Chapter 2: Number Systems

Logic circuits are used to generate and transmit 1s and Os to compute and convey information. This
two-valued number system is called binary. As presented earlier, there are many advantages of using a
binary system; however, the human brain has been taught to count, label, and measure using the
decimal number system. The decimal number system contains 10 unique symbols (0 — 9) commonly
referred to as the Arabic numerals. Each of these symbols is assigned a relative magnitude to the other
symbols. For example, 0 is less than 1, 1 is less than 2, etc. It is often conjectured that the 10-symbol
number system that we humans use is due to the availability of our ten fingers (or digits) to visualize
counting up to 10. Regardless, our brains are trained to think of the real world in terms of a decimal
system. In order to bridge the gap between the way our brains think (decimal) and how we build our
computers (binary), we need to understand the basics of number systems. This includes the formal
definition of a positional number system and how it can be extended to accommodate any arbitrarily large
(or small) value. This also includes how to convert between different number systems that contain
different numbers of symbols. In this chapter, we cover four different number systems: decimal
(10 symbols), binary (2 symbols), octal (8 symbols), and hexadecimal (16 symbols). The study of
decimal and binary is obvious as they represent how our brains interpret the physical world (decimal)
and how our computers work (binary). Hexadecimal is studied because it is a useful means to represent
large sets of binary values using a manageable number of symbols. Octal is rarely used but is studied as
an example of how the formalization of the number systems can be applied to all systems regardless of
the number of symbols they contain. This chapter also discusses how to perform basic arithmetic in the
binary number system and represent negative numbers. The goal of this chapter is to provide an
understanding of the basic principles of binary number systems.

Learning Outcomes—After completing this chapter, you will be able to:

2.1 Describe the formation and use of positional number systems.
2.2 Convert numbers between different bases.

2.3 Perform binary addition and subtraction by hand.

24 Use two’s complement numbers to represent negative numbers.

2.1 Positional Number Systems

A positional number system allows the expansion of the original set of symbols so that they can be
used to represent any arbitrarily large (or small) value. For example, if we use the 10 symbols in our
decimal system, we can count from 0 to 9. Using just the individual symbols we do not have enough
symbols to count beyond 9. To overcome this, we use the same set of symbols but assign a different
value to the symbol based on its position within the number. The position of the symbol with respect to
other symbols in the number allows an individual symbol to represent greater (or lesser) values. We can
use this approach to represent numbers larger than the original set of symbols. For example, let’'s say we
want to count from 0 upward by 1. We begin counting 0, 1, 2, 3, 4, 5, 6, 7, 8 to 9. When we are out of
symbols and wish to go higher, we bring on a symbol in a different position with that position being valued
higher and then start counting over with our original symbols (e.g., ...,9, 10, 11,...19, 20, 21, ...). Thisis
repeated each time a position runs out of symbols (e.g., ..., 99, 100, 101, ... 999, 1000, 1001, ...).

First, let's look at the formation of a number system. The first thing that is needed is a set of symbols.
The formal term for one of the symbols in a number system is a numeral. One or more numerals are used
to form a number. We define the number of numerals in the system using the terms radix or base.
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For example, our decimal number system is said to be base 70, or have a radix of 10 because it consists
of 10 unique numerals or symbols:

Radix = Base = the number of numerals in the number system

The next thing that is needed is the relative value of each numeral with respect to the other numerals
in the set. We cansay 0 < 1 < 2 < 3, etc. to define the relative magnitudes of the numerals in this set.
The numerals are defined to be greater or less than their neighbors by a magnitude of 1. For example, in
the decimal number system each of the subsequent numerals is greater than its predecessor by exactly
1. When we define this relative magnitude we are defining that the numeral 1 is greater than the numeral
0 by a magnitude of 1; the numeral 2 is greater than the numeral 1 by a magnitude of 1, etc. At this point
we have the ability to count from 0 to 9 by 1’s. We also have the basic structure for mathematical
operations that have results that fall within the numeral set from 0 to 9 (e.g., 1 + 2 = 3). In order to
expand the values that these numerals can represent, we need to define the rules of a positional number
system.

2.1.1 Generic Structure

In order to represent larger or smaller numbers than the lone numerals in a number system can
represent, we adopt a positional system. In a positional number system, the relative position of the
numeral within the overall number dictates its value. When we begin talking about the position of a
numeral, we need to define a location to which all of the numerals are positioned with respect to. We
define the radix point as the point within a number to which numerals to the left represent whole numbers
and numerals to the right represent fractional numbers. The radix point is denoted with a period (i.e., “.”).
A particular number system often renames this radix point to reflect its base. For example, in the base
10-number system (i.e., decimal), the radix point is commonly called the decimal point; however, the term
radix point can be used across all number systems as a generic term. If the radix point is not present in a
number, it is assumed to be to the right of number. Figure 2.1 shows an example number highlighting the
radix point and the relative positions of the whole and fractional numerals.

Definition of Radix Point 1 3 2 . 6 5 g

7
Whole Numbers Radix Point Fractional Numbers

Fig. 2.1
Definition of radix point

Next, we need to define the position of each numeral with respect to the radix point. The position of
the numeral is assigned a whole number with the number to the left of the radix point having a position
value of 0. The position number increases by 1 as numerals are added to the left (2, 3, 4 ...) and
decreased by 1 as numerals are added to the right (—1, —2, —3). We will use the variable p to represent
position. The position number will be used to calculate the value of each numeral in the number based on
its relative position to the radix point. Figure 2.2 shows the example number with the position value of
each numeral highlighted.
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Fig. 2.2
Definition of position number (p) within the number
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In order to create a generalized format of a number, we assign the term digit (d) to each of the
numerals in the number. The term digit signifies that the numeral has a position. The position of the digit
within the number is denoted as a subscript. The term digit can be used as a generic term to describe a
numeral across all systems, although some number systems will use a unique term instead of digit which
indicates its base. For example, the binary system uses the term bit instead of digit; however, using the
term digit to describe a generic numeral in any system is still acceptable. Figure 2.3 shows the generic
subscript notation used to describe the position of each digit in the number.

The position is denoted 4 4+ 4+ 1+ 4+ 2
as a subscript 2 1 0 -1 -2 -3 Position (p)

Fig. 2.3
Digit notation

We write a number from left to right starting with the highest position digit that is greater than 0 and
end with the lowest position digit that is greater than 0. This reduces the amount of numerals that are
written; however, a number can be represented with an arbitrary number of Os to the left of the highest
position digit greater than 0 and an arbitrary number of Os to the right of the lowest position digit greater
than 0 without affecting the value of the number. For example, the number 132.654 could be written as
0132.6540 without affecting the value of the number. The Os to the left of the number are called leading
0Os and the Os to the right of the number are called trailing 0s. The reason this is being stated is because
when a number is implemented in circuitry, the number of numerals is fixed and each numeral must have
a value. The variable n is used to represent the number of numerals in a number. If a number is defined
with n = 4, that means 4 numerals are always used. The number 0 would be represented as 0000 with
both representations having an equal value.

2.1.2 Decimal Number System (Base 10)

As mentioned earlier, the decimal number system contains 10 unique numerals (0, 1, 2, 3,4, 5,6, 7,
8, and 9). This system is thus a base 10 or a radix 10 system. The relative magnitudes of the symbols are
0<1<2<3<4<5<6<7<8<0.

2.1.3 Binary Number System (Base 2)

The binary number system contains two unique numerals (0 and 1). This system is thus a base 2 or
a radix 2 system. The relative magnitudes of the symbols are 0 < 1. At first glance, this system looks
very limited in its ability to represent large numbers due to the small number of numerals. When counting
up, as soon as you count from 0 to 1, you are out of symbols and must increment the p + 1 position in
order to represent the next number (e.g., 0, 1, 10, 11, 100, 101, ...); however, magnitudes of each
position scale quickly so that circuits with a reasonable amount of digits can represent very large
numbers. The term bit is used instead of digit in this system to describe the individual numerals and at
the same time indicate the base of the number.

