Chapter 2
Output-Input Ratio Efficiency Measures

Ever since the industrial revolution, people have been working to use the smallest
effort to produce the largest output, so that resources, including human, are utilized
more efficiently. Manufacturing companies develop standards to help achieve this,
such as the number of items that should be produced with one unit of a certain type
of input, in order to better control the production process and increase productivity.
Similarly, service companies aim to increase the number of customers served by
one employee in a unit of time.

Productivity is generally defined as the amount of output produced by one unit of
input. Theoretically, there is a maximum productivity which can be achieved only
under perfect conditions. The productivity of a production unit divided by the
maximum productivity is the efficiency of this particular unit. In this context,
efficiency is always less than or equal to unity.

Consider a production activity that applies multiple inputs to produce multiple
outputs. Let X;;, i =1, ..., m, be the quantity of input i/ employed by unit j in a
period of time, and Y,;, r =1, ..., s, be the quantity of output » produced in the
same period. Productivity is thus ratio of the aggregate output to the aggregate
input, expressed as:

> oY
Yo viXi

where P; is the productivity of unit j, and u, and v; are the conversion factors
(or weights) of output r and input i, respectively (Bitran and Chang 1984). The key
point in this measure is the determination of the weights, so that all the inputs and
outputs are restated in their common denominations. Prices are commonly used in
such calculations, such that the productivity indicates the amount of money that can
be generated from each dollar consumed. This formula is quite simple and easy to
calculate. However, the problem is that in many cases some inputs and outputs do
not have market values, which makes the aggregation of the inputs and outputs

P = (2.1)
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difficult. For example, in calculating the productivity of a forest, it is difficult to
determine the monetary values of soil conservation, carbon dioxide absorption, and
wildlife habitation. For this reason, the measurement of productivity was for a long
time limited to the ratio of one output to one input when there is the problem of
commensurability.

2.1 CCR Model

Charnes et al. (1978) proposed a fractional programming model, commonly
referred to as the CCR model, in which the problem of non-commensurability
was solved. The idea is to allow the focal production unit (generalized as the
decision making unit, DMU, in their study) to select the most favorable weights
(or multipliers) u, and v; to calculate the productivity ratio. The only restriction is
that the productivity ratios of all DMUs calculated from the multipliers selected by
this DMU must be less than or equal to one. Since this ratio is between zero and one,
and it can be shown that the ratio is equal to the actual output of a DMU to the
maximum output that can be produced with the same amount of input of this DMU,
it is a measure of efficiency. It is also a relative measure when the maximum output
is obtained from a sample.

2.1.1 Input Model

The CCR model for measuring the relative efficiency of a DMU indexed by O is:

s
Do

Ey = max.
>t viXio
N
uY,; (2.2)
s.t. %g I, j=1,...,n
Zi:lle"f
U, v; > &, r=1, ...,s, i=1, ..., m

Note that the multipliers u, and v; are required to be greater than a small positive
number &, to avoid some unfavorable factors being ignored by assigning zero to the
corresponding multipliers (Charnes et al. 1979). This small number ¢ is called a
non-Archimedean number (Charnes and Cooper 1984). If Ey = 1, then this DMU is
in a state of Pareto optimality, also called Pareto efficiency (Koopmans 1951).
Originally, Pareto efficiency referred to a state that augments the value of one
variable necessarily reduces the value of another. Koopmans (1951) extended it to
productive efficiency to refer to a state that an improvement in any factor, i.e., an
increase in an output or a decrease in an input, requires a deterioration of at least one
other factor, i.e., a decrease in at least one output or an increase in at least one input.
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It thus is also called Pareto-Koopmans efficiency (Charnes and Cooper 1961). If the
lower bound ¢ is removed, and one still has Ey = 1, then this DMU is only weakly
efficient (Charnes et al. 1986, 1991), because in this case one can reduce the amount
of some input or increase the amount of some output, and still have Ey = 1. In
contrast to the weakly efficient condition, the normal case of Ey = 1, with the lower
bound € imposed upon the multipliers, is called strongly efficient.

Model (2.2) is commonly called a ratio model. It is a linear fractional program,
which, based on the ideas set out in Charnes and Cooper (1962), can be transformed
into the following linear model:

s
Ey = max. > uY
r=1
m
S.t. ZV;X[Q =1
i=1

s m
ZM,AY,A]‘—ZV,'X,J‘SO, j: 1, R )
r=1 i=1

u,vi>e,r=1, ...,s, i=1, ..., m

This model is called a multiplier model. When there is only one input and one
output this model uses a straight line, passing through the origin and superimposing
upon all DMUs, as the production frontier. Since the production frontier passes
through the origin, this implies that a proportional change in the input leads to the
same proportional change in the output. One thus has a situation of constant returns
to scale.

