most, it does not account for differences between dead and live loads. Rather, it
simply lumps them together and assigns a “collective” margin of safety, regardless
of the origin of the load. Dead loads can be estimated much more accurately than
can live (transitory) loads; thus, logic dictates that the part of the load that comes
from dead loads could use a much smaller safety factor against failure. On the other
hand, the magnitude and the distribution of the live loads are much more uncertain.

Another, and equally important, drawback of the WSD method is that it inac-
curately assumes that concrete behaves in a linear fashion with increasing stress
levels. Merely knowing a stress level does not ensure a correct prediction of an
undesirable level of stress (i.e., failure), because steel has a linear stress response to
strain whereas concrete has a nonlinear one.

The third, and perhaps the most significant, drawback of the WSD method is that
it is unimportant to know the stress level in a structure at a given loading. What is
important is to know how much overload the structure can take before it fails.

Strength is needed to have a safe design, or adequate strength, so that the
structure does not fail whether the actually occurring loads were underestimated
or excess load is placed on the structure. Thus, load factors (i.e., values used to
magnify the actual loads [called working or service loads]), or moments or shears
therefrom, are used so as to create a demand on the strength. The concept of demand
states, for example, that the structure (or, more precisely, a given element under
investigation) must have an ultimate strength (i.e., before it fails) not less than those
given by Equation (2.3a) (ACI Code, Section 5.3.1).

U=14D
or U=12D+ 1.6L+ 0.5(L, or SorR)
or U=12D+1.6(L,orSorR)+ (1.0L or 0.5W)
or U=12D+1.0W +1.0L+0.5(L, or SorR) (2.3a)
or U=12D+1.0E+ 1.0L+0.2§
or U=09D+ 1.0W
or U=09D+1.0E

where

U =required (ultimate) strength

D =effect from dead loads

L = effect from live loads

W =effect from wind loads

E =effect from seismic (earthquake) loads
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L, = effect from roof live loads
S =effect from snow loads
R =effect from rain loads

The multipliers applied to the effects in the various load combinations are the
load factors. These guard against accidental overloading of the structure. They also
take account of the imprecision in establishing the magnitude, or the distribution, of
the loads. Thus, for example, greater load factors are assigned to live loads (or wind
loads, or earthquake loads) than to dead loads to account for greater uncertainty.

Also, dead loads sometimes actually help to counteract the effect of wind or
earthquake loads. For these conditions a more conservative approach is to presume
that calculated dead loads are somewhat less than assumed. Such a concept is
accounted for by the sixth and seventh load combinations in Equation (2.3a). These
load combinations can be simplified by combining all live loads as L and using the
larger load factor. In addition, for U = 1.4D to govern the design, the condition of
D > 8L must exist, which is not very probable in most cases. Therefore, the load
combination given below will be used for the member supporting floor loads
(Equation (2.3b)), and for members supporting roof loads only (Equation (2.3c))
throughout this book (these typically include slabs, beams and girders):

U=12D+1.6L (2.3b)
U=12D+16L, (2.3¢)

where D includes the effects from all the dead loads and L is due to all the live loads.
For members that support both floor and roof loads (neglecting the effects of wind
or earthquake loads), the governing load combination from Equation (2.3a) are
(these typically include columns and walls):

U=12D+16L+05L, (if L>1.83L,)
or (2.3d)
U=12D+16L, +1.0L (if L < 1.83L,)

The effects of fluid, F, lateral earth pressure, H, and forces due to restraint of
volume change and differential settlement, T, can also be incorporated in the load
combination with their corresponding load factors. Refer to ACI Section 5.3 for
details.

2.11 Design (Ultimate) Strength

The ultimate strength of a section within a structure (as discussed in detail later for
separate and combined cases of bending moment, shear, torsion, and axial load) is
calculated from the sizes (dimensions) of the section, the materials (steel and
concrete) employed, and the amount of reinforcing used. This calculation gives
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us the supply, or the resisting strength furnished by the section. In flexural design,
for example, this calculated quantity is designated as M,,, which is called nominal
moment strength or nominal resisting moment. Nominal strength is the calculated
strength, provided that everything goes according to plan; that is, the concrete is at
least as strong as assumed in the design, the dimensions of the beam, slab, or any
designed element is exactly as shown on the plans, the required reinforcing is
placed exactly where it was assumed in the calculations, and so on. But experience
shows that there is no such thing as perfectly executed plans, even in the best
circumstances. ACI 117-90, “Standard Tolerances for Concrete Construction and
Materials” lists tolerances that are reasonable to expect when good workmanship is
provided. Furthermore, the calculation processes employ simplified mathematical
models that should be considered as only reasonable approximations of reality. The
design methodology also tries to reflect the relative importance of different struc-
tural components. The failure of columns, for example, may result in collapse of an
entire building, but the failure of a beam typically causes only limited local damage.

In light of all these possible detrimental effects to the assumed strength, a
strength reduction factor (¢-factor), sometimes referred to as an under-strength
factor, is introduced to the above defined nominal strength. This factor accounts for
the fact that the section’s strength may be less than assumed in the analysis.

Thus, we arrive at the concept of useable strength (or supply), which is the
product of the nominal strength and the strength reduction factor.

Different ¢ factors are used for different types of effects. Equation (2.4) gives
some ¢ factors.

Flexure ¢ = 0.90
Shearandtorsion ¢ = 0.75 (2.4)

Axial compression (columns) ¢ = 0.65

Hence the ultimate strength design (USD) method can be stated as the following
inequality:

Demand < Supply
or required ultimate strength < useable design strength

or effects of loads < resisting capacity of member

And so for a beam subjected to gravity (dead and live) loads, for example,
Equations (2.5)—(2.8) represent this concept.

M, =12Mp + 1.6M; (2.5)
and

M, < OM, (2.6)
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Defining the design resisting moment, My, as

Mg = oM, (2.7)
the following must hold for the beam to be safe:

M, < Mg (2.8)

On the left side of Equation (2.8) is the demand. The demand depends only on
the span, the type of support (e.g., simply supported, cantilevered, etc.), and the
loads. All this information comes from the static analysis.

On the right side of Equation (2.8) stands the supplied strength of the section
(design resisting moment, My), which depends on the size and shape of the cross
section, the quality of the materials employed (f(.’ and fy), and the amount of
reinforcing furnished. Thus, the left side of the inequality is unique, but the right
side is undefined. An infinite number of different sizes, shapes, and reinforcing
combinations could satisfy a given problem. The only rule is that the supplied
useable strength be larger than (or at least equal to) the required strength.

Example 2.3 Assume that the beam in Example 2.1 is simply supported. Calculate
the required ultimate flexural strength (factored moment from the loads). Use the
permitted reduced live load.

Solution

Mp =930 x 30°/8 = 104,625 Ib-ft
M, =403 x 30%/8 = 45,3381b-ft

Thus:

M, =12 x 104,625+ 1.6 x 45,338 = 198,091 1b-ft (or 198.1kip-ft)

The same result could be obtained by using factored loads (the loads multiplied by
their respective load factors).

w, = 1.2 x 930 + 1.6 x 403 = 1,761 1b/ft = 1.761 kip/ft
and
M, =1.761 x 302/8 = 198.1 kip-ft

Notice that when finding factored loads from service or working loads, the
nature of the loads does not change; only their magnitudes are multiplied by the
corresponding load factors. If a service load is distributed, its factored value is also
distributed; if the service load is concentrated, its corresponding factored load is
also concentrated. The following example clarifies this point.
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w,=20kipt Fr=10kp
wp= 1.0 kip/ft
. £ .
z 2
f 20-0" | 20-0" |
Figure 2.16 Example 2.4 (service loads)
Wy = 4.4 kip/ft Fu = 16kdp
N Wy = 1.2 kip/ft
Y L
7 0%
[ 20-0" | 20-0" |

Figure 2.17 Example 2.4 (factored loads)
Example 2.4 Determine factored loads for the beam shown in Figure 2.16.
Solution For the left half of the beam:

Wyl = 12WD + 16WL
war = 1.2 x 1.0+ 1.6 x 2.0 = 4.4kip/ft

For the right half of the beam:

Wy = 1.2WD+ 1.6WL
wpo=12x10+1.6x0=12kip/ft

The concentrated load is a live load only:

P,=12Pp+1.6P,
P,=12x041.6 x 10 = 16kip

The factored loads on the beam are shown in Figure 2.17.

2.12 Assumptions for the Flexural Design of Reinforced
Concrete Beams

To this point we have discussed the calculations for the left side of the design
Equation (2.8) (demand) in some detail. In this section we develop the right side of
the design equation. To establish the supply, or the ultimate flexural strength, of a
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Figure 2.18 Definition of symbols used in a rectangular beam section

reinforced concrete section, we must discuss the stages of stress that a reinforced
concrete section experiences before reaching failure. This discussion of these
different stages of stress under increasing bending moments will also illuminate
the assumptions made in developing expressions for calculating the ultimate
strength of the section. To keep the discussion simple, we will examine a beam
with a rectangular cross-section like the one shown in Figure 2.18.

The symbols in Figure 2.18 will be used throughout this book. They are the
standard ACI symbols used with reinforced concrete. Thus:

b = width of the section

h =the overall depth of a section

d =the effective depth of a section, or the depth from the centroid of the tension
reinforcement to the compression face

A =the sum of the cross-sectional areas of the reinforcing bars

Notice that the reinforcement is not placed at the very bottom of the beam. The
first and foremost reason for this placement is to provide corrosion protection to the
reinforcement. The inner environment of concrete is highly alkaline (high pH
value) and helps to protect the reinforcement. The concrete cover also provides
fire protection to the reinforcement. Furthermore, the concrete surrounds the
reinforcing steel, which enables intimate bonding and allows the concrete and the
steel, two individual materials, to work together. The required minimum concrete
cover is given in Section 20.6.1.3.1 of the ACI Code. For unexposed beams it is
1.5 in. to the stirrups. (The stirrups, usually made out of #3 or #4 bars, will be
discussed in Chapter 4.)

Figure 2.19 shows a simply supported beam that has a simple rectangular cross
section made of plain concrete (homogeneous material). This type of beam is
almost never used in an actual building, but it will give us insight into the behavior
of concrete beams.

The uniformly distributed load (Figure 2.19a) represents the self weight plus
some superimposed load. The slightly exaggerated deflected shape is shown in
Figure 2.19b, and the moment diagram in Figure 2.19c. Attention will be directed to
the section where the bending moment is the greatest. This location is where the
stresses and the strains are also the largest.
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Figure 2.19 Elastic bending
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Figure 2.20 Linear distribution of strains and stresses

Figure 2.20 shows the cross section of the beam and the distribution of strains
and stresses if the beam is unreinforced. Figure 2.21 illustrates the distribution of
the strains and stresses in a 3-D form. As long as the bending moments are
small, that is, the resulting tensile stresses at the bottom are less than the ultimate
tensile strength of the concrete, the section will behave as if it were made of a
homogeneous, quasi-elastic material. The bottom is in tension, and the top is in
compression.

Direct your attention to the strain diagram first. Strain represents changes in
length. The strain distribution is linear from bottom to top.

The farther up or down a point is from the imaginary center, the greater the strain
in the beam. The largest tensile strains are at the bottom, whereas the largest
compressive strains are at the top. There is a line across the section where the strain
is zero. This is called the neutral axis. The straight-line distribution of strains is
known as the Bernoulli—Navier hypothesis. This distribution is called a “hypoth-
esis” because it results not from mathematical derivation, but from careful mea-
surements made on countless tests of many different materials, including concrete.
The distribution of stresses is also linear when the material follows Hooke’s law, as
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Figure 2.21 3D representation of linear strain or stress distribution

Figure 2.22 The internal couple in homogeneous beams

steel does below the so-called proportional limit. Stresses are forces acting on a unit
area. Thus, it is possible to determine the resultant for these forces. The resultant,
which is a tensile (T) or compressive (C) force, is equal to the volume of the stress
block, For example, if the largest compressive stress is f.max, then the sum of all the
compressive forces is given by Equation (2.9).

AT UARY) (2.9)
Similarly, the sum of all tensile forces is given by Equation (2.10).
AT VARY] (2.10)

These resultants will be located at the centroid of the wedge-shaped stress blocks,
as shown in Figure 2.22. Equilibrium requires that these resultants be equal in
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magnitude, and together they form an internal couple. The internal couple is
equivalent to the bending moment at the section.

Example 2.5 For the beam of Figure 2.22, assume » =12 in., h=24 in. and
M ax = 38.4 kip-ft. Determine the bending stresses and the equivalent tensile and
compression forces acting on the section.

Solution The section modulus is:
S=bxh/6=1,152in?
Thus the maximum stresses are:
Fnax = Mimax /S = 38.4 x 12/1,152 = 0.400ksi
Then
C=T=1/2x[0.400 x (24/2) x 12] =28.8k

The moment arm between the maximum stresses is z=2 x 24/3 =16 in.
The moment equivalent of this couple is:

_460.8kip-in.

C =T =288 x16
X z Xz X 0

= 38.4kip-ft

which agrees with the given moment, M, = 38.4 kip-ft.

The concept of the internal couple will become a very important tool in consid-
ering a reinforced concrete beam. If the beam in Example 2.5 has enough tensile
strength to withstand the applied 0.400 ksi (400 psi) tensile stress, the beam will
not fail. As discussed earlier, concrete has a rather limited tensile strength. The
modulus of rupture, which was said to represent the ultimate tensile strength of
concrete in flexure, is given in Equation (1.3).

As mentioned previously, the modulus of rupture is a statistical average (with a
considerable coefficient of variation) that is empirically derived from many labo-
ratory tests. At increasing loads, a magnitude very soon is applied at which the
beam’s tensile strength is exhausted. At that point, somewhere near the maximum
moment, the beam will crack. Without reinforcement, the crack will instantly travel
upward and the beam will collapse, as shown in Figure 2.23.

In the following discussion the beam is assumed to have flexural reinforcement.
Such a beam is shown in Figure 2.24. As long as the tensile stresses in the concrete
at the bottom of the section are less than the modulus of rupture, there will be no

/I

Figure 2.23 Bending failure of an unreinforced concrete beam
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Figure 2.24 Strain and stress distribution of a reinforced concrete beam prior to cracking
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Figure 2.25 Strains and stresses after cracking

cracks. At the location of the reinforcing steel, the concrete and the steel have
identical strains. The steel is bonded to the concrete, thus they must deform
together. But the two different materials respond differently to deformation because
they have a different modulus of elasticity, so the stresses will be different. In this
particular case the stress in the steel will be much larger than that in the concrete.

For example, assume a concrete with £ = 3,000 psi. Then E. = 57,000+/3,000
= 3,122,000 psi = 3,122ksi. The modulus of elasticity of the reinforcing steel is
E;=29,000 ksi. According to Hooke’s law the stress equals the product of the
modulus of elasticity and the strain. So it follows that the stress in the steel will be
about nine times higher (the ratio of the two moduli of elasticity values) than the
stress in the concrete in the immediate vicinity. This ratio is usually designated as
n=Ey/E,. and is called the modular ratio.

The concrete cracks under increasing applied forces, and it is the reinforcement
that carries the tension across the crack. The crack travels up to a height, then stops
somewhere below the neutral axis as seen in Figure 2.25. The shaded area represents
the uncracked part of the section. Where the strains are still small near the neutral
axis, the concrete is still able to transfer some tensile stresses (albeit very small), even
in the cracked section; however, the amount of tensile force represented by the still
un-cracked tensile stress volume is so small that it is simply neglected.

Assuming, therefore, that the concrete does not carry any tension after cracking,
the bending moment in the section is transferred across from one side of the crack to
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Figure 2.26 The internal couple after cracking

the other via the tension in the steel and the compression in the concrete, as seen
in Figure 2.26. This assumption simplifies the development of an appropriate
formula for the internal couple. The tensile component of this couple is at the
centroid of the reinforcing steel, while the compressive component is at the centroid
of the wedge-shaped compression block. Comparing Figures 2.22 and 2.26 indi-
cates that the T force now is concentrated at the centroid of the reinforcing.

In Figure 2.26 the compression stress block is represented as a triangular wedge
shape. This representation is more or less accurate as long as the compressive
stresses in the concrete remain quite low. Figure 1.8 shows the generic shapes of
the stress-strain curve of concrete in compression, and the assumption of linear
distribution of stresses may be justified up to approximately 0.5f;.

As the applied loads increase, there is a corresponding increase in bending
moments throughout the beam. Thus, many more sections away from the location
of the maximum moment will develop tensile stresses that exceed the concrete’s
ultimate tensile strength, resulting in the development of more cracks. While
theoretically the spacing between cracks is very small, it does not happen that
way, because the formation of a crack relieves tensile strains in the concrete in its
immediate neighborhood. Initially the cracks are very fine hairline cracks, and a
magnifying glass may be needed to locate them. These hairline cracks do not
indicate that there is anything wrong with the beam: They occur naturally in
reinforced concrete beams subjected to flexure under normal working load condi-
tions. In fact, the reinforcement does not even do much work until after the concrete
has cracked.

