Does a Finer Level of Detail of a 3D City
Model Bring an Improvement
for Estimating Shadows?

Filip Biljecki, Hugo Ledoux and Jantien Stoter

Abstract 3D city models are characterised by the level of detail (LOD), which indi-
cates their spatio-semantic complexity. Modelling data in finer LODs results in visu-
ally appealing models and opens the door for more applications, but that is at the
expense of increased costs of acquisition, and larger storage footprint. In this paper
we investigate whether the improvement in the LOD of a 3D building model brings
more accurate shadow predictions. The result is that in most cases the improvement
is negligible. Hence, the higher cost of acquiring 3D models in finer LODs is not
always justified. However, the exact performance is influenced by the architecture
of a building. The paper also describes challenges in experiments such as this one.
For instance, defining error metrics may not always be simple, and the big picture
of errors should be considered, as the impact of errors ultimately depends on the
intended use case. For example, an error of a certain magnitude in estimating the
shadow may not significantly affect visualisation purposes, but the same error may
considerably influence the estimation of the photovoltaic potential.

1 Introduction

Level of detail (LOD) is a fundamental concept in GIS and 3D city modelling: it
indicates the data set’s resolution, usability, and the degree of abstraction of real-
ity (Biljecki et al. 2014b). The concept is borrowed from computer graphics, where
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Fig. 1 Our research in a nutshell: the estimation of the shadow differs between the different levels
of detail, and the accuracy of the prediction seems to increase with each LOD. However, this should
be investigated numerically and it is not straightforward as it may appear

it is used to balance the computational complexity and the visualisation quality
(fidelity). The latter, i.e. how similar the object looks like to the original one, can
be assessed with error metrics such the deviation between the geometry of the orig-
inal model and the geometry of its simplified counterpart (Luebke et al. 2003).

Such rationale can be applied to geoinformation science, in order to analyse
whether it is worth to invest funds and computational resources in data set of a
particular LOD. However, in 3D GIS, models are often used beyond visualisation
for several purposes which significantly differ from each other—they have differ-
ent behaviour, different requirements for LODs, and an outcome of different nature.
For instance, 3D city models are used to estimate the real estate net internal area in
m? (Boeters et al. 2015), insolation of buildings in kWh/year (Biljecki et al. 2015a),
and noise in dB (Stoter et al. 2008), resulting in different kinds of errors, differently
influenced by a particular LOD.

The aim of this paper is to investigate the influence of the resolution of spatial data
on the quality of a particular spatial analysis: the estimation of shadows in an urban
environment (Fig. 1). This use case is frequent in 3D GIS, and it is used in several
application domains, for instance to assess the shadow impact of new buildings to
their surroundings (Sect. 2).

For a number of LODs, we compute their errors when used for this purpose.
However, conducting such analysis is burdened by difficulties, among others: (1)
multi-LOD data sets are seldom available hindering such studies (Biljecki et al.
2015b); (2) available multi-LOD data sets normally contain real-world acquisition
errors, inhibiting the comparison between LODs, since it is hard to isolate the error
induced by the degree of abstraction from the error caused by the acquisition; (3)
the outcome of each spatial analysis may not be unambiguously quantifiable, so the
accuracy cannot be easily expressed (Biljecki et al. 2015c¢); and (4) from the imple-
mentation aspect, it is not always easy to automatically run a spatial operation for a
large data set and extract results in a format that is suitable for error analysis. We mit-
igate these problems with an approach supported by a procedural modelling engine
to automatically construct CityGML models in multiple LODs (Sect. 3). The results
(Sect. 4) are relevant for practitioners because they can aid them to decide whether
it is worth to acquire buildings in finer LODs considering that they come with an
increased cost of acquisition and storage.
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2 Related Work and Background

2.1 Influence of Data Granularity on Spatial Analysis

Studies on the influence of the scale, LOD, and resolution to the quality of a GIS
operation are focused on 2D and to raster representations. Hengl (2006) discusses
the importance of considering the resolution of a raster, and underlines that in GIS
projects the resolution is usually selected without any scientific justification. Usery
et al. (2004) determined the resolution effects on watershed modelling by resam-
pling input rasters, and concluded that the resolution has a significant effect on the
accuracy of the result. Booij (2005), Chaubey et al. (2005), Ling et al. (2008), and
Pogson and Smith (2015) performed similar analyses with similar results.