Due to the need for multiple bits to represent meaningful information, there are terms dedicated to
describe the number of bits in a group. When 4 bits are grouped together, they are called a nibble. When
8 bits are grouped together, they are called a byte. Larger groupings of bits are called words. The size of
the word can be stated as either an n-bit word or omitted if the size of the word is inherently implied. For
example, if you were using a 32-bit microprocessor, using the term word would be interpreted as a 32-bit
word. For example, if there was a 32-bit grouping, it would be referred to as a 32-bit word. The leftmost bit
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in a binary number is called the most significant bit (MSB). The rightmost bit in a binary number is
called the least significant bit (LSB).

2.1.4 Octal Number System (Base 8)

The octal number system contains 8 unique numerals (0, 1, 2, 3, 4, 5, 6, 7). This system is thus a
base 8 or a radix 8 system. The relative magnitudes of the symbols are 0 <1 <2 <3<4<5<6
< 7. We use the generic term digit to describe the numerals within an octal number.

2.1.5 Hexadecimal Number System (Base 16)

The hexadecimal number system contains 16 unique numerals. This system is most often referred
to in spoken word as “hex” for short. Since we only have 10 Arabic numerals in our familiar decimal
system, we need to use other symbols to represent the remaining 6 numerals. We use the alphabetic
characters A—F in order to expand the system to 16 numerals. The 16 numerals in the hexadecimal
systemare 0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, and F. The relative magnitudes of the symbols are
0<1<2<3<4<5<6<7<8<9<A<B<C<D«<E <F. We use the generic term digit
to describe the numerals within a hexadecimal number.

At this point, it becomes necessary to indicate the base of a written number. The number 10 has an
entirely different value if it is a decimal number or binary number. In order to handle this, a subscript is
typically included at the end of the number to denote its base. For example, 104, indicates that this
number is decimal “ten.” If the number was written as 10,, this number would represent binary “one zero.”
Table 2.1 lists the equivalent values in each of the 4 number systems just described for counts from 04¢ to
1540. The left side of the table does not include leading Os. The right side of the table contains the same
information but includes the leading zeros. The equivalencies of decimal, binary, and hexadecimal in this
table are typically committed to memory.

Equivalency Between Different Number Systems
Decimal Binary Octal Hex Decimal Binary Octal Hex
0 0 0 0 00 0000 00 0
1 1 1 1 01 0001 01 1
2 10 2 2 02 0010 02 2
3 1 3 3 03 0011 03 3
4 100 4 4 04 0100 04 4
5 101 5 5 05 0101 05 5
6 110 6 6 06 0110 06 6
7 11 7 7 07 0111 07 7
8 1000 10 8 08 1000 10 8
9 1001 11 9 09 1001 11 9
10 1010 12 A 10 1010 12 A
11 1011 13 B 11 1011 13 B
12 1100 14 o 12 1100 14 Cc
13 1101 15 D 13 1101 15 D
14 1110 16 E 14 1110 16 E
15 1111 17 F 15 1111 17 F
(Without Leading 0's) (With Leading 0's)

Table 2.1
Number system equivalency
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CC2.1 The base of a number system is arbitrary and is commonly selected to match a particular
aspect of the physical system in which it is used (e.g., base 10 corresponds to our 10
fingers, base 2 corresponds to the 2 states of a switch). If a physical system contained 3
unique modes and a base of 3 was chosen for the number system, what is the base 3
equivalent of the decimal number 3?

A)34=115 B) 310=33 C)34=10; D) 340=21,

2.2 Base Conversion

Now we look at converting between bases. There are distinct techniques for converting to and from
decimal. There are also techniques for converting between bases that are powers of 2 (e.g., base 2, 4,
8, 16).

2.2.1 Converting to Decimal

The value of each digit within a number is based on the individual digit value and the digit’s position.
Each position in the number contains a different weight based on its relative location to the radix point.
The weight of each position is based on the radix of the number system that is being used. The weight of
each position in decimal is defined as

Weight = (Radix)?

This expression gives the number system the ability to represent fractional numbers since an
expression with a negative exponent (e.g., x ) is evaluated as one over the expression with the
exponent change to positive (e.g., 1/x¥). Figure 2.4 shows the generic structure of a number with its
positional weight highlighted.

Definit f Positional Weight
efiniion o ositiona elg dg d1 do . d.1 d.2 d.3
Weiaht = (radix) (radix)’ T(ra(hx} T (rad\xi'I
SO = (e (radix)’ (radix)"’ (radix)
Fig. 2.4
Weight definition

In order to find the decimal value of each of the numerals in the number, its individual numeral value
is multiplied by its positional weight. In order to find the value of the entire number, each value of the
individual numeral-weight products is summed. The generalized format of this conversion is written as

Pona )
Total Decimal Value = Z d; - (radix)'

=P min

In this expression, pmax represents the highest position number that contains a numeral greater than
0. The variable pmin represents the lowest position number that contains a numeral greater than 0. These
limits are used to simplify the hand calculations; however, these terms theoretically could be +co to —oo
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with no effect on the result since the summation of every leading 0 and every trailing 0 contributes
nothing to the result.

As an example, let’s evaluate this expression for a decimal number. The result will yield the original
number but will illustrate how positional weight is used. Let's take the number 132.654 4. To find the
decimal value of this number, each numeral is multiplied by its positional weight and then all of the
products are summed. The positional weight for the digit 1 is (radix)” or (10)2. In decimal this is called the
hundred’s position. The positional weight for the digit 3 is (10)", referred to as the ten’s position. The
positional weight for digit 2 is (10)°, referred to as the one’s position. The positional weight for digit 6 is
(10)~", referred to as the tenth’s position. The positional weight for digit 5 is (10)~2, referred to as the
hundredth’s position. The positional weight for digit 4 is (10)~3, referred to as the thousandth’s position.

When these weights are multiplied by their respective digits and summed, the result is the original
decimal number 132.654 . Example 2.1 shows this process step by step.

Example: Convert 132.654,; to Decimal
1 3 2.6 5 4y
Position (p)—» 2 1 0 1 -2 3
Weight — (10)* (10)' (10)° (10)" (10)*(10)*
'
2
Value = . i
w= 3 d, 10
i=-3
Value = 1-10? + 3-10" + 2-10° + 610" + 5-10 + 4-107
'
Value = 1-(100) + 3-(10) + 2:(1) + 6-("/10) + 5-("/100) + 4-("/1000)
Value =100 + 30 + 2 + 0.6 + 0.05 + 0,004
Value = 132.6544

Example 2.1
Converting Decimal to Decimal

This process is used to convert between any other base to decimal.

2.2.1.1 Binary to Decimal

Let’s convert 101.11, to decimal. The same process is followed with the exception that the base in
the summation is changed to 2. Converting from binary to decimal can be accomplished quickly in your
head due to the fact that the bit values in the products are either 1 or 0. That means any bit thatis a 0 has
no impact on the outcome and any bit that is a 1 simply yields the weight of its position. Example 2.2
shows the step-by-step process converting a binary number to decimal.
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Example: Convert 101.11, to Decimal:

10 1.1 1,
R R
Position (p)—» 2 1 0 -1 -2
AR AR
Weight — (2 (2)' 2" "
4
Value = Z d}_.z‘
i==2

Value=1-22+0-2"' +1-:2° + 1:2" + 1.2

Value = 1:(4) + 0:(2) + 1:(1) + 1:('2) + 1-('h)

Value=4+0+1+0.5+0.25

Value = 5.75¢

Example 2.2
Converting Binary to Decimal

2.2.1.2 Octal to Decimal

When converting from octal to decimal, the same process is followed with the exception that the
base in the weight is changed to 8. Example 2.3 shows an example of converting an octal number to
decimal.