As the bending moment at the section increases, the magnitude of T and C, the
tension and compression components of the internal couple, must also increase. In
the reinforcement this is simply reflected as an increase in stresses. Correspond-
ingly, the steel also will experience greater strains and elongation. As long as the
strains in the reinforcing are less than the yield strain, the relationship between
stresses and strains remains linear.

In the concrete, however, the increased compression strains result in a nonlinear
response of the stresses while maintaining the required increase in the volume of the
stress block. The concrete stress block becomes more and more bounded by a
curvilinear surface. Ultimately, the contour will resemble the one shown in
Figure 2.27. This diagram is the same as the ones shown in Figure 1.8, except the
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Figure 2.27 Typical curvilinear stress distribution in the concrete at ultimate strength

axes are reversed. At the origin, the strains and stresses are zero, just like on the
beam section at its neutral axis. At the top there is a strain value of 0.003, which is a
value selected by the ACI Code (somewhat arbitrarily) as the ultimate useful strain.
Somewhere between these two limits (in the neighborhood of 0.002) the peak stress
(the maximum compressive strength or simply compressive strength) occurs.
In calculations this value is designated as f; it is the specified compression strength
of the concrete, as already mentioned in Section 1.6.1.

On the tension side (i.e., at the reinforcement), Figure 1.17 shows the stress-strain
curve of the reinforcing steel, or the response of the steel to increasing strain values.
This curve clearly shows that the steel has significant residual strength even after it
has yielded, but this residual strength (the strength gained in the strain hardening
zone) is neglected. Thus, we assume that the stresses will linearly increase with
increasing strains up to yield, after which ever-increasing strains produce no
corresponding increase in stresses. Scientifically, this curve is known as a bilinear
stress-strain diagram, and the response of the steel as elasto-plastic behavior. Fig-
ure 2.28 shows the assumed stress-strain diagram for 40 and 60 ksi steel, respectively.

2.13 Different Failure Modes

As a first case assume that a beam has a relatively small amount of reinforcing steel.
Such a beam is shown in Figure 2.29. With increasing demand on the internal
couple the stresses in the steel will reach yield before the demand on the concrete
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Figure 2.28 Assumed bilinear stress-strain diagram of reinforcing steel

| I

Yielding j

Compression zone

Figure 2.29 Tension-controlled failure of a reinforced concrete beam

compression block reaches the ultimate concrete compressive strength. With
increasing elongation in the steel, still prior to yield, the cracks will become
wider and more visible. When the steel starts to yield (i.e., elongate rapidly), the
relatively narrow crack at the bottom opens up. This forms a wedge that shifts the
neutral axis upward, thus decreasing the area available for the compressive stress
block, until the concrete crushes on the compressive side as a secondary failure.
The primary cause of failure was due to the yielding of the reinforcement. In a
somewhat misleading way such sections are sometimes referred to as
underreinforced sections. This unfortunate expression implies that the section is
underreinforced as compared to the capacity of the compression part of the section.
(In Section 2.17 we will discover that the behavior of an under-reinforced section is
classified as tension-controlled or transition-controlled depending on the level of
tensile strain in the steel at the time of failure.)

As a second case consider a beam that has a relatively large amount of
reinforcing. For such a beam the steel will be able to develop the T part of the
internal couple without yielding. As demand on the compression stress block
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Figure 2.30 Strain distribution at “balanced” failure

increases, however, the capacity to provide a sufficiently large volume of concrete
stresses will be exhausted, reaching the state shown in Figure 2.27. In such a case
the primary failure occurs in the concrete. These types of sections are referred to as
overreinforced, that is, the beam has more reinforcing in the section than what
could be used with the largest possible compressive stress block.

A casual observer may care little about what initiated the failure of the beam.
But the two modes of failure vastly differ. The first mode, in which the primary
failure happens due to the yielding of the reinforcing, is a ductile process and is
preceded by significant cracking, fairly large deflections, and similar warning signs.
The beam, in a way, tells you that something bad is about to happen.

In the second mode there are no such obvious signs of impending failure. The
reinforcement, in providing the tensile part of the internal couple, experiences
relatively low strains, so the few hairline cracks do not serve as warning signs.
Consequently when the failure occurs, it happens in a sudden, explosive way—the
concrete failure in compression is very abrupt.

Between these two different failure modes is a special case, known in the literature
as the balanced-failure condition. Balanced failure is a theoretical limit dividing the
underreinforced and overreinforced failure modes. We feel that this is an unfortunate
terminology, because the word balance (i.e., equilibrium) should not be used to
describe a failure mode that is anything but the maintenance of balance. We would
prefer to use the expression simultaneous failure. But whatever terminology is used,
it refers to the amount of reinforcement in a section that causes the concrete at
the compression side to fail at exactly the same time the steel begins to yield. So the
strain in the steel will be the yield strain, and the strain at the extreme edge of the
concrete will be 0.003. This balanced condition is depicted in Figure 2.30.

2.14 The Equivalent Stress Block

A quick look at Figure 2.27, or at its 3-D representation in Figure 2.31, should
convince anyone that it would be impractical to calculate the value of C by figuring
out the volume of the stress block. The calculation would require integral calculus,
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Figure 2.31 True stress distribution in the concrete at ultimate strength

even if there was an easy way to express the shape of the curve mathematically.
A reasonable approximation can be obtained by substituting a stress block whose
volume is about the same as the true stress volume enclosed in Figure 2.31, and
whose centroid is fairly close to that of the true stress volume. This is known as the
equivalent stress block, and is shown in Figure 2.32.

The relationship between the true stress block and the equivalent stress block has
been established by studying many concrete stress-strain curves. The simple rect-
angular block has been adopted for its simplicity and ease of calculation. If a
uniform stress value of 0.85f! is adopted, then only the relationship between the
depth of the equivalent stress block a and the distance of the neutral axis from the
top c is needed. This relationship is given in Equation (2.11).

a=pc (2.11)

To account for the somewhat different shapes of the stress-strain curves of different
strengths of (refer to Figure 1.8) concrete, B, is given by the ACI Code (Section
22.2.2.4.3) as follows:
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b o851,
e

Figure 2.32 The equivalent stress block

B; =0.85 for concrete strength f! up to and including 4,000 psi. For strengths above
4,000 psi, Py shall be reduced at a rate of 0.05 for each 1,000 psi
of strength in excess of 4,000 psi, but f; shall not be taken less than 0.65

Equation (2.12) gives the expression to calculate p; for f/ > 4,000 psi.

1 4,000
B, = 0.85 — 0.05 (fc1076()> > 0.65 (2.12)

The equivalent stress block makes it extremely easy to manipulate the expression to
calculate the ultimate (design) resisting moment of a given section. The moment
arm of the internal couple, z, can be calculated using Equation (2.13).

a
=d—— 2.13
s=d-} 213)

The numerical value of the internal couple can be expressed in two different
ways, using the designation of M, for the nominal resisting moment and My for the
design resisting moment. These moments can be calculated using Equations (2.14)
and (2.15), respectively.

M,=Tz or M,=Cz (2.14)

Mg = oM, = $Tz = §C:z (2.15)
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where

T=A,f, (the area of the reinforcing multiplied by the yield stress
of the steel)
C = 0.85f/ab (the volume of the equivalent stress block)

Equilibrium requires that T be equal to C, thus

Af, = 0.85f!ab (2.16)

Solving this equation for a gives Equation (2.17) for calculating the depth of the
equivalent stress block.

a= ASfy
~0.85f/b

(2.17)

Note that @ will increase as larger amounts of reinforcement, or reinforcing steel
with greater strength is used. On the other hand a will be smaller if a wider section,
or stronger concrete is used. Note, however, that a is independent of the depth of the
section.

2.15 The Steel Ratio (p)

Sometimes it is useful to express A as a fraction of the working cross section, which
is the product of the width b and the effective depth (or working depth) d. The term
steel percentage or, more accurately, steel ratio refers to the ratio between the area
of the reinforcing steel and the area of the working concrete section.

The steel ratio is calculated using Equation (2.18).

A,

=5 (2.18)

p

Note that p is a nondimensional number, area divided by area, so it is not a
percentage per se. But it can be made into a percentage by multiplying it by 100.
For example, assume the following beam data: b=12 in.,, /=24 in., A;=3
#6 bars =3 x 0.44 = 1.32 in.%, and #3 stirrups in the beam.

Then d=24 — 1.5 in. (concrete cover) —0.375 in. (diameter of the stirrup) —
0.75 in. (diameter of #6 bar)/2=21.75 in. Thus, the steel ratio is

A, 132
— A % 0.00506 (or 0.506 %).
P = b T 12(21.75) (or )
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Figure 2.33 Strain distribution at balanced failure

2.16 The Balanced Steel Ratio

Section 2.13 discussed the two possible different failure modes of reinforced
concrete beams in bending. The theoretical dividing point between them, the
“balanced failure,” was also discussed. In this case the steel in the outermost
layer (if there is more than one layer) reaches its yield strain exactly when the
maximum compressive strain in the concrete reaches the 0.003 value. The strain
distribution at balanced failure resembles the one shown in Figure 2.33. In order to
cover the more general (although not so frequent) case of multilayer reinforcing in
the beam, a distinction is made between d, the working depth, and d,, the depth to
the outermost layer of reinforcing on the tension side. When there is only one layer
of reinforcement, d =d,.

From the similarity of the two triangles above and below the neutral axis,
¢p, the depth of the neutral axis at balanced failure can be expressed as a function
of d; and f;.

¢ _ 0.003 (2.19)
d[ — Cp S,y '
Solving for ¢,
0.0034;
=7 2.20
= 0.003 + e, (220)
because
_h S (2.21)

& = E- 7 29,000,000
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We can substitute and rearrange to obtain

87,000

= 2.22
87,000 +f, ' (2:22)

Ch

In these equations f is substituted in psi.
With this information the depth of the equivalent stress block at balanced failure
can be calculated using Equation (2.23).

Auf,

) 2.23
0.85f7h (223)

ap = Pycp =

where Ay, is the theoretical amount of reinforcing needed to cause a balanced
failure mode.

When ¢, from Equation (2.22) and A, =p,bd from Equation (2.18) are
substituted into Equation (2.23).

87,000d,  pybdf,

187,000 +f,  0.85f!b

the steel ratio for balanced failure, p;, can be calculated using Equation (2.24).

0.85f, 87,000 d,
Py = B )
J 87,000 +f, d

(2.24)

If d, = d, which means there is only one layer of reinforcing steel (by far the most
frequent case), then Equation (2.24) becomes Equation (2.25).

085/ 87,000
~f, 87,000 +f,

Py (2.25)

Note that the value of p, depends only on the selected materials (£ and f,) and is

. . . .d
independent of the size of the section. (The ratio j becomes necessary only when

there is more than one layer of reinforcement.)

2.17 Elaboration on the Net Tensile Strain in Steel (g,)

In an effort to generalize the approach for members subject to both bending and
axial compressive forces, the ACI Code strives to treat these combination cases
together. The different failure modes were discussed in Section 2.13. These modes
are distinguished by whether the primary failure is due to yielding of the steel or to
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Figure 2.34 Variation of ¢ versus ¢,

crushing of the concrete. The former is called tension-controlled failure, and the
latter is compression-controlled failure. It was also previously noted that tension-
controlled failure results in highly desirable ductility, whereas compression-
controlled failure is abrupt and nonductile in nature. Unfortunately, as will be
discussed later in Chapter 5, the desire to have only ductile tension-controlled
failure modes cannot always be satisfied. But in flexural members, at least we can
control the failure behavior by using no more steel than an amount that ensures the
desirable ductility. In the past this was accomplished by limiting the reinforcement
ratio, p, to 75p, in flexural members. Since 2002 the ACI Code has adopted a new
approach that is a better integration of dealing with members subject to axial
stresses whether from flexure, or axial compression, or both. If ductile failure
mode cannot always be assured, then the use of a larger safety factor against a
nonductile type of failure is warranted. This larger safety factor is obtained by
regulating the ratio between the useful ultimate moment or design resisting moment
(Mg = $M,) and the nominal ultimate moment (M,,). This requires only an adjust-
ment in the ¢ (strength reduction) factor.

The ACI Code (Section 21.2.2) defines three different types of section behavior:
tension-controlled, compression-controlled, and a transition zone, which is the
zone between the tension- and the compression-controlled failure zones. Figure 2.34
shows a graphical representation of these zones, and defines and separates the three
regions. Theoretically the division between compression-controlled failure and
tension-controlled failure is where e,=g,. In other words, the section is
compression-controlled if the strain in the steel is less than the yield strain; and is
tension-controlled if the strain in the steel is greater than the yield strain when the
compression strain in the concrete reaches the limit of 0.003. For design purposes,
however, the ACI Code requires a safely assured tension-controlled section; thus, it
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Figure 2.35 Strain distribution and net tensile strain (g,) at behavior limits: (a) compression-
controlled sections; (b) tension-controlled sections; (¢) transition-controlled sections

§=¢gy &= 0.005 gy < &< 0.005

defines a section as tension-controlled only when the steel strain at ultimate strength
is greater than 0.005. Between the two limits, yield strain (g,,) and 0.005, the Code
defines a transition zone with lowered ¢ values.

Note that the ACI Code allows &, for flexural members to be as small as 0.004 at
ultimate strength. A somewhat diminished ¢ factor, however, is required in
conjunction.

It may be helpful here to repeat what was discussed in Section 2.13 in a
somewhat different format. Figure 2.35 defines graphically the behavior of
reinforced concrete sections.

1. A compression-controlled section is a reinforced concrete section in which the
strain in the concrete reaches 0.003 at ultimate strength, but the strain in the steel
(g,) is less than the yield strain (g,,). (See Figure 2.35a.) In other words, at the
ultimate strength of the member, the concrete compressive strain reaches 0.003
before the steel in tension yields. This condition results in a brittle or sudden
failure of beams and should be avoided. In reinforced concrete columns, how-
ever, a design based on compression-controlled failure behavior cannot be
avoided. As shown in Figure 2.34, ¢ = 0.65 is mandated for this case, which is
considerably less than the ¢ =0.90 that is used for tension-controlled sections.
The reasons for this additional factor of safety are: (1) compression-controlled
sections have less ductility; (2) these sections are more sensitive to variations
in concrete strength; and (3) the compression-controlled sections generally occur
in members that support larger loaded areas than do members with tension-
controlled sections.

2. A tension-controlled section is a reinforced concrete section in which the tensile
strain in steel (g,) is more than 0.005 when the compression strain in concrete
reaches 0.003 (see Figure 2.35b). In other words, when a section is tension-
controlled at ultimate strength, steel yields in tension well before the strain in the
concrete reaches 0.003. Flexural members with tension-controlled sections have
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3.

ductile behavior. As a result, these sections may give warning prior to failure by
excessive deflection or excessive cracking, or both. Not all tension-controlled
sections will give both types of warning, but most tension-controlled sections
should give at least one type of warning. Both types of warnings, excessive
deflection and cracking, are functions of the strain, particularly the strain on the
tension side. Because tensile strains are larger than compressive strains in
tension-controlled sections at failure, the ACI Code allows a larger ¢ factor
(0.90) for these types of members.

A transition-controlled section is a reinforced concrete section in which the net
tensile strain in the steel (g,) is between yield strain (g,,) and 0.005 when the
compression strain in the concrete reaches 0.003. (See Figure 2.35c.) Some
sections, such as those with a limited axial load and large bending moment,
may have net tensile strain in the extreme steel (g,) between these limits. These
sections are in a transition region between compression- and tension-controlled
sections. In Figure 2.34, the line AC represents the Code-defined relationship
between ¢ and e, in the transition-controlled zone. The value of ¢ in the
transition zone can be calculated using Equation (2.26).

q):Al +Bl & (226)

where the coefficients A; and B; may be expressed as

~0.00325 - 0.9 ¢,

A =
: 0.005 — &,
g 025
170,005 — ¢,

Table A2.2a in Appendix A lists the values for the coefficients A; and B, for
commonly used reinforcing steels.

2.18 The Location of the Neutral Axis and Limit Positions

Consider the strain diagram shown in Figure 2.36. The location of the neutral axis at
ultimate strength (c) depends upon the net tensile strain of the steel. Observe the
solid and the dotted lines. Because the strain at the compression face is constant
(0.003), ¢ becomes smaller as the steel strain increases. Using similar triangles of
the strains above and below the neutral axis, an expression can be derived to
calculate the depth of the neutral axis, c.

¢ 0.003
di—c & (2.27)
ceg = 0.003(d[ - C)
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Figure 2.36 Variation of the location of the neutral axis (c¢) with the tensile strain in steel (g,)

Solving Equation (2.27) for c:

0.003

=———4d 2.28
“70.003 +&" (228)
The ratio of c¢/d,, given in Equation (2.29), is often used to check if a section is
tension-controlled.

c 0.003
= 2.2
d; 0.003 4 ¢ (229)

Two values of €, are of special interest. The first one is €, = 0.004. This is the absolute
minimum steel strain permitted by the ACI Code for members in flexure. (Refer to
Figure 2.34 and ACI Code, Section 7.3.3.1 for one way slabs, and Section 9.3.3.1 for
beams). Substituting this €, value into Equation (2.29) gives us Equation (2.30).