Model (2.3) has a dual, which can be formulated as:

m N
Eyp= min. 0—¢ (Zs,-_ + Zs,*)
i=1 =1

n
S.t. Z)»,-X,-j—i—sl.‘ = 0Xo, i=1, ..., m
j=1
n
Z}\fiY,j—S;r:Yro, l”:l, A
J=1
N,si, st >0,j=1, ...,ni=1,...,mr=1, ...,s
0 unrestricted in sign.
(2.4)

Since s;, s > 0, the first two sets of constraints imply ZJ-”:I MX;; < 06X and
Zj":l N\Y,; > Y,9, which indicate that all observations have a larger amount of

inputs and smaller amount of outputs than the point (Zj":] NX, Zj"zl KjY,.j) on
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the production frontier. In other words, the observations are enveloped by the
production frontier. Model (2.4) is thus called an envelopment model. Moreover,
the second constraint set indicates that the DMU fixes its outputs at the current level
of Y, (or an adjusted amount of Yo + s, to be exact) to look for the reduction ratio
0 that the amount of inputs can be reduced. Model (2.4), or Model (2.2), is thus an
input model. Another point to be noted is that although mathematically 0 is not
restricted to be positive, it will always be a positive number, less than or equal to
one, due to the basic properties of the problem (as the smallest reduction ratio
is zero).

Consider five DMUs, A, B, C, D, and E, each applying input X to produce
output Y, with the data shown in Table 2.1, and as depicted in Fig. 2.1. Ray OR,
lying above all observations with the smallest slope, is the production frontier
constructed from these DMUs. The efficiency of each DMU is the ratio of the
minimum input needed to produce the same amount of output of this DMU
(on the production frontier) to the actual amount of input used by this DMU.
For example, the efficiency of DMU C is Xy /X¢ = 0.6. By applying Model (2.2),

Table 2.1 CCR efficiency DMU Input X Output Y Efficiency
of an example with one n 3 5 23
input and one output
B 4 4 1
C 5 3 0.6
D 6 6 1
E 10 8 0.8
Fig. 2.1 CCR efficiency Y
with one input and one
output 1oL
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the efficiency of all DMUs can be calculated, with the results shown in the last
column of Table 2.1.

Consider another case, where five DMUs, A, B, C, D, and E, applying different
combinations of two inputs X; and X, to produce one unit of output Y, with the data
shown in Table 2.2. Figure 2.2 shows the isoquant of Y = 1, constructed from these
DMUs, where DMUs A, B, and C are efficient, as they lie on the isoquant. DMU
D has an efficiency score of OG/OD = 0.6. DMU E lies on the part of the isoquant
extended horizontally from DMU C, which indicates that it is weakly efficient. This
is a situation in which by assigning zero to multiplier v; in Model (2.2), one obtains
Er = 1. As a matter of fact, DMU FE is dominated by DMU C, as it consumes two
more units of X; than DMU C to produce the same amount of Y. The associated
optimal solution is #” = 1 —2¢, v, = ¢ and v, = 1 — 6e.

Table 2.2 CCR efficiency DMU |Input X; |InputX, |OutputY |Efficiency
of an example with two
. A 1 4 1 1
inputs and one output
B 2 2 1 1
C 4 1 1 1
D 4 3 1 0.6
E 6 1 1 1—2¢
Fig. 2.2 CCR efficiency X,
measured from the isoquant
6 1
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2.1.2 OQutput Model

Efficiency can also be measured from the output side. The CCR efficiency in this
case is represented in the reciprocal form of 1/E(. The full output model is:

m
21 ViXio

— = min. =F——
EO Z;\:lul‘YrO
m
S oviX (2.5)
s.t. @21, j=1,....n
> gttrYsj
Uy, v; > €, r=1, ...,s,i=1, ..., m.

This model is exactly the same as Model (2.2), except that the objective function is
represented in reciprocal form. Its linear transformation is:

1 m
— = min. viXi
E(] ;1 i0

s
S.t. ZurYrO =1
r=1

m s
DKy =Y wYy; =0, j=1, ..., n
i=1 r=1

u,vi>e, r=1, ...,s, i=1, ..., m,

and the corresponding envelopment model, which is the dual of Model (2.6), is:

1 m N
— =max. @+e (Y7 +> s
Eo i=1 r=1

n
S.t. Z}‘./X’ff +s; = X, i=1, ..., m
J=1

Z?ij,.j —st=@Yo, r=1,...,s
=1

AN,so,st>0,j=1, ...,ni=1, ....mr=1, ...,s
@ unrestricted in sign.
(2.7)

The constraints of this model indicate that this model fixes the inputs at the current
level of X;y (or the adjusted amount of X;o — s;, to be exact), and looks for the
largest extent @ that the outputs can be expanded. For this reason, this model is an
output model.