Example: Convert 17.17g to Decimal:
P s 1 7.1 7
Position (p) —» 1 0o - -2

Weight —  (8)' (8)" (8)" (8)?
b
Value = z d, 8

i==2

Value=1-8" + 7.8 + 1-8™ + 7.82

y

Value = 1-(8) + 7-(1) + 1+("1g) + 7+("/ea)

V

Value =8 +7 +0.125 + 0.109375

Value = 15.234375;

Example 2.3
Converting Octal to Decimal
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2.2.1.3 Hexadecimal to Decimal

Let's convert 1AB.EF 4 to decimal. The same process is followed with the exception that the base is
changed to 16. When performing the conversion, the decimal equivalents of the numerals A—F need to
be used. Example 2.4 shows the step-by-step process converting a hexadecimal number to decimal.

E le: C t 1AB.EF 15 to Decimal:
xampie onver 0 Lecimal 1 A B . E F1B
Position (p) —» 2 1 0 -1 -2
Weight —» (16)° (16)" (16)" (16)"(16)?
o
Value = Z d 16
I
i=-2 '
Value = 1-16° + A-16" + B-16° + E-16™ + F-167
Value = 1-(256) + 10-(16) + 11-(1) + 14+("4g) + 15-("/asg)
'
Value = 256 + 160 + 11 + 0.875 + 0.05859375
Value = 427.933593754

Example 2.4
Converting Hexadecimal to Decimal

2.2.2 Converting from Decimal

The process of converting from decimal to another base consists of two separate algorithms. There
is one algorithm for converting the whole number portion of the number and another algorithm for
converting the fractional portion of the number. The process for converting the whole number portion
is to divide the decimal number by the base of the system you wish to convert to. The division will resultin
a quotient and a whole number remainder. The remainder is recorded as the least significant numeral in
the converted number. The resulting quotient is then divided again by the base, which results in a new
quotient and new remainder. The remainder is recorded as the next higher order numeral in the new
number. This process is repeated until a quotient of 0 is achieved. At that point the conversion is
complete. The remainders will always be within the numeral set of the base being converted to.

The process for converting the fractional portion is to multiply just the fractional component of the
number by the base. This will result in a product that contains a whole number and a fraction. The whole
number is recorded as the most significant digit of the new converted number. The new fractional portion
is then multiplied again by the base with the whole number portion being recorded as the next lower order
numeral. This process is repeated until the product yields a fractional component equal to zero or the
desired level of accuracy has been achieved. The level of accuracy is specified by the number of
numerals in the new converted number. For example, the conversion would be stated as “convert this
decimal number to binary with a fractional accuracy of 4 bits.” This means the algorithm would stop once
4-bits of fraction had been achieved in the conversion.
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2.2.2.1 Decimal to Binary

Let’s convert 11.3754 to binary. Example 2.5 shows the step-by-step process converting a decimal

number to binary.

Example: Convert 11.375,, to Binary:

Part 1: Converting the whole number portion:

Step1: 2 |.‘11 5
a

Step2: 2 j 5 2
-

Step3: 2 ‘JZ 1
a

Step4: 2 /1_ 0

Done

Part 2: Converting the fractional number portion:

Step1: 2-(0.375) 075
/

Step2: 2-(0.75) 1.50
/

Step3: 2-(0.5) 1.00

T

Done

1
1
0

1

l

Converted Whole Number = 10112

Converted Fractional Number = .011;

11.375¢

Quotient  Remainder

Product Whole Number

0
1

1

l

Part 3: Combine the two components to form the new number:

1011.011;

LSB

'

Next highest order bit

'

Next highest order bit

'

MSB

MSB
Next lower order bit

LSB

Example 2.5
Converting Decimal to Binary

2.2.2.2 Decimal to Octal

Let’s convert 10.44¢ to octal with an accuracy of four fractional digits. When converting the fractional
component of the number, the algorithm is continued until four digits worth of fractional numerals have
been achieved. Once the accuracy has been achieved, the conversion is finished even though a product
with a zero fractional value has not been obtained. Example 2.6 shows the step-by-step process
converting a decimal number to octal with a fractional accuracy of four digits.
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Example: Convert 10.4, to Octal with an Accuracy of 4 fractional digits:

10. 44

Part 1: Converting the whole number portion:

Quotient Remainder

Step1: 8 j 10 1 2 Least significant digit
a +
Step2: 8 I 1 0 1 Most significant digit
Done Converted Whole Number = 124

Part 2: Converting the fractional number portion:

Product Whole Number

Step1: 8-(0.4) 3.2 3 Most significant digit

a +
Step2: 8-(0.2) 16 1 Next lower order digit

a ‘
Step 3: 8- (0.6) 4.8 4 Next lower order digit

P
Step4: 8-(0.8) 6.4 6 Least significant digit

l Converted Fractional Number = 3146,

Done because we have achieved the desired accuracy
Part 3: Combine the two components to form the new number:

12.3146;

Example 2.6
Converting Decimal to Octal

2.2.2.3 Decimal to Hexadecimal

Let’s convert 254.655, to hexadecimal with an accuracy of three fractional digits. When doing this
conversion, all of the divisions and multiplications are done using decimal. If the results end up between
1040 and 154, then the decimal numbers are substituted with their hex symbol equivalent (i.e., A to F).
Example 2.7 shows the step-by-step process of converting a decimal number to hex with a fractional
accuracy of three digits.
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Example: Convert 254.655,, to Hexadecimal with an Accuracy of 3 fractional digits:

254 . 6554
Part 1: Converting the whole number portion:

Quotient Remainder

Step 1: 16 J||2’54 15 (F1g) 14 (Eqg) Least significant digit
‘/
Step2: 16 [ 15 0 15 (Fig) Most significant digit
Done Converted Whole Number = FE 5

Part 2: Converting the fractional number portion:

Product Whole Number

Step1: 16-(0.655) 10.48 10 (A4g)  Most significant digit
Step 2: 16 - (0.48) 7.68 7 Next lower order digit
e ‘
Step 3: 16 - (0.68) 10.88 10 (As¢) Least significant digit
l Converted Fractional Number = .A7As

Done because we have achieved the desired accuracy

Part 3: Combine the two components to form the new number:

FE.AT7 A

Example 2.7
Converting Decimal to Hexadecimal

2.2.3 Converting Between 2" Bases

Converting between 2" bases (e.g., 2, 4, 8, 16) takes advantage of the direct mapping that each of
these bases has back to binary. Base 8 numbers take exactly 3 binary bits to represent all 8 symbols (i.e.,
0g = 000,, 75 = 111,). Base 16 numbers take exactly 4 binary bits to represent all 16 symbols (i.e.,
046 = 00005, F1g = 11115).

When converting from binary to any other 2" base, the whole number bits are grouped into the
appropriate-sized sets starting from the radix point and working left. If the final leftmost grouping does not
have enough symbols, it is simply padded on left with leading 0s. Each of these groups is then directly
substituted with their 2" base symbol. The fractional number bits are also grouped into the appropriate-
sized sets starting from the radix point, but this time working right. Again, if the final rightmost grouping
does not have enough symbols, it is simply padded on the right with trailing Os. Each of these groups is
then directly substituted with their 2" base symbol.

2.2.3.1 Binary to Octal

Example 2.8 shows the step-by-step process of converting a binary number to octal.



18 <+ Chapter 2: Number Systems

Example: Convert 10111.01; to Octal:

10111. 01,

Part 1: Form groups of 3 bits representing octal symbols.
(010)(111).(010),

v/ N

Whole nu_mbeT groupings start at the Fractional number groupings start at
radix point and work left. the radix point and work right.
Leading 0's are added as necessary. Trailing 0's are added as necessary.

Part 2: Perform a direct substitution of the bit groupings with the equivalent octal symbol.

(010)(111).(010),

R

27.24

Example 2.8
Converting Binary to Octal

2.2.3.2 Binary to Hexadecimal

Example 2.9 shows the step-by-step process of converting a binary number to hexadecimal.

Example: Convert 111011.11111; to Hexadecimal:

111011 . 11111,

Part 1: Form groups of 4 bits representing hex symbols.
(0011)(1011).(1111)(1000),

4 N

Whole number groupings start at the Fractional number groupings start at
radix point and work left. the radix point and work right.
Leading 0's are added as necessary. Trailing 0's are added as necessary.

