
Chapter 2

Output–Input Ratio Efficiency Measures

Ever since the industrial revolution, people have been working to use the smallest

effort to produce the largest output, so that resources, including human, are utilized

more efficiently. Manufacturing companies develop standards to help achieve this,

such as the number of items that should be produced with one unit of a certain type

of input, in order to better control the production process and increase productivity.

Similarly, service companies aim to increase the number of customers served by

one employee in a unit of time.

Productivity is generally defined as the amount of output produced by one unit of

input. Theoretically, there is a maximum productivity which can be achieved only

under perfect conditions. The productivity of a production unit divided by the

maximum productivity is the efficiency of this particular unit. In this context,

efficiency is always less than or equal to unity.

Consider a production activity that applies multiple inputs to produce multiple

outputs. Let Xij, i ¼ 1, . . . , m, be the quantity of input i employed by unit j in a

period of time, and Yrj, r ¼ 1, . . . , s, be the quantity of output r produced in the

same period. Productivity is thus ratio of the aggregate output to the aggregate

input, expressed as:

Pj ¼
X s

r¼1
urYrjXm

i¼1
viXij

ð2:1Þ

where Pj is the productivity of unit j, and ur and vi are the conversion factors

(or weights) of output r and input i, respectively (Bitran and Chang 1984). The key

point in this measure is the determination of the weights, so that all the inputs and

outputs are restated in their common denominations. Prices are commonly used in

such calculations, such that the productivity indicates the amount of money that can

be generated from each dollar consumed. This formula is quite simple and easy to

calculate. However, the problem is that in many cases some inputs and outputs do

not have market values, which makes the aggregation of the inputs and outputs
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difficult. For example, in calculating the productivity of a forest, it is difficult to

determine the monetary values of soil conservation, carbon dioxide absorption, and

wildlife habitation. For this reason, the measurement of productivity was for a long

time limited to the ratio of one output to one input when there is the problem of

commensurability.

2.1 CCR Model

Charnes et al. (1978) proposed a fractional programming model, commonly

referred to as the CCR model, in which the problem of non-commensurability

was solved. The idea is to allow the focal production unit (generalized as the

decision making unit, DMU, in their study) to select the most favorable weights

(or multipliers) ur and vi to calculate the productivity ratio. The only restriction is

that the productivity ratios of all DMUs calculated from the multipliers selected by

this DMUmust be less than or equal to one. Since this ratio is between zero and one,

and it can be shown that the ratio is equal to the actual output of a DMU to the

maximum output that can be produced with the same amount of input of this DMU,

it is a measure of efficiency. It is also a relative measure when the maximum output

is obtained from a sample.

2.1.1 Input Model

The CCR model for measuring the relative efficiency of a DMU indexed by 0 is:

E0 ¼ max:

X s

r¼1
urYr0Xm

i¼1
viXi0

s:t:

X s

r¼1
urYrjXm

i¼1
viXij

� 1, j ¼ 1, . . . , n

ur, vi � ε, r ¼ 1, . . . , s, i ¼ 1, . . . , m

ð2:2Þ

Note that the multipliers ur and vi are required to be greater than a small positive

number ε, to avoid some unfavorable factors being ignored by assigning zero to the

corresponding multipliers (Charnes et al. 1979). This small number ε is called a

non-Archimedean number (Charnes and Cooper 1984). IfE0 ¼ 1; then this DMU is

in a state of Pareto optimality, also called Pareto efficiency (Koopmans 1951).

Originally, Pareto efficiency referred to a state that augments the value of one

variable necessarily reduces the value of another. Koopmans (1951) extended it to

productive efficiency to refer to a state that an improvement in any factor, i.e., an

increase in an output or a decrease in an input, requires a deterioration of at least one

other factor, i.e., a decrease in at least one output or an increase in at least one input.
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It thus is also called Pareto-Koopmans efficiency (Charnes and Cooper 1961). If the

lower bound ε is removed, and one still has E0 ¼ 1; then this DMU is only weakly

efficient (Charnes et al. 1986, 1991), because in this case one can reduce the amount

of some input or increase the amount of some output, and still have E0 ¼ 1: In
contrast to the weakly efficient condition, the normal case ofE0 ¼ 1;with the lower
bound ε imposed upon the multipliers, is called strongly efficient.

Model (2.2) is commonly called a ratio model. It is a linear fractional program,

which, based on the ideas set out in Charnes and Cooper (1962), can be transformed

into the following linear model:

E0 ¼ max:
Xs
r¼1

urYr0

s:t:
Xm
i¼1

viXi0 ¼ 1

Xs
r¼1

urYrj �
Xm
i¼1

viXij � 0, j ¼ 1, . . . , n

ur, vi � ε, r ¼ 1, . . . , s, i ¼ 1, . . . , m

ð2:3Þ

This model is called a multiplier model. When there is only one input and one

output this model uses a straight line, passing through the origin and superimposing

upon all DMUs, as the production frontier. Since the production frontier passes

through the origin, this implies that a proportional change in the input leads to the

same proportional change in the output. One thus has a situation of constant returns

to scale.

