Chapter 2
Neural Networks with Feedback
and Self-organization

In this chapter another classes of neural networks are considered as compared with
feed-forward NN—NN with back feed and with self-organization.

In Sect. 2.1 recurrent neural network of Hopfield is considered, its structure and
properties are described. The method of calculation of Hopfield network weights is
presented and its properties considered and analyzed. The results of experimental
investigations for application Hopfield network for letters recognition under high
level of noise are described and discussed. In the Sect. 2.2 Hamming neural net-
work is presented, its structure and properties are considered, algorithm of weights
adjusting is described. The experimental investigations of Hopfield and Hamming
networks in the problem of characters recognition under different level of noise are
presented. In the Sect. 2.3 so-called self-organizing networks are considered. At the
beginning Hebb learning law for neural networks is described. The essence of
competitive learning is considered. NN with self-organization by Kohonen are
described. The basic competitive algorithm of Kohonen is considered/its properties
are analyzed. Modifications of basic Kohonen algorithm are described and ana-
lyzed. The modified competitive algorithm with neighborhood function is descri-
bed. In the Sect. 2.4 different applications of Kohonen neural networks are
considered: algorithm of neural gas, self-organizing feature maps (SOMs), algo-
rithms of their construction and applications.

2.1 Neural Network of Hopfield

Revival of interest in neural networks is connected with Hopfield’s work (1982) [1].
This work shed light on that circumstance that neuron networks can be used for the
computing purposes. Researchers of many scientific fields received incentive for
further researches of these networks; pursuing thus the double aim: the best
understanding of how the brain works and application of properties of these
networks.
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2.1.1 Idea of Reccurrency

The neural network of Hopfield is an example of a network which can be defined as
a dynamic system with feedback at which the output of one completely direct
operation serves as an input of the following operation of a network, as shown in
Fig. 2.1.

Networks which work as systems with feedback, are called “recurrent net-
works”. Each direct operation of a network is called an iteration. Recurrent net-
works, like any other nonlinear dynamic systems, are capable to show the whole
variety of different behavior. In particular, one possible pattern of behavior is that
the system can be stable, i.e. it can converge to the only fixed (motionless) point.

When the motionless point is an input to such dynamic system, at the output we
will have the same point. Thus the system remains fixed at the same state. Periodic
cycles or chaotic behavior are also possible.

It was shown that Hopfield’s networks are stable. In general case it may be more
than one fixed point. That depends on the starting point chosen for initial iteration to
which fixed point a network will converge.

Motionless points are called as attractors. The set of points (vectors) which are
attracted to a certain attractor in the course of iterations of a network, is called as
“attraction area” of this attractor. The set of motionless points of Hopfield’s net-
work is its memory. In this case the network can work as associative memory.
Those input vectors which get to the sphere of an attraction of a separate attractor,
are connected (associated) with it.

For example, the attractor can be some desirable image. The area of an attraction
can consist of noisy or incomplete versions of this image. There is a hope that
images which vaguely remind a desirable image will be remembered by a network
as associated with this image.

Fig. 2.1 Binary network of Input
Hopfield vector
W Vs
Xy = 1 —
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2.1.2 Binary Networks of Hopfield

In Fig. 2.1 the binary network of Hopfield is represented. Input and output vectors
consist of “~1” and “+1” (instead of “~1”, “0” can be used). There is a symmetric
weight matrix W = HW,JH consisting of integers with zeros (or “~1"") on a diagonal.
The input vector X is multiplied by a weight matrix, using usual matrix and vector
multiplication. The input vector X is fed to corresponding neurons and the output
vector is determined. However, only 1 component of an output vector ¥ = [yj} is
used on each iteration. This procedure is known as “asynchronous correction”.
This component which can be chosen incidentally or by turn enters to a threshold
element, whose output is —1, or +1). Corresponding component of an input vector is
replaced with this value and, thus, forms an input vector for the following iteration.
Process proceeds until input and output vectors become identical (that is, the
motionless point will be reached) This algorithm is described below.