Part 2: Perform a direct substitution of the bit groupings with the equivalent hex symbol.
(0011)(1011).(1111)(1000),

3B.F 84

Example 2.9
Converting Binary to Hexadecimal

2.2.3.3 Octal to Binary

When converting to binary from any 2" base, each of the symbols in the originating number are
replaced with the appropriate-sized number of bits. An octal symbol will be replaced with 3 binary bits
while a hexadecimal symbol will be replaced with 4 binary bits. Any leading or trailing Os can be removed
from the converted number once complete. Example 2.10 shows the step-by-step process of converting
an octal number to binary.
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Example: Convert 347.12; to Binary:

347 . 123

Part 1: Each of the octal symbols is replaced with its 3 bit binary equivalent.

347.1234

A N

(011)(100)(111).(001)(010),
\ /

Leading and Trailing 0's can be removed

'

11100111 . 00101,

Example 2.10
Converting Octal to Binary

2.2.3.4 Hexadecimal to Binary

Example 2.11 shows the step-by-step process of converting a hexadecimal number to binary.

Example: Convert 1B.A+; to Binary:
Part 1: Each of the hex symbols is replaced with its 4 bit binary equivalent.

1B.A
/ J \16

0001)(1011).(1010
( \ ) ( ) - ( y ) 2

Part 2: Leading and trailing zeros can be removed.

'
11011. 101,

Example 2.11
Converting Hexadecimal to Binary

2.2.3.5 Octal to Hexadecimal

When converting between 2" bases (excluding binary) the number is first converted into binary and
then converted from binary into the final 2" base using the algorithms described before. Example 2.12
shows the step-by-step process of converting an octal number to hexadecimal.
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Example: Convert 71.5; to Hexadecimal:
Part 1: Convert the octal number into binary. Each octal symbol is represented with 3 bits.

71.54
¥ )
(111)(001).(101),
!
111001 . 101,

Part 2: Convert the binary number into hexadecimal. Form groups of 4 bits
representing hex symbols.

sept: (0011)(1001).(1010)

! v N
Whole number groupings start at the Fractional number groupings start at
radix point and work left. the radix point and work right.
Leading 0's are added as necessary. Trailing 0's are added as necessary.

sep2 (0011)(1001).(1010),
. I's
39. A

Example 2.12
Converting Octal to Hexadecimal

2.2.3.6 Hexadecimal to Octal

Example 2.13 shows the step-by-step process of converting a hexadecimal number to octal.

Example: Convert AB.C+; to Octal:

AB.Cy

Part 1: Convert the hex number into binary. Each hex symbol is represented with 4 bits.

AB . C
a— a “u
(1010)(1011).(1100)
.
10101011 . 11,

Part 2: Convert the binary number into octal. Form groups of 3 bits representing octal symbols.
sept (010)(101)(011).(110),
w l
Step 2:

253.6;

Example 2.13
Converting Hexadecimal to Octal

CC2.2 A “googol” is the term for the decimal number 1€100. When written out manually this
number is a 1 with 100 zeros after it (e.g., 10,000,000,000,000,000,000,000,
000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,00
0,000,000,000,000,000). This term is more commonly associated with the search engine
company Google, which uses a different spelling but is pronounced the same. How many
bits does it take to represent a googol in binary?

A) 100 bits B) 256 bits C) 332 bits D) 333 bits
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2.3 Binary Arithmetic

2.3.1 Addition (Carries)

Binary addition is a straightforward process that mirrors the approach we have learned for longhand
decimal addition. The two numbers (or terms) to be added are aligned at the radix point and addition
begins at the least significant bit. If the sum of the least significant position yields a value with two bits
(e.g., 102), then the least significant bit is recorded and the most significant bit is carried to the next higher
position. The sum of the next higher position is then performed including the potential carry bit from the
prior addition. This process continues from the least significant position to the most significant position.
Example 2.14 shows how addition is performed on two individual bits.

Example: Single Bit Binary Addition
There are four possible results when adding two bits
0 0 1 1
. + 1 . 49
0 1 1 cary—10

Example 2.14
Single-Bit Binary Addition

When performing binary addition, the width of the inputs and output is fixed (i.e., n-bits). Carries that
exist within the n-bits are treated in the normal fashion of including them in the next higher position sum;
however, if the highest position summation produces a carry, this is a uniquely named event. This event
is called a carry out or the sum is said to generate a carry. The reason this type of event is given special
terminology is because in real circuitry, the number of bits of the inputs and output is fixed in hardware
and the carry out is typically handled by a separate circuit. Example 2.15 shows this process when
adding two 4-bit numbers.

Example: What is the sum of 1010.1:and 1110.1,? Did this addition generate a carry?

The two numbers are aligned at the radix point and addition begins at the least significant
position. Carries are recorded at each position and used in the addition of the next higher

position.
;B s The addition starts in the least
v v v ¥ significant position

1010.

The bitwise summation + 17110.1

continues to the most If a carry results, it is used in

significant position. 171001 ‘q the next higher order position

S

summation.
The sum of these two numbers is 11001.0,. Since the inputs each had n=5 but the sum

required n=6, we say that this addition “generated a carry”. Another way of stating the
result is “1001; with a carry”.

Example 2.15
Multiple-Bit Binary Addition

The largest decimal sum that can result from the addition of two binary numbers is given by
2.(2" — 1). For example, two 8-bit numbers to be added could both represent their highest
decimal value of (2" — 1) or 2554, (i.e., 1111 1111,). The sum of this number would result in
51040 or (1 1111 1110,). Notice that the largest sum achievable would only require one additional
bit. This means that a single carry bit is sufficient to handle all possible magnitudes for binary
addition.



22 + Chapter 2: Number Systems

2.3.2 Subtraction (Borrows)

Binary subtraction also mirrors longhand decimal subtraction. In subtraction, the formal terms for the
two numbers being operated on are minuend and subtrahend. The subtrahend is subtracted from the
minuend to find the difference. In longhand subtraction, the minuend is the top number and the
subtrahend is the bottom number. For a given position if the minuend is less than the subtrahend, it
needs to borrow from the next higher order position to produce a difference that is positive. If the next
higher position does not have a value that can be borrowed from (i.e., 0), then it in turn needs to borrow
from the next higher position, and so forth. Example 2.16 shows how subtraction is performed on two
individual bits.

Example: Single Bit Binary Subtraction
There are four possible results when subtracting two bits.

Borrow ___ 10

0 g ,0/ 1 1 <—Minuend
= 0 = 1 s 0 e 1 <—Subtrahend
0 1 1 0

Example 2.16
Single-Bit Binary Subtraction

As with binary addition, binary subtraction is accomplished on fixed widths of inputs and output (i.e.,
n-bits). The minuend and subtrahend are aligned at the radix point and subtraction begins at the least
significant bit position. Borrows are used as necessary as the subtractions move from the least signifi-
cant position to the most significant position. If the most significant position requires a borrow, this is a
uniquely named event. This event is called a borrow in or the subtraction is said to require a borrow.
Again, the reason this event is uniquely named is because in real circuitry, the number of bits of the input
and output is fixed in hardware and the borrow in is typically handled by a separate circuit. Example 2.17
shows this process when subtracting two 4-bit numbers.

Example: What is the difference between 1011.0;and 0100.1;7 Did this subtraction require a
borrow in?
The way this question is phrased indicates that 1011.0; is the minuend and 0100.1; is the
subtrahend. The two numbers are aligned at the radix point and subtraction begins at the
least significant position. Borrows are taken as needed from the next higher order position.

Borrow Borrow The difference of these two numbers is

Required  Required 0110.1; and it did not require a borrow in.
0 ‘10 0 i 10 _ To double-check if this subtraction
The sublraction \yorked, we can look at the decimal
A01 /1/ N - starts in the least g0 ivalents of the numbers: 1011.0,

- 0 1 0 0 1 significant position (1110) - 0100.12(4.510) = 0110.13 (6.510),

: which verifies the subtraction was correct.
0110.1

Example 2.17
Multiple-Bit Binary Subtraction
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Notice that if the minuend is less than the subtrahend, then the difference will be negative. At this
point, we need a way to handle negative numbers.