Referring to the DMUs in Fig. 2.1, the output model measures the efficiency of
DMU C by using point V on the production frontier as the benchmark, which
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Table 2.3 CCR‘efﬁcien.cy DMU |InputX |Output; |OutputY, |Efficiency
of an example with one input
A 1 2 3 2/3
and two outputs
B 1 2 1
C 1 4 1 1/(1.25+0.75¢)
D 1 4 4 1
E 1 5 2 1
Fig. 2.3 CCR efficiency Y,
measured from the product
transformation curve
6 |
B
T G
4 L D
A
2 E
1
1
C 1
1 I I
0] 2 4 6 Y

applies the same amount of input as DMU C does to produce the largest possible
amount of output. Geometrically, the inverse of the efficiency, as calculated from
Model (2.6), is the ratio of Yy to Y. Under constant returns to scale, which is
reflected by the linear production frontier passing through the origin, the efficiency
measured from the input model, Xy/X¢, is the same as that measured from the
output model, Y/Yy, although the benchmarks selected by the input and output
models are different.

To discuss efficiency measurement from the output side in higher dimensions,
consider five DMUs, A, B, C, D, and E, each applying one unit of input X to produce
different amounts of two outputs, Y; and Y,, with the data shown in Table 2.3. The
product transformation curve constructed from these DMUs is depicted in Fig. 2.3,
where DMUs B, D, and E, lying on the product transformation curve, are efficient.
This figure shows that DMU A uses point G, on the product transformation curve, as
the benchmark to measure its efficiency, with E4 = OA/OG =2/3. DMU
C uses point H, on the segment of the product transformation curve extended
almost vertically from DMU E, to measure efficiency, to get an efficiency
score of OC/OH =1/(1.25+ 0.75¢). The optimal solution is v' = 1.25+
0.75¢, u; = 0.25(1 — €), u, = e. Note that 0.75¢ in the denominator is caused by
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the very small scale of the vertical line tilting to the right from point E, as required
by u, > e.

When a set of DMUs uses the same amount of input to produce different
amounts of output, it is obvious that the one with the largest output has a relative
efficiency equal to one, and all others have a relative efficiency equal to the ratio of
their amount of output to the largest amount. The efficiency measured from the
CCR model satisfies this definition. Consider a situation of n DMUs, all applying
the same amount of m inputs, Xy =X;;,j=1, ..., n,i=1, ..., m, to produce
different amounts of one output Y. From Fig. 2.1 it is clear that the DMU with
the largest amount of output, Y,,.., must lie on the production frontier. Let
(u*,v;,i=1, ..., m) be the optimal solution obtained from Model (2.2) in calcu-
lating the efficiency of a DMU. For the DMU with the largest amount of output Y,
one has u Yimax = 701 Vi Ximax = Y iy Vi Xio. The efficiency of the DMU being
evaluated can be expressed as: Eg = u' Y/ > VviXio = u Yo/ /U Yinax = Y0/ Y max,
as expected.

Consider another situation, where all DMUs apply different amounts of
one input X to produce the same amount of s outputs, ie., Yo=Y,
j=1, ..., n,r=1, ..., s The efficiency of the DMU being evaluated, from
the input point of view, is the ratio of the minimum input level, X,,;,, divided by
the actual amount of input consumed: X ,;,/Xo. Let (uf, r=1, ..., s, v*) be the
optimal solution obtained from Model (2.2) in calculating the efficiency of a DMU.
By the same token, one has > u'Y,0 = >0 Y min = V' Xmin. The efficiency
of the DMU being evaluated can then be expressed as: Eo=)>."
U Y,0/vXo =V Xmin/v Xo = Xmin/Xo, as expected. This verifies that the effi-
ciency measured from the CCR model follows the conventional definition of
relative efficiency.

2.2 BCC Model

The CCR model assumes constant returns to scale, in that the output increases in the
same proportion as the input. For the case of a single input and single output, the
production frontier is a straight line passing through the origin. In production
economics, due to the effect of fixed inputs, returns to scale usually increase in
the early stage of production, where the amount of variable input is relatively small.
As the amount of variable input increases, returns to scale diminish to constant, and
finally become decreasing. Taking this phenomenon into consideration, Banker
et al. (1984) extended the CCR model to allow for variable returns to scale, referred
to as the BCC model. Conceptually, they allow the production frontier to move
away from the origin by introducing a constant in aggregating either the inputs or
outputs. The constant plays the role of the intercept in the linear production frontier.
This model also has two forms, input and output.
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2.2.1 Input Model

The idea of the output-input ratio efficiency measure is to aggregate the outputs into
a virtual output and the inputs into a virtual input, and to take their ratio to be the
measure of efficiency. In the input model the outputs are treated as the explanatory
variables to calculate the expected (minimum) virtual input. The ratio of the
minimum virtual input to the actual virtual input, aggregated from the multiple
inputs, is the input efficiency. The model developed by Banker et al. (1984) to
measure the efficiency from the input side is:

Z,?_IM)'YI'O — Uy
Ey = max. ==f——
Z'* V,'X,'()
i=1
A
WY —ug .
s.t. Z’-‘+§ 1, j=1, ..., n (2.8)

> ViXi

u,v,>e, r=1, , s, 1=1, , m

upunrestricted in sign.