2.1.3 Description of the Algorithm of Asynchronous
Correction

At the first moment a key k is closed (see Fig. 2.1) so an input vector x is fed with
weight HWUH to input neurons and the total signal at the input of jth neuron Sj(x) is
defined. Further, the key k is disconnected and outputs of neurons are fed to their
inputs. The following operations are to be made:

e Calculate components of an output vector y;, j = 1, 2, ..., n, using the formula

i=1

where

-1, if x<0
T(x) =4 1, if x>0
y isnot changed, if x =0

e To execute asynchronous correction, i.e. [2—4]:

Step 1: start with an input vector (x1,X7,...,X,).

Step 2: find y; according to the formula (2.1).

Step 3: replace (x1,xs,...,x,) with (y,x;,%2,...,x,) = Y and a feed Y back to
input X.

Step 4: repeat process to find y, y3, etc. and replace the corresponding inputs.
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Repeat steps 2-3 until the vector: ¥ = (y,,¥,,...,¥,) ceases to change. It was
proved each such step reduces the value of communications energy E if at least one
of outputs has changed:

n n

E/ = %Z Z WiiXiXj, (22)
i 1

i=1 j=

so convergence to a motionless point (attractor) is provided.

Asynchronous correction and zeros on a diagonal of a matrix W guarantee that
power function (2.2) will decrease with each iteration [2, 5]. Asynchronous cor-
rection is especially essential to ensuring convergence to a motionless point. If we
allow whole vector to be corrected on each iteration, it is possible to receive a
network with periodic cycles as terminal states of an attractor, but not with
motionless points.

2.1.4 Patterns of Behavior of Hopfield’s Network

Weight matrix distinguishes behavior of one Hopfield’s network from another so
there is a question: “How to define this weight matrix?”

The answer is it should be given a set of certain weight vectors which are called
etalons. There is a hope that these etalons will be the fixed points of a resultant
Hopfield’s network, though it is not always so. In order to ensure these etalons to be
attractors, the weight matrix W = HWUH should be calculated so [5]:

N
wyj = ]; (i = (g = 1), if i #j (2.3)

0, if i =},

where N is a number of the etalons, X} is the kth etalon.

If etalon vectors form a set of orthogonal vectors, it is possible to guarantee that
if the weight matrix is determined as shown above in formula (2.3), each etalon
vector will be a motionless point. However, generally in order that etalons become
motionless points, orthogonality isn’t obligatory.

It should be noted that Holfield network weights aren’t trained like BP or RBF
networks but are calculated in accordance with formula (2.3).
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2.1.5 Application of Hopfield’s Network

Hopfield’s network can be used in particular for images recognition. But the
number of the recognizable images isn’t too great owing to limitation of memory of
Hopfield’s networks. Some results of its work are presented below in the experi-
ment of adjusting network to recognize letters of the Russian alphabet [2].

Initial images are:
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Research was conducted thus: consistently increasing noise level each of 4
images, they are fed to inputs of Hopfield’s network. Results of network func-
tioning are given in Table 2.1.

Thus, Hopfield’s neural network perfectly copes with a problem of recognition
of images(pattern) in experiments with distortion of 0—40 %. In this range all
images(pattern) were recognized without mistakes (sometimes there are insignifi-
cant distortions for 40 % level of noise).

At 45-60 % level of noise images(patterns) are recognized unstably, often there
is “entangling” and at the neural network output appears absolutely other image
(pattern) or its negative.

Beginning from 60 % noise level at the system output the negative of the tested
image(pattern) appears which sometimes is partially distorted (starts appearing at
60-70 %).
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Table 2.1 Experiments with Hopfield network
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2.1

Table 2.1 (continued)
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2.1

Table 2.1 (continued)
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Table 2.1 (continued)
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Table 2.1 (continued)
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2.1.6 The Effect of “Cross-Associations”

Let’s complicate a task and train our neural network with one more pattern:

The letter “II” is very similar to letters “1” and “H” which already exist in the
memory (Fig. 2.2). Now Hopfield’s neural network can’t distinguish any of these
letters even in an undistorted state. Instead of correctly recognizable letter it dis-
plays the following image (for distortion of an pattern from 0 to 50 %):

It looks like to each of letters “I”, “H”, “IT” but isn’t the correct interpretation of
any of them (Fig. 2.3).