Model (2.3) has a dual, which can be formulated as:

E0 ¼ min: θ� ε
Xm
i¼1

s�i þXs
r¼1

sþr

 !

s:t:
Xn
j¼1

λjXij þ s�i ¼ θXi0, i ¼ 1, . . . , m

Xn
j¼1

λjYrj � sþr ¼ Yr0, r ¼ 1, . . . , s

λj, s�i , sþr � 0, j ¼ 1, . . . , n, i ¼ 1, . . . , m, r ¼ 1, . . . , s

θ unrestricted in sign:

ð2:4Þ

Since s�i , s
þ
r � 0; the first two sets of constraints imply

Pn
j¼1 λjXij � θXi0 andPn

j¼1 λjYrj � Yr0; which indicate that all observations have a larger amount of

inputs and smaller amount of outputs than the point
Pn

j¼1 λjXij,
Pn

j¼1 λjYrj

� �
on

2.1 CCR Model 21



the production frontier. In other words, the observations are enveloped by the

production frontier. Model (2.4) is thus called an envelopment model. Moreover,

the second constraint set indicates that the DMU fixes its outputs at the current level

of Yr0 (or an adjusted amount ofYr0 þ sþr ; to be exact) to look for the reduction ratio
θ that the amount of inputs can be reduced. Model (2.4), or Model (2.2), is thus an

input model. Another point to be noted is that although mathematically θ is not

restricted to be positive, it will always be a positive number, less than or equal to

one, due to the basic properties of the problem (as the smallest reduction ratio

is zero).

Consider five DMUs, A, B, C, D, and E, each applying input X to produce

output Y, with the data shown in Table 2.1, and as depicted in Fig. 2.1. Ray OR,
lying above all observations with the smallest slope, is the production frontier

constructed from these DMUs. The efficiency of each DMU is the ratio of the

minimum input needed to produce the same amount of output of this DMU

(on the production frontier) to the actual amount of input used by this DMU.

For example, the efficiency of DMU C is XU=XC ¼ 0:6: By applying Model (2.2),

Table 2.1 CCR efficiency

of an example with one

input and one output

DMU Input X Output Y Efficiency

A 3 2 2/3

B 4 4 1

C 5 3 0.6

D 6 6 1

E 10 8 0.8

2 4 6 8 10 X
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10 R

XC

YC

XU

YV

Fig. 2.1 CCR efficiency

with one input and one

output
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the efficiency of all DMUs can be calculated, with the results shown in the last

column of Table 2.1.

Consider another case, where five DMUs, A, B, C, D, and E, applying different

combinations of two inputs X1 and X2 to produce one unit of output Y, with the data
shown in Table 2.2. Figure 2.2 shows the isoquant of Y¼ 1, constructed from these

DMUs, where DMUs A, B, and C are efficient, as they lie on the isoquant. DMU

D has an efficiency score of OG/OD¼ 0.6. DMU E lies on the part of the isoquant

extended horizontally from DMU C, which indicates that it is weakly efficient. This
is a situation in which by assigning zero to multiplier v1 in Model (2.2), one obtains

EE ¼ 1: As a matter of fact, DMU E is dominated by DMU C, as it consumes two

more units of X1 than DMU C to produce the same amount of Y. The associated

optimal solution is u* ¼ 1� 2ε, v*1 ¼ ε and v*2 ¼ 1� 6ε.

Table 2.2 CCR efficiency

of an example with two

inputs and one output

DMU Input X1 Input X2 Output Y Efficiency

A 1 4 1 1

B 2 2 1 1

C 4 1 1 1

D 4 3 1 0.6

E 6 1 1 1� 2ε

O

X2

2

4

6

2 4 6 X1

A

C

B

D

EG

Fig. 2.2 CCR efficiency

measured from the isoquant
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2.1.2 Output Model

Efficiency can also be measured from the output side. The CCR efficiency in this

case is represented in the reciprocal form of 1/E0. The full output model is:

1

E0

¼ min:

Xm

i¼1
viXi0X s

r¼1
urYr0

s:t:

Xm

i¼1
viXijX s

r¼1
urYrj

� 1, j ¼ 1, . . . , n

ur, vi � ε, r ¼ 1, . . . , s, i ¼ 1, . . . , m:

ð2:5Þ

This model is exactly the same as Model (2.2), except that the objective function is

represented in reciprocal form. Its linear transformation is:

1

E0

¼ min:
Xm
i¼1

viXi0

s:t:
Xs
r¼1

urYr0 ¼ 1

Xm
i¼1

viXij �
Xs
r¼1

urYrj � 0, j ¼ 1, . . . , n

ur, vi � ε, r ¼ 1, . . . , s, i ¼ 1, . . . , m,

ð2:6Þ

and the corresponding envelopment model, which is the dual of Model (2.6), is:

1

E0

¼ max: φþ ε
Xm
i¼1

s�i þXs
r¼1

sþr

 !

s:t: Xn
j¼1

λjXij þ s�i ¼ Xi0, i ¼ 1, . . . , m

Xn
j¼1

λjYrj � sþr ¼ φYr0, r ¼ 1, . . . , s

λj, s�i , sþr � 0, j ¼ 1, . . . , n, i ¼ 1, . . . , m, r ¼ 1, . . . , s

φ unrestricted in sign:

ð2:7Þ

The constraints of this model indicate that this model fixes the inputs at the current

level of Xi0 (or the adjusted amount of Xi0 � s�i , to be exact), and looks for the

largest extent φ that the outputs can be expanded. For this reason, this model is an

output model.

Referring to the DMUs in Fig. 2.1, the output model measures the efficiency of

DMU C by using point V on the production frontier as the benchmark, which
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applies the same amount of input as DMU C does to produce the largest possible

amount of output. Geometrically, the inverse of the efficiency, as calculated from

Model (2.6), is the ratio of YV to YC. Under constant returns to scale, which is

reflected by the linear production frontier passing through the origin, the efficiency

measured from the input model, XU/XC, is the same as that measured from the

output model, YC/YV, although the benchmarks selected by the input and output

models are different.