CC2.3 If an 8-bit computer system can only perform unsigned addition on 8-bit inputs and produce
an 8-bit sum, how is it possible for this computer to perform addition on numbers that are
larger than what can be represented with 8-bits (e.g., 1,000,,+ 1,000,, = 2,000,,)?

A) There are multiple 8-bit adders in a computer to handle large numbers.
B) The result is simply rounded to the nearest 8-bit number.
C) The computer returns an error and requires smaller numbers to be entered.

D) The computer keeps track of the carry out and uses it in a subsequent 8-bit addition,
which enables larger numbers to be handled.

2.4 Unsigned and Signed Numbers

All of the number systems presented in the prior sections were positive. We need to also have a
mechanism to indicate negative numbers. When looking at negative numbers, we only focus on the
mapping between decimal and binary since octal and hexadecimal are used as just another representa-
tion of a binary number. In decimal, we are able to use the negative sign in front of a number to indicate
that it is negative (e.g., —3440). In binary, this notation works fine for writing numbers on paper (e.g.,
—1010,), but we need a mechanism that can be implemented using real circuitry. In a real digital circuit,
the circuits can only deal with Os and 1s. There is no “—” in a digital circuit. Since we only have Os and 1s
in the hardware, we use a bit to represent whether a number is positive or negative. This is referred to as
the sign bit. If a binary number is not going to have any negative values, then it is called an unsigned
number and it can only represent positive numbers. If a binary number is going to allow negative
numbers, it is called a signed number. It is important to always keep track of the type of number we
are using as the same bit values can represent very different numbers depending on the coding
mechanism that is being used.

2.4.1 Unsigned Numbers

An unsigned number is one that does not allow negative numbers. When talking about this type of
code, the number of bits is fixed and stated up front. We use the variable n to represent the number of bits
in the number. For example, if we had an 8-bit number, we would say, “This is an 8-bit, unsigned number.”

The number of unique codes in an unsigned number is given by 2". For example, if we had an 8-bit
number, we would have 28 or 256 unique codes (e.g., 0000 0000, to 1111 1111,).

The range of an unsigned number refers to the decimal values that the binary code can represent. If
we use the notation Ny,signeq t0 represent any possible value that an n-bit, unsigned number can take on,
the range would be defined as 0 < Nypsignea < (2" — 1):

Range of an UNSIGNED number = 0 < Nynsigned < (2" - 1)

For example, if we had an unsigned number with n = 4, it could take on a range of values from +04¢
(0000,) to +1540 (11112). Notice that while this number has 16 unique possible codes, the highest
decimal value it can represent is 154¢. This is because one of the unique codes represents 049. This is
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the reason that the highest decimal value that can be represented is given by (2" — 1). Example 2.18
shows this process for a 16-bit number.

Example: What is the range of decimal numbers that an 16-bit, unsigned word can represent?

The term “16-bit word™ means that the binary number has n=16. We can plug this into the
equation for the range of an unsigned numbers directly.

0 < Nunsigned < (2n - 1)
\ 16
0 = Nunsigned s (2 - 1)
\J
0 < Nunsigned = (65-536 o 1)

Y
0 S Nunsigned S 65!535

An unsigned 16-bit word can represent decimal numbers from 0 to 65,535.

Example 2.18
Finding the Range of an Unsigned Number

2.4.2 Signed Numbers

Signed numbers are able to represent both positive and negative numbers. The most significant bit
of these numbers is always the sign bit, which represents whether the number is positive or negative.
The sign bit is defined to be a 0 if the number is positive and 1 if the number is negative. When using
signed numbers, the number of bits is fixed so that the sign bit is always in the same position. There are a
variety of ways to encode negative numbers using a sign bit. The encoding method used exclusively in
modern computers is called two’'s complement. There are two other encoding techniques called signed
magnitude and one’s complement that are rarely used but are studied to motivate the power of two’s
complement. When talking about a signed number, the number of bits and the type of encoding are
always stated. For example, we would say, “This is an 8-bit, two’s complement number.”

2.4.2.1 Signed Magnitude

Signed magnitude is the simplest way to encode a negative number. In this approach, the most
significant bit (i.e., leftmost bit) of the binary number is considered the sign bit (0 = positive, 1 = nega-
tive). The rest of the bits to the right of the sign bit represent the magnitude or absolute value of the
number. As an example of this approach, let’s look at the decimal values that a 4-bit, signed magnitude
number can take on. These are shown in Example 2.19.
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Example: What decimal values can a 4-bit “Signed Magnitude” code represent?
Diciriil 4-bit
ecimal signed Magnitude
-7 1111
-6 1110
-5 1101
-4 1100
-3 1011
-2 1010
-1 1001
-0 1000
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
L_sign bit

Example 2.19
Decimal Values That a 4-bit, Signed Magnitude Code Can Represent

There are drawbacks of signed magnitude encoding that are apparent from this example. First, the
value of 049 has two signed magnitude codes (0000, and 1000,). This is an inefficient use of the
available codes and leads to complexity when building arithmetic circuitry since it must account for
two codes representing the same number.

The second drawback is that addition using the negative numbers does not directly map to how
decimal addition works. For example, in decimal if we added (—5) + (1), the result would be —4. In signed
magnitude, adding these numbers using a traditional adder would produce (—5) + (1) = (—6). This is
because the traditional addition would take place on the magnitude portion of the number. A 545 is
represented with 101,. Adding 1 to this number would result in the next higher binary code 110, or 64¢.
Since the sign portion is separate, the addition is performed on |5, thus yielding 6. Once the sign bit is
included, the resulting number is —6. It is certainly possible to build an addition circuit that works on
signed magnitude numbers, but it is more complex than a traditional adder because it must perform a
different addition operation for the negative numbers versus the positive numbers. It is advantageous to
have a single adder that works across the entire set of numbers.

Due to the duplicate codes for 0, the range of decimal numbers that signed magnitude can represent
is reduced by 1 compared to unsigned encoding. For an n-bit number, there are 2" unique binary codes
available but only 2" — 1 can be used to represent unique decimal numbers. If we use the notation Ngy,
to represent any possible value that an n-bit, signed magnitude number can take on, the range would be
defined as

Range of a SIGNED MAGNITUDE number = f(z"*1 - 1) < Ngm < +(2"*1 - 1)

Example 2.20 shows how to use this expression to find the range of decimal values that an 8-bit,
signed magnitude code can represent.
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Example: What is the range of decimal numbers that an 8-bit, signed magnitude number can
represent?

The term “8-bit™ means that n=8. We can plug this into the equation for the range of a
signed magnitude number directly.

-(2""-1) < Nsw < +(2™" - 1)
v
(2°71) < Nsw < +(2*" - 1)
L |
=127 < Ngy < +127

An 8-bit, signed magnitude number can represent decimal numbers from -127 to +127.

Example 2.20
Finding the Range of a Signed Magnitude Number

The process to determine the decimal value from a signed magnitude binary code involves treating
the sign bit separately from the rest of the code. The sign bit provides the polarity of the decimal number
(0 = positive, 1 = negative). The remaining bits in the code are treated as unsigned numbers and
converted to decimal using the standard conversion procedure described in the prior sections. This
conversion yields the magnitude of the decimal number. The final decimal value is found by applying the
sign. Example 2.21 shows an example of this process.

Example: What is the decimal value of the 5-bit, signed magnitude code 11010,?

The most significant bit of this 5-bit number is a 1, which indicates that the number is
negative.