From 50 to 60 % noise level at the output of neural network at first appears an
image presented above (Fig. 2.3) in slightly distorted form, and then its negative.

Since 65 % of noise level, at the neural network output steadily there is an image
negative to shown in Fig. 2.3.

The described behavior of a neural network is known as effect of “cross asso-
ciations” [2]. Thus “A” and “B” letters are recognized unmistakably at noise level
up to 40 %.

At 45-65 % noise level at the network output appear, their slightly noisy
interpretations, the image similar to a negative of a letter “B” (but very distorted), or
a negative of the tested image (pattern). At distortion level of 70 % and more neural
network steadily displays its negative of the tested image.

The experimental investigations had revealed the following shortcomings of
Hopfield’s neural network:

1. existence of cross-associations when some images(patterns) are similar to each
other (like the experiments with letter IT);

2. due to storing capacity restrictions the number of the remembered attractors
(patterns) is only (0, 15-0, 2) n, where n is dimension of a weight matrix W.

These circumstances significantly limit possibilities of practical use of
Hopfield’s network.

Fig. 2.2 New test symbol
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Fig. 2.3 Output symbol for
tested symbols U, H, I1

2.2 Neural Network of Hamming. Architecture
and Algorithm of Work

When there is no need that the network would display an etalon pattern in an explicit
form, that is it is enough to define, say, a class of a pattern, associative memory is
realized successfully by Hamming’s network. This network is characterized, in
comparison with Hopfield’s network, by smaller costs of memory and volume of
calculations that becomes obvious of its structure and work (Fig. 2.4) [2, 6].

The network consists of two layers. The first and second layers have m neurons,
where m is a number of patterns. Neurons of the first layer have n synapses
connected to the network inputs (forming a fictitious zero layer). Neurons of the
second layer are connected among themselves by synaptic connections. The only
synopsis with positive feedback for each neuron is connected to his axon.

The idea of network functioning consists in finding of Hamming distance from
the tested pattern to all patterns represented by their weights. The number of dif-
ferent bits in two binary vectors is called as Hamming distance. The network has to
choose a pattern with the minimum of Hamming distance to an unknown input
signal therefore the only one of a network outputs corresponding to this pattern will
be made active.

At an initialization stage the following values are assigned to weight coefficients
of the first layer and a threshold of activation function:

x*
w:j,izl,n;kzl,m (2.5)
=2 Tm (2.6)
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Fig. 2.4 Architecture of Hamming network

Here x! is the ith an element of the kth pattern.

Weight coefficients of the braking synapses in the second layer are set equal to

some value —¢, where 0 <e< %., where m is a number of classes.
The neuron synapse connected with its own axon has a weight (+1).

2.2.1 Algorithm of a Hamming Network Functioning

1. Enter the unknown vector X = {x; : i = 1,n} to a network input and determine
outputs of the first layer neurons (the top index in brackets in formula (2.7)
specifies number of a layer):

! =£") =f<zwijxi+Tj>7 j=Tm 27)
i=1

After that initialize states of axons of the second layer with received values:

W=y j=Tm (2.8)

2. Calculate new states of the second layer neurons
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m

sP(p+1) —8Zyk ), j=1L,m (2.9)
And values of their axons:
W+ ) =f[sPe+1)], j=Tm (2.10)

Activation function f has a threshold, thus the size of a threshold should be
rather big so that any possible values arguments won’t lead to saturation.

3. Check, whether output of the second layer neurons has changed since the last
iteration. If yes, then pass to a step 2 of the next iteration, otherwise—the end.

From the description of algorithm it is evident that the role of the first layer is
very conditional, having used once on a step 1 value of its weight coefficients, the
network doesn’t come back to it any more, so that the first layer may in general be
excluded from a network and replaced with a matrix of weight coefficients.

Note advantages of neural network of Hamming:

small costs of memory;

the network works quickly;

algorithm of work is extremely simple;

capacity of a network doesn’t depend on dimension of an input signal (as in
Hopfield’s network) and equals exactly to a number of neurons.