In 3D GIS such studies are rare. A possible reason is that 3D city models cannot
be simply “resampled” to easily obtain additional LODs for analysis.

Brasebin et al. (2012) tested the fitness for use of LOD1 and LOD2 models of
two French data sets in the determination of the sky view factor (SVF). The result
is that for 75 % of the analysed samples the improvement in accuracy is less than
2 %. Besuievsky et al. (2014) carry out a similar study with SVF focusing on the
windows of buildings, with a few variants of high-detailed architectural models, and
find a significant difference in the results.

Strzalka et al. (2011) investigate the use of 3D city models for forecasting energy
demand, and argue that the suitability of an LOD depends on the configuration of
buildings (i.e. for an area with predominantly flat roofs they suggest that an LOD1
suffices). However, experiments with other LODs are not documented.

Kibria et al. (2009) survey the perceptual value of a few LODs in spatial planning.
It turns out that in some planning phases a finer LOD is actually undesirable.

2.2 The Role of Shadow in GIS

The estimation of shadows cast by buildings is a common topic in geoinformation
science, and it is important for a number of application domains, such as thermal
comfort (Hwang et al. 2011; Yezioro and Shaviv 1994) and solar energy (Carneiro
and Golay 2009; Strzalka et al. 2012). This use case may be related to the visibility
operation which is used for diverse purposes (Bartie et al. 2010; Peters et al. 2015).
In this context, the estimation of shadow is a variation of the visibility problem,
with the particularity that the sun is practically an infinitely distant point resulting
in parallel rays, and that its position is variable.

Herbert and Chen (2015) underline that understanding shadow is crucial in urban
planning, for assessing the effect new buildings induce on existing ones. They per-
form a survey among urban planners on the quality of the visualisation of the shadow
based on different visual representations (e.g. level of transparency, 2D vs. 3D), and
also include a query about the suitability of the LOD. However, only LOD1 was
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given as an option, and the participants were given the opportunity to perceptually
assess whether a 3D model of LODI is sufficient or not for such analysis.

Estimating shadows is important for determining solar envelopes, the subset of
urban space with a certain period of assured access to sunshine (Knowles 2003).
These are defined in terms of discrete numbers of hours of sun, but they can also
be defined in terms of solar irradiation (Morello and Ratti 2009). Solar envelopes
are to a degree enshrined in local and state laws, where residents are protected with
the right to solar access (e.g. the facade of houses must receive a certain amount of
hours of direct sunlight per day; see Den Haag 2011 and City of Mississauga 2012
for exemplary regulations).

In urban planning, shadows are not analysed only for buildings, for instance,
Lange and Hehl-Lange (2005) study shadow casting from a proposed wind turbine,
and Kumar et al. (1997) forecast occlusion by terrain.

Accounting for shadows is common when estimating the solar potential of build-
ings (Mardaljevic and Rylatt 2003; Carneiro and Golay 2009; Tooke et al. 2011;
Redweik et al. 2013; Eicker et al. 2015; Nguyen and Pearce 2012; Hofierka and
Zlocha 2012). Strzalka et al. (2012) develop a method to determine the shadow pro-
jected on a roof surface in order to account for the reduced yield of solar panels when
estimating the feasibility of their installation. The method is designed as a visibil-
ity problem between small triangular partitions of a surface and the sun at various
timestamps. The centroid of each partition is tested for visibility to the sun, and if
the sun’s ray intersects any of the other surfaces, the partition is marked as shaded
at that timestamp.

In a related research, Alam et al. (2013) note that while LOD1 block models are
sufficient for shading, higher LODs will inherently bring different results. However,
this is not supported empirically, and in this paper we bridge this gap.

