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Abstract Quantum transport in carbon allotropes emerging from graphene/
graphite nanolayers is described. Nonequilibrium Arora’s distribution function
(NEADF) includes the energy gained/lost in a mean free path (mfp) in the presence
of an electric field. It is shown to organize the randomness in equilibrium to
streamlined motion in extreme nonequilibrium leading to saturation of drift velocity
and the current. A simple tanh form is obtained that is strictly valid for nonde-
generate statistics, but is extended to degenerate statistics by defining a degeneracy
temperature. Ballistic transport where device length is smaller than the
scattering-limited mfp is shown to degrade the mobility. Resistance quantum is
obtained in 1D configuration that is generalized to give contact resistance and
channel resistance. Magnetotransport in graphene is discussed to demonstrate the
utilization of magnetic field in characterization and performance evaluation.

1 Introduction

Graphene, a single layer of graphite with carbon atoms arranged in a honeycomb
lattice is a perfect 2D conductor. As Fig. 1 shows, graphene can form a 0D
nanostructure as a nanometer-size fullerene molecule, a 1D carbon nanotube (CNT)
made of rolled-up sheets of graphene; a 1D graphene nanoribbon (GNR) cutouts
from a graphene sheet with a narrow width of high aspect ratio; 3D with graphene
layer stacked as in a graphite. The stacks of GNRs or 2D nanolayers can transform
to multilayer graphene each with unique properties.

Each atom at the corner of honeybee hexagon is a carbon atom with electronic
configuration that is similar to silicon as both come from Group 4 of the Periodic
Table. Carbon (6C

12) atom with 6 electrons has electronic configuration 1s22s22p2.
It is a tetravalent material with four of its electrons in shell 2 and still able to
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accommodate 4 more in 2p orbitals. However, carbon orbitals can hybridize
because the s-orbital and p-orbitals of carbon’s second electronic shell have very
similar energies [1]. As a result, carbon can adapt to form chemical bonds with
different geometries.

Graphene has many extraordinary electrical, mechanical, and thermal properties,
such as high carrier mobility, ambipolar electrical field effect, tunable band gap,
room temperature quantum Hall effect, high elasticity, and superior thermal con-
ductivity. It is projected to be a material of scientific legend, comparable only to
penicillin as a panacea. There is a modern adage: silicon comes from geology and
carbon comes from biology. Cohesive band structure of graphene rolled into a CNT
in a variety of chiral directions has recently been reported [2]. It is shown to exist in
metallic and semiconducting states. Similarly GNR with narrow width are shown in
three semiconducting modes with no metallic configuration [3]. All semiconducting
states can be described with parabolic E-k relation with effective mass, while the
effective mass for metallic state remains zero, as in graphene.

Quantum and ballistic transport offer a new outlook with the appearance of many
outstanding properties of graphene and its allotropes [1]. Equilibrium carrier
statistics with large number of stochastic carriers is the basis of any transport and is
well established. However, nonequlibrium quantum transport based on the

Fig. 1 Graphene sheet transforming to fullerene, carbon nanotube (CNT), graphene nanoribbon
(GNR), and multilayer graphene each with unique properties. Copyright Macmillan Publishers
Limited [4]
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Hamiltonian formulation is complex. One is easily lost in the computational maze
of Monte Carlo experiments where myriad of parameters control the output. On the
other hand, nonequilibrium Arora’s distribution function (NEADF) [5] is distinctly
simpler in its outlook with only the mean free path (mfp) as a parameter obtainable
from low-field mobility that is always measured in any transport experiment. A new
paradigm for characterization and performance evaluation of carbon allotropes is
emerging from the application of NEADF to graphene and its allotropes. NEADF’s
unique feature is conversion of the stochastic carrier motion in equilibrium with no
external influences into a streamlined one in a high-field-initiated extreme
nonequilibrium for current to flow and get saturated. The mobility expressions are
direct product of NEADF when limit to low-field domain is obtained. Similarly, the
nondegenerate statistics is transformed to degenerate one by defining the degen-
eracy temperature to reveal higher energy in the degenerate state as the Fermi
energy resides in one of the bands.