To discuss efficiency measurement from the output side in higher dimensions,

consider five DMUs, A, B, C,D, and E, each applying one unit of input X to produce

different amounts of two outputs, Y1 and Y2, with the data shown in Table 2.3. The

product transformation curve constructed from these DMUs is depicted in Fig. 2.3,

where DMUs B, D, and E, lying on the product transformation curve, are efficient.

This figure shows that DMU A uses pointG, on the product transformation curve, as

the benchmark to measure its efficiency, with EA ¼ OA=OG ¼ 2=3. DMU

C uses point H, on the segment of the product transformation curve extended

almost vertically from DMU E, to measure efficiency, to get an efficiency

score of OC=OH ¼ 1= 1:25þ 0:75εð Þ: The optimal solution is v* ¼ 1:25þ
0:75ε, u*1 ¼ 0:25 1� εð Þ, u*2 ¼ ε. Note that 0.75ε in the denominator is caused by

Table 2.3 CCR efficiency

of an example with one input

and two outputs

DMU Input X Output Y1 Output Y2 Efficiency

A 1 2 3 2/3

B 1 2 5 1

C 1 4 1 1/(1.25 + 0.75ε)
D 1 4 4 1

E 1 5 2 1

A

C

B

D

E

G

H

Y2

2

4

6

2 4 6 Y1
O

Fig. 2.3 CCR efficiency

measured from the product

transformation curve
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the very small scale of the vertical line tilting to the right from point E, as required
by u2 � ε.

When a set of DMUs uses the same amount of input to produce different

amounts of output, it is obvious that the one with the largest output has a relative

efficiency equal to one, and all others have a relative efficiency equal to the ratio of

their amount of output to the largest amount. The efficiency measured from the

CCR model satisfies this definition. Consider a situation of n DMUs, all applying

the same amount of m inputs, Xik ¼ Xij, j ¼ 1, . . . , n, i ¼ 1, . . . , m, to produce

different amounts of one output Y. From Fig. 2.1 it is clear that the DMU with

the largest amount of output, Ymax, must lie on the production frontier. Let

u*, v*i , i ¼ 1, . . . , m
� �

be the optimal solution obtained from Model (2.2) in calcu-

lating the efficiency of a DMU. For the DMU with the largest amount of output Ymax,

one has u*Ymax ¼
Pm

i¼1 v
*
i Ximax ¼

Pm
i¼1 v

*
i Xi0. The efficiency of the DMU being

evaluated can be expressed as: E0 ¼ u*Y0=
Pm

i¼1 v
*
i Xi0 ¼ u*Y0=u

*Ymax ¼ Y0=Ymax,

as expected.

Consider another situation, where all DMUs apply different amounts of

one input X to produce the same amount of s outputs, i.e., Yr0 ¼ Yrj,

j ¼ 1, . . . , n, r ¼ 1, . . . , s. The efficiency of the DMU being evaluated, from

the input point of view, is the ratio of the minimum input level, Xmin, divided by

the actual amount of input consumed: Xmin/X0. Let u*r , r ¼ 1, . . . , s, v*
� �

be the

optimal solution obtained from Model (2.2) in calculating the efficiency of a DMU.

By the same token, one has
P s

r¼1 u
*
rYr0 ¼

P s
r¼1 u

*
rYrmin ¼ v*Xmin. The efficiency

of the DMU being evaluated can then be expressed as: E0 ¼
P s

r¼1

u*rYr0=v
*X0 ¼ v*Xmin=v

*X0 ¼ Xmin=X0, as expected. This verifies that the effi-

ciency measured from the CCR model follows the conventional definition of

relative efficiency.

2.2 BCC Model

The CCR model assumes constant returns to scale, in that the output increases in the

same proportion as the input. For the case of a single input and single output, the

production frontier is a straight line passing through the origin. In production

economics, due to the effect of fixed inputs, returns to scale usually increase in

the early stage of production, where the amount of variable input is relatively small.

As the amount of variable input increases, returns to scale diminish to constant, and

finally become decreasing. Taking this phenomenon into consideration, Banker

et al. (1984) extended the CCR model to allow for variable returns to scale, referred

to as the BCC model. Conceptually, they allow the production frontier to move

away from the origin by introducing a constant in aggregating either the inputs or

outputs. The constant plays the role of the intercept in the linear production frontier.

This model also has two forms, input and output.
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2.2.1 Input Model

The idea of the output-input ratio efficiency measure is to aggregate the outputs into

a virtual output and the inputs into a virtual input, and to take their ratio to be the

measure of efficiency. In the input model the outputs are treated as the explanatory

variables to calculate the expected (minimum) virtual input. The ratio of the

minimum virtual input to the actual virtual input, aggregated from the multiple

inputs, is the input efficiency. The model developed by Banker et al. (1984) to

measure the efficiency from the input side is:

E0 ¼ max:

X s

r¼1
urYr0 � u0Xm

i¼1
viXi0

s:t:

X s

r¼1
urYrj � u0Xm

i¼1
viXij

� 1, j ¼ 1, . . . , n

ur, vi � ε, r ¼ 1, . . . , s, i ¼ 1, . . . , m

u0 unrestricted in sign:

ð2:8Þ

The difference between this model and Model (2.2), the one under constant returns

to scale, is the inclusion of the intercept u0.
The linear fractional objective function in Model (2.8) can be linearized by

assigning the denominator to one, and leaving the numerator as the objective

function. This is because Model (2.8) has multiple solutions, in that if (u*, v*) is
an optimal solution, then so is (cu*, cv*), for c> 0. Assigning the denominator to

one to reduce one degree of freedom will thus not alter the optimal objective value,