The difference between this model and Model (2.2), the one under constant returns
to scale, is the inclusion of the intercept u.

The linear fractional objective function in Model (2.8) can be linearized by
assigning the denominator to one, and leaving the numerator as the objective
function. This is because Model (2.8) has multiple solutions, in that if (u*, v*) is
an optimal solution, then so is (cu*, cv¥*), for ¢ > 0. Assigning the denominator to
one to reduce one degree of freedom will thus not alter the optimal objective value,
Ey, although the optimal solution (u*, v*) may be different. The linear fractional
constraints are easily linearized by multiplying both sides by the denominator to
obtain the following linear programming model:

N
Ey = max. > uY,0—up
r=1

m
S.t. Zvl—X,-o =1
i=1

s m (29)
ZMI‘Y’Tf — Uy — ZV,‘X,‘]* S O, j: 1, P )

r=1 i=1

U, vi>e, r=1, ...,s, i=1, ..., m

up unrestricted in sign.

This linear model can also be obtained by applying the idea in Charnes and Cooper
(1962) for transforming a linear fractional program into a linear program.
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Table 2.4 Technical and scale efficiencies of an example with one input and one output

CCR BCC Input Efficiency | BCC Output Efficiency
DMU |InputX |OutputY |Efficiency |Technical Scale Technical Scale
A 3 2 2/3 1 2/3 1 2/3
B 4 4 1 1 1 1 1
C 5 3 0.6 0.7 6/7 0.6 1
D 6 6 1 1 1 1 1
E 10 8 0.8 1 0.8 1 0.8
Model (2.9) has a dual, which can be formulated as:
m N
Eo=min. 0—¢g( Y 57 + 5"
i=1 r=1
n
s.t. > X457 = 6Xjo, i=1, , m
j=1
n
Z}\erj - Sr+ = YrO, r= 1’ , S
j=1
n
dH=1
J=1
A, s;,st>0,j=1, ....,n, i=1, ,m,r=1, , S.
0 unrestricted in sign.
(2.10)

This model is almost the same as Model (2.4), the one under the assumption of
constant returns to scale, except that a convexity constraint of Z/-":] A; = lis added.

To see the difference between the BCC model and the CCR model in measuring
efficiencies from the input side, consider the example in Table 2.1, where five
DMUs apply one input X to produce one output Y. The first four columns of
Table 2.4 are copied from Table 2.1 for easy comparison, and the positions of the
five DMUs in the X-Y plane are re-drawn in Fig. 2.4 for detailed explanation. By
applying Model (2.8), one obtains the efficiencies of the five DMUs, as shown in the
fifth column of Table 2.4, where DMUs A, B, D, and FE are efficient, and only DMU
C is inefficient. This implies that the production frontier constructed from these
DMUs by this model is composed of the piecewise line segments ABDE, as shown
in Fig. 2.4. Since this problem has only one input, we can divide the multipliers in
the numerator by that in the denominator to obtain the following linear program and
have a clearer geometric interpretation:
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Fig. 2.4 Efficiency measurement under variable returns to scale

E() = max. (MIYO — MQ)/XO
st. (umY;—u)/X;<1,j=A, B, C, D, E (2.11)

uy > €, upunrestricted in sign.

The multiplier #; in this case is the slope of the line segment corresponding to the
DMU being evaluated by considering Y as the horizontal axis, and u, is the intercept
of the line segment extending to the X-axis. For example, in calculating the
efficiency of DMU A, one obtains u, = 0.5and — u, = 2, corresponding to the
line segment AB. From Fig. 2.4 it is noted that this is not the unique solution, and
(u], — ué) = (g, 3 — 2¢), which represents a vertical line extended from DMU A,
is obviously another one. As a matter of fact, any line passing through DMU A with
a slope u; between € and 0.5, and the corresponding intercept of —uy = 3 — 2u;, can
be the frontier. By the same token, when Model (2.11) is applied to measure the
efficiency of DMUs B, D, and E, one also obtains alternative solutions. Based on
Fig. 2.4, the alternative solutions for DMU B are 0.5 < u; < 1, with —u, =4 — 4u;,
for DMU D they are 1 < u) <2, with —uy = 6 — 6u;, and for DMU E they are
2 <uj < oo, with —uy = 10 — 8uj.