2 NEADF

NEADF is an outgrowth of the Fermi-Dirac distribution with the added energy
lost/gained q~E �~‘o1 ¼ qE‘o1 cos h in and opposite to the electric field with
�1� cos h� þ 1. The presence of cos h favors those electrons drifting opposite to
~E as shown in Fig. 2. The velocity at any collision is stochastic with average
magnitude equal to intrinsic velocity vi that is thermal velocity in nondegenerate
(ND) domain and Fermi velocity in degenerate domain. This intrinsic velocity is the
Fermi velocity vFo ¼ 105 m/s at Dirac point. The saturation current is
Isat ¼ n3qvsatAc(3D), Isat ¼ n2qvsatW(2D), Isat ¼ n1qvsat(1D), where vsat ¼ vid for a
given dimensionality d (3, 2, or 1). Saturation is further lowered by an onset of
quantum emission. The mathematical form of NEADF is given by [6]
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Fig. 2 Left-right asymmetry
in the electric-field direction
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f ðE;EÞ ¼ 1

1þ e
E�ðEF þ q~E�~‘Þ

kBT

ð1Þ

The mfp ‘, related to long-channel mfp ‘o1, as modified by the quantum
emission, is given by

‘ ¼ ‘o1 1� e�
‘Q
‘o1

� �
ð2Þ

with

‘Q ¼ �hx0ðNo þ 1Þ=qE ð3Þ

No ¼ 1=ðeDQ � 1Þ;DQ ¼ �hxo=kBT ð4Þ

At any collision, the electron start from stochastic velocity directed at random.
The component in and against electric field ~E is affected. Those with intrinsic
velocity directed in the +x direction (opposite to ~E) gain velocity vþ ¼ vi þ qEsc
and those directed towards –x direction decelerate with v� ¼ �vi þ qEsc, where
sc � ‘o1=vi is the collision time. The average in a mfp results in net drift vD ¼
qEsc=m� ¼ lo1E proportional to E assuming equipartition (nþ ¼ n� ¼ n=2) of
velocity until v� ¼ 0. As v� turning point gets smaller than the mfp, anisotropy in
the distribution sets in making nþ [ n�. That is the initiation of unidirectional
transport at the critical value Ec ¼ vi=lo1. The onset of quantum emission lowers
the saturation velocity below vi as ‘Q\‘o1. In the extreme nonequilibrium nþ ¼ n
and n� ¼ 0 and carrier velocity vectors are unidirectional leading to saturation
velocity and current.

3 Drift Response

Equilibrium 2D carrier concentration ng in graphene is given by [5]

ng ¼ Ng=1ðgÞ ð5Þ

with

Ng ¼ ð2=pÞðkBT=�hvFÞ2 ð6Þ

g ¼ ðEF � EFoÞ=kBT ð7Þ

=jðgÞ is the Fermi-Dirac integral (FDI) of order j [7, 8] with j = 1 for graphene.
The linear carrier density of CNT is similarly described by
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nCNT ¼ NCNT=CNTðg; egÞ ð8Þ

with Do ¼ 4=p�hvFo ¼ 1:93 eV�1nm�1, eg ¼ Eg=kBT . NCNT ¼ DokBT is the effec-
tive density of states. =CNTðg; egÞ is the CNT integral that can be evaluated
numerically [2]. Equilibrium carrier statistics for GNR is similarly obtainable [3].