E0, although the optimal solution (u*, v*) may be different. The linear fractional

constraints are easily linearized by multiplying both sides by the denominator to

obtain the following linear programming model:

E0 ¼ max:
Xs
r¼1

urYr0 � u0

s:t:
Xm
i¼1

viXi0 ¼ 1

Xs
r¼1

urYrj � u0 �
Xm
i¼1

viXij � 0, j ¼ 1, . . . , n

ur, vi � ε, r ¼ 1, . . . , s, i ¼ 1, . . . , m

u0 unrestricted in sign:

ð2:9Þ

This linear model can also be obtained by applying the idea in Charnes and Cooper

(1962) for transforming a linear fractional program into a linear program.
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Model (2.9) has a dual, which can be formulated as:

E0 ¼ min: θ� ε
Xm
i¼1

s�i þXs
r¼1

sþr

 !

s:t:
Xn
j¼1

λjXij þ s�i ¼ θXi0, i ¼ 1, . . . , m

Xn
j¼1

λjYrj � sþr ¼ Yr0, r ¼ 1, . . . , s

Xn
j¼1

λj ¼ 1

λj, s�i , s
þ
r � 0, j ¼ 1, . . . , n, i ¼ 1, . . . , m, r ¼ 1, . . . , s:

θ unrestricted in sign:

ð2:10Þ

This model is almost the same as Model (2.4), the one under the assumption of

constant returns to scale, except that a convexity constraint of
Pn

j¼1 λj ¼ 1 is added.

To see the difference between the BCC model and the CCR model in measuring

efficiencies from the input side, consider the example in Table 2.1, where five

DMUs apply one input X to produce one output Y. The first four columns of

Table 2.4 are copied from Table 2.1 for easy comparison, and the positions of the

five DMUs in the X-Y plane are re-drawn in Fig. 2.4 for detailed explanation. By

applying Model (2.8), one obtains the efficiencies of the five DMUs, as shown in the

fifth column of Table 2.4, where DMUs A, B, D, and E are efficient, and only DMU

C is inefficient. This implies that the production frontier constructed from these

DMUs by this model is composed of the piecewise line segments ABDE, as shown
in Fig. 2.4. Since this problem has only one input, we can divide the multipliers in

the numerator by that in the denominator to obtain the following linear program and

have a clearer geometric interpretation:

Table 2.4 Technical and scale efficiencies of an example with one input and one output

DMU Input X Output Y
CCR

Efficiency

BCC Input Efficiency BCC Output Efficiency

Technical Scale Technical Scale

A 3 2 2/3 1 2/3 1 2/3

B 4 4 1 1 1 1 1

C 5 3 0.6 0.7 6/7 0.6 1

D 6 6 1 1 1 1 1

E 10 8 0.8 1 0.8 1 0.8
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E0 ¼ max: u1Y0 � u0ð Þ=X0

s:t: u1Yj � u0
� �

=Xj � 1, j ¼ A, B, C, D, E

u1 � ε, u0 unrestricted in sign:

ð2:11Þ

The multiplier u1 in this case is the slope of the line segment corresponding to the

DMU being evaluated by considering Y as the horizontal axis, and u0 is the intercept
of the line segment extending to the X-axis. For example, in calculating the

efficiency of DMU A, one obtains u*1 ¼ 0:5and� u*0 ¼ 2, corresponding to the

line segment AB. From Fig. 2.4 it is noted that this is not the unique solution, and

u*1, � u*0
� � ¼ ε, 3� 2εð Þ, which represents a vertical line extended from DMU A,

is obviously another one. As a matter of fact, any line passing through DMU A with

a slope u1 between ε and 0.5, and the corresponding intercept of�u0 ¼ 3� 2u1, can
be the frontier. By the same token, when Model (2.11) is applied to measure the

efficiency of DMUs B, D, and E, one also obtains alternative solutions. Based on

Fig. 2.4, the alternative solutions for DMU B are0:5 � u*1 � 1, with�u*0 ¼ 4� 4u*1,

for DMU D they are 1 � u*1 � 2, with �u*0 ¼ 6� 6u*1, and for DMU E they are

2 � u*1 < 1, with �u*0 ¼ 10� 8u*1.
In calculating the efficiency of DMU C by applying Model (2.11), the optimal

solution is unique, with u*1, � u*0
� � ¼ 0:5, 2ð Þ, in that the line segment AB is the

frontier, and point W is the benchmark, that DMU C uses when measuring effi-

ciency. The efficiency is XW=XC ¼ 0:7. Recall that the frontier used to calculate

efficiency under constant returns to scale is the ray OR, with the CCR efficiency of

0.6. From Fig. 2.4 it is clear that for the whole production frontier the region under

O
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Fig. 2.4 Efficiency measurement under variable returns to scale
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the line segment BD (in terms of the output) has the most productive scale, in that

the average input consumed per unit of output is the smallest. For scales (in terms of

output) smaller than that of DMU B or greater than that of DMU D, the average

amount of input used to produce one unit of output is larger, and the larger amount

of input needed in these two regions is due to inadequate scales. The extra amount

of input required relative to the minimum amount is the inefficiency due to

improper scale. For example, point W, with a BCC efficiency one, is technically

efficient; however, it is not efficient from the viewpoint of scale, because under the

most productive scale an input level of XU is enough to produce the output level YW.
XU/XW is thus the scale efficiency ofW. Since DMU C has the same output level of

W, it has the same scale efficiency as W has, XU/XW. Different from W, DMU C is

technically inefficient, because it requires XC units of input, rather than XW, to

produce the same amount of output YC, and XC/XW is its technical efficiency. By

generalizing this idea to multiple-input and multiple-output cases, one has the BCC

efficiency as the technical efficiency, and the ratio of the CCR efficiency to the BCC

efficiency as the scale efficiency for the DMU being evaluated. Column six of

Table 2.4 shows the scale efficiencies of the five DMUs.