30429 or c—0.429d, (2.30)
d[ 7
Equation (2.30) gives the lowest permissible value of the neutral axis depth. In
other words, this defines the largest permissible concrete area in compression
(¢ <£0.4294d,).

The second value of interest is €, = 0.005. Solving Equation (2.29) for this case,
we obtain Equation (2.31) for the lowest location of the neutral axis depth for
tension-controlled sections.

c 0.003 3

e 9 2 375 —0.375d 231
4, 0.003 +0.005 8 or ¢ ’ (231)
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2.19 Relationship Between ¢ and d,/c

Equation (2.29) shows that the ratio of either c/d,, or its inverse, d,/c, are in direct
relationship with the steel tensile strain €,. Then it is possible to modify Figure 2.34
to show the ACI Code—prescribed strength reduction factor’s (the ¢ factor’s)
variation in terms of the d,/c ratio. (For convenience of graphing, the relationship
is shown in terms of d,/c.) Figure 2.37 expresses the changing ¢ values with respect
to the ratio d,/c. Note that the ratio d,/c, is the ratio of d/c at the balanced failure
point.

Table A2.2b in Appendix A of this text lists the values for the coefficients A, and B,
that describe the variations in ¢ values through the transition zone. The limiting ratios
between the depth of the member and the location of the neutral axis (d/c) and its
inverse at the balanced failure point (i.e., d,/c;, or c¢,/d,) are also included.

2.20 Limitations on the Steel Percentage (p) for Flexural
Members

With the help of Equations (2.30) and (2.31), the corresponding largest p values (i.e.,
the steel percentages that satisfy those limiting conditions) can be determined. For
g, =0.004 (lowest permitted steel strain value at ultimate strength of flexural mem-
bers), the maximum depth of the neutral axis is calculated using Equation (2.32).
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3
o = —d 2.32
C, 7 t ( )

The corresponding depth of the equivalent stress block (refer to Equations (2.11)
and (2.17)) is given by Equation (2.33).

As,maxf 3
Amax = 085ﬁ’by = ?ﬁldt (233)

where A; .« 1s the amount of reinforcing steel necessary to have g, = 0.004.
Substituting for A; nax = Pmax Pd in Equation (2.33), then rearranging, the largest
p value can be determined.

Pmaxldfy, 3
0n.1§5f’ y — 5[3141, (2.34)
flod,
=-(0.85)p,"< - —
pmdx 7( )Blf)‘, d
or
7 d
pmax—0364ﬁ1}; d’ (2.35)

Equation (2.35) gives the maximum percentage of reinforcing steel permitted by
the ACI Code in flexural members, unless the capacity is augmented by the use of
compression reinforcing. (See more on that in Chapter 3.)
For sections with a single layer of reinforcing, d,/d = 1.0, Equation (2.35) is
simplified as indicated in Equation (2.36).
f/
Pmax = 0.364B,— (2.36)
5y

In a similar way, we can determine the value of p that will ensure an g, = 0.005,
the upper limit of p needed to ensure a tension-controlled (ductile) failure in beams
at their ultimate strength. Designate this value of p as p,.. After changing the right
side of Equation (2.34) accordingly (see Equations (2.30) and (2.31)), then the
value of p,. can be calculated using Equation (2.38) (or Equation (2.39) for the
special case of a section with only one layer of reinforcement).

pbdf, 3
o.tzCanf;? =ghidi (237)
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!
P = 0.31951? % (2.38)
y
f/
P = 0.319, ]7 (2.39)

y

Table A2.3 in Appendix A lists the values of p,.x and p,. for various grades of steel
(fy) and concrete strength (f/) combinations. The value of the strength reduction
factor (¢) is shown in the right column of the table. This value varies when
Pre <P <Pmax» Or the beam’s failure mode is in the transition zone (see
Section 2.17). Table A2.3 indicates that not much is gained in terms of useable
moment capacity with the required reductions in the ¢ values and when the
reinforcing percentage is increased from p, to pmax, especially when higher
strength steels are used.

2.21 Minimum Steel Ratio (pnin) for Reinforced
Concrete Beams

When a reinforced concrete beam, for architectural or other reasons, is relatively
large in cross section, or carries little load, the calculations may require only a very
small amount of reinforcing steel. Such a section, if accidentally overloaded, will
fail in a sudden, brittle manner. The reason is that the ultimate moment strength
provided by the reinforced section is actually less than the strength of the same
section without any reinforcing. Thus, the stress in the reinforcement will immedi-
ately reach yield at the first crack, causing the section to fail suddenly.

To ensure that reinforced beam’s ultimate strength is larger than that of
the unreinforced beam, Section 9.6.1.2 of the ACI Code requires a minimum
amount of flexural steel in reinforced concrete beams. This requirement is given
in Equation (2.40).

As, min —

3\/f!
—\f/fbd > 290, (2.40)
y y

This minimum amount of steel (A ,;,) provides enough reinforcement to ensure that
the moment strength of the reinforced concrete section is more than that of

an unreinforced concrete section, which can be calculated from its modulus of rupture.

200
In the past, the ACI Code required only an A min = f— bd. For concrete strength

y
greater than about 4,440 psi, however, this is not sufficient to ensure the desired aim;
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3F

y
expressed mathematically in terms of p.,;, (minimum steel ratio) as shown in

Equation (2.41).
3Vf! 2
Pmin = Max \/f:, 200 (2.41)
VA

bd rectifies this condition. Because A; min = pmin bd, Equation (2.40) may be

Table A2.4 in Appendix A provides values of p,;, for different grades of steel
and compressive strengths of concrete.

2.22 Analysis of Rectangular Reinforced Concrete Sections

Analysis of a section means finding the My = $pM,, value. This may be necessary
when checking an existing structure or element to determine if the strength pro-
vided by the section (supply) is sufficient to satisfy M, that is calculated from the
loads (demand). Finding My also makes it possible to calculate the maximum live
load that may be permitted on the element.

An analysis can be performed only when all parameters that influence the ultimate
strength of a section are known. There are five of these parameters, namely:

The dimensions of the section band d
The materials used in the beam f! andf,
The tensile reinforcement in the beam Ay

Next we show two methods for calculating the value of M.

2.22.1 Mg Calculation: Method I

This method closely follows the already discussed and established formulae.
Figure 2.38 shows the stress and strain distributions for a reinforced concrete
rectangular beam at ultimate strength. For the most general case, a beam section
with multilayer reinforcing is shown.

The resisting moment can be calculated from the internal couple and using
Equations (2.42)—(2.44).
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Figure 2.38 Stress and strain distributions on a reinforced concrete section
T:Asjg, C = O.SSfC/ba z=d—-a/2
(2.42)
M, =Tz =Af,(d—a/2)
M,=Cz= O.85ﬂba(d —a/2) (2.43)
Mg = dM, (2.44)

The calculation proceeds as follows:

A . .
Step 1. Calculate p = ﬁ and check if p> py, (from Table A2.4); if not, the

beam does not satisfy the minimum requirements of the ACI Code, and
its use for load carrying is not permitted. Determine whether p < py.x
(from Table A2.3); if not, the beam has too much reinforcing and does
not satisfy the latest ACI Code’s limitations. A practical solution for this
is to disregard the excessive amount of reinforcement, assume that the
section is in the transition zone, and continue the calculations with
the maximum permissible amount of reinforcing.
Step 2. Calculate the depth of the equivalent stress block from Equation (2.17):

a = Asf;,
~0.85f/b

Step 3. Calculate the location of the neutral axis from Equation (2.11):

c=—

B
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Step 4. Determine whether
c 3
<z
d — 8

If yes, the beam is in the tension-controlled failure zone; set ¢ =0.90 and

3 3
go directly to step 5. If not <i.e., 3 < dﬁ < ?>, the ¢ factor must be
t
adjusted accordingly. Therefore, calculate the reduced ¢:

B
b=A; —&-Tz(refer to Table A2.2b for A, and B;)
d

Step 5. Calculate Mg = M, = A, fy(d - %’) (refer to Equations (2.42) and

(2.44))
Figure 2.39 summarizes the analysis steps.

Find Mg for reinforced
concrete rectangular beams.

1.

As No B is i
) eam is illegal (p < ppin)
P=pg =~ Pmin per current ACI Code.

P < Pmax?

Yes

2. Af

No

Warning! p > ppax
Only the part of the reinforcing that
is equal to pa May be taken into
account in the nominal strength calculations.

Yes No l
¢ = 0.90 b= A2 + 22
d
5. a
Mg = d’Asfy (d— f)

Figure 2.39 Flowchart to calculate My (Method I)
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Example 2.6 Use Method I to determine the design resisting moment, Mg, of
the reinforced concrete beam section shown below. f! = 4ksi, and f, =40ksi.
The reinforcement is 3 #9 bars, A, =3.00 in2,

b=10in.

N

d=22in.
2060 -
Solution Using the steps of Figure 2.39:
Step 1. Find the steel ratio, p:
Ag 3
P=pd " Tox 2z 00136

From Table A2.4 — p_.. = 0.0050 < 0.0136 .. ok
From Table A2.3 — p_ .. =0.0310 > 0.0136 .. ok

Step 2. Calculate the depth of the compression zone, a:

Af, 3x40
T 085b  0.85x4x 10

= 3.53in.

a

Step 3. From the depth of the equivalent stress block, determine the location of the
neutral axis, c:

a 3.53
=—=——=4.15in.
7B, 085 n
Step 4. Determine whether the section is tension-controlled or is in the transition zone:
c 415
—=——=0.189 <0375 .. ok
Y < °

Therefore, the section is tension-controlled and the strength reduction
factor ¢ =0.90.
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Step 5. Calculate the resisting moment, Mg:

e g(a-)

0.90 x 3 x 40<22—E

My = ) = 182 ft-kip

12

Example 2.7 Repeat Example 2.6 for f, = 60 ksi, and f = 3ksi.

Solution
Step 1.
As
=—=0.0136
P~ ba
Table A2.4 — p,,, = 0.0033 < 0.0136 .. ok
Table A2.3 — p,.. = 0.0155 > 0.0136 .. ok
Step 2.
Asf, 3 % 60
= = = 7.06in.
70857 0.85x3 x 10 n
Step 3. a 7.06
=—=-—"—=2830in.
TP, 085 n
Step 4.
c 8.30
—=—=0.377>0.375
d, 22 o

.. Section is in the transition zone (although just barely).

Use Table A2.2b to determine A, and Bs; then

0.25
=02 — =0.
¢ =0.233 4 0377 0.90

Step 5.

0.90 x 3 x 60(22—@

Mg = B = 249ft-kip



http://dx.doi.org/10.1007/978-3-319-24115-9_BM1

2.22  Analysis of Rectangular Reinforced Concrete Sections 85

Example 2.8 Calculate My, for the reinforced concrete beam section shown below.
f,=60ksi, f/ = 4ksi, A,=7.62 in>.

} 12in. |

d=231.25in. dy=32.5in.

6#10

Solution
Step 1.
A 7.62
=—=——"——=0.0203
P~ hd " 123125
From Table A2.4 — p_.. = 0.0033 < 0.0203 .. ok
From Table A2.3 — p.... = 0.0207 > 0.0203 .. ok
Step 2.
Af, 7.62 x 60
= = = 11.211in.
TT085b 085 x4x12 m
Step 3. a 121 _ o
¢c=—=——=13.19in.
B, 0.85
Step 4.
c 13.19
—=—-=04 .
4" 325 0.406 > 0.375

.. Section is in the transition zone. With the help of Table A2.2b:
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B, 0.25
¢ —Az—i-z— 0.233 —&—m— 0.85
d;
Step 5. 11.21

0.85 x 7.62 x 60 (31.25 -

My = ) = 831 kip-ft

12

2.22.2 Mg Calculation: Method I1

This method results in the development of design aid tables, which are more user-
friendly. The tables will also be useful when the aim is to design beam sections to
satisfy a given M, demand instead of analyzing.

The expressions for the components of the internal couple are

T =Af, C=085ba z=d—a/2

Because T'=C, the depth of the equivalent stress block is

a= Asfy
~0.85f/b

Substituting from Equation (2.18), A, = pbd. Equation (2.45) can be used to calcu-
late a.

y— pbdfy B pdfy
a 0.85fb o 0.851/

(2.45)

Substituting from Equation (2.11), a=pjc, ¢ can be determined using
Equation (2.46).

pdf,
Pre= 0.85};
(2.46)
c= pd
0.85//B,
or
c__® 4 (2.47)

d, 0.85(/p, d,

Equation (2.47) is usually the preferred equation to check if a section is tension-
controlled.
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If 3/8 < ¢/d, < 3/7 the strength reduction factor, ¢, must be adjusted accordingly.

B
b=A+7

d,

Substituting for ¢/d, from Equation (2.47), Equation (2.48) can be used to
calculate the adjusted strength reduction factor.

0.85/p, di

— A+ B
¢ =4, T d

(2.48)

Equation (2.48) provides the values of ¢ in the transition zone. In order to simplify
the equation, introduce a new steel ratio, p;:

As

pt:b_d,

(Note that d, =d and p, = p when the beam has only a single layer of steel.)

d
Substituting p = p,j Equation (2.48) can be rewritten as Equation (2.48a).

0.85p,

¢ =A4A+B,
prfy

(2.48a)

From Equation (2.43) (see also Figure 2.38):
Mg =0M, = $Cz
My = $(0.85f ba) (d - g)

Substituting from Equation (2.45) for a:

pdfy \ [, _ P
0.85f, L.7f.

Mg = ¢ | 0.85¢'b

Rearranging and simplifying:

My = bd* |f1)pf)') (1 - 1";})] (2.49)

If the product in the bracket is designated as R (called the resistance coefficient,
which has units of stress, psi or ksi) as shown in Equation (2.50),



88 2 Rectangular Beams and One-Way Slabs

R = dpf, (1 - 1'?%(() (2.50)

the expression for My is simplified to Equation (2.51).
My = bd*R (2.51)

It is clear from Equation (2.50) that R depends on the materials used (i.e., f/, f,
and the steel ratio (p) in the beam), but it is independent of the dimensions of the
section. Thus tables for R can be developed in terms of p for the various combina-
tions of materials. Values of R can be found from Tables A2.5 through A2.7. pmin
for beams are indicated on each table. Reinforcement ratio (p) values less than p,i,
may not be used in beams, but may be used in slabs and footings.

These tables were developed with R in psi. Using R in psi and beam dimensions
b and d in inches results in Ib-in. units for M. Because kip-ft are usually used in
moment calculations, appropriate conversions must be made between lb-in. and
kip-ft for the correct use of the tables.

Rlosi
My (ikip) = bin.(d in.)’ 2(1(’)5(;2)

The tables must be used with care, especially when large p values result in
the section being in the transition zone. The value of ¢ depends on f, f, p, and

d;
—, thus if
> thus i

p<pe—$=090
and if

0.85(/p, d
Pmax > P> P ¢:A2 +BZle

The values of p,. and py.x for common grades of steel and concrete strength are
listed in Table A2.3.

An important note here is that Tables A2.5 to A2.7 have been developed based
on p (i.e., beams with a single layer of reinforcement). If the beam has multiple
layers of reinforcement (p; # p), the R value must be modified by adjusting it to an
R’ value based on p,. This can be easily done by using Equation (2.51a).

_ Y

R/
¢

(2.51a)

The values of ¢, which are listed in Tables A2.5 to A2.7, correspond to the
values of p,.
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The use of Method II for analysis of reinforced concrete beam sections involves
the following steps:

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Determine whether p > pp,; if not, then the beam does not satisfy the
minimum requirements of the ACI Code and its use for load carrying is not
permitted.

Determine whether p < ppax; if not, the beam has too much reinforcing
and does not satisfy the latest ACI Code’s limitations. A practical solution
for this is to disregard the excessive amount of reinforcement, assume that
the section is in the transition zone, and continue the calculations with the
maximum permissible amount of reinforcing.

Use p, f! and f, to obtain R and ¢ values from the appropriate Tables A2.5
to A2.7. If the beam has a single layer of steel or ¢ =0.90, find My from
Step 3. Otherwise move to Step 4.

Calculate M, bd’R (b,d =in;R i; Mg = ft-kip)

alculate = ,d =in.;R = psi; M = ft-ki

e ME = 12,000 L P

For beams with multiple layers of reinforcement, calculate p, = — and

bd,
obtain the corresponding strength reduction factor (¢’) from Tables A2.5 to
A2.7.

/
Calculate the modified value of the coefficient of resistance (R’ =R %)
bd*R’
Calculate My = .
alculate My 12,000

The flowchart for Method II is shown in Figure 2.40.