The drift response vD to an applied electric field in a graphene nanolayer is the
average of vFo cos h using the NEADF and density of states, resulting in

vD=vFo ¼ 1=2pug
� � Z2p

0

cos h dh=1ðHðhÞÞ ð9Þ

The reduced Fermi energy g is now a function of electric field and is evaluated
from the normalization condition

ug ¼ 1=2pð Þ
Z2p

0

dh=1ðHðhÞÞ; ug ¼ ng=Ng ð10Þ

Here HðhÞ ¼ g� d cos h is the electrochemical Fermi energy that is directional.
A simplified version of (9) is obtained by substitution of cos h ¼ �1=2 in HðhÞ as
distribution is split into � x-direction. h ¼ �p=2 to þ p=2 is for +x-direction and
h ¼ þ p=2 to þ 3p=2 for –x-direction. \ cos h[ ¼ �1=d for an arbitrary
dimensionality d = 3, 2, and 1 [9, 10]. With this substitution, the relative drift
response of (9) is the same as difference of anisotropic carriers in an electric field as
shown in Fig. 2. The drift response for 2D graphene is now obtained as

vD ¼ vFo
=1ðgþ d=2Þ � =1ðg� d=2Þ
=1ðgþ d=2Þþ=1ðg� d=2Þ ð11Þ

where ng� ¼ Ng=1ðg� d=2Þ is the carrier concentration with velocity vector
component in the �x direction with electric field in the �x direction. The mobility
expression follows naturally from (11) in the low-electric-field limit (d ! 0) and
using d=jðgÞ=dg ¼ =j�1ðgÞ. The mobility expression is obtained as

log ¼
q‘vFo
2kBT

=0ðgoÞ
=1ðgoÞ

ð12Þ

Here go is used in place of g to emphasize the fact that it is zero-field reduced
Fermi energy. The mobility expression of (12) allows one to define ohmic
degeneracy temperature Tog so mobility expression is re-written as
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log ¼
q‘vFo
2kBTog

; Tog ¼ T
=1ðgoÞ
=oðgoÞ

ð13Þ

Figure 3 shows the graphene’s drift response to high electric field with solid
lines obtained from (11) with the mfp extracted from (12) for the experimental data
on mobility. The comments on this drift response appear in [11].

The drift response in a CNT can be similarly evaluated. For a semiconducting
CNT, it does involve CNT integral, but for a metallic CNT, the drift response is
similar to that of (11) with =1ðgÞ replaced with =oðgÞ. The mobility for a metallic
MCNT is given by

loMCNT ¼ q‘vFo
kBToMCNT

; ToMCNT ¼ T
=�1ðgoÞ
=oðgoÞ

ð14Þ

The current response I to the applied voltage is given by

I ¼ Isat
=oðgþ doÞ � =oðg� doÞ
=oðgþ doÞþ=oðg� doÞ ð15Þ

A simplification of (15) is possible if CNT degeneracy temperature of (14) is
utilized. The thermal voltage Vt ¼ kBT=q is now replaceable with VF ¼ EF=q in
extreme degeneracy. This will make the current response temperature independent.
The current response of (15) is now simplified to

I ¼ Isat tanhðV=VcÞ ð16Þ

where Vc ¼ ðVF=‘o1ÞL. The sublinear nature of I-V curves of Fig. 4 obtained from
(16) requires distinction between direct (R ¼ V=I) and incremental resistance
(r ¼ dV=dI). In the ohmic domain (I ¼ V=Ro), ro ¼ Ro ¼ 40 kX due to constant I-V
slope. However, in the sublinear regime beyond V ¼ Vc, distinction between R and r
is a must. R and r over the complete regime, as obtained from (16), are given by

Fig. 3 Drift velocity vD as a
function of electric field E at
room temperature T = 280 K
for ng=1016m�2 = 1.6 (top),
2.8, 4.2, 6.4, 8.6, and 10.3
(bottom). The solid line
represents vD from theory
(11). The markers are the
experimental data of [12]
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R ¼ RoðV=VcÞ= tanhðV=VcÞ ð16Þ

r ¼ Ro cosh2ðV=VcÞ ð17Þ

Figure 5 shows direct resistance as a function of voltage. The resistance approa-
ches its ohmic value in the limit of low value of the voltage (V\Vc), but rises linearly
with voltage in the high-voltage limit (V � Vc). The experimental data in Figs. 4 and
5 is obtained from [13]. The direct resistance R as a function of voltage is shown in
Fig. 5. As the figure shows, the resistance converges to constant Ro as V ! 0, but
rises linearly with voltage consistent with (16) as tanhðV=VcÞ � 1 when V � Vc.