Jochem et al. (2009) develop a method for estimating the insolation of roofs from
point clouds, taking into account shadows. While they deal with a single-LOD rep-
resentation, they highlight that roof overhangs and chimneys may play an important
factor in the magnitude of the shadow. This is important, because different LODs
contain a different degree of detail, and in our research we investigate their claim.

Shadowing plays an important role in the research of Helbich et al. (2013). Their
premise is that solar radiation is significantly capitalised in flat prices, and they con-
sider the shadow effect in order to improve the accuracy of a hedonic house price
model. They highlight that such simulations should be conducted for different posi-
tions of the sun because of the considerable differences in the results.

Finally, shadows are crucial in geo-visualisation to increase the quality of the
visual communication (Appleton and Lovett 2003).

2.3 The Role of Shadow in Computer Graphics

Shadows have a longstanding underpinning in computer graphics where they play a
significant role, as they enhance the realism of the scene and provide cues of spatial
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relations such as depth (Williams 1978; Woo et al. 1990). As a result, many algo-
rithms have been developed to estimate shadows and enhance realism, e.g. recursive
ray tracing (Whitted 1980). Furthermore, many other computer graphics algorithms
are closely related to this topic and frequently applied, e.g. the determination of
shaded portion of the roof when estimating the insolation may be considered as a
ray-triangle intersection problem (Moller and Trumbore 1997). We consider such
algorithms in the design of our experiment.

3 Methodology

Our methodology for estimating whether finer LODs bring improvements in the esti-
mation of shadows consists of the following stages:

1. Producing multi-LOD data: procedural generation of 3D city models (in
CityGML).

2. Shadowing: rendering shadows from the models, and obtaining the shadow in a
GIS form for analysis. We consider the shadow a building casts on the ground.

3. Analysis: quantification of shadows, and measuring their error for each LOD.

3.1 Source of Data and Considered LODs

In our approach, as a source of multi-LOD data we use procedurally modelled 3D
models stored in CityGML in multiple LODs. The models have been generated by
Random3Dcity, an open-source project of Biljecki et al. (2014a). The advantage of
procedurally generated data is that they are not burdened by acquisition errors, and
that a large number of 3D models can be obtained easily. Synthetic data have been
previously diversely used in GIS (see, among others, Li et al. 2000 and Burnicki
et al. 2007).

In principle, for our tests we use the traditional CityGML LODs (Groger and
Pliimer 2012). However, the engine generates multi-LOD data based on a speci-
fication of Biljecki et al. (2016), which refines these LODs, providing us with a
larger number of representations to benchmark. We use the following representa-
tions. LODI1.1 is a block model obtained with extrusion to a single height, LOD1.2
mandates smaller building parts (e.g. alcoves), and in LOD1.3 each building part has
its own height (a building does not have a single height as in 1.1/1.2). LOD2.0 is sim-
ilar to 1.1, with the addition of a simple roof structure. LOD2.1 adds smaller building
parts, and LOD2.2 requires dormers and other roof superstructures of similar size.
LOD2.3 demands the explicit modelling of roof overhangs (such models are usu-
ally constructed in a combination of terrestrial and airborne techniques). LOD3, the
finest LOD, contains openings, roof overhangs, and smaller facade details. Because
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Fig. 2 Orthogonal top view composite of 9 shadows during a day (also known as the butterfly
shadow diagram; the outline of each shadow is drawn at hourly intervals) for an LOD3 model. It
suggests the different degree of influence of LOD-related details on the shadow depending on the
date, time, and location. The building footprint is shown in black

this is the finest representation available, we consider it as ground truth. Figure 1
shows the following LODs: 1.1, 2.0, 2.1, and 3.

3.2  Sun Position and Location on Earth

Figure 2 indicates a substantial difference in the behaviour of this spatial analysis
when it comes to the different relative position of the sun, caused by the different
time of day and location on Earth. In order to diversify our experiments, we con-
sider two locations: Delft (Netherlands) and Kuala Lumpur (Malaysia), and several
timestamps during three characteristic days in 2015: spring equinox (20 March),
summer solstice (21 June), winter solstice (22 December), and an arbitrary day: 27
April. This variety results in 81 different positions of the sun spread over daytime.