In higher dimensions the optimal solution (u*, v*) for a technically efficient

DMU has
P s

r¼1 u
*
r yr � u*0 �

Pm
i¼1 v

*
i xi ¼ 0, where xi, yr are now variables, which is

a supporting hyperplane. Banker et al. (1984) showed that when the solution is

unique, negative, zero, and positive values of u�0 indicate that the associated DMU

is in the regions of increasing, constant, and decreasing returns to scale, respec-

tively. This is also seen in the graphical interpretation shown in Fig. 2.4. Banker and

Thrall (1992) presented a proof for this when the focal DMU is technically efficient,

and Banker et al. (1996) later removed this condition.

2.2.2 Output Model

In contrast to the input model, where the minimum amount of inputs needed to

produce the specified output levels is obtained to measure efficiency, the output

model looks for the maximum amount of outputs that can be produced from the

given amount of inputs to measure efficiency. Based on this concept, the output

BCC model for measuring the efficiency of a DMU has the following form:

1

E0

¼ min:

Xm

i¼1
viXi0 þ v0X s

r¼1
urYr0

s:t:

Xm

i¼1
viXij þ v0X s

r¼1
urYrj

� 1, j ¼ 1, . . . , n

ur, vi � ε, r ¼ 1, . . . , s,

v0 unrestricted in sign:

i ¼ 1, . . . , m

ð2:12Þ
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Similar to the input model, the numerator of the fractional in Model (2.12)

calculates the maximal virtual output that can be produced from the actual amount

of inputs for the DMU being evaluated, and the denominator calculates the virtual

output aggregated from the actual amount of outputs. The ratio is then the recipro-

cal of the efficiency, from the output point of view.

The equivalent linear program to the ratio model (2.12) is:

1

E0

¼ min:
Xm
i¼1

viXi0 þ v0

s:t:
Xs
r¼1

urYr0 ¼ 1

Xm
i¼1

viXij þ v0 �
Xs
r¼1

urYrj � 0, j ¼ 1, . . . , n

ur, vi � ε, r ¼ 1, . . . , s, i ¼ 1, . . . , m

v0 unrestricted in sign,

ð2:13Þ

and the corresponding envelopment model, which is the dual of Model (2.13), is:

1

E0

¼ max: φþ ε
Xm
i¼1

s�i þXs
r¼1

sþr

 !

s:t:
Xn
j¼1

λjXij þ s�i ¼ Xi0, i ¼ 1, . . . , m,

Xn
j¼1

λjYrj � sþr ¼ φYr0, r ¼ 1, . . . , s:

Xn
j¼1

λj ¼ 1

λj, s�i , s
þ
r � 0, j ¼ 1, . . . , n, i ¼ 1, . . . , m, r ¼ 1, . . . , s:

φ unrestricted in sign

ð2:14Þ
This envelopment model also has an assumption of variable returns to scale, and the

difference of this from that under constant returns to scale, i.e., Model (2.7), is the

convexity constraint of
Pn

j¼1 λj ¼ 1.

Model (2.12) can also be used to discuss the region of returns to scale, where the

DMU being evaluated is located. Consider the example in Fig. 2.4. The production

frontier constructed from the five DMUs by Model (2.12) is the same set of line

segments ABDE as that constructed by Model (2.8). Similar to the discussion in

the input model of Sect. 2.2.1, where the only multiplier v in the denominator can be

absorbed by the multipliers u1 and u0 in the numerator, Model (2.12) can be

simplified as follows by merging the only multiplier u in the denominator into v1
and v0 in the numerator:
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1

E0

¼ min: v1Xk þ v0ð Þ=Y0

s:t: v1Xj þ v0
� �

=Yj � 1, j ¼ A, B, C, D, E

v1 � ε, v0 unrestricted in sign,

ð2:15Þ

where v1 is the slope, and v0 is the intercept, of the linear frontier that the DMU

being evaluated uses to measure efficiency. For example, to measure the efficiency

of DMU A, one solution is v*1, v
*
0

� � ¼ 2, � 4ð Þ, which corresponds to the line

segment AB. In measuring the efficiencies of DMUs B and D, one solution is

v*1, v
*
0

� ¼ 1, 0ð Þ� �
, which corresponds to the line segment BD. Finally, in calculat-

ing the efficiency of DMU E, one solution is v*1, v
*
0

� � ¼ 0:5, 3ð Þ. As discussed in

the input model, for the whole production frontier, the region of constant returns to

scale, i.e., line segment BD, with v0 ¼ 0, has the largest average return (amount of

output per unit input), and the marginal return (the additional amount of output

produced by an additional unit of input) is equal to the average return. In the region

of smaller scales (in terms of input), with v0 < 0, the average return is smaller than

that of the region of constant returns to scale, although the marginal return of the

former is larger than that of the latter. In contrast, in the region of larger scales, with

v0 > 0, both the average and marginal returns are smaller than those of the region of

constant returns to scale. The intercept v0 serves as an indicator of the type of

returns to scale of the DMU.

DMU A lies on the production frontier, and it is thus technically efficient.