2.2.2 Experimental Studies of Hopfield’s and Hamming’s
Networks

Comparative experimental researches of Hopfield’s and Hamming’s neural net-
works in a problem of symbols recognition were carried out. For learning of a
network input sample of symbols (1, 7, e, q, p) was used. Then generated noisy
patterns from this sample were entered and their recognition was performed. Level
of noise changed from O to 50 %. Results of recognition of the specified symbols
are presented in Fig. 2.5. On the screen 4 images (patterns) are presented (from left
to right, from top to down): the initial image—a etalon, the noisy image, result of
Hamming network, result of Hopfield’s network (Figs. 2.6, 2.7, 2.8, 2.9).

2.2.3 Analysis of Results

Results of experiments with Hopfield’s and Hamming’s networks are presented in
the Table 2.2. A corresponding table element is a result of recognition by a network
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Fig. 2.5 Recognition of the symbol 1



2.2 Neural Network of Hamming ... 55

Symbol 7

Complete | Complete

i
M
I
“
f (=]
g
=

Results: Results:

Hemming Hopfield Hemming Hopfield
Complete

Complete |
30%

n
n ]
==

-
n

Results:

50%

=
r
Results: R :

Hemming Hopfield Hemming S Hopfield
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Table 2.2 Comparative results of experiments with Hopfield and Hamming networks

Recognition (Hamm, Hop) 0 % 10 % 20 % 30 % 40 % 50 %
1; D (1; 0.5) 1; 0 (1; 0.5) (1, 0.5) ©; 0)
1; D (1; 0.5) (1; 0.5) (1; 1) (1, 0.5) 0; 0)
a1 1d;05 A D ;1 ©; 0 (0; 0)
d:0 |10 ;0 1; 0 (15 0) (0; 0)
(CCRVRICIR) 1; 0 1; 0 15 0) (0; 0)

Slolm|l=w|~

(Hamming; Hopfield) of a symbol at the specified noise level, and namely: 0—it
isn’t recognized; 0.5—it is recognized with defects; 1—it is recognized correctly.

Hamming’snetwork in general performed well (except for “e” symbol) and
recognized correctly up to the level of noise 40 %), while Hopfield’s network
results of recognition are much worse, at recognition of symbols with a similar
elements (e, p, q) there were difficulties—recognition level was less than 30 %, it is
the effect of cross associations.

2.3 Self-organizing Neural Networks. Algorithms of
Kohonen Learning

2.3.1 Learning on the Basis of Coincidence. Law of Hebb
Learning

In 1949 the Canadian psychologist D. Hebb published the book “Organization of
Behaviour” in which he postulated the plausible mechanism of learning at the
cellular level in a brain [2, 7].

The main idea of Hebb consisted therein when the input signal of neuron
arriving through synaptic communications causes activation operation of neuron,
efficiency of such input in terms of its ability to cause operation of neuron in the
future has to increase.

Hebb assumed that change of efficiency has to happen in a synapse which
transmits this signal to an neuron input. The latest researches confirmed this guess
of Hebb. Though recently other mechanisms of biological learning at the cellular
level were detected, but in recognition of merits of Hebb this law of learning was
called in his honor [7].

The law of Hebb learning belongs to a class of laws of learning by competition.

Linear Associative Elements
In Fig. 2.10 the architecture of the neural network (NN) consisting of m neurons
which are called as “linear associators” is presented.

The input vector in the linear associator is a vector, X = {x;}, i = 1,n, which is
taken out of space R, according to some distribution p(x).
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3"’1 'y'l ¥ i Yli Ym Y;n

Fig. 2.10 Network with linear associators—neurons

The output vector is obtained from input X by the following formula:

Y = WX (2.11)

where W = ||w,]|| is a weight matrix n x m; W = (W, W,,...,W,), W; is W-
matrix column, W; = (Wy;, Wy, .. ., W,,j)T is a weight vector.

We will designate through Y’ = {y;} a desirable output. The main idea of a
linear associative neural network consists that the network has to learn on pairs
input-output:

(X17 Yl)a (X27 Y2)7 RS (XL; YL)

When to an neural network input the signal X; is given, desirable output ¥’ has
to be equal Y. If on an network input the vector Xy + ¢ is given (where e—rather
small), the output has to be equal Y} + ¢ (i.e. at the output have to receive the vector
close to Yy).