3.3 Computation of the Shadow

We define the shadow S5 as the subset of the R? (the ground, a horizontal plane
in our case, considered as the shadow receiver) that is occluded by a building B;.
When 3D city models are utilised Sf" denotes the shadow forecast with a data set
of the representation (LOD) r. We compute the shadow by projecting each polygon
of a building model B; to the plane with a perspective transformation (Blinn 1988),
according to the position of the sun. The union of the projected polygons represents
the shadow (Fig. 3), however, in the final step we adjust the polygon by removing
the footprint of B;.
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Fig. 3 1In our approach and our software implementation, the shadow on the ground is derived as
a unionised set (green) of projected polygons (in red; 51 polygons in this LOD3 case) from the
CityGML model, and accounting for the footprint

3.4 Selection of Error Metrics

The shadow cast on the ground is a polygon, thus the first measure that comes to
mind to quantify a shadow is its area a(S%), and to compare it to the ground truth:

€] = a(§%) — a(S%)

However, the deviation of the estimated value is inconclusive, as it appears in
Fig. 4. Therefore we introduce a new metric: the area of the symmetric difference
(the union without the intersection—see the light red area in the same figure):

b = a(S% © %) = a((S% u $P) \ ($% n SP))
In the GIS context this non-negative metric appertains to commission and omis-

sion errors, and to false positives and false negatives: the union of the (i) subset that
is estimated as shaded but in reality it is not with the (ii) subset of the inverse case.
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Fig. 4 A case of two
shadows from an LOD1 and
an LOD3 (outlined in red
and green, respectively) that
have the same area, showing
that this error metric can be
ambiguous. The area of their
symmetric difference (light
red area) is 28.7 m* (33.9 %
in relative terms), and the
Hausdorff distance in this
case is 2.47 m

Because area is only one of the aspects that quantifies the extent of a shape, we
compute the similarity between the two shapes, which is a fundamental subject in
computer science and GIS (Arkin et al. 1991; Huttenlocher et al. 1993; Samal et al.
2004). There is a variety of methods and metrics to express the correspondence of
two shapes in GIS (Ruiz et al. 2011; Goodchild and Hunter 1997), one of the promi-
nent being the Hausdorff distance (Hausdorff 1914). It has been widely used in geoin-
formation science and 3D city modelling for diverse purposes (Min et al. 2007), for
instance, to assess the quality of GIS data (Girres and Touya 2010), to assess the per-
formance of 3D generalisation (Cignoni et al. 1998), to aid map matching (Mustiere
and Devogele 2008), to analyse movement trajectories (Liu et al. 2012), and to detect
changes between two CityGML models (Pédrinis et al. 2015).

The Hausdorff distance quantifies the mismatch between two geometries by iden-
tifying the point on one shape that is the maximum distance from the other shape,
therefore we define the third shadow error metric as

5; _ H(Sf",SBi) — max(h(Sfi,SBi)’ h(SEi, Sfi))

where h(A, B) is a function that finds the point a € A that is farthest from any point
in B and measures the distance from a to its nearest neighbour in B:

h(A, B) = max,c,mingcg|la — b||

For the three error metrics we compute their root-mean-square error (RMSE).
While the Hausdorff distance technically is not an error, it is not uncommon to com-
pute its root-mean-square value (Agarwal et al. 2010; Aspert et al. 2002).

For £, and &, we compute also the relative error (with respect to the true size of
the shadow) to put the derived numbers in perspective, which is not possible for &5.
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3.5 Implementation

Available implementations do not fully support our methodology. For instance, sev-
eral GIS tools contain a module to forecast shadows at a specific timestamp, how-
ever, such functionality cannot be exploited to our advantage: the shadow cannot be
exported as a vector geometry nor most of the tools can be automated. Furthermore,
computer graphics software packages usually render a shadow only in raster format.
Therefore, we have implemented in Python a software prototype that reads CityGML
data, estimates their shadow for a particular location and timestamp, and exports it
as a polygon.