In calculating the efficiency of DMU C by applying Model (2.11), the optimal
solution is unique, with (i, — uy) = (0.5, 2), in that the line segment AB is the
frontier, and point W is the benchmark, that DMU C uses when measuring effi-
ciency. The efficiency is Xy /Xc = 0.7. Recall that the frontier used to calculate
efficiency under constant returns to scale is the ray OR, with the CCR efficiency of
0.6. From Fig. 2.4 it is clear that for the whole production frontier the region under
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the line segment BD (in terms of the output) has the most productive scale, in that
the average input consumed per unit of output is the smallest. For scales (in terms of
output) smaller than that of DMU B or greater than that of DMU D, the average
amount of input used to produce one unit of output is larger, and the larger amount
of input needed in these two regions is due to inadequate scales. The extra amount
of input required relative to the minimum amount is the inefficiency due to
improper scale. For example, point W, with a BCC efficiency one, is technically
efficient; however, it is not efficient from the viewpoint of scale, because under the
most productive scale an input level of X, is enough to produce the output level Yy, .
Xy/Xw is thus the scale efficiency of W. Since DMU C has the same output level of
W, it has the same scale efficiency as W has, X;/Xy. Different from W, DMU C is
technically inefficient, because it requires X units of input, rather than Xy, to
produce the same amount of output Y, and X/Xyy is its technical efficiency. By
generalizing this idea to multiple-input and multiple-output cases, one has the BCC
efficiency as the technical efficiency, and the ratio of the CCR efficiency to the BCC
efficiency as the scale efficiency for the DMU being evaluated. Column six of
Table 2.4 shows the scale efficiencies of the five DMUs.

In higher dimensions the optimal solution (u*, v*) for a technically efficient
DMU has Z,‘;l ufy,. — ua — Zfi | vfx,v = 0, where x;, y, are now variables, which is
a supporting hyperplane. Banker et al. (1984) showed that when the solution is
unique, negative, zero, and positive values of i indicate that the associated DMU
is in the regions of increasing, constant, and decreasing returns to scale, respec-
tively. This is also seen in the graphical interpretation shown in Fig. 2.4. Banker and
Thrall (1992) presented a proof for this when the focal DMU is technically efficient,
and Banker et al. (1996) later removed this condition.

2.2.2  Output Model

In contrast to the input model, where the minimum amount of inputs needed to
produce the specified output levels is obtained to measure efficiency, the output
model looks for the maximum amount of outputs that can be produced from the
given amount of inputs to measure efficiency. Based on this concept, the output
BCC model for measuring the efficiency of a DMU has the following form:

1 .o viXio + vo

—=min. E=—_—
EO Zr:l Uy YrO

m viXi+vo

s.t. 2114’2 1, j=1, ....n (2.12)
Z'* M,AY,AI‘
r=1 .
u, vi>e, r=1, ...,s, i=1, ..., m

vo unrestricted in sign.
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Similar to the input model, the numerator of the fractional in Model (2.12)
calculates the maximal virtual output that can be produced from the actual amount
of inputs for the DMU being evaluated, and the denominator calculates the virtual
output aggregated from the actual amount of outputs. The ratio is then the recipro-
cal of the efficiency, from the output point of view.

The equivalent linear program to the ratio model (2.12) is:

1 . m
— = min. ZV,'X,‘() + Vo
Eo i=1

S.t. ZM,-Y,.O =1
= (2.13)

m

ZViXij'i_VO_iurYerO’ .]:1’ cees
i=1 r=1

u,vi>er=1, ..., s, i=1, ...

vo unrestricted in sign,

and the corresponding envelopment model, which is the dual of Model (2.13), is:

1 m N
—=max. @+e (Zs[ + Zsf)
Eo i=1 r=1

n
st Z}\VX’/ + si_ = Xi07 i = 1, Lo, M,

J=1

SNY—si= @Y, r=1, ...,
=

i’\.f =1
=1

A, s,st>0,j=1, ...,ni=1, ...,mr=1, ...
@ unrestricted in sign
(2.14)

This envelopment model also has an assumption of variable returns to scale, and the
difference of this from that under constant returns to scale, i.e., Model (2.7), is the
convexity constraint of Zj":l A= 1.

Model (2.12) can also be used to discuss the region of returns to scale, where the
DMU being evaluated is located. Consider the example in Fig. 2.4. The production
frontier constructed from the five DMUs by Model (2.12) is the same set of line
segments ABDE as that constructed by Model (2.8). Similar to the discussion in
the input model of Sect. 2.2.1, where the only multiplier v in the denominator can be
absorbed by the multipliers u; and uy in the numerator, Model (2.12) can be
simplified as follows by merging the only multiplier # in the denominator into v,
and v, in the numerator:
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1 .
—=min. (v Xy +vo)/Yo
Ey

st (nX;+w)/Y; > 1. j=A B C.D.E (2.15)

v > g, vounrestricted in sign,

where v is the slope, and v, is the intercept, of the linear frontier that the DMU
being evaluated uses to measure efficiency. For example, to measure the efficiency
of DMU A, one solution is (v’f, vg) = (2, —4), which corresponds to the line
segment AB. In measuring the efficiencies of DMUs B and D, one solution is
(vf vz) =(1, 0)) which corresponds to the line segment BD. Finally, in calculat-
ing the efficiency of DMU E, one solution is (v}, vo) = (0.5, 3). As discussed in
the input model, for the whole production frontier, the region of constant returns to
scale, i.e., line segment BD, with vo = 0, has the largest average return (amount of
output per unit input), and the marginal return (the additional amount of output
produced by an additional unit of input) is equal to the average return. In the region
of smaller scales (in terms of input), with vy < 0, the average return is smaller than
that of the region of constant returns to scale, although the marginal return of the
former is larger than that of the latter. In contrast, in the region of larger scales, with
vo > 0, both the average and marginal returns are smaller than those of the region of
constant returns to scale. The intercept v, serves as an indicator of the type of
returns to scale of the DMU.