However, if it is measured by the CCR model, then it is not efficient, with a CCR

efficiency of 2/3, based on the benchmark U. This inefficiency is obviously due to

an inadequate scale. The BCC model (2.12) thus measures the technical efficiency,

while the CCRmodel (2.5) measures the overall efficiency, and the ratio of the CCR

efficiency to the BCC efficiency is the scale efficiency. It is worth noting that DMU

C has a scale efficiency of one, although it is technically inefficient. The second-to-

last column of Table 2.4 shows the technical efficiencies of the five DMUs from the

output side, and the last column shows their scale efficiencies. The BCC efficiencies

from the input and output sides, including technical and scale, are not necessarily

the same.

The graphical interpretation in this section shows that when the number of

DMUs is relatively small, most of them appear on the production frontier, with a

perfect efficiency score of one, which apparently overstates their efficiency. This

raises the question of how many DMUs are needed to construct an empirical

frontier which does not deviate from the true one by too much, in order to obtain

meaningful efficiency measures. A rule of thumb is to have at least three times the

total number of inputs and outputs, that is n � 3 mþ sð Þ (Banker et al. 1989). Time

series data can be used for cases in which the number of all possible DMUs does not

satisfy this rule, by considering the same DMU at different time periods as different

DMUs, thus increasing the number of DMUs in the calculation, referred to as

window analysis in Charnes et al. (1985).
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2.3 Restrictions on Multipliers

One issue that was widely discussed in the early development of the DEA approach

was the value used for the small non-Archimedean number ε. If this is too small,

then it will be ignored in computer calculations due to rounding. If, on the other

hand, it is not small enough, then a Pareto efficiency DMU may become inefficient.

As to what value should be assigned to ε, Lewin and Morey (1981) recommended

10�6. However, since different units of measurement for the input and output

factors will affect the function of ε, e.g., centimeters versus kilometers, it is

inappropriate to assign the same value to ε for factors of different scales. Charnes
and Cooper (1984) thus suggested using ε ¼ 10�5 when efficiency is expressed as a

percentage (e.g., using E0 ¼ 100 rather than 1.0), and input and output entries are

kept in the range of 1 to 100. There are also other suggestions for setting the value

of ε (Färe and Hunsaker 1986).

In many cases there is prior information regarding the importance of the factors

that requires the corresponding multipliers to lie in specific ranges in the form of

(Dyson and Thanassoulis 1988):

LI
i � vi � UI

i , i ¼ 1, . . . , m

LO
r � ur � UO

r , r ¼ 1, . . . , s
ð2:16Þ

Consider a case of n DMUs, where each DMU applies different amounts of two

inputs X1 and X2 to produce one unit of one output Y. The CCR input model (2.2),

with restrictions on the range of the multipliers included, can be expressed as:

E0 ¼ max: 1= v1X10 þ v2X20ð Þ
s:t: v1X1j þ v2X2j � 1, j ¼ 1, . . . , n

LI
i � vi � UI

i , i ¼ 1, 2

ð2:17Þ

where (X1j, X2j) is the input observation of a DMU. The lower bound constraint

LI
i � vi, i¼ 1, 2, can be expressed as v1 1=LI

1

� �þ v2 0ð Þ � 1 and v1 0ð Þ þ v2 1=LI
2

� �
� 1:These two constraints imply that two more DMUs, with observations (1/LI1, 0)

and (0, 1/LI2), are included to construct the frontier.

To handle the upper bound of vi � UI
i , we substitute it into the constraint of

v1X1j þ v2X2j � 1 to obtain UI
1X1j þ v2X2j � 1 and v1X1j þ UI

2X2j � 1; or v2 �
1� UI

1X1j

� �
=X2 andv1 � 1� UI

2X2j

� �
=X1j. These lower bounds on vi imply the

addition of two sets of n DMUs, with observations 0, X2j= 1� UI
1X1j

� �� �
and X1j= 1� UI

2X2j

� �
, 0

� �
, j ¼ 1, . . . , n, to the original DMUs to construct the

frontier together.

As more DMUs are included, the constructed frontier will be raised higher in the

X-Y plane (or expanded towards the origin in the input space, or expanded outwards

in the output space). The efficiency of every DMU will thus either remain the

same or decrease. For the data contained in Table 2.2, suppose the restrictions of
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0:2 � v1 � 0:4 and 0:1 � v2 � 0:5 are imposed. The new DMUs generated by the

lower bounds are (5, 0) and (0, 10). The two upper bounds are able to generate ten

new DMUs; however, only three are feasible, (8, 0), (0, 20/3), and (0, 10). Referring

to Fig. 2.2, which is redrawn as Fig. 2.5, the line segments SABCS0 are the frontier
constructed from the original five DMUs, and TBT0 are those constructed from the

new set of DMUs. Based on this new frontier, the original efficient DMU C and the

weak efficient DMU E become inefficient, the efficiency of DMU D decreases from

OG/OD to OH/OD, whereas the original efficient DMUs A and B are still efficient.

The range in Expression (2.16) for each multiplier is in absolute scale, which has

different effects for measures of different scales, and may obtain misleading results

(Podinovski 1999). To eliminate this undesirable effect, Thompson et al. (1986)

proposed the concept of an assurance region, with the following form, to restrict the

range of the multipliers:

LI
i �

vi
v1

� UI
i , i ¼ 2, . . . , m

LO
r � ur

u1
� UO

r , r ¼ 2, . . . , s
ð2:18Þ

In this form the importance of each input/output factor is expressed in relation to

that of the first one. The absolute bounds in (2.16) are special cases of the relative

bounds, with v1 ¼ u1 ¼ 1:
To see how these constraints affect the frontier, consider the example in

Table 2.3, where all five DMUs apply one unit of input X to produce different

amounts of two outputs Y1 and Y2. The constraints of the CCR output model (2.5)

for this problem are u1Y1j þ u2Y2j � 1, j ¼ A, . . . , E. Figure 2.6 is redrawn from