Method II has fewer steps to follow, so it is easier to use. Method I, however, is
more general as it does not require the use of design tables (which may not be
readily available) and it is adaptable to any grade of steel or compressive strength of
concrete, not just the ones listed in the tables.


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Find Mg for reinforced concrete
rectangular beams (Method II).

2. Use p, 1, fz to find Rand ¢ from
Tables A2.5 through A2.7.

Beam has

2 Rectangular Beams and One-Way Slabs

p < pmin, beam is illegal per ACI Code.

P = pmax ONly the part of the reinforcing

that is equal to ppay, May be taken into
account in the nominal strength calculations.

No

single layer of
bars (d; = d)?

bd?R Yes

Mg = =0.90?
R~ 12,000 8 e
No

&

Y

4.

Ag ) ,
Use p;= b_d,to find ¢’ from

Tables A2.5 through A2.7.

_ ba®R’
R 12,000

Figure 2.40 Flowchart to calculate Mg using Method 11

Example 2.9 Solve Example 2.6 using Method II.

Solution

Step 1. From Example 2.6:

p =0.0136 > p;, = 0.0050 .. ok
From Table A2.3 — p... = 0.0310 > 0.0136 .. ok

Step 2. Using p=0.0136, f, =40 ksi, and f = 4ksi, obtain the resistance coeffi-

cient, R, from Table A2.5b:

R =450psi, ¢ =0.90


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Step 3. Because the beam has a single layer of reinforcement:
_ bd’R 10 x 227 x 450

© 12,000 12,000

Mp = 182ft-k

Mg

which is the same as determined in Example 2.6.
Example 2.10 Solve Example 2.7 using Method 1II.
Solution
Step 1. From Example 2.7:

P = 0.0155 > p = 0.0136 > p,;, = 0.0033 .. ok
Step 2. p=0.0136, f! = 3ksi, and f, = 60 ksi. From Table A2.6a:

R =615psi, ¢$=0.90

Step 3.
_ bd’R
R =12,000
10 x 22% x 615
Mp=——""2_" "~ _ 248 ft-ki
R 12,000 P

which is about the same as the result determined in Example 2.7.
Example 2.11 Solve Example 2.8 using Method II.
Solution

Step 1. From Example 2.8:
p =0.0203 > 0.0033 .. ok

Because there are two layers of reinforcement, adjust py,.x using
Table A2.3:

—00207%—0020732—'5— 0.0215 > 0.0203 .. ok
pmax_ : d_ . 3125_ . . ..

Step 2. Use p, f,, and /! to obtain R from Table A2.6b.

0= 0.0203
f! = 4ksi — Table A2.6b — R = 825psi
£, = 60ksi b = 0.82

Step 3. Because the beam has two layers of reinforcement and ¢ is not equal to
0.90, determine p, and ¢’ and adjust the resistance coefficient, R:


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Step 4.

A 762
T bd, 12x325
From Table A2.6b — ¢’ =0.85

P, =0.0195

Step 5. Adjusted value of the resistance coefficient (R') is:

/

0.85
R =R~ =825 x —— = 855psi
b " 0.82 pst

bd*R’ 12 x 31.25% x 855

Step 6. My = -
PO MR = 15000 12,000

= 835ft-kip

This result is about the same as that from using Method I. The difference
is insignificant and is due to rounding errors in the calculations.

2.23 Selection of Appropriate Dimensions for Reinforced
Concrete Beams and One-Way Slabs

2.23.1 Selection of Depth

The selection of a beam’s depth is almost always a controversial issue. On the one
hand, the building designer wants to minimize the depth of the structure in order to
maximize the headroom without unduly increasing the height of the building. On
the other hand, structural elements that are too shallow lead to increased short- and
long-term deflections. These, in turn, may be detrimental to attached nonstructural
building elements. Excessive deflections of concrete structures may result in
cracked walls and partitions, non-functioning doors, and so on.

To guide in the design of well-functioning structures, the ACI Code (Sections
7.3.1.1 and 9.3.1.1) recommend a set of span/depth ratios, with the comment that
the designer does not have to calculate deflections (an involved and somewhat
uncertain process) if the utilized depth is at least equal to the values provided in ACI
Table 7.3.1.1 for one-way slabs, and Table 9.3.1.1 for beams. These values are
summarized graphically in Figures 2.41 and 2.42.

Note from Figures 2.41 and 2.42 that the recommended minimum depth for
simply supported beams is span/16, whereas for one-way slabs this value is span/20.
These types of support conditions are quite rare in monolithic reinforced concrete
construction, because in most cases either continuity or some other type of restraint
is available at the supports. If the member is continuous at both ends, A,,,;, = span/21
for beams and h,,;, = span/28 for one-way slabs. Finally, if the beam is continuous
at only one end, the minimum depth is span/18.5, and for one-way slabs is span/24.

A cautionary note is in order here. Span 2 (¢,) in Figures 2.41 and 2.42 is shown
as “Both ends continuous.” This assumption is valid only if the cantilever at the left
end of ¢, is long enough to develop a significant end moment. Experience shows
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hnin Ain = €/16

| ¢ |
1
Simply-supported

Bimin = €1/ Pnin = €2/ hnin = €3/21 henin = €4/18.5
ﬁl 7, ﬁl Z WI 7, / 7,
| g | & | t | 0 |
Cantilever Both ends continuous Both ends continuous One end continuous

Figure 2.41 Minimum depth requirements for reinforced concrete beams

l l h_T_ Pmin = €/2o

min
[ ] ® ® [ ] _L 7, 7,

I ¢ I

Simply-supported

hmin = €1/10 Pmin = €2/28 Pmin = €3/28 hrmin = €4/24

7z 7z 2z 7

I 2 | t A t

Cantilever Both ends continuous Both ends continuous  One end continuous

Figure 2.42 Minimum depth requirements for reinforced concrete one-way slabs

that when the cantilever length is at least £,/3, the span ¢, may safely be assumed as
“both ends continuous” from the point of view of satisfactory deflection control.

The values shown in Figures 2.41 and 2.42 are applicable only to normal-weight
concrete (w.= 145 1b/ft3) and Grade 60 reinforcement. For other conditions, the
ACI Code Section 7.3.1 recommends the following modifications:

(a) For lightweight concrete in the range of 90-115 pcf, the values in Figures 2.41
and 2.42 need to be multiplied by (1.65 — 0.005w.) where w,. = unit weight of
concrete in Ib/ft’. This factor should not be less than 1.09. For a typical
lightweight structural concrete, w.=115 pcf. Then the multiplier is
1.65 —0.005 x 115=1.075 < 1.09. Use a multiplier equal to 1.09.

(b) For f, other than 60,000 psi, the values obtained from Figures 2.41 and 2.42
shall be multiplied by:
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f
(0.4 +1 oo,yooo) (2.52)

If the selected beam depth is less than the recommended £,,;,, the beam deflec-
tion has to be calculated and checked against the ACI Code requirements. There-
fore, if a beam does not satisfy the minimum depth requirements, it may still be
acceptable if computation of deflection proves it to be satisfactory.

2.23.2 Selection of Width

Minimum Bar Spacing in Reinforced Concrete Beams In Section 2.12 we
discussed the role of concrete cover over the reinforcement. Reinforcing bars also
need space between them to ensure adequate bond surface at their interface with the
concrete. The space should also be larger than the size of the largest aggregate
particle in the concrete.

Sections 25.2.1, 25.2.2 of the ACI Code require a minimum clear space for
single and multiple layers of bars as follows:

Minimum Space (Symin) for Single Layer of Bars The minimum space (sp,;,) for a
single layer of bars in beams (see Figure 2.43a) is the largest of the following: the
diameter of bar (d},), 1 in., and 4/3 of maximum size aggregate used in the concrete
mixture.

Mathematically:
Smin = max{d,, lin.,4/3 max. aggregate size}

Note that in most building structure applications (save for footings and founda-
tions) the usual concrete mix limits the size of the aggregate to % in. Thus, a 1 in.
minimum spacing satisfies the third of the spacing requirements.

S min

-

Figure 2.43 Minimum spacing between reinforcing bars: (a) single layer; (b) multiple layer
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[ bmin |

Figure 2.44 Minimum beam width (b,;,)

Minimum Space for Multiple Layers of Bars Where reinforcement is placed in two
or more layers (see Figure 2.43b), bars in the upper layers shall be placed directly
above bars in the lower layer with clear distance between layers not less than 1 in. In
addition, the requirements of single-layer bars must also be satisfied.

Minimum Width (b)) of Reinforced Concrete Beams We use the minimum
required space between bars in a single layer to calculate the minimum beam
width needed to provide enough room for a specific number and size of bars. To
compute by, consider Figure 2.44. Usually #3 or #4 bars are used for stirrups.
Also, the minimum cover for bars in beams is 1.5 in. Therefore, we can calculate
bmin by adding the minimum required spaces and the bar diameters.

As an example, suppose that the beam in Figure 2.44 is reinforced with 4 #8 bars.
Assuming #4 stirrups, the minimum width for this beam is:

b.,=2x15in+ 2><% in. +4x1lin. + 3 x1lin.=111in.
T T T 0
Cover Stirrups Main bars s,

Note that s,,;, = 1 in. was used; this assumes that 4/3 of the maximum aggregate
size is less than or equal to 1 in. Table A2.8, based on the above example, shows
bmin for different numbers and sizes of bars in a single layer.

2.24 Crack Control in Reinforced Concrete Beams
and One-Way Slabs

It was previously mentioned that a reinforced concrete member will always crack
when subjected to bending. In fact, the reinforcing really starts working only after
the development of cracks. Nevertheless, designers try to minimize the size of the
cracks. Limitation of crack width is desirable for three main reasons: (1) appear-
ance; (2) limitation of corrosion of the reinforcement; and (3) water-tightness.


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Laboratory experiments have shown that several parameters influence the width
and spacing of flexural cracks. The first is the concrete cover over the reinforcing.
The smaller the cover, the smaller the crack width will be. The cover cannot
be reduced beyond a certain limit, however, because a minimum cover is needed
for fire and corrosion protection. Thus, the Code requires a minimum cover
of 1.5 in. over the stirrups for interior beams, 2 in. for exposed exterior beams
(see Figure B2.2 in Appendix B) and %:in. for joists and slabs. The 1.5 in. cover
over the stirrups results in a cover of 1% in. to 2 in. over the main reinforcement.

The second important parameter is the maximum stress in the reinforcement
(directly related to the strain, or the elongation of the steel) at service load levels.
This value may be assumed to be roughly 0.66 f;. The higher the stress level is in the
steel, the wider the cracks are expected to be. Thus, using more reinforcing than
required to satisfy the ultimate strength capacity can reduce the width of cracks by
reducing the stresses (and strains) at working load levels. This is not an economical
choice, however. The same is true if steel with f, = 40,000 psi is used instead of
steel with f, = 60,000 psi. The section would need 50 % more steel, but the much
lower levels of stress at service load levels would help limit the crack width.

Another important parameter is the maximum spacing of the reinforcing bars.
For minimizing the width of cracks, placing more and smaller bars closer together is
preferable to placing a few large bars farther apart. The ACI Code (Sections 24.3.2,
and 24.3.3) limits the maximum spacing of the tensile reinforcement in beams and
one-way slabs. The empirical formula for maximum spacing, given in Equa-
tion (2.53), is based on the tensile stress in the steel and the concrete cover.

4 4
5= 15( 0;?00> —2.5¢, < 12( O}OOO> (2.53)

s

s

where s is the center-to-center spacing (in inches) of flexural tension reinforcement
nearest to the extreme tension face; f; is the calculated tensile stress (in psi) at
service load in steel or 2/3 f,; and c. is the least distance (in inches) from the surface
of the reinforcement to the tension face. Equation (2.53) cannot address the control
of cracking for all the different causes discussed.

If £, =60,000 ksi, the right side of Equation (2.53) is limited to 12 in. (since
fs=2/3 f,). The left side of the inequality relates the maximum spacing (s) to the
concrete cover (c.). To better comprehend Equation (2.53), consider Figure 2.45,
which shows the reinforcing bar with two different covers, c¢.; and c.,. If the
concrete cover is increased from c.; to ¢, and the crack width at the level of the
reinforcement (w,) is constant, the surface crack width increases from wy to w;.
Figure 2.45 clearly shows the relationship between surface crack width and amount
of concrete cover.

We can use the maximum spacing limitation (s) given by Equation (2.53) to
determine the maximum beam width (b,,,x) as a function of the number of bars
placed in the section. For example, for 4 #4 main bars, #4 stirrups, and
/3y =60,000 psi, the maximum permissible spacing of bars (s) is:


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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a b
Fﬂﬂ FL’| /— Concrete surface

!

W, Cf

Ce2
Rebar
WS
(] \/ ]
V Rebar

Figure 2.45 Relationship between crack width and concrete cover

40,000 40,000
s=15 ’ —2.5¢c, <12 =
( A ) ( s )

N s

40,000 40,000
s=15(-— | —2.5(1.5+05) < 12 5
%5 % 60,000 % % 60,000

s = 10in. < 12in. — s = 10in.
and the maximum beam width (b,,,,) is:

b..=2x15in + 2x Yin. + } in.+3 x 10in. =34.5 in. = 34 in.
T T T )
Cover #4stirrups #4bar s
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Note that in the above calculation, s is the center-to-center distance of the
reinforcing bars. Therefore, only the diameter of one bar was used to determine
bmax- The last column of Table A2.8 lists b, for different sizes and numbers of
bars in a single layer. In practice, b,y is rarely a problem for beams; however, the
maximum spacing limitation is an important issue when designing reinforcing

layouts in slabs.

Table A2.9 shows the areas of reinforcing steel (A,) for different sizes and

numbers of bars.
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2.25 Design of Beams

The ultimate strength of a beam depends on five parameters. These are the materials
(fZ andfy), the dimensions of the section (b and ), and the amount of reinforcement
(Ay). The last three parameters may be expressed in the form of the steel ratio
p=A,/bd.

Whichever way these parameters are expressed, they are always five in number.
There is only one equation (or, more precisely, one inequality), however, that
expresses the problem:

Mu SMR

The left side of this inequality depends only on the applied loads. The right side
of the inequality, on the other hand, depends on all five of the variables listed above.
Thus, this problem has an infinite number of solutions. But if four out of the five
parameters are preselected or assumed, the inequality can be readily solved.

As an example, contemplate the following considerations. In a floor of a given
structure, it would be quite impractical to vary the quality of the concrete. Conse-
quently, every beam and slab of the floors of the structure is usually cast with the
same quality concrete (same f;) throughout. (In columns, the use of a different
quality concrete may be warranted; but even then all columns in a given floor level
would have the same concrete mix.) So preselecting the concrete quality for the
slabs and beams throughout a building is standard practice.

The same is true with the reinforcement. Labor is the dominant factor in the price
of the “in-place” reinforcing steel. And the basic cost per ton of reinforcing steel
with f, =40 ksi and f;, =60 ksi is very near the same, so there is no economic
incentive to use the former. In fact, 60 ksi steel provides 50 % more strength than
40 ksi steel, thus making it cheaper to use.

Of the three remaining variables, b (the width of the section), d (the working
depth of the section), and A, (the amount of reinforcement), two must still be
preselected in order to solve for the remaining unknown quantity. Generally
speaking, practitioners select a concrete section (b and %) and then solve for a
minimum required amount of reinforcement to satisfy the demanded factored
moment requirements. Often all beams have the same depth and width to enable
the contractor to reuse the forms. In other cases keeping the depth of all beams
uniform satisfies the minimum headroom requirement throughout the structure.

In general, two types of problems arise: (1) The beam’s sizes (b and /) are set
using the considerations stated above and the designer needs only to determine the
required area of steel (A;); this is by far the most common problem. (2) The beam’s
sizes (b and /) and area of steel (A,) are all unknown and determined by the designer
during the process; this problem is more academic than practical.

b, h = known, A; = unknown

The flowchart in Figure 2.46 shows the steps for the design process.
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Design of reinforced concrete

rectangular beams
(b, h = known, As = unknown) «———b———

1. Calculate maximum M,, (remember
to include beam self-weight in
the dead load). d

|

2 dassumed = W — ¥, y=25in. ;

|

8 12,000M,
R=—_"°
bd?

4. Use R, fy, and f; to find p from
Tables A2.5 through A2.7.

Stop!

> Need to
R > Rima? increase
beam size.
No
” Yes
P < Pmin’ P = Pmin
No
5. As = pbd, then select bar size

and numbers from Table A2.9.

l

6.
Calculate yand find d = h—y.
No
d= dassumed
Yes
End

Figure 2.46 Flowchart for the design of reinforced concrete rectangular beams (b, # =known,

Ay =unknown)
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Step 1.
Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

2 Rectangular Beams and One-Way Slabs

Find the maximum factored bending moment, M,,.