DMU A lies on the production frontier, and it is thus technically efficient.
However, if it is measured by the CCR model, then it is not efficient, with a CCR
efficiency of 2/3, based on the benchmark U. This inefficiency is obviously due to
an inadequate scale. The BCC model (2.12) thus measures the technical efficiency,
while the CCR model (2.5) measures the overall efficiency, and the ratio of the CCR
efficiency to the BCC efficiency is the scale efficiency. It is worth noting that DMU
C has a scale efficiency of one, although it is technically inefficient. The second-to-
last column of Table 2.4 shows the technical efficiencies of the five DMUs from the
output side, and the last column shows their scale efficiencies. The BCC efficiencies
from the input and output sides, including technical and scale, are not necessarily
the same.

The graphical interpretation in this section shows that when the number of
DMUs is relatively small, most of them appear on the production frontier, with a
perfect efficiency score of one, which apparently overstates their efficiency. This
raises the question of how many DMUs are needed to construct an empirical
frontier which does not deviate from the true one by too much, in order to obtain
meaningful efficiency measures. A rule of thumb is to have at least three times the
total number of inputs and outputs, that is n > 3(m + s) (Banker et al. 1989). Time
series data can be used for cases in which the number of all possible DMUs does not
satisfy this rule, by considering the same DMU at different time periods as different
DMUs, thus increasing the number of DMUs in the calculation, referred to as
window analysis in Charnes et al. (1985).
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2.3 Restrictions on Multipliers

One issue that was widely discussed in the early development of the DEA approach
was the value used for the small non-Archimedean number €. If this is too small,
then it will be ignored in computer calculations due to rounding. If, on the other
hand, it is not small enough, then a Pareto efficiency DMU may become inefficient.
As to what value should be assigned to €, Lewin and Morey (1981) recommended
107°. However, since different units of measurement for the input and output
factors will affect the function of €, e.g., centimeters versus kilometers, it is
inappropriate to assign the same value to € for factors of different scales. Charnes
and Cooper (1984) thus suggested using e = 10~ when efficiency is expressed as a
percentage (e.g., using Ey = 100 rather than 1.0), and input and output entries are
kept in the range of 1 to 100. There are also other suggestions for setting the value
of € (Fiare and Hunsaker 1986).

In many cases there is prior information regarding the importance of the factors
that requires the corresponding multipliers to lie in specific ranges in the form of
(Dyson and Thanassoulis 1988):

(2.16)

Consider a case of n DMUs, where each DMU applies different amounts of two
inputs X; and X, to produce one unit of one output Y. The CCR input model (2.2),
with restrictions on the range of the multipliers included, can be expressed as:

EO = max. 1/(V]X]o + VzXzo)
S.t. V1X1j+V2X2j >1, j=1, ..., n (217)
LI <v; <Ul, i=1,2

where (Xy;, X5;) is the input observation of a DMU. The lower bound constraint
Lil <w;,i=1, 2, can be expressed as v, (I/L{) +v2(0) > 1 and v;(0) + vz(l/Lé)
> 1. These two constraints imply that two more DMUs, with observations (1/L’1, 0)
and (0, 1/L%), are included to construct the frontier.

To handle the upper bound of v; < U l’ , we substitute it into the constraint of
viXij +v2Xo; > 1 to obtain U{le +v2Xy; > 1 and viXy; + Uéij >1, or vy >
(1 = U{Xy;)/X2andvy > (1 — U3X5;)/Xy;. These lower bounds on v; imply the
addition of two sets of n DMUs, with observations (0, ij/(l — Ulej))
and (le/ (l — Uéij), 0), j=1,...,n, to the original DMUs to construct the
frontier together.

As more DMUs are included, the constructed frontier will be raised higher in the
X-Y plane (or expanded towards the origin in the input space, or expanded outwards
in the output space). The efficiency of every DMU will thus either remain the
same or decrease. For the data contained in Table 2.2, suppose the restrictions of
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Fig. 2.5 Frontiers adjusted X,
by absolute bounds on
multipliers
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0.2 <v; £04and 0.1 < v, <0.5 are imposed. The new DMUs generated by the
lower bounds are (5, 0) and (0, 10). The two upper bounds are able to generate ten
new DMUs; however, only three are feasible, (8, 0), (0, 20/3), and (0, 10). Referring
to Fig. 2.2, which is redrawn as Fig. 2.5, the line segments SABCS’ are the frontier
constructed from the original five DMUs, and TBT' are those constructed from the
new set of DMUs. Based on this new frontier, the original efficient DMU C and the
weak efficient DMU E become inefficient, the efficiency of DMU D decreases from
OG/OD to OH/OD, whereas the original efficient DMUs A and B are still efficient.