4 Ballistic Transmission

The absence of electron scattering in a conducting channel with length below the
scattering-limited mfp is technically called ballistic transmission. The absence of
scattering is conjectured to give higher mobility and hence the interest in ballistic
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Fig. 4 The current response
to the applied voltage in a
metallic CNT
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Fig. 5 The resistance as a
function of applied voltage in
an MCNT with ohmic
resistance Ro ¼ 40 kX
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transmission. Contrary to this belief, the experiments show resistance rising and
mobility degrading even in the ohmic domain where high-field effects are negligible
[14–16].

In a 1D CNT, just like in a 1D nanowire [9, 17], the product of velocity and
density of states (DOS) is constant [18]. In fact that is the general property of any
1D system. Differential DOS 2gK=hv Eð Þð ÞdE between E and Eþ dE in a CNT is
inversely proportional to velocity vðEÞ [2], where gK ¼ 2 is K-K’ degeneracy in
hexagonal k-space. Only half the electrons, as shown in Fig. 6 are transmitted
ballistically from left to right. Backward reflection at T = 0 K is blocked due to
Pauli Exclusion Principle that forbids transmission in occupied destination states.
With probability of occupation unity at low temperatures, the current I is obtained
by integrating qv Eð Þ 4=hv Eð Þð ÞdE from EFR to EFL with EFL � EFR ¼ qV . The
current is then I ¼ ð4q2=hÞV , giving quantum resistance RQ ¼ h=4q2. The same
paradigm applies to graphene nanoribbons (GNRs) which are also 1 D in nature.

At extremely undersized dimensions L smaller than the scattering-limited
long-channel mfp ‘o1 (L\‘o1), Arora et al. [14, 16, 19, 20] show the probabilistic
nature of the collisions that give a finite probability for scattering even in short
channels leading to non-unity ballisticity [16] that takes into account ballistic injec-
tion from the contacts. The length-limited ballistic ohmicmobilityloL is given by [16]

loLCNT ¼ lo1CNTð1� e�L=‘BÞ ð18Þ

The ballistic mfp ‘B ¼ ‘o1ðvinj=vFoÞ differs from the traditional low-field
(o) long-channel (1) mfp ‘o1 by a factor ðvinj=vFoÞ, where vinj is the velocity of the
injected carriers from the contacts. ‘B ¼ ‘o1 as injection is limited to the Fermi
velocity for a CNT. In the limit of L 	 ‘o1, (18) coupled with (14) gives

lLCNT � 8qL
nCNTh

ð19Þ

The resistivity for a 1D metallic CNT is given by

qCNT ¼ 1
ðnCNT=2ÞqlLCNT

¼ h
4q2

1
L

ð20Þ

Fig. 6 A ballistic conductor
of length L connected
between two metallic
reservoirs with shifted Fermi
energy in the presence of an
electric field E ¼ V=L applied
from right to left
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The quantum resistance RQ now follows naturally from (20)

RQ ¼ qCNTL ¼ h
4q2

¼ 6:453 kX ð21Þ

The length-limited resistance now follows the pattern

R=RQ ¼ 1=Tr ¼ ðL=‘BÞ=ð1� e�
L
‘BÞ ð22Þ

where Tr is the transmission that is unity in the limit L ! 0. Figure 7 gives
Resistance as a function of length, converging to RQ as L ! 0 and a linear function
of L as L � ‘B. This type of scaling and electron mfp has been demonstrated by
Purewal et al. [21] in a number of experiments on metallic and semiconducting
nanotubes.

5 Magnetotransport

The appearance of quantum Hall effect in graphene is quite miraculous with the
application of a magnetic field. Figure 10 is display of the doubly degenerate K-K′
band structure of graphene. However, this Dirac point may be lifted or depressed
due to quantum effects, creating a bandgap as when a magnetic field B is applied
normal to the graphene layer. The trajectory of an electron (or hole) is a circle in a
magnetic field as is well known. The circumference of the trajectory must contain
integral number of de Broglie waves, i.e., 2pR ¼ nkD ¼ nð2p=kÞ resulting in
kn ¼ n=Rn. As shown in Fig. 9, the magnetic force qvFoB = �hkvFo=Rn. Quantized

radius Rn ¼ ðn�h=qBÞ1=2 is obtained when kn ¼ n=Rn is utilized to eliminate kn,
which is the same expression as for a parabolic semiconductor. In fact, negative
values of n can be attributed to hole transport. It is appropriate to take |n| in the
expression for the radius (Fig. 8).