The law of Hebb’s learning is as follows [2, 7]:

whew — W;:)]«ld + YiiXki, (212)

y

Where x;;—is the ith vector component X;; yy—jth vector component Y.
In a vector form the expression (2.12) is written so:

W = w4 X, vl = wo 4y xT (2.13)

To realize this law in the course of learning the corresponding components
Yy = Lyij, which are shown by dashed lines (arrows) in Fig. 2.10 are entered.
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It is supposed that before learning, all ngo)

learning sample (X;,Y1),. .., (X;, Y1) the final state of a matrix of W is defined so:
W =YX +VX] + - +Y.X]. (2.14)

= 0. Then as a result of display of the

This Eq. (2.14) is called “a formula of the sum of external product” for W. This
name comes from that fact that ¥, X! —is an external product.

The reformulation of Hebb law in the form of the sum of external product allows
to conduct additional researches of opportunities of this law to provide associations
of pairs of vectors (XiY,).

The first conclusion consists that if vectors {X;,X5,...,X.} are ortogonal and
have unit length, i.e. are orthonormalized, then
Y, = WX;, (2.15)

In other words, the linear associative neural network will produce desirable
transformation “input-output”.
This is the consequence of an orthonormalization property:

XiX]_él./_{L i:j (216)
Then
L
WX, =Y Y, X'X, =Y. (2.17)

r=1

But the problem consists that an orthonormalization condition is very rigid (first
of all it is necessary, that L <n).

Further we are restricted by the requirement that ||X;|| = 1. It would be much
more useful if it was succeeded to lift this restriction. These goal can be achieved,
but not in a linear associative neural network. Here, if vector s X; aren’t
orthonormalized, then a reproduction error Y; appears at the output:

L
WX, = ZI: VXX, = Vi + ; Y,XTX, = Y41 (2.18)

It is desirable to achieve that # be minimum. To provide # = min or # = 0, it is
necessary to pass to a nonlinear associative network with nonlinear elements.

2.3.2 Competitive Learning

Competitive learning is used in problems of self-learning, when there is no clas-
sification of the teacher.
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The laws of learning relating to category competitive, possess that property that
there arises a competitive process between some or all processing elements of a
neural network. Those elements which appear winners of competition, get the right
to change their weights, while the rest the of weights don’t change (or change by
another rule).

Competitive learning is known as “Kohonen’s learning”. Kohonen’s learning
significantly differs from Hebb learning and BP algorithm by therein the principle
of self-organization is used (as opposed to the principle of controlled learning with
the teacher).

The competitive law of learning has long and remarkable history [2]. In the late
sixties—the beginning of the 70th Stephen Grossberg suggested the whole set of
competitive learning schemes for neural networks. Another researcher who dealt
with problems of competitive learning was van der Malsburg. The learning law of
van der Malsburg was based on idea that the sum of the weights of one input
element connected with various processing neurons has to remain a constant in the
course of learning i.e. if one of weights (or some) increases, the others have to
decrease.

After considerable researches and studying works of Grossberg, van der
Malsburg and others Toivo Kohonen came to the conclusion that the main goal of
competitive learning has to consist in designing of a set of vectors which form a set
of equiprobable representatives of some fixed function of distribution density p(x)
of input vectors. And though learning laws of this type were independently received
by many researchers, T. Kohonen was the first who paid attention to a question of
equiprobability. Exactly thanks to this idea and the world distribution of T.
Kohonen book “Self-organization and associative memory” [8] his name began to
associate with this law of learning.

2.3.3 Kohonen’s Learning Law

The basic structure of a layer of Kohonen neurons is given in Fig. 2.11. The layer
consists of N processing elements, each of which receives n input signals
X1,X2, .. .Xx, from a lower layer which is the direct transmitter of signals. To an input
x; and communication (i, j) we will attribute weight w;;.

Each processing element of a layer of Kohonen counts the input intensity /; in
compliance with a formula [2, 8]:

Iy = D(W;. X), (2.19)

where W; = (wyj, waj, .., wy) and X = (x1,%2, . . ., %,); D(Wj, X)—some measure
(metrics) of distance between W; and X.
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Z.