Because the bar sizes are not yet known, assume the distance from the edge
of concrete in tension to the center of steel () is 2.5 in. This is a reasonable
assumption if the cover is 1.5 in., the stirrup diameter is 3/8 in. (#3) or "2 in.
(#4), the main reinforcement is #8 to #10 bars or smaller, and there is only
one layer of reinforcement.

Use the assumed value of d to calculate the required resistance
coefficient (R).

Mg = bd’R (refer to Equation (2.51))

If b and d are in inches, and R in psi, M, will need to be converted to
in.-1b from its usual ft-kip units.
_ bd’R
~ 12,000

R
Set Mu:MR:

bd’R
~ 12,000
~12,000M,
- bd?

M, = My

Use R, f,, and /! to determine p from Tables A2.5 to A2.7. If R is greater
than the maximum R value (R,,,) to be found in the tables, it means that the
selected sizes are too small and must be increased.

If the value obtained is less than p,,;,, it means that the beam sizes b and
h are larger than needed to carry the loads with minimum reinforcement.
This may happen when other considerations dictate the beam sizes. In this
case use p = ppyin from Table A2.4, because the beam must always have the
required minimum reinforcement.
Determine how much steel is needed and select bars using Table A2.9. It is
also helpful to use Table A2.8 here, because it lists how many of a certain
size of bar may be fitted into the selected b in a single layer.
Once the bar sizes are known, the exact effective depth (d) can be
calculated. If this depth is greater than what was assumed at the beginning
of process, the design will be conservative as it will have more moment
capacity than what was demanded. If the effective depth is less than the
assumed value (e.g., the section needs multiple layers of reinforcements),
then the process needs to be repeated with a new value of d. Insignificant
differences in the assumed and recalculated values in d (Iess than 3/8 in. in
slabs and 1/2 in. in beams) may be neglected and the reinforcing need not
be redesigned.

Note that having multiple layers of reinforcing bars may influence the
value of the strength reduction factor, ¢.
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http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Example 2.12 Figure 2.47a shows the partial framing plan of a beam-girder
reinforced concrete floor system. The slab is 6 in. thick, and is subjected to a
superimposed dead load of 30 psf. The floor live load is 100 psf. Beam B-2 has
a width of 12 in. (b=12 in.), and a total depth of 30 in. (including the slab
thickness). Determine the steel required at Section 1.1. Use the ACI Code coeffi-
cients to calculate moments. Assume that the beam end is integral with the column.
Use f! = 4ksi, f, =60 ksi, and assume that the unit weight of concrete is 150 pcf.
Stirrups are #3 bars.

Or - - e
15:0' | |1 i ::
| I I
R F——————— b= | Im————————— = — ==
F———————- Hp————————— | lIm————————————
150" : 1 Ul : : 12in. X 12 in. column
1 (B-2) rh ||/ (typical)
@—- ‘:::::::::H:::::::::”:::::::::::::
150"

T

< 6in. 4
1
#3 stirrup —p Z]in.

[—12in.—]
Section 1-1

Figure 2.47a Framing plan and section for Example 2.12

Solution

Step 1. Before calculating the moments at the selected location, we must determine
the floor loads:


http://dx.doi.org/10.1007/978-3-319-24115-9_1

102 2 Rectangular Beams and One-Way Slabs

Weight of slab = 150 x (%) = 75psf

Superimposed dead load = 30psf
Total dead load = 105 psf

Live load = 100psf

The tributary width for beam B-2 is 15’~0"; therefore, the uniform dead
and live loads are:

Beam weight

12 24
10515 O(lzxu)
w, = + =1.88 kip/ft
1,000 1,000
100 x 15 : i i
Wy = X — 1.5kip/ft Note : Reduction of live load

1,000 is neglected here.
w, = 12wp + 1.6w, = 1.2 x 1.88 + 1.6 x 1.5 = 4.65kip/ft

The beam’s clear span ¢, =30 ft — (0.5 ft+0.5 ft) =29 ft
Figure 2.47b shows the moments using the ACI coefficients from
Table A2.1 for an exterior beam. Because the problem requires designing
the reinforcement at Section 1.1:
w2 4.65(29)°

(M.) 0= 1o~ 9lftkip

Section to be designed

w2 . w, (2 w2
16 14 10
| ¢, |

Figure 2.47b Moments using the ACI coefficients (Example 2.12)

Step 2. Assuming the distance (y) from the edge of the beam in tension to the center
of tensile steel is 2.5 in.:
d=h—y=30in. — 2.5in. = 27.5in.
Step 3. The required resistance coefficient, R, is:

o 120000, _ 12,000 x 391

bd* 12(27.5)°
R =517psi
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Step 4.
R =517psi
f! = 4ksi — Table A2.6b — p =0.0106
Jy = 60ksi

Note that p=10.0106 corresponding to R =519 psi was conservatively
selected.

Table A2.4 — p;, =0.0033 < p=0.0106 .. ok
Step 5. Find the required amount of steel:
Ay = pbd = 0.0106(12)(27.5) = 3.50in.?

From Table A2.9 — Try 3 #10 (A, =3.81 in.?)

The reinforcement is placed at the top of the beam, because the moment
is negative at the section under investigation, which causes tension at the
top. Figure 2.47c shows a sketch of the beam.

Table A2.8 — by, = 10.5in. < 12in. < by = 24in. .. ok
Step 6. Check for the actual effective depth, d:

y=1.5in.+¥ in. +124=2.51 in.

Cover Stirrup Bar diameter
d=h-y=30in.—2.51in.=27.49 in.~d =27.51in. ..ok

assumed

T
JT * 6in.
L3

‘ 3410 ‘ !

24 in.

[—12in.—>]

Figure 2.47c¢ Sketch of beam for Example 2.12

b, h, A, = unknown

There is still only one design equation, but the problem now is formulated
differently. It is somewhat more “contorted” than the previous one, for if the
designer does not like the results obtained with the assumed cross section and the
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corresponding reinforcement, he or she can just change the width or the depth
(or both) and recalculate the reinforcement until satisfied with the design.

A first assumption may be an arbitrary selection of the steel ratio p. When ratios
close to the p,.x value are chosen, the amount of steel required creates a rather
congested layout, especially in the positive moment regions (steel is placed in the
bottom of the beam). On the other hand, an unnecessarily large concrete section
may result if the section’s moment requirement can be satisfied with p.,;,. Most
practical designs have steel ratios somewhere between p.x and pmin.

Generally speaking, if p is assumed to be about 0.6p.,x or less the beam
proportions will likely be such that excessive deflection will not be a problem.
Therefore, Table 2.1 is provided as an aid for the designer. In this table, pg.s was
calculated as 0.6p,,,,x s a starting point.

Table 2.1 Design steel ratio Pdes

(Paes) f, (psi) |f.=3,000psi |f., =4,000 psi |f, =5,000 psi
40,000 0.0139 0.0186 0.0218
60,000 0.0093 0.0124 0.0146
75,000 0.0074 0.0099 0.0116

Then the corresponding R value may be obtained from Tables A2.5 to A2.7.
The value bd* can be determined using M,:

M, = Rbd® — ba® =

R

Two unknowns remain, however: b and d. There are no ACI Code requirements on
the geometrical proportioning of beams. But it is more economical to design beams
as deep and narrow rather than wide and shallow sections. This means that the
effective depth, d, should be larger than the width, b. Generally speaking, the most
economical beam sections for spans up to 25 ft usually have a d/b ratio between 1.5
and 2.5. For longer spans, a d/b ratio of 3—4 may be more suitable. Economy for a
specific beam (or set of beams) is not the same as economy for the overall building.
In fact, sometimes it is more economical to design wide and shallow beam sections
due to the savings in the floor-to-floor height, even though this design will require
more reinforcing steel.

Figure 2.48 summarizes the steps of the design process:

Step 1. Find the factored loads and moments.

Step 2. Use f, and f! to select a pges value from Table 2.1. Then find the
corresponding R value from the appropriate design table (Tables A2.5
to A2.7).

Step 3. The formula for My is:

_ bd’R
~ 12,000
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Design of reinforced concrete
rectangular beams (b, h, Ag = unknown)

|1. Calculate maximum M,

|

2. Using f, and f. find pyes from Table 2.1,
and find R from Tables A2.5 through A2.7.

!

Find p from Tables
A2.5 through A2.7.

Select the size and number of bars
using Tables A2.8 and A2.9.

Add the moment 3., 12,000M, (M, = ft-kip)
! pg2 = U h
from weightto  fe— R (b,d = inch)
M, l
Assume b = d/2, and solve
for band d.
8. _  12,000M, |
ba? 4 A, = pbd

!
9. A = pbd
Select the size and
number of bars using
Tables A2.8 and A2.9.

included ?

Beam weight

b

105

Figure 2.48 Flowchart for the design of reinforced concrete rectangular beams (b, #, A; = unknown)

and the design of the beam requires that My > M,,. For the most economical
case, M,, = Mg; therefore

Solving for bd*:

bd’R
12,000 "
12,000M,
bd* = ———1

Now we must preselect one dimension or the other: We either assume
b and solve for d, or the other way around. A third possibility is to assume a
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Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.
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certain proportion between d and b, for example, d/b = 2; then the problem
again becomes straightforward.

Use the values of b and d from above to find the required area of reinforce-
ment (Ay):

Ay = pbd

and select the size and number of bars using Tables A2.8 and A2.9.
Now find the beam’s total depth (%) using the effective depth (d) from Step
3 and size of bars:

h=d+y

Then round 4 up to the nearest 1 in.
Check the beam depth for expected deformation performance by comparing
it with h,,;, as recommended by the ACI Code (see Figure 2.41). If & < hpyp,
use hpy;y. In this case you may want to go back and recalculate A;.
Because the beam sizes were not known when the loads were calculated,
the beam’s self-weight could only be estimated. Experienced designers
usually use their own rule of thumb for this purpose. For example, some
engineers assume the beam’s self-weight to be about 10-20 % of the loads
it carries. Others estimate the total depth (%) to be roughly 6-8 % of the
span, and b= 0.54, and find a preliminary estimate for the beam’s weight.
But if we desire a more accurate value of the beam’s weight, we can
estimate it now and make corrections to the dead load and the total M,,.
Find a new R value:

12,0000,
R — 500(2) u
bd

and find the corresponding steel ratio (p) using Tables A2.5 to A2.7.
Find the required area of steel:

A, = pbd

and select the numbers and sizes of bars from Tables A2.8 and A2.9.

Example 2.13 Determine the required area of steel for a reinforced concrete
rectangular beam subject to a total factored moment, M, =400 ft-kip, that already
includes the estimated weight of the beam. f! = 4,000psi and f, = 60,000 psi and
use pges = 0.0124 from Table 2.1.

Solution

Step 1

M, = 400 ft-kip
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Step 2

For f! = 4ksi, Jy = 60ksi and p =0.0124

using Table A2.6b — R = 596psi

Steps 3 and 4 Search now for the beam’s sizes:

bd?

_ 12,0000, 12,000 x 400

R

bd*> = 8,054in.3

596

107

There are an infinite number of solutions, that is, an infinite number of concrete
cross sections that will satisfy the design problem, even with the provision that
p=0.0124 (1.24 %). The table below lists a few solutions. Take your pick!

b 10 in. 12 in. 14 in. 16 in. 18 in. 20 in.

d 28.4 in. 26.0 in. 24.0 in. 22.5 in. 21.2in. | 20.1in.

Ay, required 3.52 in.2 3.87 in.2 4.17 in.? 4.46 in.” 473 in% | 4.98 in’
Ppractical 32 in. 30 in. 28 in. 26 in. 24 in. 24 in.

A couple of important observations must be made here. All of these sections
have approximately 1.24 % reinforcement, but the quantity of reinforcing grows as
the beam becomes wider and shallower. Furthermore, the concrete cross-sectional
area (and, consequently, the self-weight of the beam) also increase.

Another way to solve this same problem is to select a d/b ratio. For example,
suppose that after determining that

bd*> = 8,054in.>

the designer selects a d/b = 2.0 ratio. Then:

d
b=—
2
il(dz) L 8,054
2 T2
d = /2 x 8,054 = 25.3in.
b= % = ? = 12.651in. — Selectb = 13in.

h=253+2.5=27.8in. — Selecth = 28in.
Ay = pbd = 0.0124 x 12.65 x 25.3 = 3.97in.?
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Example 2.14 Use the floor framing plan and loadings of Example 2.12
(Figure 2.47a) to design the reinforced concrete rectangular beam along grid line
2. Assuming that the beam width »=12 in., determine the beam depth, %, and
required steel for the location of the maximum bending moment. Use ACI Code
coefficients for calculation of moments. Assume that the beam end is integral with
the column, f, =60 ksi, f! = 4ksi, and the unit weight of the concrete is 150 pcf.
The stirrups are #3 bars.

Solution

Step 1. Find the maximum ultimate moment, M,,.
From Example 2.12:

105 x 15

wp = ﬁ = 1.58 kip/ft (without the weight of the beam’s stem)
100 x 15

wp, = ﬁ = 1.5kip/ft (withoutthe use of live load reduction )

wy, = 12wp + 1.6w, = 1.2 x 1.58 + 1.6 x 1.5 = 4.3 kip /ft

11
0, =30ft — (s+5)=29ft
(3r3)=»

Using the ACI coefficients (Table A2.1) to calculate moments
(Figure 2.49a), we determine that the maximum bending moment for the
beam along line 2 is at the first interior column (negative moment):

w2 43(29)°

M, = 362 ft-ki
10 10 P
Step 2. From Table2.1 — f = 4ksi, f, = 60 ksi — pges = 0.0124 From Table A2.6b
— R =596 psi
|
w62 w, €2 w,€,2 w, €2 W, 6,2 w,€,2 !
16 14 10 11 16 11
| & T & y

Figure 2.49 (a) Moments using the ACI coefficients (Example 2.14)
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Step 3. Determine the beam’s sizes:

~ 12,000M, 12,000 x 362
R 596
bd* =7,289in.3
b= 12in. — 124> = 7,289
d*> =607 — d = 24.7in.

bd*

Step 4. Calculate the required area of steel, and select the number and size of the
reinforcing bars:

Ay = pbd = (0.0124)(12)(24.7) = 3.68in.?
From Table A2.9 — Try 4#9 (A; = 4in.?)
Table A2.9 — by, = 12in. = 12in. .. ok
Table A2.9 — by = 34in. > 12in. .. ok

Step 5. Use the selected bar sizes and the effective depth (d) to calculate the total

beam depth (h):

1 3 1.128
y=1l-4+-+—=2.44
y=htgt— 1
h=d+y=247+244 =27.14in.

This value is usually rounded up to the nearest 1 in. Thus:
h = 28in.

Step 6. Check to see if the beam depth is more than the recommended minimum for
deflection control. The case for the beam with one end continuous results in
the largest required depth (see Figure 2.41):

4 30 x 12 . . ]
hmin—m— 85 =19.5in. < 28in. .. ok

Step 7. Calculate the correct beam weight. The total beam depth is 28 in. The
concrete slab, however, is 6 in. thick; therefore, the beam depth (the stem)
below the slab is 28 in. — 6 in. =22 in.

12 22
ISO(E X1

St ight = > = 0.28kip/ft
em weig 1,000 ip/
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The total uniform dead load acting on the beam (wp):

wp = 1.58 + 0.28 = 1.86kip/ft
w,=12x 186+ 1.6 x 1.5 = 4.63kip/ft

_ w2 4.63(29)°
(Mu) 10 10 390 ft-kip

Step 8.
R— 12,000M,

bd®
12,000 x 390
o 12(24.7)?
R = 639 psi

From Table A2.6b — p =0.0134 (this corresponds to R = 638 psi, which
is very close).
Step 9.

As = pbd = (0.0134)(12)(24.7) = 3.97 in.2
From Table A2.9 — Use4#9bars.

The selected reinforcement is the same as it was for the previous design
cycle. Figure 2.49b shows the sketch of the beam.

1(7 — %Iem_

4 #9

28 in.

[—12in.—]

Figure 2.49 (b) Final design of Example 2.14
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2.26 Slabs

Slabs or plates are very important components of reinforced concrete structures.
The elements we have studied until now, could be described abstractly by a line:
Bending of that line in a vertical plane by the loads described their behavior. These
elements are called linear elements, because one of their three dimensions, the
length, is much greater than the other two, i.e. the dimensions of the cross section.

Slabs (plates), on the other hand, cannot be described by a line. They have two
dimensions, length and width, that are significantly larger than the third one, the
thickness. Mathematically plates are described as planes. A mathematically exact
analysis of slabs is not provided here but a discussion of their behavior is in order.

A slab can bend in two directions, so its bent shape is described not by the shape
of a single line, but rather by the bent shape of a surface. A slab must carry the loads
to the supports, hence it will bend accordingly. The behavior of a slab depends on
the support conditions, that is, on how the designer chose to support it. The types of
supports are:

(a) Line supports (beams, girders, walls) Slabs that are supported by these types of
building elements are referred to as one- or two-way slabs. In this chapter we
discuss only one-way slabs, although an attempt is made to explain the
difference between one-way and two-way slabs. Chapter 6 discusses the
different types of two-way slabs used as floor systems.