Fig. 7 The Resistance in a
CNT as a function of channel
length (solid line). The dotted
line is applicable for
long-channel behavior. The
flat line is the ballistic
quantum resistance
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1n = +

1n = −

2n = +

2n = −

Fig. 8 2D graphene lattice
with K–K′ Dirac cone
displayed. The application of
magnetic field introduces a
bandgap

Fig. 9 Electron (hole)
trajectory in a magnetic field
B and associated centripetal
force

Fig. 10 Quantum Hall
plateaus and vanishing
resistivity in the localized
domain [4, 22, 23]
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The energy spectrum in a magnetic field now emerges as

En � E�o ¼ ��hvFokn ¼ ��hvFo
n
Rn

¼ �vFo
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2nq�hB

p
ð23Þ

2D carrier density now splits into a number of quantum discs in k-space. The
carrier concentration in each level is given by graphene statistics [1]

ngn ¼ Ng=1ðgÞ � ð2=pÞðkBT=�hvFÞ2ðg2=2Þ ð24Þ

with g ¼ EF � Eþ oð Þ=kBT . When electrons are localized in a quantum disc, the
Fermi level resides there with EF � Eþ oð Þ ¼ vFo

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2nq�hB

p
for n > 1. K = 0 in the

lowest state as no quantum states exist below this energy, therefore ng1 ¼ 1=2 for a
singular quantum state as DOS contains both kþ and k�. Collectively, when
executed

ngn ¼ 4qB
h

n� 1
2

� �
n ¼ 1; 2; 3; . . . ð25Þ

The quantum energy reducing to half of that in a regular level is a direct result of
Landau gauge in which the wavefunction is that of a harmonic oscillator. In
parabolic semiconductors, it gives 1=2�hxc due to potential energy of the oscillator,
whereas the kinetic energy is quantized as n�hxc giving total energy ðn� 1=2Þ�hxc.

The components of resistivity q and conductivity r are related by

qxx ¼
rxx

r2xx þ r2xy
qxy ¼

rxy
r2xx þ r2xy

ð26Þ

where qxx ðrxxÞ is the longitudinal component and qxy ðrxyÞ is the Hall component.
When the chemical potential (Fermi energy) is inside a region of localized states,
the longitudinal conductivity vanishes rxx ¼ 0 as electrons cannot freely move
because all states are occupied. On the other hand, when the chemical potential is in
a region of delocalized states, not in a quantized level, rxx 6¼ 0 and rxy varies
continuously. In the localized domain

qxx � 0 ð27Þ

qxy �
1
rxy

¼ B
qng

¼ h
4q2

1
n� 1

2

� � n ¼ 1; 2; 3. . . ð28Þ

Figure 10 gives quantum plateaus as well as vanishing resistivity [4, 22, 23]. At
the point where Hall plateau appears, the resistivity drops to zero.
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6 Conclusions

The NEADF is unique for high-field applications as it seamlessly makes a transition
from ohmic domain to nonohmic domain. The drive to reduce the size below the
scattering-limited mfp to enhance transport behavior does not appear to be appro-
priate [7, 24–27]. That is perhaps the reason that observed experimental resistance
of 40:0 kX as observed by Yao et al. [13] exceeds its ballistic value for 1-lm
resistor. In fact, Greenberg and Del Alamo [24] have demonstrated that resistance
surge in the parasitic regions degrades the performance of an InGaAs transistor. To
sum it up, explorations of new physical phenomena on this length scale require the
contributions from many different fields of science and engineering, including
physics, chemistry, biology, materials science, and electrical engineering.
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