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Abstract This paper studied the stiffness model and characteristics of a planar
3-RPS PM with 3-DOF. The 6 × 6 form stiffness matrix of the planar 3-RPS PM is
derived with both active and constrained wrenches considered. To characteristic the
stiffness of the planer 3-RPS PM, two decomposition methods including the eigen-
screw decomposition and the principle axes decomposition are applied to the stiffness
matrix. The stiffness matrix decomposition provides a physical interpretation and
allows the identification of the compliant axes of the planar 3-RPS PM.

Keywords Planar parallel manipulator � Stiffness � Eigenscrew decomposition �
Principle axes decomposition � Compliant aixs

1 Introduction

In recent years, the planar 3 degree of freedom (DOF) parallel manipulators
(PMs) have attracted much attention (Angeles 2014). Merlet et al. (1998) presented
some definitions such as constant orientation workspace, reachable workspace and
dexterous workspace for the planar PMs. Binaud et al. (2010) compared the sen-
sibility of five 3-DOF planar PMs including the 3-RPR, 3-RPR, 3-RRR, 3-RRR and
3-PRR PMs. Mejia et al. (2015) derived a mathematical closed-form solution to
obtain the maximum force with a prescribed moment in 3-DOF planar mechanisms.
Kucuk (2009) performed dexterity comparison for seven 3-DOF planar PMs with
two kinematic chains using genetic algorithms and indicated that the PPR planar
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robot manipulator is the best configuration with the best dexterous maneuverability
among the others. Dong et al. (2016) proposed a piezoelectric actuated 3-RPR
planar micro-manipulator with orthogonal structure and developed its prototype.

Stiffness analysis plays an important role in design of planar 3-DOF PMs. In this
aspect, Gosselin (1990) derived general n × n stiffness matrix for n-DOF PMs by
only considering the elastic deformation of actuator factor. Wu et al. (2010)
compared the stiffness performance of 4-RRR, 3-RRR and 2-RRR PMs. Zhao et al.
(2007) investigated the stiffness performance of planar parallel 3-RRR mechanism
with flexible joints.

Most of the stiffness model of planar PMs only considered the actuator factor
while the constraint factors were not considered. Recently, the stiffness model
considered both active and constrained wrenches has been established for various
spatial lower mobility PMs (Li and Xu 2008; Hu and Lu 2011; Hu et al. 2014). Due
to the consideration of constraints, this stiffness model is more suitable for the lower
mobility PMs. However, up to now, the stiffness models of planar PMs with both
active and constrained wrenches considered have not been studied.

Stiffness characteristic analysis is also an important research content for the
planar PMs. To investigated the stiffness characteristics of PMs, some researchers
proposed effective approaches for the stiffness matrix decomposition (Loncaric
1987; Huang and Schimmels 2000; Chen et al. 2015). Huang and Schimmels
(2000) proposed an alternative synthesis algorithm for realization of an arbitrary
spatial stiffness matrices, which has been widely used in stiffness characteristic
analysis. Chen et al. (2015) presented an alternative decomposition of stiffness
matrices, which can be used in both Plucker’s ray and axis coordinates. And the
compliant axis proposed by Patterson and Lipkin (1993a) is also a better way to
explain the characteristic of stiffness.

For the above reasons, the stiffness model and characteristic of a novel planar
3-RPS PM which have constrained forces is studied in this paper.

2 Stiffness Model of the Planar 3-RPS PM

2.1 Kinematics Description

The planar 3-RPS PM includes a base B, a moving platform m, three identical RPS
(revolute joint-active prismatic joint-spherical joint)-type leg. Here, B is a regular
triangle with O as its center and Ai (i = 1, 2, 3) as its three vertices. m is a regular
triangle with o as its center and ai (i = 1, 2, 3) as its three vertices. For the planar
3-RPS PM, the three R joints are perpendicular with B (see Fig. 1).