(b) Point supports (columns, posts, suspension points, etc.) Slabs supported by
these types of supports are referred to as flat slabs or flat plates. We will
discuss these in more detail in Chapter 6.

(c) Continuous media (slabs on grade)

The simple sketch in Figure 2.50 illustrates the behavior of a one-way slab. The
beams that support the slab are poured together with the slab. Slabs are often not just
single span, as shown here, but continuous over several spans defined by the beams’
spacing. In the case of uniformly distributed loads, the most common for slabs (for it
is quite rare to place large concentrated loads on slabs), every one-foot-wide strip of
the slab is loaded identically; hence, the design is limited to only a one-foot-wide
strip and the selection of the reinforcing for that strip. Then it is assumed that all the

Figure 2.50 One-way slab behavior
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other strips behave the same ways, that is, they need the same amount of reinforcing.
Figure 2.50 also illustrates that if only one imaginary strip is loaded, the adjacent
slab strips will have to help. This is because it is impossible for a monolithic structure
to get the deformation diagram shown on the right of the figure.

Figures 2.51 and 2.52 show the framing plan of different reinforced concrete
floor/roof systems. In Figure 2.51a, slab S-1 is supported by the surrounding beams

Columns
a
-F __________ rr——— T T ——— H’ ___________ Tr-— T T T T T~ -
| 11 [ [ [
| 11 [l 11 11
| [ [ [ [
: : : : : : : : : Slabs
Y s B YT ypican
I i i i i
| 11 [ [ [
| __________L!_ __________ [ ___________!_L __________ | I__
R I S E— I — -
| 11 [l [ 11
| [ 11 [ [
: : : : : : : : : Beams
S & B B ypica
I i i i i
| 11 [ [ [
| __________LL __________ [ ___________LL __________ | I__
q: __________ rr-T- T T T T T T T H: ___________ L I -
| 11 11 [ I 11
| 11 [l [ 11
| [ 11 [ [
I i i i1 Girders ||
| i ' i1 (ypical) ]
b
_T L L
| I i
! (5-2) | (5-2) | (5-2) Columns
| / (typical)
' | |
| .
_T ________ _! _______ _.!_ _______ —
| | |
| (S-2) | (S-2) | (S-2)
| | |
| | |
B o — -

Figure 2.51 (a) Slabs in beam girder floor system; (b) flat plate slab
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1'-0" wide strip |_>AW I (typical)
] all (typica
- |

[
____________ T_j__________
|
8: ]
“~ ar | e
i
| I
____________ N
| A _ L
Plan Section A-A

Figure 2.52 Slab supported by walls

and girders. In Figure 2.51b slab S-2 is part of a flat plate floor system, in which
slabs are directly supported by columns. In Figure 2.52 slab S-3 is supported by two
parallel walls, which can be made of concrete or masonry.

2.27 Behavior of Reinforced Concrete Slabs Under Loads

Depending on the geometry and location of the supports, most slabs are divided into
two groups: one-way slabs, and two-way slabs.

One-way slabs bend mainly in one direction. If the supporting elements of the
slab are only two parallel members such as beams or walls, the slab is forced to
bend in a perpendicular direction. Figure 2.52 shows the plan view of a slab
supported by two parallel walls. Because every 1 ft wide strip can be considered
to be the same as all the others, only a single 1 ft wide strip of slab needs to be
considered in analysis and design.

The slab’s geometry is an important factor that affects its behavior under loads.
Figure 2.53a shows a slab supported by edge beams B-1 and B-2. Determining the
distribution of loads from the slab to the supporting beams can be simplified by
assuming that the load is transferred to the nearest beam. Such an assumption is
represented by drawing 45-degree lines from each slab corner. The enclosed areas
show the tributary loads to be carried by each beam. Beam B-1 will carry large
trapezoidal loads compared to the triangular loads that will be carried by beam B-2.
As the ratio of longer span (¢,) to shorter span (¢,) increases, B-1 carries more loads
than does B-2, that is, more loads are transferred in the shorter span of the slab.

/ /
In fact, if the ratio El is greater than or equal to 2.0 (Z > 2.0) , the load carried

S S

/
by B-2 is quite small, and it can be neglected altogether. Therefore, if /—é > 2.0,

)
the slab behaves as a one-way slab for all practical purposes, even though the slab is

supported on all four edges.
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B2 s

b w, "
[ | I R R
/\\\F'l//” A7 \\“‘\-]L__'l ________ N/

Figure 2.53 (a) Slab (edge supported); (b) slab load distribution

To better understand this assumption, consider Figure 2.53b, in which two 1 ft
wide strips of slab in the long (¢) and short (s) directions are shown at midspan for
both. The load carried by the short 1 ft wide strip is w,, and the load carried by the
long 1 ft wide strip is w,. If we assume that the slab is simply-supported along all
edges, we can calculate the maximum mid-span deflections for the short (Ay) and
long (Ay) 1 ft wide strips from Equations (2.54) and (2.55).

Swil!

o= 2.54
384El (2:54)
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(2.55)

The two deflections must be equal. Thus, an expression may be developed that
relates the loads and spans, as shown in Equation (2.56).

A, = Ay
5w5£? B SW[K?
384El  384EI

wséf = WM‘;
wy 0 (@)4
wy N ‘gs B ‘€s

The assumption for one-way behavior is ¢,/¢; >2.0. If £,/¢,= 2.0 is substituted into
Equation (2.56), w; is equal to 16w,. Thus, the load transferred in the shorter
direction (wy) is 16 times larger than that transferred in the long direction (wy),
when £,/¢; > 2.0. Therefore, it is reasonable to assume that the loads are transferred
mainly in the shorter direction.

Despite all the foregoing reasoning, structural engineers often design slabs as
one-way slabs, even when the slabs’ proportions do not satisfy the ¢,/¢;>2.0
requirement. The reason is that the shrinkage and temperature reinforcing needed
in the long direction is usually quite enough to satisfy the small moment’s require-
ments. Figure B2.3 in Appendix B shows a one-way slab supported by reinforced
concrete beams. Design and analysis of floor systems with two-way slabs are
discussed in Chapter 6.

(2.56)

2.28 Reinforcement in One-Way Slabs

In general, two types of reinforcement are used in one-way slabs: main reinforce-
ment, and shrinkage and temperature reinforcement.

2.28.1 Main Reinforcement

The main reinforcement resists the bending moments. It is designed to act in the
direction of the one-way slab’s bending, which is along the shorter span length.
Figure 2.54 shows the main reinforcement in a one-way slab supported by two
parallel walls. The slab is assumed to be simply supported by the walls. In other
words, no moment is transferred from the slab to the walls. Because the bottom
portion of slab is in tension, the main reinforcement is placed in the bottom.
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Wall
—— S&T reinforcement
| ] —— S&T reinforcement
l s s s l — Main reinforcement
—— Main reinforcement - Cas - - |
| 10" | | ¢ |
Section B-B Section A-A

Figure 2.54 One-way slab reinforcement (simple span)

Similarly, the main reinforcement is placed in a continuous construction where
tension develops. For this case, as shown in Figure 2.55, the main reinforcement is
at the bottom of the slab in the midspan region (positive moment) and at the top of
the slab over the supports (negative moment). Typically, #4 bars or larger are used
as main reinforcement, #3 bars are susceptible to permanent distortion caused by
the construction crew walking over them. This is more critical for the top (negative
moment) bars as the slab effective depth (d) may be reduced.

2.28.2 Shrinkage and Temperature (S & T) Reinforcement

As discussed in Chapter 1, fresh concrete loses water and shrinks soon after
placement. In addition, variations in temperature cause the concrete to expand
and contract. These volume changes, when restrained, may result in cracking of
concrete, especially in the early stages of strength development. Reinforcing bars
are used to resist developing tensions in order to minimize cracks in concrete
caused by shrinkage and temperature changes. The main longitudinal reinforcement
in beams plays that role as well. Because the cross-sectional dimensions of beams
are relatively small and beams may freely change their cross-sectional dimensions
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a
S&T reinforcements Main reinforcements
/7 -
Py 'y ® ® Py 'y 'y ./.
Reinforcement distribution
b

NN

777 77
/:\ A
(M)

/ - | -

Moment diagram for continuous slab

Figure 2.55 One-way slab reinforcement (continuous construction). (a) Reinforcement distribu-
tion. (b) Moment diagram for continuous slab (refer also to Figure 2.14)

without restraint, shrinkage and temperature reinforcement are not needed perpen-
dicular to the main bars.

This is not the case in reinforced concrete slabs. Slabs typically have large
dimensions in two directions, thus they need shrinkage and temperature reinforce-
ment, which is placed in the direction perpendicular to the main reinforcement.
Figures 2.54 and 2.55 show such reinforcement for simple-span one-way slabs and
continuous one-way slabs, respectively. In addition, temperature and shrinkage
reinforcement helps distribute concentrated loads to a wide zone transversely to
the one-way direction. (This is necessary in bridges, for example, to distribute large
wheel loads onto a much wider strip than the one directly affected by the concen-
trated load.)

2.28.3 Minimum Reinforcements for One-Way Slabs

As discussed above, two types of reinforcement are used in one-way slabs. The ACI
Code sets the following minimum reinforcement criteria for both the main and the
shrinkage and temperature reinforcements.
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Minimum Main Reinforcement The minimum main reinforcement for slabs is
equal to that required for shrinkage and temperature reinforcements (ACI Code,
Section 7.6.1):

Ay min = Ag(seT) (2.57)

In other words, if the calculated main reinforcement is less than that required for
shrinkage and temperature reinforcement, the designer must use at least the latter
amount.

Minimum Shrinkage and Temperature Reinforcement The ACI Code
(Section 7.6.1.1) requires shrinkage and temperature reinforcement based on the
grade of steel, as given in Equations (2.58)—(2.60).

For f, = 40 or S0ksi — Ayser) = 0.002bh (2.58)
For £, = 60ksi — Ayser) = 0.0018b/ (2.59)
0.0018 x 60
For f, > 60ksi — A,se1) = fixbh >0.0014bh  (2.60)
y

In Equations (2.58)—(2.60), b =12 in. (slab width), which corresponds to the width
of the 1 ft wide strip, / is the overall thickness of the slab in inches, and A &) is
the area of steel in square inches per foot of width.

Minimum Concrete Cover for the Reinforcement in Slabs A minimum concrete
cover is needed for the reinforcement to prevent various detrimental effects of
the environment on reinforcing bars. Concrete cover is always measured from the
closest concrete surface to the first layer of reinforcing. This is shown in Figure 2.56.
Section 20.6.1.3 of the ACI Code requires a minimum concrete cover of % in. for
#11 and smaller bars, and 1.5 in. for #14 and #18 bars, provided that the concrete
slab is not exposed to weather or not in contact with the ground.

® ® 9_|

Minimum concrete cover

Figure 2.56 Minimum cover for slabs
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Bar Spacing in Reinforced Concrete Slabs No specific minimum spacing of bars is
required in slabs other than what was already discussed for beams. For practical
reasons, however, bars are not placed closer than 34 in.

The ACI Code has different maximum spacing requirements for the main and
the shrinkage and temperature reinforcements. These are as follows:

Maximum Spacing of Main Reinforcement Bars ACI 318-14 has two sets of
requirements regarding maximum bar spacing for the main reinforcement in
one-way slabs: (1) Section 7.7.2.3 requires that the maximum spacing of bars be
limited to three times the slab thickness or 18 in., whichever is smaller; and
(2) Section 24.3.2 limits the maximum main reinforcement spacing (s) of
one-way slabs, as calculated by Equation (2.53), in order to control the width and
spacing of flexural cracks.

We can use the required minimum cover of 3/4 in. for one-way slabs
(c.=0.75 in.) and f,=2/3 f, =2/3 (60,000) = 40,000 psi to determine the maxi-
mum spacing for f, = 60 ksi reinforcement. Substituting into Equation (2.53):

40,000 40,000
5= 15( )—2.5(0.75) < 12( >

40,000 40,000
s =13.1in. < 12in.
s = 12in.

Therefore, the maximum main reinforcement spacing with f, =60 ksi steel for
one-way slabs is given by Equation (2.61a).

Smax,main = mMin{3A, 12in.} (2.61a)

Similarly, when using f, = 40 ksi steel as main reinforcement, Equation (2.53) will
simplify to Equation (2.61b).

Smax,main = min{3%, 18in.} (2.61b)

Maximum Bar Spacing of Shrinkage and Temperature Reinforcement ACI Code,
Section 7.7.6.2.1 limits the spacing of the shrinkage and temperature reinforce-
ments to five times the slab thickness or, 18 in., whichever is smaller:

Smax, (s&T) = min{5h, 18in.} (2.62)

Minimum Thickness of Slab for Deflection Control The minimum recommended
thickness for one-way slabs required to adequately control excessive deflections is
based on Table 7.3.1.1 of the ACI Code, which is summarized graphically in
Figure 2.42. Lesser thicknesses are permitted if the designer can show through a
detailed deflection analysis that the Code’s serviceability requirements are met.
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2.29 Areas of Reinforcing Bars in Slabs

A 1 ft (12 in.) wide strip of slab is typically used for the analysis and design of
one-way slabs. Thus, it is advantageous to define the amount of steel in a 1 ft wide
strip as a function of the bar size and the spacing.

Table A2.10 lists spacing and bar sizes for slabs. The table provides the areas of
reinforcement averaged out to 1 ft width for different sizes and spacing of bars.
(One can interpolate for 72 in. spacing increments, if so desired.)

For example, with #5@8 in. o.c. (#5 bar at 8 in. on-center spacing), the table,
under #5 bars spaced at 8 in., provides the area of steel per foot of section 0.47 in.%.
In other words, 0.47 in.%/ft is equivalent to one #5 bar every 8 in.

Another example: If 0.50 in.” of reinforcement is required for a 1 ft wide strip of
a slab, the table offers several options, including #4@4 in. (A,=0.60 in.2),
#5@7 in. (A, =0.53 in.?), #6@ 10 in. (A, = 0.53 in.?), and so on.

2.30 Analysis of Reinforced Concrete One-Way Slabs

In general, one-way slabs and reinforced concrete beams are analyzed very simi-
larly. There are a few differences, however. These are listed below:

. For the analysis of one-way slabs, b is always 12 in.

. Slabs require a different amount of concrete cover over the reinforcement.

. Slabs require shrinkage and temperature reinforcement.

. The Code-specified minimum amounts of reinforcing steel for slabs and beams
are different.

5. Minimum required depth/span ratios for adequate control of deflection are

different.
6. Bar spacing requirements are different.

RO R S

Figure 2.57 summarizes the steps for the analysis of reinforced concrete one-way
slabs. They are as follows:
S

A
Step 1. Calculate the steel ratio, (p = bd> . Ay is the area of steel in a 1 ft wide strip

of slab from Table A2.10. Compare p with py,x from Table A2.3. The
maximum permitted steel ratio is the same for beams and slabs.

Step 2. Compare A, with A; ,;,, which is the minimum required area of steel for
the control of shrinkage and temperature-induced volumetric changes.
If Ay <A;min, the proportioning of steel and concrete is not acceptable
according to the current ACI Code and the slab’s use is illegal. If A; > A 1in,
however, then one of the following methods can be used to check the
adequacy of the slab:


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Analysis of Reinforced
Concrete One-Way Slabs

Slab is illegal You may not legally use all
%fgggg,t the reinforcing in finding M.
3.
a= AS’;/ 3. Use p, fyand fito find R
0.85 fib from Tables A2.5 through A2.7.
(1) EITHER (2) OR
No Yes J
4 _ bd?R
5, b=0.90 A~ 12,000
¢ = A2 + Z
d
4. a
Mg = bA, (d — 5)
No Yes
Slab is not adequate to carry the |6' Check main reinforcement spacing. |
assumed live loads. Calculate
permissible reduced live l
loads from Mp, |7' Check shrinkage and temperature reinforcement. |

|

|8' Check slab thickness for deflection control.

END
Figure 2.57 Flowchart for the analysis of reinforced concrete one-way slabs

Method 1

Step 3. Calculate the depth of the compression zone:

a = 7ASJ§)
T 0.85f/b

Determine the location of the neutral axis (c):

c=—

B
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Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

2 Rectangular Beams and One-Way Slabs

c 3 L . :
If—< 3 the section is tension-controlled and ¢ = 0.90. Otherwise, the
t

section will be in the transition zone. Calculate the strength reduction

factor, ¢:

B
b=A+ 0
d,
A, and B, are listed in Table A2.2b.
Calculate the section’s resisting moment (My):

M =, (d-3)

(If A is in in.z, fy ksi, d and a in., then Mg will have kip-in. unit.
Divide the result by 12 to obtain My in the customary units of kip-ft).
Compare My with the maximum factored moment from the applied loads. If
My <M, the slab is not adequate to carry the assumed loads. Proceed to
calculate a new permissible live load that the slab may legally support. If
Mg > M, the section can take the assumed loads, but the reinforcing still
needs to be checked for conformance with other Code requirements.
Check spacing requirements. The maximum allowable spacing of main
reinforcement is min{34, 12 in.}, or min{3A, 18 in.} for f, =60 ksi and
Jfy =40 ksi steel, respectively.