Sign Bit —» 11010 <— Magnitude
The remaining 4-bits are the magnitude of the decimal number and are converted directly
to decimal.
1010,

v
[Value| = 23 d{. .2"-

i=0
[Value| = 1:2* + 027 + 1:2" + 0-2°
|Value| = 1-(8) + 0-(4) + 1-(2) + 0-(1)
|Value|=8+0+2+0

|Value| =104
The negative sign is then added back to the converted number giving a decimal value of -104¢

Example 2.21
Finding the Decimal Value of a Signed Magnitude Number

2.4.2.2 One’s Complement

One’s complement is another simple way to encode negative numbers. In this approach, the
negative number is obtained by taking its positive equivalent and flipping all of the 1s to Os and Os to
1s. This procedure of flipping the bits is called a complement (notice the two es). In this way, the most
significant bit of the number is still the sign bit (0 = positive, 1 = negative). The rest of the bits represent
the value of the number, but in this encoding scheme the negative number values are less intuitive. As an
example of this approach, let's look at the decimal values that a 4-bit, one’s complement number can
take on. These are shown in Example 2.22.
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Example: What decimal values can a 4-bit “One’s Complement” code represent?
: 4-bit
Decimal neg Complement
-7 1000
-6 1001
-5 1010
-4 1011
-3 1100
-2 1101
-1 1110
-0 1111
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
LSign bit

Example 2.22
Decimal Values that a 4-bit, One's Complement Code Can Represent

Again, we notice that there are two different codes for 044 (0000, and 1111,). This is a drawback of
one’s complement because it reduces the possible range of numbers that can be represented from 2" to
(2" — 1) and requires arithmetic operations that take into account the gap in the number system. There
are advantages of one’s complement, however. First, the numbers are ordered such that traditional
addition works on both positive and negative numbers (excluding the double 0 gap). Taking the example
of (—5) + (1) again, in one’s complement the result yields —4, just as in a traditional decimal system.
Notice that in one’s complement, —5,¢ is represented with 1010,. Adding 1 to this entire binary code
would result in the next higher binary code 1011, or —4,¢ from the above table. This makes addition
circuitry less complicated, but still not as simple as if the double 0 gap was eliminated. Another
advantage of one’s complement is that as the numbers are incremented beyond the largest value in
the set, they roll over and start counting at the lowest number. For example, if you increment the number
01112 (740), it goes to the next higher binary code 1000,, which is —74¢. The ability to have the numbers
roll over is a useful feature for computer systems.

If we use the notation Nscomp to represent any possible value that an n-bit, one’s complement
number can take on, the range is defined as

Range of a ONE’S COMPLEMENT number = — (2" — 1) < Nyg comp < +(2"" = 1)

Example 2.23 shows how to use this expression to find the range of decimal values that a 24-bit,
one’s complement code can represent.
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Example: What is the range of decimal numbers that a 24-bit, one’s complement number can
represent?

The term “24-bit" means that n=24. We can plug this into the equation for the range of a
one's complement number directly.

-(2""1) < Nycomp < +(2"" - 1)
Y
'(224-1'1) < N1corr|p < +(224-1 o 1)

v
-8,388,607 < N1comp < +8,388,607

A 24-bit, one's complement number can represent decimal numbers from -8,388,607 to
+8,388,607.

Example 2.23
Finding the Range of a 1’s Complement Number

The process of finding the decimal value of a one’s complement number involves first identifying
whether the number is positive or negative by looking at the sign bit. If the number is positive (i.e., the
sign bit is 0), then the number is treated as an unsigned code and is converted to decimal using the
standard conversion procedure described in prior sections. If the number is negative (i.e., the sign bit is
1), then the number sign is recorded separately and the code is complemented in order to convert it to its
positive magnitude equivalent. This new positive number is then converted to decimal using the standard
conversion procedure. As the final step, the sign is applied. Example 2.24 shows an example of this
process.

Example: What is the decimal value of the 5-bit, one's complement code 11010,7?

The most significant bit of this 5-bit number is a 1, which indicates that the number is
negative.
Sign Bit — 11 010

To find the magnitude of the number, we first perform a complement on the entire number
to find its positive equivalent.
11010, ;
+ A complement operation turns all

1'sto0'sandall0'sto 1's
00101,
The number can now be converted into decimal to find its magnitude.
4

[Value| = Z dr_ .2

i=0
Value| = 0-2**0-2* + 1-22 + 0-2' + 1-2°
|Value| = 0-(16) + 0-(8) + 1-(4) + 0-(2) + 1-(1)

|

\J
|Value|=0+0+4+0+1 =54
The negative sign is then added back to the converted number giving a decimal value of -5,

Example 2.24
Finding the Decimal Value of a 1’s Complement Number

2.4.2.3 Two’s Complement

Two’s complement is an encoding scheme that addresses the double 0 issue in signed magnitude
and 1’s complement representations. In this approach, the negative number is obtained by subtracting its
positive equivalent from 2". This is identical to performing a complement on the positive equivalent and
then adding one. If a carry is generated, it is discarded. This procedure is called “taking the two's
complement of a number.” The procedure of complementing each bit and adding one is the most
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common technique to perform a two’s complement. In this way, the most significant bit of the number is
still the sign bit (0 = positive, 1 = negative) but all of the negative numbers are in essence shifted up so
that the double 0 gap is eliminated. Taking the two’s complement of a positive number will give its
negative counterpart and vice versa. Let’s look at the decimal values that a 4-bit, two’s complement
number can take on. These are shown in Example 2.25.

Example: What decimal values can a 4-bit “Two's Complement” code represent?
. 4-bit
Decimal 14's Complement
-8 1000
-7 1001
-6 1010
-5 1011
-4 1100
-3 1101
-2 1110
-1 111
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
L_sign bit

Example 2.25
Decimal Values That a 4-bit, Two’s Complement Code Can Represent

There are many advantages of two’s complement encoding. First, there is no double 0 gap, which
means that all possible 2" unique codes that can exist in an n-bit number are used. This gives the largest
possible range of numbers that can be represented. Another advantage of two’s complement is that
addition with negative numbers works exactly the same as decimal. In our example of (—5) + (1), the
result is (—4). Arithmetic circuitry can be built to mimic the way our decimal arithmetic works without the
need to consider the double 0 gap. Finally, the rollover characteristic is preserved from one’s comple-
ment. Incrementing +7 by +1 will result in —8.

If we use the notation Nocom, to represent any possible value that an n-bit, two’s complement
number can take on, the range is defined as

Range of a TWO’S COMPLEMENT number = —(2"") < Nz comp < +(2"" 1)

Example 2.26 shows how to use this expression to find the range of decimal values that a 32-bit,
two’s complement code can represent.
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Example: What is the range of decimal numbers that a 32-bit, two's complement number can
represent?

The term “32-bit” means that n=32. We can plug this into the equation for the range of a
two's complement number directly.

_(2n-1) < Nm:ornp < "'{2"-1 - 1}
v
'(232-1) < Nzcump =< "'(232-1 - 1)
v
-2,147,483,648 < Nacomp < +2,147,483,647

A 32-bit, two's complement number can represent decimal numbers from -2,147 483,648
to +2,147,483,647.

Example 2.26
Finding the Range of a Two’s Complement Number

The process of finding the decimal value of a two’s complement number involves first identifying
whether the number is positive or negative by looking at the sign bit. If the number is positive (i.e., the
sign bit is 0), then the number is treated as an unsigned code and is converted to decimal using the
standard conversion procedure described in prior sections. If the number is negative (i.e., the sign bit is
1), then the number sign is recorded separately and a two’s complement is performed on the code in
order to convert it to its positive magnitude equivalent. This new positive number is then converted to
decimal using the standard conversion procedure. The final step is to apply the sign. Example 2.27
shows an example of this process.

Example: What is the decimal value of the 5-bit, 2's complement code 11010,7
The most significant bit of this 5-bit number is a 1, which indicates that the number is

negative.
Sign Bit _,, 11 010

To find the magnitude of the number, we take the 2's complement of the entire number to
find its positive equivalent.