O

C
B

D

E

G

S’

S

T’

A

H

T

5 X1

X2

20/3

Fig. 2.5 Frontiers adjusted

by absolute bounds on

multipliers
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Fig. 2.3, in which the line segments SBDES0 are the frontier constructed from the

original five DMUs. The frontier line segments BD and DE can be expressed by

the equation u1y1 þ u2y2 ¼ 1, with a slope of �u1=u2 equal to �0.5 and �2,

respectively. Note that here y1 and y2 are variables. Suppose an assurance region of
1 � u1=u2 � 5 is imposed. This implies that two frontiers with slopes of�1 and�5

are added. These two frontiers correspond to line segments TD and ET0 in Fig. 2.6,

and the new frontier becomes the line segments TDET0. Under this new frontier, the

originally efficient DMU B becomes inefficient, the inefficient DMUs A and C have

lower efficiency scores, and the efficient DMUs D and E are still efficient.

The assurance region for restricting the relative range of either input or output

multipliers can be linked to be more general (Thompson et al. 1990), based on the

concept of a cone ratio (Charnes et al. 1989). The most general linear form of

restrictions on multipliers is: α1u1 þ . . .þ αsus þ β1v1 þ . . .þ βmvm � 0, and

Wong and Beasley (1990) had an application for this. Tracy and Chen (2005)

introduced a formulation which provides generalized treatment for weight

restrictions.

2.4 Ranking

An issue closely related to restrictions on multipliers is ranking. The DEA tech-

nique identifies efficient DMUs, and there is usually more than one DMU that is

efficient. All efficient DMUs have a perfect efficiency score of one, which makes

O

E

S’

A

C

B

DG

H

S

5.4 Y1

Y2

8 T

Slope= –1 

T’

Slope= –5 

Fig. 2.6 Frontiers adjusted

by relative bounds on

multipliers
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ranking of them difficult. Imposing tighter ranges for the multipliers, as discussed in

the preceding section, may help discriminate the efficient DMUs. In addition to

weight restrictions, there are many other approaches to ranking.

DMUs with higher efficiency scores are usually considered more efficient, and

thus have higher ranks. However, some scholars believe that DMUs using different

frontier facets to measure efficiency are not comparable, and only those using the

same frontier facet can be compared. The same frontier facet means the same value

of multipliers for calculating efficiency scores. Based on this idea, some studies use

the same weight for all DMUs to calculate efficiency. This is the most stringent case

of the assurance region, in which there is only one set of multipliers that can be

selected in the region.

The first article to propose this idea was Roll et al. (1991), using the multipliers

that yield the largest average efficiency score from all DMUs to calculate the

efficiency of every DMU. The model under constant returns to scale is:

max:
Xn
j¼1

Ej=n

s:t: Ej ¼
X s

r¼1
urYrjXm

i¼1
viXij

� 1, j ¼ 1, . . . , n

ur, vi � ε, r ¼ 1, . . . , s, i ¼ 1, . . . , m

ð2:19Þ

At optimality, the efficiency of DMU j is calculated as Ej ¼
P s

r¼1 u
*
rYrj=Pm

i¼1 v
*
i Xij. The efficiency scores thus measured then have a common basis for

ranking. The common-weight frontier is a hyperplane that superimposes upon all

DMUs, and all DMUs use this frontier to calculate efficiency.

Kao and Hung (2005) proposed the idea of using the compromise solution to

determine the set of common weights that minimizes the total difference between

the ideal efficiency (calculated from the conventional CCR or BCC models) and the

actual efficiency (calculated from the common weight) of all DMUs to determine

the multipliers. The model is:

min:
Xn
j¼1

E*
j �

X s

r¼1
urYrjXm

i¼1
viXij

 !p

s:t:

X s

r¼1
urYrjXm

i¼1
viXij

� 1, j ¼ 1, . . . , n

ur, vi � ε, r ¼ 1, . . . , s, i ¼ 1, . . . , m,

ð2:20Þ

where E�
j in this case is the efficiency of DMU j calculated from the CCR model,

and p> 1 is the distance parameter. When p¼ 1 this model is equivalent to Model

(2.19), and it can thus be considered as an extension of the idea of maximizing the
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average efficiency of all DMUs. Kao and Hung (2005) recommended using p¼ 2,

as this value produces a result of minimum variance.

Another idea related to a common weight is cross efficiency (Doyle and Green

1994), and this approach uses the multipliers selected by DMU j to calculate the

efficiency of all other DMUs, in addition to itself. Therefore, every DMU has

n cross efficiencies calculated from n sets of multipliers selected by n DMUs.

The averages of the n cross-efficiencies from every DMU are then used for ranking.

Since there are multiple solutions for using either the CCR or BCC models to

measure the efficiency of every DMU, and improperly selected multipliers can lead

to misleading results, one approach is to select the multipliers that produce the

maximum weighted average efficiency of all DMUs. This procedure uses a con-

ventional DEA model to calculate the efficiency of a DMU to obtain the efficiency

E0. Then the multipliers that maximize the weighted average efficiency of the

n DMUs, while maintaining the efficiency of this DMU at E0, are sought via the

following model:

max:

Xn

j¼1

X s

r¼1
urYrjXn

j¼1

Xm

i¼1
viXij

s:t:
Xs
r¼1

urYr0 ¼ E0

Xm
i¼1

viXi0

X s

r¼1
urYrjXm

i¼1
viXij

� 1, j ¼ 1, . . . , n

ur, vi � ε, r ¼ 1, . . . , s, i ¼ 1, . . . , m:

ð2:21Þ

Note that the objective function is the average of the efficiencies Ej ¼
P s

r¼1 urYrj=Pm
i¼1 viXij, j ¼ 1, . . . , n, weighted by the proportion of their aggregate input in

the total aggregate input,
Pm

i¼1 viXij =
Pn

j¼1

Pm
i¼1 viXij. The optimal solution

(u*, v*) is then used to calculate the efficiency of every DMU d, Ed0. This procedure

is repeated for every DMU f to obtain the cross efficiency for every DMU d, Edf.