The range in Expression (2.16) for each multiplier is in absolute scale, which has
different effects for measures of different scales, and may obtain misleading results
(Podinovski 1999). To eliminate this undesirable effect, Thompson et al. (1986)
proposed the concept of an assurance region, with the following form, to restrict the
range of the multipliers:

L<li<y!, i=2 ...m

v

! (2.18)
LC<—<UP, r=2 ...,5

uj

In this form the importance of each input/output factor is expressed in relation to
that of the first one. The absolute bounds in (2.16) are special cases of the relative
bounds, with vi = u; = 1.

To see how these constraints affect the frontier, consider the example in
Table 2.3, where all five DMUs apply one unit of input X to produce different
amounts of two outputs Y; and Y,. The constraints of the CCR output model (2.5)
for this problem are uY; +uYo; <1, j=A, ..., E. Figure 2.6 is redrawn from
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Fig. 2.6 Frontiers adjusted Y,
by relative bounds on
multipliers 8L T
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Fig. 2.3, in which the line segments SBDES' are the frontier constructed from the
original five DMUs. The frontier line segments BD and DE can be expressed by
the equation w1y, + upy, = 1, with a slope of —u;/uy equal to —0.5 and —2,
respectively. Note that here y, and y, are variables. Suppose an assurance region of
1 < uy/upy < 5is imposed. This implies that two frontiers with slopes of —1 and —5
are added. These two frontiers correspond to line segments 7D and ET’ in Fig. 2.6,
and the new frontier becomes the line segments TDET’. Under this new frontier, the
originally efficient DMU B becomes inefficient, the inefficient DMUs A and C have
lower efficiency scores, and the efficient DMUs D and E are still efficient.

The assurance region for restricting the relative range of either input or output
multipliers can be linked to be more general (Thompson et al. 1990), based on the
concept of a cone ratio (Charnes et al. 1989). The most general linear form of
restrictions on multipliers is: oyu; + ... + ous + Pyvi + ... + B,,vm > 0, and
Wong and Beasley (1990) had an application for this. Tracy and Chen (2005)
introduced a formulation which provides generalized treatment for weight
restrictions.

2.4 Ranking

An issue closely related to restrictions on multipliers is ranking. The DEA tech-
nique identifies efficient DMUs, and there is usually more than one DMU that is
efficient. All efficient DMUs have a perfect efficiency score of one, which makes
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ranking of them difficult. Imposing tighter ranges for the multipliers, as discussed in
the preceding section, may help discriminate the efficient DMUs. In addition to
weight restrictions, there are many other approaches to ranking.

DMUs with higher efficiency scores are usually considered more efficient, and
thus have higher ranks. However, some scholars believe that DMUs using different
frontier facets to measure efficiency are not comparable, and only those using the
same frontier facet can be compared. The same frontier facet means the same value
of multipliers for calculating efficiency scores. Based on this idea, some studies use
the same weight for all DMUs to calculate efficiency. This is the most stringent case
of the assurance region, in which there is only one set of multipliers that can be
selected in the region.

The first article to propose this idea was Roll et al. (1991), using the multipliers
that yield the largest average efficiency score from all DMUs to calculate the
efficiency of every DMU. The model under constant returns to scale is:

n
max. Y E;/n
=1

S uY,: 2.19
s.t. E,:%g, j=1, ...,n (2.19)
> i ViXi
U, vize r=1, ...,s, i=1, ..., m

At optimality, the efficiency of DMU j is calculated as E; =), qu v/
S viX;. The efficiency scores thus measured then have a common basis for
ranking. The common-weight frontier is a hyperplane that superimposes upon all
DMUs, and all DMUs use this frontier to calculate efficiency.

Kao and Hung (2005) proposed the idea of using the compromise solution to
determine the set of common weights that minimizes the total difference between
the ideal efficiency (calculated from the conventional CCR or BCC models) and the
actual efficiency (calculated from the common weight) of all DMUs to determine
the multipliers. The model is:

. n # Z:: MrYijj g
min. Z(Ej - ZleiXij

Jj=1 i=1
S Yy, , (2.20)
s.t. = -1, j=1, ..., n
Ty
i=1 "
u,vi>er=1, ...,s, i=1, ..., m,

where E} in this case is the efficiency of DMU j calculated from the CCR model,
and p > 1 is the distance parameter. When p =1 this model is equivalent to Model
(2.19), and it can thus be considered as an extension of the idea of maximizing the
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average efficiency of all DMUs. Kao and Hung (2005) recommended using p =2,
as this value produces a result of minimum variance.