Step 1 — Complement the number 11010 2

00101,
Step 2 — Add 1, ignore carry 001 6'1
out if any
+ 1
00110,

The number can now be converted into decimal to find its magnitude (i.e., 00110; = 64q).
The negative sign is then added giving a final decimal value of -6,

Example 2.27
Finding the Decimal Value of a Two’s Complement Number

To convert a decimal number into its two’s complement code, the range is first checked to determine
whether the number can be represented with the allocated number of bits. The next step is to convert the
decimal number into unsigned binary. The final step is to apply the sign bit. If the original decimal number
was positive, then the conversion is complete. If the original decimal number was negative, then the
two’s complement is taken on the unsigned binary code to find its negative equivalent. Example 2.28
shows this procedure when converting —99,¢ to its 8-bit, two’s complement code.
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Example: What is the 8-bit, 2's complement code for -99,,7
Step 1 - Determine if -99,, can be represented within the 2's complement number range
An 8-bit, 2's complement number has a range of:

“(2™) < Nacomp < #(2™" = 1)
{(2*) < Nacomp < +2" = 1)

v
=128 < Nocomp < +127
Yes, the number -99,; falls within the range that an 8-bit, 2's complement number.
Step 2 — Find the positive binary code for -99,,
Quotient Remainder

2 ,99 49 1 LSB
4/

2 ,49 24 1
e

2 124 12 0

2 [12 s 0
.l/

2 ,‘ 6 3 0
a 1 1

2 ’ 3
e

2 ’ 1 0 1 MSB
Done The converted 8-bit number is 0110 0011,

Step 3 - Perform 2's Complement on the positive equivalent of 99,

First, complementthe number Q01 1 0 . 0011,
1001 1100,

Second, add 1, ignore carry
i 1001 1100
+ 1

1001 1101,
The 8-bit, 2's complement code for -99,, is 1001 1101;

Example 2.28
Finding the Two’s Complement Code of a Decimal Number

2.4.2.4 Arithmetic with Two’s Complement

Two'’s complement has a variety of arithmetic advantages. First, the operations of addition, subtrac-
tion, and multiplication are handled exactly the same as when using unsigned numbers. This means that
duplicate circuitry is not needed in a system that uses both number types. Second, the ability to converta
number from positive to its negative representation by performing a two’s complement means that an
adder circuit can be used for subtraction. For example, if we wanted to perform the subtraction
1310 — 410 = 940, this is the same as performing 134 + (—449) = 910. This allows us to use a single
adder circuit to perform both addition and subtraction as long as we have the ability to take the two’s
complement of a number. Creating a circuit to perform two’s complement can be simpler and faster than
building a separate subtraction circuit, so this approach can sometimes be advantageous.

There are specific rules for performing two’s complement arithmetic that must be followed to ensure
proper results. First, any carry or borrow that is generated is ignored. The second rule that must be
followed is to always check if two’s complement overflow occurred. Two’s complement overflow refers
to when the result of the operation falls outside of the range of values that can be represented by the
number of bits being used. For example, if you are performing 8-bit, two’'s complement addition,
the range of decimal values that can be represented is —1284¢ to +127,4. Having two input terms of
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12740 (0111 1111,) is perfectly legal because they can be represented by the 8 bits of the two’s
complement number; however, the summation of 12749 + 127, = 25449 (1111 1110,). This number
does not fit within the range of values that can be represented and is actually the two’s complement code
for —244, which is obviously incorrect. Two’s complement overflow occurs if any of the following occurs:

*  The sum of like signs results in an answer with opposite sign (i.e., positive + positive = neg-
ative or negative + negative = positive)

*  The subtraction of a positive number from a negative number results in a positive number (i.e.,
negative — positive = positive)

»  The subtraction of a negative number from a positive number results in a negative number (i.e.,
positive — negative = negative)

Computer systems that use two’s complement have a dedicated logic circuit that monitors for any of
these situations and lets the operator know that overflow has occurred. These circuits are straightforward
since they simply monitor the sign bits of the input and output codes. Example 2.29 shows how to use
two’s complement in order to perform subtraction using an addition operation.

Example: Use 4-bit, two's complement addition to find the differences between 6, and 3.

The answer in decimal to this problem is 6,9 — 340 = 310. Instead of using subtraction, we
will use the two's complement representation of -3,; and add the two numbers.

6 10 i 6 10
=310 T * (-310)
310 310

Step 1 - Find the 4-bit, two's complement codes for +6,; and -340.
Since 6 is positive, its code is simply its 4-bit binary equivalent (+6, = 0110;)

Since 3 is negative, we'll need to take the two's complement of its 4-bit positive
binary equivalent (+3,, = 0011;)

1) Complement the number 0 D;l 1,
1100,

2) Add 1, ignore carry out if any 1100

+ 1
1101,

Step 2 - Add the two codes, ignore carry out if any

6 10 0110,

+ (-3 1) = + 1101,
310 _»10011;

The sum resulted in a carry out, but in two's complement addition, this bit is ignored.

The result of the addition was 0011; or +34,, verifying that this approach was correct. Also,
two's complement overflow did not occur because the result of this operation was within
the range of possible values that a 4-bit, two's complement number can represent

(e.g., -81p to +7 o).

Example 2.29
Two’s Complement Addition
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CC2.4 A 4-bit, two’'s complement number has 16 unique codes and can represent decimal
numbers between -8,,to +7,,. If the number of unique codes is even, why is it that the
range of integers it can represent is not symmetrical about zero?

A) One of the positive codes is used to represent zero. This prevents the highest
positive number from reaching +8,,and being symmetrical.

B) Itis asymmetrical because the system allows the numbers to roll over.

C) Itisn’'t asymmetrical if zero is considered a positive integer. That way there are
eight positive numbers and eight negatives numbers.

D) Itis asymmetrical because there are duplicate codes for 0.

Summary

The base, or radix, of a number system refers
to the number of unique symbols within its
set. The definition of a number system
includes both the symbols used and the rela-
tive values of each symbol within the set.
The most common number systems are base
10 (decimal), base 2 (binary), and base
16 (hexadecimal). Base 10 is used because
it is how the human brain has been trained to
treat numbers. Base 2 is used because the
two values are easily represented using elec-
trical switches. Base 16 is a convenient way
to describe large groups of bits.

A positional number system allows larger
(or smaller) numbers to be represented
beyond the values within the original symbol
set. This is accomplished by having each
position within a number have a different
weight.

There are specific algorithms that are used to
convert any base to or from decimal. There
are also algorithms to convert between num-
ber systems that contain a power-of-two
symbols (e.g., binary to hexadecimal and
hexadecimal to binary).

Binary arithmetic is performed on a fixed
width of bits (n). When an n-bit addition
results in a sum that cannot fit within n-bits,
it generates a carry out bit. In an n-bit sub-
traction, if the minuend is smaller than the

subtrahend, a borrow in can be used to com-
plete the operation.

Binary codes can represent both unsigned
and signed numbers. For an arbitrary n-bit
binary code, it is important to know the
encoding technique and the range of values
that can be represented.

Signed numbers use the most significant
position to represent whether the number is
negative (0 = positive, 1 = negative). The
width of a signed number is always fixed.
Two’s complement is the most common
encoding technique for signed numbers. It
has an advantage that there are no duplicate
codes for zero and that the encoding
approach provides a monotonic progression
of codes from the most negative number that
can be represented to the most positive. This
allows addition and subtraction to work the
same on two’s complement numbers as it
does on unsigned numbers.

When performing arithmetic using two’s com-
plement codes, the carry bit is ignored.
When performing arithmetic using two’s com-
plement codes, if the result lies outside of the
range that can be represented it is called
two’'s complement overflow. Two's comple-
ment overflow can be determined by looking
at the sign bits of the input arguments and the
sign bit of the result.
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Exercise Problems

Section 2.1: Positional Number Systems

2141
21.2

2.1.10

2111

2.1.12

2.1.13

21.14

2.1.15

2.1.16

What is the radix of the binary number system?
What is the radix of the decimal number
system?
What is the radix of the hexadecimal number
system?

What is the radix of the octal number system?

For the number 261.367, what position (p) is
the number 2 in?

For the number 261.367, what position (p) is
the number 1in?

For the number 261.367, what position (p) is
the number 3 in?

For the number 261.367, what position (p) is
the number 7 in?

What is the name of the number system
containing 10,?

What is the name of the number system
containing 10407

What is the name of the number system
containing 104¢?

What is the name of the number system
containing 10g?