3in. < s <min{3A,12in.} for f, = 60ksi
3in. < s < min{3A,18in.} for fV = 40ksi

Check the amount and spacing of shrinkage and temperature reinforcement,
(Ay)s &1 (Refer to Equations (2.58)—(2.60).)

3in. < sser < min{5A, 18in.}

Check the thickness of the slab against the minimum thickness of one-way
slabs for desirable deformation control (see Figure 2.42).

min = £/20 for simply-supported slabs

h

hmin = £/10 for cantilevered slabs

hmin = £/28 for both ends continuous slabs
h

min = £/24 for one end continuous slabs

If the slab thickness is less than the above limits, calculate the deflection
and check it against the Code’s serviceability requirements.
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Method 11
Steps 1 and 2 are the same as in Method 1.

Step 3 Use f,, /2, and the calculated steel ratio (p) to obtain the resistance coefficient,
R, from Tables A2.5 to A2.7.

Step 4 Use the R value to calculate the section’s resisting moment.

_ bd’R
" 12,000

R

R is in psi, b=12 in., and d in inches. My will be in units of ft-kip. Steps 5, 6,
7, and 8 are the same as in Method I.

Example 2.15 Figure 2.58 shows a section through a reinforced concrete simply-
supported one-way slab of an existing building. The maximum moment from dead
loads, including the slab weight, is 3.0 (ft-kip)/ft, and that from live loads is 2.0
(ft-kip)/ft. Check the adequacy of the slab, including the shrinkage and temperature
reinforcements, using (a) Method I, and (b) Method II.

< < [6in
) i} hd

#5 @7 in. (main) #3 @12 in. (S&T)

Figure 2.58 Sketch of one-way slab for Example 2.15

Use a concrete cover of ¥%in., f/ = 3.0ksi, and f, =40.0 ksi.
Solution

Step 1. Check the reinforcement ratio in the slab:

/Diameter of #5 bars

5
_ 8 .
=—+=2=1.06 1n.
54 2

/’4
d=h-y=6in.—1.06 in.=4.94 in.

#5@ 7 in. (main reinforcement) — Table A2.10 — A;=0.53 in.%/ft


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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A, 053
P=hd T2 x 404 000894
! = 3ksi— Table A2.3 — pay = 0.0232 > 0.00894 .".ok

fy=40 ksi
Step 2. Check the minimum area of main reinforcement. For slabs, this area is the

same as the requirement for shrinkage and temperature reinforcement:

Ay min = Aysar) = 0.002bh (jg, — 40 ksi)

Ag.min = (0.002)(12)(6) = 0.14in.2/ft
Ay=0.53in2/ft > 0.14in2/ft .. ok

(a) Method I
Step 3. Calculate the depth of the compression zone:

L Asfy 053 x40
- 0.85f/b 0.85x3x 12
a =0.69in.

The neutral axis is located at c:

a  0.69

4257 081in.
‘=B 085 "
d,=d = 4.94in.
c 0.8l
CoT0 0164 <0375 . =0.90
4, 494 ¢

Step 4.
a
My = oM, = q)ASfy(d _ E)
0.69)

Mp = (0.9)(0.53)(40) ( 4.94 — ==

87.71in.-kip .
Mp=—————="7.3ftk
R 2 /ft P

Step 5. Calculate the factored applied moment on the slab:

M,= 12Mp + 1.6M,
M,= 12 x 3.0 + 1.6 x 2.0 = 6.8ft-kip < 7.3ft-kip .. ok
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Step 6. Check the main reinforcement spacing:
3in. <s < min{3#, 18in.}
The main reinforcement is #5@ 7 in.:

3in. < 7in. < min{3 X 6in., 18in.}
3in. < 7in. < 18in. .. ok
Slab is ok.

Step 7. Check the shrinkage and temperature reinforcements:
Agser) = 0.002bh = (0.002)(12)(6) = 0.14in.2 /ft

From Table A2.10 — #3@12in. — A, = 0.11in.2/ft < 0.14in.2/ft .. N.G.

Therefore, the shrinkage and temperature reinforcement in the slab
does not satisfy the current ACI Code’s minimum requirement.

(b) Method II

p=10.00894
Step 3. f! = 3ksi — Table A2.5a — R = 299 psi (by interpolation)
fy =40 ksi

Step 4. - bR

*7 12,000

(12)(4.94)*(299)
12,000
My = 7.3ft-kip

This value is the same as the resisting moment we calculated in
Step 4 using Method I. Steps 5, 6, and 7 are the same as those of
Method 1.

Example 2.16 Figure 2.59 shows the partial floor framing plan and section of a
reinforced concrete floor system. The weight of the ceiling and floor finishing is
5 psf, the mechanical and electrical systems are 5 psf, and the partitions are 15 psf.
The floor live load is 150 psf. The concrete is normal weight, f! = 4ksi, and
fy =060 ksi. Check the adequacy of slab S-1 in the exterior bay at (a) midspan,
and (b) over the interior supporting beam. Assume the slab is cast integrally with
the supporting beams and use ACI code coefficients to calculate moments. Use
%, in. cover for the slab.



126 2 Rectangular Beams and One-Way Slabs

Partial floor framing plan

#4 @ 8in. #4 @ 8in.
¢ ¢ |
[} m [} [} [} [} [} [} [} Q+ 6 In
'y —I . A
\\ #4 @ 10/in.
#3 @ 101in. 24in.
f—14in.—] f—14in.—]
f 12'-0in. |
Section A-A

Figure 2.59 Framing plan and section for Example 2.16

Solution
(a) Check the Slab at the Midspan

Step 1. The main reinforcement at the midspan (positive moment) is #4@
10 in.

#4@10in. — Table A2.10 — A, = 0.24in.%/ft
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4
_ 3 § .
yfz Efl.Oln.
d=h—y=6in. — lin. = Sin.
Ag 24
020 o040

P hd ~ (12)(5)
f! = 4ksi — Table A2.3 — p,,, = 0.0207 > 0.004 .. ok
f, = 60ksi

Step 2.

Ay min = Ayser) = 0.0018bh (Jg, _ 60ksi)

Ag.min = (0.0018)(12)(6) = 0.13in.% /ft
Ay =0.24in.2/ft > 0.13in.2/ft .. ok

Method II is followed for the rest of the solution, as it requires fewer

steps.
Step 3.
p = 0.0040
f! = 4ksi — Table A2.6b — R = 208 psi
f, = 60ksi
Step 4.
P _ bd’R
*7 12,000
2
iy = (125708
12,000
Mp = 5.2ft-kip

Step 5. The slab’s dead and live loads are:

6
Weight of slab = 150 <E) = 75psf

Ceiling and the floor finishing = 5psf
Mechanical and electrical =  5Spsf
Partitions = 15psf

Total dead load = 100 psf
Total live load = 150psf
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The slab’s tributary width is 1'-0":

100 x 1

"D =500 0.10kip/ft
150 x 1

wr 1,000 0.15kip/ft

w,=12wp + 1.6w, = 1.2 x 0.10 + 1.6 x 0.15
w, = 0.36kip/ft
14in.

0, = 12ft — = 10.83ft

The maximum factored moment at the midspan of the exterior bay
of the slab is:

w,,(ﬁ
M, ="
(0.36)(10.83)?
e
M, = 3.0ftkip < Mg = 5.2ft-kip .. ok

U

Because My is much larger than M, the slab is overdesigned for
positive moment.

Step 6. Check the spacing requirements for the main reinforcement:

3in. <s < min{3#4, 12in.}
3in. < 10in. < min{3 x 6in., 12in.}
3in. < 10in. < 12in. .. ok

Step 7. Check shrinkage and temperature reinforcement:

Ayset) = 0.0018bh (fy = 60ksi)
Agsery = 0.0018(12)(6) = 0.13in.2 /ft
#3@10in. — Table A2.10 — A; = 0.13in.2/ft .. ok
Check the spacing of the shrinkage and temperature reinforcement:

3in. <s < min{5#4, 18in.}
3in. < 10in. < min{5 X 6in., 18in.}
3in. < 10in. < 18in. .. ok
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Step 8. For deflection control, the minimum recommended thickness (without
calculating deflections) for the one-end-continuous slab is:

. _ Lt 12x12
4 24
Slab is ok at mid-span.

= 6in. = 6in. .. ok

(b) Check the Slab at Supports

Step 1. The main reinforcement at the supports (negative moment) is

#4@8 in.
#4@81in. — Table A2.10 — A, = 0.30in.2/ft
4
; o
y=3+5=10i
d=h—-y=06in. — lin. = 5in.
A, 030

P=5d = 12)5) — 00

f! = 4ksi — Table A2.3 — p,,. = 0.0207 > 0.005 .. ok
f, = 60ksi

Step 2. Agmin = Aysar) = 0.0018bh (fy - 60ksi>

Ag.min = (0.0018)(12)(6) = 0.13in.2 /ft
Ay =030in.2/ft > 0.13in.2/ft .. ok

Step 3. p = 0.005
f! = 4ksi — Table A2.6b — R = 258 psi
f, = 60ksi
Step 4.
b _ bd’R
k= 12,000
Yo — (12)(5)*(258)
R 12,000

My = 6.5ft-kip
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Step 5. The dead and live loads from part a are:

w, = 0.36kip/ft(from part a)
£, = 10.83ft(from part a)

The maximum factored moment at the first interior support for an
exterior bay of the slab is (Table A2.1):

_wll
“T10
~(0.36)(10.83)°
e 10
M, = 4.2ft-kip < Mg = 6.5ft-kip .. ok

Step 6. Check the spacing of the main reinforcement:

3in. < s <min{34, 12in.}
3in. < s <min{3 x 6in., 12in.}

3in. < 8in. < 12in. .. ok

The shrinkage and temperature reinforcement and the minimum
depth for deflection were checked in part a.
Slab is ok at the support.

2.31 Design of Reinforced Concrete One-Way Slabs

The design process of one-way slabs is similar to that of reinforced concrete
rectangular beams. Figure 2.60 summarizes the steps for the design of reinforced
concrete one-way slabs. They are as follows:

Step 1. Select the slab thickness. The slab thickness is generally based on the
minimum ACI requirements for deflection control (see Figure 2.42). This
is usually rounded up to the nearest 72 in. for slabs with 2 < 6 in. and to the
nearest 1 in. for those with 4> 6 in.

Step 2. Calculate the factored loads (w,), and then determine the maximum fac-
tored moment, M,,.

Step 3. Determine the slab’s effective depth, d. Because the bar sizes are not yet
known, assume #6 bars with 3/4 in. cover.

y = 1.12in.


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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| Design of Reinforced Concrete One-Way Slabs |

|

|1- Select h,j, based on ACI requirements for deflection (Figure 2.42). |

A

—>|2- Find dead and live loads and calculate w, = 1.2wp + 1.6u,. |

|

| Find the maximum moment, M, |

l

|3- Calculate assumed effective depth (d), d = h — 1.12in. |

A

4'(/\// ftkip)— A 12,000M,
= - | —_— = —
u p ba?

b=12in.

I

|5- Use R, f,, and f,to find p from Tables A2.5 through A2.7.

—| Increase slab thickness.

No

7.

dactual = dassumed?

Asmin = A
s,min 'S(S&T) Yes

Yes

A
—>| Select steel from Table A2.10.

| 8. Check maximum main bar spacing. |<—

|9- Design shrinkage and temperature reinforcements. |—>| End |

Figure 2.60 Flowchart for the design of reinforced concrete one-way slabs
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Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

2 Rectangular Beams and One-Way Slabs

Therefore, the assumed effective depth:
d=h-1.12in.

Determine the required resistance coefficient (R):

. 12,000M,,

R(psi) =—

b=12 in., and d is in inches. M,, is in ft-kip and R in psi.

Using R, f,, and S select p (steel ratio) from Tables A2.5 to A2.7. If the
value of R is more than the maximum value shown in these tables
(R > Rnax), the selected slab thickness is not adequate for the loads and
needs to be increased. (Note that in most cases this does not happen. The
required thickness for deflection control is usually more than what is
required to carry the loads.)

Ay = pbd

Check the minimum reinforcement requirement. The minimum area of
steel for the main reinforcement must not be less than that required for
shrinkage and temperature reinforcement:

Ax, min — AJ(S&T)

If Ay < Ag min, the slab requires only a small amount of reinforcing steel,
A,. Use at least Agpin, however. Select the bar size and spacing from
Table A2.10.

Check for actual depth (ducwa) based on the bar selected. If
actual < dassumeds €0 back to Step 4 and revise. Repeat if the difference is
too large (larger than 1/8 in. for slabs & <6 in. and 1/4 in. for 2> 6 in.).
Check bar spacing. The spacing of bars selected in Step 6 has to be checked
against the ACI Code requirements for maximum allowable spacing.
Design the shrinkage and temperature reinforcements according to the ACI
Code requirements.

Example 2.17 Design the one-way slab (S-1) of Example 2.16. Determine the
reinforcement at (a) the midspan and (b) the supports.

Solution

(a) Slab Design at the Midspan

Step 1.

Because S-1 is one end continuous, the minimum slab thickness (/;y,) is:

/ 12 x 12 .
— = = 6in.
24 24

hmin =
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Step 2. Determine the loads on the slab:

Weight of slab = 150(6/12) = 75psf
Ceiling and floor finishing = Spsf
Mechanical and electrical =  Spsf

Partitions = 15psf

Total dead load = 100 psf
Total live load = 150psf

On a 1 ft wide strip

100 x 1
= = 0.10kip/ft
Wp 1,000 0.10kip/
150 x 1
= = 0.15kip/ft
wr 1,000 0.15kip/

wy, =12wp + 1.6w, =1.2 x0.104+ 1.6 x 0.15

wy, = 0.36kip/ft

in. 08310

l, = 121t —

The maximum factored moment at the midspan of S-1 (see Figure 2.61) is:

Wyl
M, =—Cn
" 14
~(0.36)(10.83)°
v 14
M, = 3.0ft-kip
|
_ Wuen2 + Wuen2 _ Wuen2 _ Wuen2 !
24 14 10 11

Figure 2.61 Design factored moments for slab S-1 of Example 2.17 using ACI Code coefficients
from Table A2.1
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Step 3. Assuming %4 in. cover, calculate the slab’s effective depth:

d=h—1.12in. = 6in. — 1.12in. = 4.881in.

Step 4. Calculate the required resistance coefficient, R:

12,0000,
R=—"5—
bd
12,000 x 3.0 .
R= 4X2 = 126 psi
(12)(4.88)
Step 5. Find p from Tables A2.5 through A2.7:
R = 126psi
f! = 4ksi — Table A2.6b — p = 0.0024
Jy = 60ksi

Therefore, the required area of main reinforcement (A;) is:

As; = pbd = (0.0024)(12)(4.88)
Ay = 0.14in.2 /ft
Step 6. The minimum amount of reinforcement for slabs cannot be less than the
required shrinkage and temperature reinforcement steel:
As,min = Ag(set) = 0.0018bh for f = 60ksi
Ag.min = (0.0018)(12)(6) = 0.13in.2/ft < 0.14in.2/ft .. ok
Ay = 0.14in.2 /ft
From Table A2.10 — select#4@17in. (A, = 0.14in.2 /ft)
Note that according to Section 2.28, the smallest size bar for main

reinforcement is #4.
Step 7. Check for the actual effective depth.

Njoo| &~

dactual = 6 — = 5.0in. > dygumed = 4.88in. .. ok

BN

Step 8. Check the main reinforcement spacing, s, (f, = 60 ksi).

3in. <s < min{3#4, 12in.}
3in. < 17in. < min{3 X 6in., 12in.}
3in. < 17in. < 12in. .. N.G.
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Therefore:
Use #4@ 12 in. for the main reinforcement at the midspan.
Step 9. Calculate the required shrinkage and temperature reinforcement.

Agset) = 0.0018bh = 0.13in.2 /ft
From Table A2.10 — use #3@10in.

The shrinkage and temperature reinforcement spacing (s) has to be
within the following range:

3in. < s < min{5A, 18in.}
3in. < 10in. < min{5 x 6in., 18in.}
3in. < 10in. < 18in. .. ok

Therefore,
Use #3@10 in. for the shrinkage and temperature reinforcement.

(b) Slab Design at the Supports
Step 1. From Step 1 of part a:

Hmin = 61n.