The sun positions are taken from PyEphem/XEphem,! the implementation of the
ephemeris of Bretagnon and Francou (1988). The shadow polygons operations (e.g.
union and symmetric difference) are accomplished with Shapely.> The Hausdorff
distance has been calculated with PostGIS.? For validating the correctness of shad-
ows, we have first converted a CityGML model and its calculated polygon shadow
to OBJ (with CityGML2OBIJs; see Biljecki and Arroyo Ohori 2015), and imported
it in Blender,* an open-source 3D computer graphics software. We have rendered
the setting for the same date, time, and location, thanks to the Blender add-on Sun
Position.? The shadows matched—this is evident in Fig. 3 where the rendered shaded
area and the shadow polygon are conflated from independent workflows.

Some of the shadow polygons were found to include long tiny spikes due to
floating point errors, which was inhibited with snap rounding (Hobby 1999), and
triangulation-based polygon repair with the tool prepair (Ledoux et al. 2014).

In addition to calculating the error metrics, the computational cost was recorded
(time and number of projected polygons), in order to suggest the load of each LOD.

4 Experiments

We have conducted experiments on 400 different buildings in 8 LODs (400 X 8 X
81 =259k shadows in total). We present the errors in Fig. 5 and Table 1, and discuss
them in Sect. 4.1.

Thttps://pypi.python.org/pypi/pyephem/ and http://www.clearskyinstitute.com/xephem/.
Zhttps://pypi.python.org/pypi/Shapely.

3http://postgis.net.

“https://www.blender.org.
Shttp://wiki.blender.org/index.php/Extensions:2.6/Py/Scripts/3D_interaction/Sun_Position.
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Fig. 5 Errors and computation cost for each LOD. The metrics are normalised according to the
least favourable result

Table 1 Numerical results of the experiments. The error metrics are expressed as RMS values

LOD £ € £3
(m?) (%) (m?) (%) (m)
1.1 27.6 16.2 40.3 30.1 25
1.2 27.6 16.2 40.3 30.1 2.4
1.3 27.2 16.0 39.9 29.9 2.4
2.0 25.1 13.1 333 20.7 1.8
2.1 25.1 13.1 333 20.7 1.6
22 25.1 13.1 332 20.6 1.6
23 0.5 0.7 0.5 0.7 0.4

4.1 Findings and Discussion

The main findings of the experiments, as shown in Fig. 5 and Table 1, suggest that
the relative errors between most LODs are small, and the improvements of each LOD
are not significant. Furthermore, we point out other findings:

o The improvement of LOD2 over LOD1 is almost negligible if considering the
shadow as a whole (only a 3 % reduction in the area error).

 Overall, a finer LOD does bring a more accurate result. However, that is not always
the case for each building. The improvement depends on the configuration of the
analysed area. As an example, Fig. 7 shows the distribution of &,, 5 errors for
LOD 2.2. It shows that for many buildings the error is negligible (e.g. in that LOD
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Fig. 6 This combined plot shows the variable behaviour of the three error metrics with respect to
the position of the sun, and thus—the size of the shadow in the ground. The values refer to LOD2.2

for 19 % buildings there is no error €,; for LOD1.1 that value is at 10 %). A more
detailed inspection revealed that this applies to buildings with flat roofs and no
roof superstructures. If such buildings dominate in an area to be analysed, the
acquisition of finer LODs is probably not beneficial.

Modelling dormers (LOD2.2 and 2.3) and other roof details has a negligible influ-
ence on the quality of the prediction. This can be explained by the fact that dorm-
ers and chimneys are not present in all buildings, and they make a difference only
during a limited time of the day (see the example in Fig. 2).

Different data (types of buildings) and different settings (day, time, location) result
in a different behaviour and magnitude of the error, indicating that related exper-
iments should be diverse. Figure 6 shows the variation of the magnitude of errors
as a function of time during one day.

Figure 6 also shows that while in absolute terms the €, and €, errors increase with
the actual size of the shadow (close to sunrise and sunset), their relative counter-
parts decrease. Furthermore, the behaviour of &5 is different.