Which of the four number systems covered in
this chapter (i.e., binary, decimal, hexadecimal,
and octal) could the number 22 be part of?
Give all that are possible.

Which of the four number systems covered in
this chapter (i.e., binary, decimal, hexadecimal,
and octal) could the number 99 be part of?
Give all that are possible.

Which of the four number systems covered in
this chapter (i.e., binary, decimal, hexadecimal,
and octal) could the number 1F be part of?
Give all that are possible.

Which of the four number systems covered in
this chapter (i.e., binary, decimal, hexadecimal,
and octal) could the number 88 be part of?
Give all that are possible.

Section 2.2: Base Conversions

2.21

222

223

224

225

If the number 101.111 has a radix of 2, what is
the weight of the position containing the bit 0?

If the number 261.367 has a radix of 10, whatis
the weight of the position containing the
numeral 2?

If the number 261.367 has a radix of 16, what is
the weight of the position containing the
numeral 1?
If the number 261.367 has a radix of 8, what is
the weight of the position containing the
numeral 3?

Convert 1100 1100, to decimal. Treat all num-
bers as unsigned.

2.2.6

227

2.2.8

229

2.2.10

221

2.212

2.2.13

2214

2.2.15

2.2.16

2217

2.2.18

2.219

2.2.20

2.2.21

2.2.22

Convert 1001.1001, to decimal. Treat all num-
bers as unsigned.

Convert 725 to decimal. Treat all numbers as
unsigned.

Convert 12.57g to decimal. Treat all numbers
as unsigned.

Convert F34¢ to decimal. Treat all numbers as
unsigned.

Convert 15B.CEF 5 to decimal. Treat all num-
bers as unsigned. Use an accuracy of seven
fractional digits.

Convert 674 to binary. Treat all numbers as
unsigned.

Convert 252.987 4 to binary. Treat all numbers
as unsigned. Use an accuracy of 4 fractional
bits and don’t round up.

Convert 6749 to octal. Treat all numbers as
unsigned.

Convert 252.9874¢ to octal. Treat all numbers
as unsigned. Use an accuracy of four fractional
digits and don’t round up.

Convert 6749 to hexadecimal. Treat all num-
bers as unsigned.

Convert 252.987,¢ to hexadecimal. Treat all
numbers as unsigned. Use an accuracy of
four fractional digits and don’t round up.
Convert 1 0000 1111, to octal. Treat all num-
bers as unsigned.

Convert 1 0000 1111.011, to hexadecimal.
Treat all numbers as unsigned.

Convert 77g to binary. Treat all numbers as
unsigned.

Convert F.A4s to binary. Treat all numbers as
unsigned.

Convert 665 to hexadecimal. Treat all numbers
as unsigned.

Convert AB.D¢ to octal. Treat all numbers as
unsigned.

Section 2.3: Binary Arithmetic

231

2.3.2

233

234

Compute 1010, + 1011, by hand. Treat all
numbers as unsigned. Provide the 4-bit sum
and indicate whether a carry out occurred.

Compute 1111 1111, + 0000 0001, by hand.
Treat all numbers as unsigned. Provide the
8-bit sum and indicate whether a carry out
occurred.

Compute 1010.1010, + 1011.1011, by hand.
Treat all numbers as unsigned. Provide the
8-bit sum and indicate whether a carry out
occurred.

Compute 1111 1111.1011, + 0000 0001.1100,
by hand. Treat all numbers as unsigned. Pro-
vide the 12-bit sum and indicate whether a
carry out occurred.
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2.3.5 Compute 1010, — 1011, by hand. Treat all
numbers as unsigned. Provide the 4-bit differ-
ence and indicate whether a borrow in occurred.

2.3.6  Compute 1111 1111, — 0000 0001, by hand.
Treat all numbers as unsigned. Provide the
8-bit difference and indicate whether a borrow
in occurred.

2.3.7  Compute 1010.1010, — 1011.1011, by hand.
Treat all numbers as unsigned. Provide the
8-bit difference and indicate whether a borrow
in occurred.

2.3.8  Compute 1111 1111.1011, — 0000 0001.1100,
by hand. Treat all numbers as unsigned. Pro-
vide the 12-bit difference and indicate whether
a borrow in occurred.

Section 2.4: Unsigned and Signed
Numbers

241 What range of decimal numbers can be
represented by 8-bit, two’s complement
numbers?

242 What range of decimal numbers can be
represented by 16-bit, two’'s complement
numbers?

2.4.3 What range of decimal numbers can be
represented by 32-bit, two’'s complement
numbers?

244 What range of decimal numbers can be
represented by 64-bit, two's complement
numbers?

2.4.5 What is the 8-bit, two’'s complement code for
+8840?

2.4.6  What is the 8-bit, two’s complement code for
—884¢7?

2.4.7  What is the 8-bit, two’s complement code for
—128407?

2.4.8  What is the 8-bit, two’s complement code for
—110?

2.49 What is the decimal value of the 4-bit, two’s
complement code 0010,7?

2.410 What is the decimal value of the 4-bit, two’s
complement code 1010,7?

2.411 What is the decimal value of the 8-bit, two’s
complement code 0111 111057

2.4.12 What is the decimal value of the 8-bit, two’s
complement code 1111 1110,?

2.413 Compute 1110, + 1011, by hand. Treat all
numbers as 4-bit, two’s complement codes.
Provide the 4-bit sum and indicate whether
two's complement overflow occurred.

2.414 Compute 1101 1111, + 0000 0001, by hand.
Treat all numbers as 8-bit, two’s complement
codes. Provide the 8-bit sum and indicate
whether two’s complement overflow occurred.

2415

2.4.16

2.417

2.4.18

2419

2.4.20

2.4.21

2.4.22

Compute 1010.1010, + 1000.1011, by hand.
Treat all numbers as 8-bit, two’s complement
codes. Provide the 8-bit sum and indicate
whether two’s complement overflow occurred.

Compute 1110 1011.1001, + 0010 0001.1101,
by hand. Treat all numbers as 12-bit, two’s
complement codes. Provide the 12-bit sum
and indicate whether two’s complement over-
flow occurred.

Compute 449 — 549 using 4-bit two’s comple-
ment addition. You will need to first convert
each number into its 4-bit two’s complement
code and then perform binary addition (i.e.,
440 + (—51p)). Provide the 4-bit result and indi-
cate whether two’'s complement overflow
occurred. Check your work by converting the
4-bit result back to decimal.

Compute 749 — 749 using 4-bit two’s comple-
ment addition. You will need to first convert
each decimal number into its 4-bit two’s com-
plement code and then perform binary addition
(i.e., 710 + (—710)). Provide the 4-bit result and
indicate whether two’s complement overflow
occurred. Check your work by converting the
4-bit result back to decimal.

Compute 749 + 140 using 4-bit two’s comple-
ment addition. You will need to first convert
each decimal number into its 4-bit two’s com-
plement code and then perform binary addi-
tion. Provide the 4-bit result and indicate
whether two’s complement overflow occurred.
Check your work by converting the 4-bit result
back to decimal.

Compute 6449 — 1004 using 8-bit two’s com-
plement addition. You will need to first convert
each number into its 8-bit two’'s complement
code and then perform binary addition (i.e.,
64410 + (—10040)). Provide the 8-bit result and
indicate whether two’s complement overflow
occurred. Check your work by converting the
8-bit result back to decimal.

Compute (—99)49 — 1140 using 8-bit two’s
complement addition. You will need to first con-
vert each decimal number into its 8-bit two’s
complement code and then perform binary
addition (i.e., (—9940) + (—1140)). Provide the
8-bit result and indicate whether two’s comple-
ment overflow occurred. Check your work by
converting the 8-bit result back to decimal.

Compute 5049 + 1004 using 8-bit two’'s com-
plement addition. You will need to first convert
each decimal number into its 8-bit two’s com-
plement code and then perform binary addi-
tion. Provide the 8-bit result and indicate
whether two’s complement overflow occurred.
Check your work by converting the 8-bit result
back to decimal.
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