Step 2. The factored uniformly distributed load on the slab (w,) from Step 2 of part
ais:

w, = 0.36kip/ft
and the clear span (£,,) is:

4, =10.83ft
From Figure 2.61, the moments at the exterior and interior supports are:

w2 (0.36)(10.83)°

= 1.76ft-kip (exterior support)

“ 24 24
L2 (0.36)(10.83)?
M, = Wl O" = ( )i 0 ) = 4.22ft-kip (interior support)

Step 3.
Assume d =h —1.12in. =6 — 1.12 = 4.88in.
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Step 4.
12,000M, 12,000 x 1.76 . .
R= = . 5— = 74 psi (exterior support)
bd (12)(4.88)
12,000M, 12,000 x 4.22 C e
R= — = X 5— = 177psi (interior support)
bd (12)(4.88)
Step 5.
R = T4psi
For exterior support] f! = 4ksi — Table A2.6b — p.,, = 0.0014
f, = 60ksi
R = 177psi
For interior support { f! = 4ksi — Table A2.6b — p;,, = 0.0034
f, = 60ksi
Therefore:

(A)oy, = pbd = (0.0014)(12)(4.88) = 0.082in.2/ft
(As)y, = pbd = (0.0034)(12)(4.88) = 0.20in.2/ft

Step 6. From Step 6 of part a:

A‘Y, min — AS(S&T) = 013 in.2/ft
(Ay). = 0.082in2/ft < 0.13in2/ft .. N.G.

Therefore, use

(Ay)ey, = 0.13in2/ft

(Ay). = 0.20in.2/ft > 0.13in.2/ft .. ok

From Table A2.10 — Try#4@ 12in. (exterior supports)
(Ay)y, = 0.20in.2/ft

From Table A2.10 — Try#4@ 12in. (interior supports)

Step 7. This is the same as in part a.
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Step 8. Check the main reinforcement spacing:

3in. <s < min{3A, 12in.}
3in. < s <min{3 x 6in., 12in.}
3in. < s < 12in.
Sint, = Sext. = 12in. = 12in. .. ok
SUse #4@12in. for the exterior and interior supports.

Step 9. The shrinkage and temperature reinforcement was designed in part a.
Figure 2.62 shows the slab as designed.

#4 @ 12in. #4 @ 12in.

\ /

@
I: 1
—#3 @ 10 in. |—#4 @ 12in.

I 12|_0|| I

Figure 2.62 Slab S-1 designed in Example 2.17

Problems

In the following problems, unless noted otherwise, use normal weight concrete with
a unit weight of 150 pcf, 1.5 in. for beam clear concrete cover, and 0.75 in. for slab
clear concrete cover.

2.1 Consider a section with a width (b) of 14 in. and reinforced with 4 #9 bars in
a single layer. f! =4,000psi, and f, =60,000 psi. Determine the moment
capacity of the section, Mg, using Method I or II, for the following cases:

(a) d=28in.
(b) d=32in.
(¢) d=36in.
(d) d=40in.

Show the changes in My with respect to the section’s effective depth.
Calculate the percentages of increase in My versus d.
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2.2

2.3

24

2.5

2.6
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Consider a rectangular reinforced concrete beam with an effective depth of
36 in. reinforced with 4 #9 bars. f/ = 4,000psi, and /= 60,000 psi. Determine
Mp using Method I or II for the following cases:

(a) b=141in.
(b) b=161in.
(¢c) b=18in.
(d) b=20in.

Show the variation in My with b. For each case calculate the percentage of
increase in My versus b.
Consider a reinforced concrete beam with a width () of 14 in. and an effective
depth (d) equal to 36 in. f! =4,000psi, and f, =60,000 psi. Determine the
moment capacity of this beam, My, for the following reinforcements:

(a) 4 #6 bars
(b) 4 #7 bars
(c) 4 #8 bars
(d) 4 #9 bars

Show the variation of My with respect to the area of reinforcements (A;). For
each case calculate the percentage of increase in My versus Aj.
Consider a reinforced concrete beam with a width (b) of 14 in., and an effective
depth (d) of 36 in. reinforced with 4 #8 bars. Use f,, = 60,000 psi. Determine the
moment capacity, M, of this beam for the following cases:

(@) f = 3,000psi
(b) £ =4,000psi
(©) f =5,000psi

Rework Problem 2.4 for f/ =4,000psi and for the following steel yield
strengths:

(@) f,=40,000 psi
(b) f,=60,000 psi
© f,=75000 psi

Determine the useful moment strength of the section shown below in accor-
dance with the ACI Code. Use f! = 4,000 psi, f,=160,000 psi, and #3 stirrups
and follow Method II in the calculations.

0

121in. 8#9

f 32in. |
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2.7 The rectangular reinforced concrete beam shown below is subjected to a dead
load moment of 180 ft-kip and live load moment of 90 ft-kip. Determine
whether the beam is adequate for moment capacity. f! =4,000psi, and
fy=160,000 psi. The stirrups are #3 bars.

f~12in. -

M M

2.8 The beam below supports 500 Ib/ft service dead loads and 600 Ib/ft service live
loads in addition to its self-weight. Calculate the maximum simply-supported
span (¢ =?) for the beam. Use Method II in the calculations. Use f, = 5,000 psi
and f, = 60,000 psi.

15.5in.

3 #8

f—12in.—]

3 25in.

2.9 A rectangular beam carries uniformly distributed service (unfactored) dead
loads of 3.0 kip/ft, including its own self-weight and 1.5 kip/ft service live
loads. Based on the beam’s moment capacity, calculate the largest factored
concentrated loads, P, that may be placed as shown on the span in addition to
the given distributed loads. The beam width is 18 in., and has a total depth of
30 in. with 5 #11 bars. Use f = 5,000 psi, fy=160,000 psi, and #3 stirrups.

Py Py

ﬁllIIIIIIIIIIIIIIMIIIIIIIIIIIIIIIIMIIIIIIIIIIIIIIIIZ
f—8-0" —}—8-0"—}—8-0"—]
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2.10 The beam shown below is part of a beam-girder floor system. It is subjected to
a superimposed dead load of 4.0 kip/ft (excluding the beam weight) and a
live load of 2.0 kip/ft. Check the adequacy of this beam. Use f = 4,000 psi,
fy=060,000 psi, and #3 stirrups. Assume knife edge type supports at the
centers of the walls.

wp = 4.0kip/it
w, = 2.0kip/ft [ A B
/
I A S N S S S N S T R S T T
1 1 1 1 1 1 1 1 i 1
Ly A Ls
. 5-8" 18in| 18in| 5-3" |
. 210" |
f—12in.— f—12in.—]
E4#9
24 in. 24in.
3#10
e e | e o & |
A-A B-B

Note: Check both sections A-A and B-B. Neglect the reinforcement in the
bottom of the beam at section A-A.

2.11 Determine the moment capacity, Mg, of the reinforced concrete section
shown below if subjected to a negative moment. The stirrups are #3 bars.
Use f,! = 4,000psi and f, = 60,000 psi.
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4 #10

28 in.

f——13 in.—]

2.12 The figure below shows the cross section of a floor system consisting of a
reinforced concrete beam supporting precast concrete planks. The beam span
is 20'-0” with 16'-0" spacing. Calculate the maximum service live load per
square foot of floor area. Use f! = 4,000psi and f, = 60,000 psi. The unit
weight of lightweight (LW) concrete used is 108 pcf. Assume the beam is
simply-supported.

/— Floor finish, 2 psf

| | \— 2 in. concrete topping at 108 pcf

\— 8in. deep X 24 in. wide precast
concrete planks at 110 Ib/ft

24 in.

3#9

f—12in.—]

2.13 The 16 in. x 27 in. rectangular reinforced concrete beam shown below is
reinforced with 4 #10 bars in the positive moment region and 3 #11 bars in
the negative moment region. Determine the maximum factored uniformly
distributed load, w,, for this beam. Stirrups are #4, f! = 5,000psi, and
£, =160,000 psi.
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WU
BT AR AR
Z\

| 28'-0" l—12-0"—|

2.14 The beam of Problem 2.11 is part of a beam-girder floor system shown below
(beam B-1). The floor slab is 6 in. thick concrete, and the weight of the
mechanical/electrical systems is 5 psf. Assume 15 psf for partition loads,
and miscellaneous dead loads of 5 psf. What is the maximum allowable live
load for this floor? Consider only the negative moment capacity of the section.
(Note: Use the ACI moment coefficients. Live load is not to be reduced.)

[ 2 LN  ttataias ettty
14in. X 14in. —/‘!|-101_0|| | 10-0" | 10'-0" | 10'-0" | 'J
Columns (typical) [ I I I

2.15 Calculate the required areas of reinforcement for the following beams. Use
f! =4,000psi and f, = 60,000 psi.

(a b=10in., d=20 in., M,, =200 ft-kip
(b) b=12in., d=24 in., M, =300 ft-kip
(¢) b=18in., d=36in., M, =500 ft-kip
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2.16 Design a rectangular reinforced concrete beam subjected to a factored load
moment, M, =250 ft-kip. The architect has specified width »=10 in. and
total depth #=24 in. Use f = 4,000 psi, f, = 60,000 psi, and #3 stirrups.

2.17 Redesign the beam in Problem 2.16, assuming that the clear height for the
building requires the total beam depth to be limited to 20 in. Determine the
beam width (b) and the area of steel (Ay) in such a way that the section will be
in the tension-controlled failure zone.

2.18 Design a rectangular beam for M,=300 kip-ft. Use f/ = 3,000psi,
fy=060,000 psi, and #3 stirrups. Size the beam for p=0.01 and b/d=0.5
(approximate). Do not consider the beam’s self-weight.

2.19 The 16 in. x 27 in. rectangular reinforced concrete beam shown below is
subjected to concentrated loads of Pp=12.0 kip and P, =8.0 kip. The
uniformly distributed dead load, wp, is 1.6 kip/ft (including the beam’s self-
weight), and the live load, w;, is 1.0 kip/ft. Determine the required reinforce-
ments. Sketch the section and show the selected bars. Use ! = 5,000 psi and
f3,=160,000 psi.

P P

w
LTI T TP
k—g-0" | 8-0" | 8-0"

2.20 An artist is designing a sculpture that is to be supported by a rectangular
reinforced concrete beam. The sculpture’s weight is estimated to be 400 1b/ft
(assumed as a live load). The beam section must be limited to » =8 in. and
h =12 in. The artist wants to make his sculpture as long as possible. What is
the maximum possible length of this cantilever beam without the use of
compression reinforcement? Use f; = 4,000psi, f,=60,000 psi, and #3
stirrups.

2.21 A 14 in. X 24 in. rectangular precast reinforced concrete beam supports a
factored uniform load, w,=4.0 kip/ft, including the beam’s self-weight.
Determine the reinforcements required at the supports and the midspan. Use
f! =4,000psi and f, = 60,000 psi.

wy = 4.0 kip/ft
||||||||||IEI||||||||||||||||||||||||||||||E|||||||||||

7 7

k120" 3010 120"
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2.22 An 8 in. thick simply-supported reinforced concrete one-way slab is subjected
to a live load of 150 psf. It has a 12 ft span and is reinforced with #4@8 in.
as the main reinforcement and #4@12 in. as shrinkage and temperature
reinforcement. Determine whether the slab is adequate. Use f! = 4,000 psi
and f, = 60,000 psi.

2.23 A 5 in.-thick simply-supported reinforced concrete one-way slab is part of a
roof system. It is supported by two masonry block walls, as shown below.
Assume a superimposed dead load (roofing, insulation, ceiling, etc.) of 15 psf
and a roof snow load of 30 psf. Check the adequacy of the slab, including the
required shrinkage and temperature reinforcement. Use f/ = 4,000psi and
fy=160,000 psi. The bearing length of the slab on the wall is 6 in.

# @9in. #4 @ 12in.

\ /
6in.| Y \ Py KA Y Y Y s Y Y 6in.

= e
10'-0"
_+_ _+_
12in. 12in.

2.24 The figures below show the framing plan and section of a reinforced concrete
floor system. The weight of the ceiling and floor finishing is 5 psf, that of the
mechanical and electrical systems is 5 psf, and the weight of the partitions is
20 psf. The floor live load is 80 psf. The 6 in.-thick slab exterior bay (S-1) is
reinforced with #6@9 in. as the main reinforcement at the midspan and #4@
12 in. for the shrinkage and temperature reinforcement. Check the adequacy
of the slab. Use the ACI moment coefficients. Use f/=4,000psi and
/3= 160,000 psi.
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|—>A

25'.0"

250"

(8-1)

Ly s

(8-2)

12in. X 12 in. column (typical)

Framing Plan

6 in.

30in.

| 12Iin.

10'-0"

12Iin.

Section A-A
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2.25 Design a 6 in.-thick one-way slab for a factored moment, M, = 10 ft-kip. Use
f! =4,000psi and f, = 60,000 psi.

2.26 Find the reinforcements for the midspan and supports for an interior 6 in.-thick
slab (S-2) of the floor of Problem 2.24. Sketch the slab and show the
reinforcements including the shrinkage and temperature reinforcement steel.

Self-Experiments

The main objective of these self-experiments is to understand the behavior of beams
in bending (tension and compression) and changes in concrete strength with time,
finding the modulus of rupture, and understanding the behavior of reinforced
concrete beams under loading. The other objective is to understand the different
aspects of concrete slabs. Remember to include all the details of the tests (sizes,
time of day concrete was poured, amounts of water/cement/aggregate, problems
encountered, etc.) with images showing the steps (making concrete, placing,
forming, performing tests, etc.).

Experiment 1

In this experiment you learn about the behavior of beams in bending. Obtain a
rectangular-shaped piece of Styrofoam with the proportions of a beam. Make slots
on the top and bottom of the beam, as shown in Figure SE 2.1.

P

l_ Slot

7 7

Figure SE 2.1 Styrofoam beam with slots

Place the beam on two supports and add a load at the center as shown in Figure SE
2.1. Answer the following questions:

1. What happened to the slots at the top and bottom of the beam?
2. Did the slots stay straight after adding the load?
3. Any other observations?

Experiment 2

You must start and perform Experiments 2 and 3 at the same time. In this
experiment, you find the modulus of rupture for a plain concrete beam and learn
about concrete curing and gaining strength with time.

For this experiment you will build four beams using concrete with w/cm
ratio =0.5. Size the beams as you wish, but do not make them excessively small
or large (for practical reasons). After forming the beams (you can use cardboard or
wood for your forms, depending on the beam size), spray water on two of the beams
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while keeping the other two dry. Keep your concrete beams indoors, as the concrete
may freeze and stop the hydration process. After 2 days, test two of your test
beams (one kept dry and one kept wet) by placing loads on them, as shown in
Figure SE 2.2.

T
€— T

Figure SE 2.2 Plain concrete beam test.

Increase the loads until the beams fail. Record the loads at which the two
specimens fail.

After seven days, repeat the tests with the remaining two beams and record the
loads at which they fail.

Experiment 3
In this experiment, you will learn about the importance of reinforcing steel in
concrete beams and compare the results with those of Experiment 2.

When you pour the four plain concrete beams for Experiment 2, build two
reinforced concrete beams with the same dimensions as those of the plain concrete
beams. You can use steel wires for the reinforcement (depending on your beam
size). Place these wires on only one side of the beam (singly-reinforced beam).

After 2 days, place one of the beams on two supports and apply loads as shown in
Figure SE 2.3a. Increase the load, and record your observations.

€= ©
| O

Figure SE 2.3a Reinforced concrete beam test 1

Repeat this test for the remaining reinforced concrete beam after seven days.
(Perform these tests at the same time as Experiment 2.) DO NOT TRY TO FAIL
THE REINFORCED CONCRETE BEAMS! Turn the beams upside down
(Figure SE 2.3b) and repeat the tests. Add loads until the beams fail. Record
your observations.
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T
€— T

Figure SE 2.3b Reinforced concrete beam test 2

Answer the following questions regarding Experiments 2 and 3:

. Which of the samples (dry or wet) had more strength? Why?

. Was the 7-day-old sample stronger than the 2-day-old one? Why?

. Find the modulus of rupture for the 7-day-old plain concrete beams.

. How did the reinforcement affect the concrete beam strength?

. What happened when you turned the beam upside down and tested it?

N W=

Experiment 4
This experiment demonstrates the behavior of one-way and two-way slabs, and the
reinforcing of one-way slabs.

Test 1

Use two Styrofoam pieces to represent one-way and two-way slabs. For the
two-way slab, cut the Styrofoam into a square piece, and for the one-way slab
make it such that length/width > 2. Place the square Styrofoam on two parallel
supports and apply a load as shown in Figure SE 2.4a. Support the same model on
four edges and repeat the test as shown Figure SE 2.4b. Make notes on how the two
models deform and their differences.

a b

Y/ /A

[TT1T (1111

Figure SE 2.4 Slabs under loads: (a) two parallel supports; (b) supports along all edges
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Test 2
Repeat Test 1 using the one-way slab model. Record your observations.

Experiment 5
This experiment deals with the reinforcement in slabs.

Cast two slab models with a thickness of approximately 1 in. and a width of at
least 12 in. Make one from plain concrete and the other from concrete reinforced
with a grid of thin wires (provide about % in. cover).

One week after making the samples, compare the two slabs in terms of crack
formation. Which one has more surface cracks?
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