Another idea related to a common weight is cross efficiency (Doyle and Green
1994), and this approach uses the multipliers selected by DMU j to calculate the
efficiency of all other DMUs, in addition to itself. Therefore, every DMU has
n cross efficiencies calculated from n sets of multipliers selected by n DMU:s.
The averages of the n cross-efficiencies from every DMU are then used for ranking.
Since there are multiple solutions for using either the CCR or BCC models to
measure the efficiency of every DMU, and improperly selected multipliers can lead
to misleading results, one approach is to select the multipliers that produce the
maximum weighted average efficiency of all DMUs. This procedure uses a con-
ventional DEA model to calculate the efficiency of a DMU to obtain the efficiency
Ey. Then the multipliers that maximize the weighted average efficiency of the
n DMUs, while maintaining the efficiency of this DMU at E, are sought via the
following model:

n S
Zj:l i Ur¥j

> VX
) m

S.t. ZM,~Y,-() = E()ZV,‘X,‘()
r=1 i=1

Y Y
L]USL ji=1, ...,
}:’" v X

=1 U

u,vi>er=1, ...,s,i=1, ..., m.

max.

(2.21)

Note that the objective function is the average of the efficiencies E; = Y ", u,Y,;/
> viXy, j=1,...,n, weighted by the proportion of their aggregate input in
the total aggregate input, > ", vX;/> ", > viX;. The optimal solution
(u*, v*) is then used to calculate the efficiency of every DMU d, E 4. This procedure
is repeated for every DMU f to obtain the cross efficiency for every DMU d, E 4.
The average efficiency for DMU d, E; = an:] Eg/n, is then used for ranking.

Most of the ranking methods are based on the idea of restricting the range of the
multipliers that are used to calculate the efficiencies. In contrast, Andersen and
Petersen (1993) proposed eliminating the focal DMU to construct the frontier from
the remaining n — 1 DMU s in order to calculate an efficiency index for ranking.
However, this method is only for ranking efficient DMUs. Since the DMUs being
eliminated are efficient ones, they will fall outside of the region encompassed by the
new frontier, and their efficiency scores calculated based on this frontier will be
greater than one. This is why this efficiency index is said to measure super
efficiency. The following is an output model for calculating the super efficiency
of the focal DMU under variable returns to scale:
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Fig. 2.7 Calculation of Y
super efficiency
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PG
u, vizer=1, ...,s, i=1, ..., m

vo unrestricted in sign.

Figure 2.7 is a graphical interpretation of super efficiency using the example in
Fig. 2.4, where five DMUs, A, B, C, D, and E, use different amounts of input X to
produce different amounts of output Y. The frontier constructed from these DMUs
is the line segments SABDES’, and DMUs A, B, D, and E are efficient. In order to
rank these four efficient DMUSs, they are each eliminated in turn to construct new
frontiers to calculate their super efficiencies. For example, the super efficiency of
DMU B is measured from the frontier SADES’ constructed from the other four
DMUs, A, C, D, and E, as BG/FG. The super efficiencies of DMUs D and E can be
calculated similarly. To calculate the super efficiency of DMU A, however, one will
obtain an unbounded value, because DMU A does not have a line segment with
which to calculate efficiency. This situation will not occur under constant returns to
scale. While several methods have been proposed to solve this problem
(Li et al. 2007, Cook et al. 2009), super efficiency does not seem to be a suitable
method for ranking (Banker and Chang 2006).
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2.5 Supplementary Literature

The major difference between the CCR and BCC models is the effect of scale, and
many articles address this issue. Seiford and Zhu (1999) reviewed three basic
methods for determining returns to scale and the effects of multiple solutions.
Banker et al. (2004) discussed returns to scale for several DEA models. Some
other works related to this topic are Jahanshahloo and Soleimani-Damaneh (2004),
Zarepisheh and Soleimani-Damaneh (2009), Fukuyama (2000), and Fgrsund and
Hjalmarsson (2004).

The issue of weight restrictions is also widely discussed in the DEA literature,
and there are different ways of classifying the related methods. The following
studies have reviewed the literature on this topic: Roll and Golany (1993), Allen
et al. (1997), Angulo-Meza and Estellita Lins (2002), Joro and Viitala (2004), and
Sarrico and Dyson (2004). The works of Podinovski and Thanassoulis (2007),
Khalili et al. (2010), Podinovski and Bouzdine-Chameeva (2013), and Fgrsund
(2013), also discuss this issue.

Soltanifar and Lotfi (2011) discussed the strengths and weaknesses of several
ranking methods, and proposed the voting analytic hierarchy process method. Wu
et al. (2012) compared different cross efficiency methods for ranking. Other
comprehensive reviews of the methods used for ranking include Adler
et al. (2002), Singh and Chand (2007), Jablonsky (2012), and Hosseinzadeh
et al. (2013).
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