Let ⊥ be a perpendicular constraint and || be a parallel constraint. Let {B} be a
frame O-XYZ attached on B at O, {m} be a frame o-xyz attached on m at o. Some
geometrical conditions (X || A1A3, Y ⊥ A1A3, Z ⊥ B, x || a1a3, y ⊥ a1a3, z ⊥ m) for
O-XYZ and o-xyz are satisfied.
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For the planar 3-RPS PM, the unit vectors Ri of Ri (i = 1, 2, 3) in {B} can be
expressed as following:

R1 ¼ R2 ¼ R3 ¼
0
0
1

2
4

3
5 ð1Þ

The position vectors Ai (i = 1, 2, 3) of three vertices Ai in {B} can be expressed
as follows:

A1 ¼ 1
2

qL
�L
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where, L denotes the distance from the center of O to Ai.
The coordinate ai (i = 1, 2, 3) in {m} can be expressed as following:

ma1 ¼ 1
2
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�l
0
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where, l denotes the distance from the center of o to ai.
The coordinate ai in {B} can be expressed as following:

Bai ¼
Xai

Yai
Zai

2
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5 ¼ B
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Fig. 1 Sketch of the planar 3-RPS PM
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Here, α denotes the angle between B and m.
From Eqs. (2a), (2b) and (2c), the inverse solution can be formulated as

following:

r21 ¼ ðqlca=2þ lsa=2þXo � qL=2Þ2 þðqlsa=2� lca=2þ Yo þ L=2Þ2

r22 ¼ ð�lsa þXoÞ2 þðlca þ Yo � LÞ2

r23 ¼ ð�qlca=2þ lsa=2þXo þ qL=2Þ2 þð�qlsa=2� lca=2þ Yo � LÞ2
ð3Þ

Here ri (i = 1, 2, 3) is the length of ith leg.
Based on the geometrical approach for determining the constrained

forces/torques (Hu et al. 2014), one constrained force Fpi (i = 1, 2, 3) which is
parallel with Ri and passes through the center of S joint in each RPS type leg can be
determined.

As the constrained forces/torques do not work to m, it leads to

ZT (di � Z) T
h i v

x

� �
¼ 0, Z ¼ 0 0 1½ �T , di ¼ ai � o ð4aÞ

where, fi denotes the unit vector of Fpi, ai (i = 1, 2, 3) and o denote the coordinates
of ai and o respect to O, respectively.

From Eq. (4a) and Hu et al. (2014), it leads to

Vr ¼ J6�6
v

x

� �
, J6�6 ¼

dT1 ðd1 � d1ÞT
dT2 ðd2 � d2ÞT
dT3 ðd3 � d3ÞT
ZT ðd1 � ZÞT
ZT ðd2 � ZÞT
ZT ðd3 � ZÞT

2
6666666664

3
7777777775
; Vr ¼

vr1
vr2
vr3
0

0

0

2
666666664

3
777777775
, di ¼ ai � Ai

ai � Aij j ð4bÞ

Here, v and ω denote the linear and angular velocities of m, respectively, and
J6×6 is the Jacobian matrix of the planar 3-RPS PM.

2.2 Stiffness Matrix Establishment

Let Fo = [Fx Fy Fz]
T and To = [Tx Ty Tz]

T be the forces and torques applied on m at
o, respectively. Let Fri and Fpi (i = 1, 2, 3) be the active force and constrained force
of ri, respectively. Using the principle of virtual work, we obtain
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FT
r Vr þ FT

o TT
o

� � v
x

� �
¼ 0 ð5aÞ

Here, Fr = [Fr1 Fr2 Fr3 Fp1 Fp2 Fp3]
T.

From Eqs. (4b) and (5a), it leads to

Fr ¼ �ðJ�1
6�6ÞT

Fo

To

� �
,
Fo

To

� �
¼ JT6�6Fr ð5bÞ

In the RPS type leg, the active force Fri (i = 1, 2, 3) produces a flexibility
deformations along ri and the constrained force Fpi (i = 1, 2, 3) produces a bending
deformation which is perpendicular with ri.