The average efficiency for DMU d, Ed ¼
Pn

f¼1 Edf =n, is then used for ranking.

Most of the ranking methods are based on the idea of restricting the range of the

multipliers that are used to calculate the efficiencies. In contrast, Andersen and

Petersen (1993) proposed eliminating the focal DMU to construct the frontier from

the remaining n� 1 DMUs in order to calculate an efficiency index for ranking.

However, this method is only for ranking efficient DMUs. Since the DMUs being

eliminated are efficient ones, they will fall outside of the region encompassed by the

new frontier, and their efficiency scores calculated based on this frontier will be

greater than one. This is why this efficiency index is said to measure super

efficiency. The following is an output model for calculating the super efficiency

of the focal DMU under variable returns to scale:
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1

E0

¼ min:

Xm

i¼1
viXi0 þ v0X s

r¼1
urYr0

s:t:

Xm

i¼1
viXij þ v0X s

r¼1
urYrj

� 1, j ¼ 1, . . . , n, j 6¼ 0

ur, vi � ε, r ¼ 1, . . . , s, i ¼ 1, . . . , m

v0 unrestricted in sign:

ð2:22Þ

Figure 2.7 is a graphical interpretation of super efficiency using the example in

Fig. 2.4, where five DMUs, A, B, C, D, and E, use different amounts of input X to

produce different amounts of output Y. The frontier constructed from these DMUs

is the line segments SABDES0, and DMUs A, B, D, and E are efficient. In order to

rank these four efficient DMUs, they are each eliminated in turn to construct new

frontiers to calculate their super efficiencies. For example, the super efficiency of

DMU B is measured from the frontier SADES0 constructed from the other four

DMUs, A, C, D, and E, as BG/FG. The super efficiencies of DMUs D and E can be

calculated similarly. To calculate the super efficiency of DMU A, however, one will
obtain an unbounded value, because DMU A does not have a line segment with

which to calculate efficiency. This situation will not occur under constant returns to

scale. While several methods have been proposed to solve this problem

(Li et al. 2007, Cook et al. 2009), super efficiency does not seem to be a suitable

method for ranking (Banker and Chang 2006).
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Fig. 2.7 Calculation of

super efficiency
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2.5 Supplementary Literature

The major difference between the CCR and BCC models is the effect of scale, and

many articles address this issue. Seiford and Zhu (1999) reviewed three basic

methods for determining returns to scale and the effects of multiple solutions.

Banker et al. (2004) discussed returns to scale for several DEA models. Some

other works related to this topic are Jahanshahloo and Soleimani-Damaneh (2004),

Zarepisheh and Soleimani-Damaneh (2009), Fukuyama (2000), and Førsund and

Hjalmarsson (2004).

The issue of weight restrictions is also widely discussed in the DEA literature,

and there are different ways of classifying the related methods. The following

studies have reviewed the literature on this topic: Roll and Golany (1993), Allen

et al. (1997), Angulo-Meza and Estellita Lins (2002), Joro and Viitala (2004), and

Sarrico and Dyson (2004). The works of Podinovski and Thanassoulis (2007),

Khalili et al. (2010), Podinovski and Bouzdine-Chameeva (2013), and Førsund

(2013), also discuss this issue.

Soltanifar and Lotfi (2011) discussed the strengths and weaknesses of several

ranking methods, and proposed the voting analytic hierarchy process method. Wu

et al. (2012) compared different cross efficiency methods for ranking. Other

comprehensive reviews of the methods used for ranking include Adler

et al. (2002), Singh and Chand (2007), Jablonsky (2012), and Hosseinzadeh

et al. (2013).
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rejoinder to Boyd and Färe. Eur J Oper Res 15:333–334

Charnes A, Cooper WW, Rhodes E (1978) Measuring the efficiency of decision making units. Eur

J Oper Res 2:429–444

Charnes A, Cooper WW, Rhodes E (1979) Short communication: measuring the efficiency of

decision making units. Eur J Oper Res 3:339

Charnes A, Cooper WW, Thrall RM (1986) Classifying and characterizing efficiencies and

inefficiencies in data envelopment analysis. Oper Res Lett 5:105–110

Charnes A, Cooper WW, Thrall RM (1991) A structure for classifying and characterizing

efficiencies and inefficiencies in data envelopment analysis. J Prod Anal 2:197–237

Charnes A, Cooper WW, Wei QL, Huang ZM (1989) Cone ratio data envelopment analysis and

multi-objective programming. Int J Syst Sci 20:1099–1118

Charnes A, Clark CT, Cooper WW, Golany B (1985) A developmental study of data envelopment

analysis in measuring the efficiency of maintenance units in the U.S. Air Forces. Ann Oper Res

2:95–112

CookWD, Liang L, Zha Y, Zhu J (2009) A modified super-efficiency DEAmodel for infeasibility.

J Oper Res Soc 60:276–281

Doyle J, Green R (1994) Efficiency and cross-efficiency in DEA: derivations, meanings, and uses.

J Oper Res Soc 45:567–578

Dyson RG, Thanassoulis E (1988) Reducing weight flexibility in data envelopment analysis.

J Oper Res Soc 39:563–576
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