LOD3 contains openings, which have no influence on the shadows (unless in the
special case of the sun rays passing through two windows, but this triviality was not
taken into account). The improvement over LOD2 is mostly caused by overhangs
and other smaller details, which on the other hand are probably not appreciated by
the use cases that require shadow estimation as an input. Furthermore, an LOD3
model entails a substantial cost of acquisition and processing, which also has to
be taken into account.



42 F. Biljecki et al.

10

3 (Hausdorff distance) [m]
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Fig.7 Scatter plot showing the relation between the error metrics €,, £5 and their distribution (for
LOD2.2). The histogram on the right shows the distribution of €5, while the one on fop shows the
distribution of €,. The latter shows that for a substantial share of samples the error ¢, is insignificant

4.2 Evaluation of Error Metrics

The results of a seemingly simple analysis of determining the accuracy of a shadow
estimation show that errors can be approached from different perspectives. Figure 7
shows the relation between our second and third error metrics, and the distribution
for each. We have computed the correlation between the errors to investigate their
relation:

T = 0.967 T = 0.099 T =0.085
legl.e2 leql.e3 £2,€3

An interesting outcome is that there is a low degree of correlation between the
area error metrics and the Hausdorff distance. As visible in the scatter plot, there
are several cases in which the magnitude of the area error metrics (g, and ¢,) are
small (<0.1 m?), with a significant value of 5. This is most evident in the results
of LOD2.3 where the first two error metrics are low, and the Hausdorff distance is
not negligible. Manual inspection revealed that these deviations are caused by small
LOD3-only details such as chimneys, which render small shadow area differences,
but since they protrude, €5 is of noticeable value (e.g. see the chimney in Fig. 3).
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We are ambivalent on the use of the Hausdorff distance for this purpose. Besides
the advantage that £, revealed some discrepancies that were not detected by the first
two, it helped to put the area errors in perspective, i.e. some large area errors were
in fact caused by practically insignificant deviations (e.g. long and narrow strips of
shadows). The disadvantage is that the Hausdorff distance is not a stable error metric
(see Fig. 6), and it is sensitive to computational and geometric errors, e.g. caused by
floating point errors and slivers.

For the first two error metrics we have computed also a relative counterpart, as the
relation to the total size of the shadow. This helped to understand the true magnitude
of the error (e.g. that the RMS of &, for LOD1.2 is 16 % of the shadow size).

5 Conclusions

In this paper we have presented a study on the influence of the LOD of a 3D building
model on the quality on a 3D GIS spatial analysis. We benchmark the accuracy of
8 LODs for estimating the shadow, and conclude that investing in a data set with a fine
LOD is not always a good idea. For instance, for 50 % of buildings modelled in the
coarse LOD1.1, the error (g,) is within 10.2 % of the size of the shadow (percentile
rank of a score), which practically does not have much influence for some use cases.
For areas with a higher share of buildings with a flat roof this fact would be even
more substantiated.

Therefore, we refute the universally accepted assumption that finer LODs inher-
ently bring more accurate results in spatial analyses, and we argue that such analyses
should be conducted to understand the impact of LOD on a specific use case.

Shadows do not have a unique metric, a fact that is also valid for many other spatial
analyses. We use three error metrics: area error (g,), area of the symmetric differ-
ence (g,), and the Hausdorff distance (g5), which show different observations. In our
study, we determine the influence of the resolution of the models on raw shadows
as standalone concepts. While we find that the LOD has a variable influence, these
smaller improvements may not always benefit a use case. Actually, it may damage it:
while the improvement is negligible, the acquisition and processing costs could be
substantially higher. This depends on the weight a shadow has as an input in a use
case. For instance, in geo-visualisation a more accurate shadow probably does not
make any difference, while in some other such as predicting the yield of photovoltaic
panels it might be tangible.

For future work we plan to investigate the significance and influence of the LOD
on the outcome of a use case that uses estimated shadows as input. For instance, the
error in the prediction of the duration a wall is shaded during the day, or the error in
the estimation of the loss of the solar potential in kWh/year due to shadows.

Furthermore, we plan to investigate the benchmarking of continuous
LODs (Arroyo Ohori et al. 2015).
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