Let δri (i = 1, 2, 3) denotes the flexibility deformations along ri produced by the
active force Fri, it leads to

Fri ¼ kridri, kri ¼
ESi
ri

ð6aÞ

Here, E is the modular of elasticity and Si denotes the ith leg’s cross section of
RPS type leg.

Let δdi (i = 1, 2, 3) denotes the bending deformation of ri produced by the
constrained forces Fpi. It leads to,

Fpi ¼ kpiddi, kpi ¼
3EI
r3i

ð6bÞ

where, I is the moment of inertia.
From Eqs. (6a) and (6b), it leads to

Fr ¼ Kp
dr

dd

� �
, dr ¼

dr1
dr2
dr3

2
64

3
75, dd ¼

dd1
dd2
dd3

2
64

3
75,

Kp ¼

kr1 0 0 0 0 0

0 kr2 0 0 0 0

0 0 kr3 0 0 0

0 0 0 kp1 0 0

0 0 0 0 kp2 0

0 0 0 0 0 kp3

2
666666664

3
777777775

ð7Þ

Let δp and δФ be the position and orientation deformation of m, respectively. By
using the principle of virtual work, the following equation can be derived:
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FT
r

dr
dd

� �
¼ � FT

o TT
o

� � dp
dU

� �
ð8Þ

From Eqs. (5b), (7) and (8), it leads to

Fo

To

� �
¼ K

dp
dU

� �
, K ¼ JT6�6KpJ6�6 ð9Þ

Here, K is the stiffness matrix of the planar 3-RPS PM.

3 Stiffness Characteristics Analysis

To characteristic the stiffness of the planer 3-RPS PM, the eigenscrew decompo-
sition and the principle axes decomposition approaches are applied to the stiffness
matrix. Loncaric (1987) proposed that by using the decomposition, the stiffness
matrix can be realized by several parallel simple or screw springs, which is a direct
correspondence between the mechanism realization and physical appreciation of a
spatial stiffness matrix. In addition, the compliant axis of the planer 3-RPS PM are
also studied in this section to reversal the characteristic of this PM.

3.1 The Eigenscrew Decomposition of Stiffness Matrix

The eigenscrew problem mentioned by Patterson and Lipkin (1993a) of the spatial
stiffness matrix can be expressed as following:

KDe ¼ ke ð10Þ

where λ and the corresponding e are the eigenvalue and eigenvector of KΔ,
respectively. The transformation matrix Δ interchanges the first and last three
components of a screw, which can be expressed as following:

D¼ 03�3 I3�3

I3�3 03�3

� �
ð11Þ

The eigenscrew decomposition proposed by Huang and Schimmels (2000) of
spatial stiffness matrix can be expressed as:

K ¼
X6
i¼1

kiwiwT
i ; ki ¼ ki

2hi
; hi ¼ 1

2
wT
i Dwi ð12Þ
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where, spring wrench wi is the unitization of ei (i = 1, …, 6), hi is the pitch of wi

and wi can be defined as:

wi ¼ ni
qi � ni þ hini

� �
ð13Þ

Here, ni and ρi (i = 1, …, 6) are the direction and position vectors of the ith
spring, respectively.

3.2 The Principle Axes Decomposition
of Spatial Stiffness Matrix

In the principle axes decomposition (Chen et al. 2015), the wrench F and δP are
expressed in axis coordinate. The relation between ray and axis coordinate can be
expressed as following:

F ¼ DF, dP ¼ DdP ð14Þ

From Eq. (11), it leads to

DD ¼ E ð15Þ

here E is an identity matrix.
The relation of stiffness matrices between these two systems can be derived from

Eqs. (14) and (15) as following,

K ¼ DKD ¼ A B
BT C

� �
ð16Þ

where the symmetric 3 × 3 block matrices A and C denote the rotational and
translational parts, and B denote the coupling part.

K can be represented in a reduced formKO by applying a pure rotationR = QT to
the current frame in order to translate C to a diagonal form CO, whereQ represents a
3 × 3 orthogonal matrix whose columns are just the eigenvectors of C. Then the
stiffness matrix can be decomposed into two sets of rank-1 symmetric stiffness
matrices as following (Chen et al. 2015):

KO ¼ AO BO

BT
O CO

� �
¼ KOS þKOT ¼

X3
i¼1

kiwiwT
i þ

X6
j¼4

kjwjwT
j ,

AO ¼ QTAQ, BO ¼ QTBQ, AOT ¼ AO � BOC
�1
O BT

O,

wi ¼ 1
ki
bTi eTi

h iT
; wj ¼ aTi 0T3�1

� �T
;

ð17Þ
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where, KOS and KOT are the principal components corresponding to the screw and
torsional springs, respectively. ki (i = 1, 2, 3) and kj (j = 1, 2, 3) are the ith
eigenvalue of C and AOT, respectively. ei (i = 1, 2, 3) denotes the unit vector
associated with the coordinate axis of {O}, namely e1 = [1, 0, 0]T, e2 = [0, 1, 0]T,
e3 = [0, 0, 1]T, bi represents the ith column of BO, ai represents the ith eigenvector
of AOT, and wi (i = 1, 2, 3) is the ith wrench-compliant axis of this elastic system.

From Eq. (17), any spatial stiffness matrix can be uniquely realized by three
screw and three torsional springs connected in parallel, and the screw springs and
torsional springs are orthogonal to each other, respectively.

Let {C} be a frame C-XQYQZQ with the direction of XQ, YQ and ZQ-axis are
along each row of Q, respectively. Then K can be expressed in {C} as following:

KC ¼ A� 0

0 0

� �
þ B�CB� B�C

CB� C

� �
,

A� ¼ A� BC�1BT , B�¼
1
2
(BC�1 þC�1BT )

ð18Þ

Equation (18) is referred to as the central principle frame, and C is also called
the center of stiffness. KC is the simplest form of the spatial stiffness matrices,
which decouples rotational and translational aspects of stiffness to a certain extent.
In (18), there only exists three 3 × 3 symmetric blocks A*, B*, C, which corre-
spond to the rotational, coupling and translational parts, respectively.

The homogeneous transformation matrix is given by,

gK ¼ Q p
0T3�1 1

� �
, p_ ¼ 1

2
(BOC

�1 � C�1BO) ð19Þ

where p is the coordinate of C respected to the original reference frame {B}.
Based on the above analysis, the stiffness matrix of planar 3-RPS PM can be

decomposed into two sets of three rank-1 symmetric matrices, which can also
identify the elastic system’s force-deflection behavior of planar 3-RPS PM.

3.3 Compliant Axis and Center of Compliance

For a compliant axis (Patterson and Lipkin 1993b), a force produces a parallel liner
deformation and a rotational deformation produces a parallel couple. The compliant
axis exists if and only if there are two collinear eigenscrews with eigenvalues of
equal magnitude and opposite sign. Thus, not all the elastic system exhibits com-
pliant axes. Wrench-compliant and twist-compliant axes are the basic of a compliant
axis hierarchy, and most elastic systems exhibit the wrench-compliant/twist-
compliant axes. Wrench-compliant axis exists when a wrench produces a parallel
linear deformation, and a twist-compliant axis exits when a twist produces a parallel
couple. Such kinds of the force-deflection behavior can be interpreted as following:
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f
q� f þ hf

� �
¼ KD

0
kf f

� �
,

0
kdh

� �
¼ KD

h

q� hþ hh

� �
ð20Þ

where, f is a force, θ is a rotational deformation, kf and kδ are translational and
rotational stiffness, h and ρ are the pitch and position vector of a wrench/twist,
respectively.

If h is equal to 0, then Eq. (20) is turn into,

f
q� f

� �
¼ KD

0
kcf

� �
;

0
kdh

� �
¼ KD

h

q� h

� �
ð21Þ

Then the wrench-compliant and twist-compliant axes are turn into
force-compliant and rotation-compliant axes, respectively.

If an elastic system has three linearly independent compliant axes and they
intersect at the same point, then this point is called the center of compliance. The
center of compliance refers to a very specialized concept. At this point, a force
passes through the point produces a collinear translation, and a rotation through the
point produces a collinear couple (Patterson and Lipkin 1993a). The planar 3-RPS
PM has such a center of compliance, which is verified in the last section.

3.4 The Stiffness Characteristics Along Z-Axis

The Jacobian matrix in (4a), the stiffness matrix in (9) and KP can be divided into 4
parts, respectively

J ¼ J1 J2
J3 J4

� �
, K ¼ C B

BT A

� �
; KP ¼ Kr 0

0 Kp

� �
;

Kr ¼
kr1 0 0

0 kr2 0

0 0 kr3

2
64

3
75; Kp ¼

kp1 0 0

0 kp2 0

0 0 kp3

2
64

3
75

ð22Þ

Here, Ji (i = 1, 2, 3, 4) are 3 × 3 form matrices.
The relation of these blockings can be expressed as

C ¼ JT1KrJ1 þ JT3KpJ3;B ¼ JT1KrJ2 þ JT3KpJ4;

A ¼ JT2KrJ2 þ JT4KpJ4
ð23Þ

The components of δi(i = 1, 2, 3) along Z-axis are 0, from Eq. (4b), the matrix
C can be expressed as

Stiffness Analysis of a Planar 3-RPS Parallel Manipulator 21



C ¼
k11 k12 0
k13 k14 0
0 0 k15

2
4

3
5 ð24Þ

k1i (i = 1, 2) is determined by J1, kri and kpi (i = 1, 2, 3). From Eq. (24), it can be
seen that C must have one eigenvalue k15 (k15 = kp1 + kp2 + kp3), and the corre-
sponding eigenvector is [0 0 1]T, which is always along Z-axis.

From Eq. (16), the direction of a wrench-compliant axis is determined by the
eigenvector of C, which is equal to C in Eq. (22). Obviously, the planar 3-RPS PM
always have a wrench-compliant axis along Z-axis. The pith is determined by B,
which is determined by the configuration of the PM. However, we can certain that a
force along Z-axis only produce a linear deformation and will not affect another
directions. Then the planar 3-RPS PM has better operation in Z-axis.

4 Numerical Examples

In this section, a 3D assembly manipulator and the finite element (FE) model of the
planar 3-RPS PM is established to verify the stiffness model obtained in Sect. 2.
Then, one numerical example is provided to characterize the stiffness matrix of
planar 3-RPS PM based on the eigenscrew decomposition and principle axes
decomposition. In this process, the stiffness matrix is realized by six springs con-
nected in parallel based on two methods, and the compliant axes are obtained
through eigenscrew decomposition, which identified the decoupled stiffness matrix.

Set X0 = 0 m, Y0 = 0 m, a = 10°, the corresponding length of legs are solved as:
r1 = r2 = r3 = 0.8158 m, and the stiffness matrix corresponding to this configura-
tion is obtained as following:

K ¼

�2:7281 �0:0000 0 0 0 �0:0000
�0:0000 �2:7281 0 0 0 0:0000

0 0 0:0014 0:0000 �0:0000 0
0 0 0:0000 0:0001 0:0000 0
0 0 �0:0000 0:0000 0:0001 0:0000

�0:0000 0:0000 0 0 0 0:0396

2
6666664

3
7777775
� 108

ð25Þ

4.1 Finite Element Analysis

In the Solid model of planar 3-RPS PM, S joint is constructed by three R joints (see
Fig. 2). Assume a force Fo = [−20 −30 −60]T N applied on the center of m. The
simulated results based on finite element model for the deformation of m are
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derived as shown in Fig. 2. The simulated results based on the FE model and the
calculated results based on the stiffness model are listed in Table 1.

From Table 1, we can see that the simulated results of FE model are almost
equal to the calculated results of the stiffness model. The most error rate is 2.3 %,
which is less than 3 %. Then, the FE model verify the correctness of the stiffness
model. We also find that the deformation of m in Z-axis is approximate 104 times of
the deformation in X-axis and Y-axis, which means a small external force in Z-axis
would cause relatively large deformation in Z-axis, and this situation has not been
mentioned in stiffness analyses of planar PMs in most of previous works. The
stiffness model established in this paper presents this situation, which is also
appropriate to other planar PMs.

4.2 Decomposition of Planar 3-RPS PM Stiffness Matrix

Applying the eigenscrew decomposition to the stiffness matrix (25), the corre-
sponding six eigenvalue values λ, screw pitches h and the corresponding

Fig. 2 The simulated result of 3-RPS PM

Table 1 The simulated
results based on the finite
element model and the
theoretical results based on
the stiffness model of the
deformation of m

The deformation of m (mm) Error rate (%)

FE model Stiffness model

δx −7.157 × 10−5 −7.331 × 10−5 2.3

δy −1.113 × 10−4 −1.110 × 10−4 0.27

δz −0.4298 −0.4337 0.89
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eigenscrews w can be obtained by solving Eq. (12) and the results are shown in
Eq. (26) as following:

k ¼ diag 1:5049 �1:5049 1:5049 �1:5049 �0:7398 �0:7398½ �ð Þ � 106

h ¼ diag 0:0055 �0:0055 0:0055 �0:0056 �5:3470 �5:3470½ �ð Þ

w ¼

0 0 1 1 0 0

1 1 0 0 0 0

0 0 0 0 1 1

0 0 �0:0055 0:0055 0 0

0:0055 �0:0055 0 0 0 0

0 0 0 0 5:3470 �5:3470

2
666666664

3
777777775

ð26Þ

The parameters of springs based on the eigenscrew decomposition are illustrated
in Table 2.

Applying the principle axes decomposition to the stiffness matrix in Eq. (25), the
central principal aspects of this spatial stiffness can then be obtained readily and
given by,

A� ¼
0:0083 0 0

0 0:0083 0

0 0 3:9556

2
64

3
75� 106, B� ¼

0 0 0:0741

0 0 �0:1672

0:0741 �0:1672 0

2
64

3
75� 10�10

C� ¼
2:7281 0 0

0 2:7281 0

0 0 0:0014

2
64

3
75� 108 ð27Þ

The corresponding homogeneous transformation matrix is given by,

gK ¼
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775 ð28Þ

Table 2 Parameters of springs based on the eigenscrew decomposition

Spring ki ni ρi hi
1 1.3640 × 108 [0, 1, 0]T [0, 0, 0]T 0.0055

2 1.3640 × 108 [0, 1 0]T [0, 0, 0.]T −0.0055

3 1.3640 × 108 [1, 0, 0]T [0, 0, 0]T 0.0055

4 1.3640 × 108 [1, 0, 0]T [0, 0, 0]T −0.0055

5 6.9176 × 104 [0, 0, 1]T [0, 0, 0]T 5.3470

6 6.9176 × 104 [0, 0, –]T [0, 0, 0]T −5.3470
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In Eq. (27), C* is a diagonal matrix and the coupling matrix B is turn into a
symmetric matrix B*,which is almost equal to null matrix.

The parameters of springs based on the principle axes decomposition are illus-
trated in Table 3.

The physical interpretation of this stiffness matrix realized by springs based on
the eigenscrew decomposition and the principle axes decomposition are shown in
Fig. 3a, b.

4.3 Compliant Axes of Planar 3-RPS PM

It can be seen from Fig. 3a that the stiffness matrix is realized by six screw springs.
The six screw springs intersect at the coordinate center O. They can be divided into
three groups, and each group has two springs. These two springs in each group are
collinear and have the same stiffness constants, while opposite in sign. These three
group springs are three compliant axes actually, which means the force and
deformation about the compliant axes would not affect any other directions. These
compliant axes can be expressed as following:

Table 3 Parameters of springs based on the principle axes decomposition

Spring ki ni ρi hi
1 2.7281 × 108 [1, 0, 0]T [0, 0, 0]T 0

2 2.7281 × 108 [0, 1, 0]T [0, 0, 0]T 0

3 1.3835 × 105 [0, 0, 1]T [0, 0, 0]T 0

4 3.9555 × 106 [0, 0, 1]T / ∞

5 8.3012 × 103 [0, 0, 1]T / ∞

6 8.3012 × 103 [0, 1, 0]T / ∞

Z
YX

O

5 6

2

1

3

4

Z
YX

O 5

6
2

1

3 4

(a) (b)

Fig. 3 Physical interpretation of the stiffness matrix based on the eigenscrew decomposition
(a) and principle axes decomposition (b)
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wc ¼
0 1 0 0 0:0055 0
1 0 0 0:0055 0 0
0 0 1 0 0 5:3470

2
4

3
5
T

ð29Þ

From Eq. (29), it can be seen that the three compliants are orthogonality and
along the direction of Y-, X-, Z-axes, respectively. The three compliant axes also
intersect at the same point O, which means that the O is the center of the com-
pliance of the elastic system. It also can be observed that the stiffness matrix is
diagonal, which means the stiffness is decoupled in this configuration. In this
situation, the stiffness matrix is identify with Class 3b presented by Patterson and
Lipkin (1993b). In Class 3b, the elastic system has a pencil of compliant axes and a
single compliant axis perpendicular to the pencil. Since λ1 = λ3, h1 = h3, and the
eigenscrews corresponding to λ1 and λ3 are distributed in X-Y plane, it means that in
the X-Y plane, a force (rotational deformation) through the origin produces a linear
deformation(couple) parallel to the X-Y plane, and such kind of the force-deflection
behavior can be interpreted by

Fx Fy 0 0 0 0½ � ¼ kiKD 0 0 0 Fx Fy 0½ �;
0 0 0 dUx dUy 0½ � ¼ kiKD dUx dUy 0 0 0 0½ �, ði ¼ 1, 3Þ

In Table 3, the pitches of the first three springs are equal to 0. There are three
force-compliant axes which are correspond with Eq. (29), they can be expressed as
follow:

w ¼
0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0

2
4

3
5
T

ð30Þ

From Fig. 3b, it can be seen that the stiffness matrix is realized by six simple
springs. The first three springs are perpendicularity mutually and intersect at O. The
last three springs are perpendicularity mutually and intersect at O, and O is also the
center of stiffness of this elastic system. In this configuration, the center of stiffness
is degenerate to the center of compliance, which verifies the decoupled character-
istic of the stiffness matrix in another way. There are four springs in the X-Y plane
and two springs along the Z-axis, which is in accordance with the distribution of
screw springs displayed in Fig. 3a. The three pitches of the first three springs are
equal to 0, which means the three wrench-compliant axes degenerate to three
force-compliant axes. The third spring is along Z-axis which indicated that a force
act along Z-axis on the elastic system always only produce a collinear deformation.
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5 Conclusions

The main contribution of this paper consists in analyzing the forces/torque situation,
deformation and stiffness by considering active forces and constrained torques
factors for the planar 3-RPS PM. By considering the constrained forces in each RPS
leg, a 6 × 6 form Jacobian matrix is derived for a planar 3-RPS PM. This 6 × 6
form Jacobian matrix is used in the stiffness model which leads to a 6 × 6 form
stiffness matrix.

A FE model is established to verify the stiffness model presented in this paper
and the comparison results show that the stiffness model is applicable to such kind
of planar PMs. And the results also show that the stiffness in Z-axis is much larger
than X-axis and Y-axis which cannot be ignored in practical application.

A numeral example is analyzed to reveal the stiffness characteristic of the planar
3-RPS PM by eigenscrew decomposition and principle axes decomposition. The
three compliant axes obtained by eigenscrew decomposition show that the stiffness
matrix is decoupled in X-Y plane. And the compliant axis along Z-axis obtained by
eigenscrew decomposition and the force-deformation axis along Z-axis obtained by
principle axes decomposition show that a force act along Z-axis on the elastic
system always only produce a collinear deformation without affect another
direction.

The stiffness analysis modeling of the planar 3-RPS PM in this paper is fit for
other planar PMs. This research provides a good reference for the stiffness analysis
of the planar PMs.
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