T ]

)H layer of

Kohonen
neurons
Wy
Fig. 2.11 Architecture of Kohonen network
We will define two most general forms of function D(W;, X):
1. Euclide distance: d(W,X) = ||W — X||;
2. Spherical arc distance:
AW, X)=1—-WIX=1-cos0 (2.20)

where W7 X—the scalar product, and is supposed that ||W|| = || X]|| = 1.

In this statement, unless otherwise stated, we’ll use Euclidean distance d(W, X).
At implementation of the Kohonen law as soon as each processing element (neuron)
counted the function J;, a competition between them takes place is, whose purpose
is to find an element with the smallest value /; (i.e. I; ;). As soon as the winner of
such competition is found, his output z is put equal to 1. Output signals of all other
elements remain equal to 0.

At this moment a learning by Kohonen takes place.

The learning data for Kohonen’s layer assumed to consist of sequence of input
vectors {X}, which are taken randomly with the fixed density of probabilities
distribution p(x). As soon as next vector X it is entered into a network, the pro-
cessing Kohonen’s neurons start competing to find the winner for whom
mind(X, W;) is reached. Then for the winner neuron j* output is established

J

zp+ = 1, and for all others z; = 0, j # j*.
At this moment a change of weights according to Kohonen learning law is
performed:
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wrew = wold oc(X - Wj.f"d)zj, (2.21)

where 0 <a<1.
This law can be written in the following form:

wrew — { (1— oc)Wj"Id + oX, for winner j = j* (222)

We,

It is evident that at such learning law the weight vector W; moves to an input
vector X. At the beginning of learning process o = 1 and then in process of learning
it monotonously decreases up to the value o = 0, 1.

This algorithm realizes the principle “The winner takes all” therefore in foreign
literature it is called WTA. Further it should be noted similarity of learning by
Kohonen and statistical process of finding of “k-means”.

K-means for the fixed set of vectors {X;,X,...,X,}, which are chosen ran-
domly from some population with the fixed density of probabilities distribution
p(x), make a set of k vectors W = (Wy, Ws,...,W;) such that the following
functional is minimized:

L
min > D*(X;, W(X; 2.23
min ; ( (X:)) (2.23)

Where W(X;) is a vector W, closest to X;.

In summary, it is necessary to emphasize that the learning by Kohonen’s
algorithm generally doesn’t generate a set of equiprobable weight vectors, that is a
set of such vectors that X which is chosen randomly, according to density of
probabilities distribution p will have equal probability to be the closest to each of
weight vectors W;.

2.3.4 Modified Competitive Learning Algorithms

As it was already noted above, we seek to get vectors W;, which would be
approximately equally probable in the sense of being the closest to the vectors of X
taken from R" with some density of probability distribution In other words, for any
vector of X taken from R" with probability p(x), it is desirable that the probability
of that X will appear to be the closest to W;, has to be approximately equal to Nl for
all i=T1,N.

There are some approaches for the solution of the problems arising at imple-
mentation of a basic learning law of Kohonen [2, 9].
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1.

The first approach is called as Radial Sprouting. It is the best for Euclidean metrics
and metrics (distances) similar to it. All weight vectors W; = LWUJ are originally
set equal to w;(0) = 0. All input vectors X at first are multiplied by some small
positive scalar f8. Process begins with f3, close to 0. It provides proximity of input
vectors of X to vectors W;. In process development f slowly increases, until
reaches the value f§ = 1. As soon as it occurs, weight vectors “are pushed out”
from the initial values and follow input vectors. This scheme works quite well, but
usually some weight vectors will lag behind process and as a result will be not
involved in the competion process that slows down learning process.

. Other approach (“noise addition) consists in adding randomly distributed noise

to data vectors X that facilitates effect of achievement p(X) > 0, in all area Q,
Level of noise is chosen at first rather big so that noise vector be much greater,
than a data vector X. But in the process of learning noise level gradually
decreases. This approach works correctly, but it appears even more slowly, than
approach of “Radial Sprouting”. Therefore approaches of “Radial Sprouting”
and “noise addition” solve a problem of presentation of badly representable laws
with small probability of distribution in some area, but they don’t solve a
problem of equiprobable positioning of vectors W;.

In general, the basic Kohonen’s learning law will bring to a surplus at placement

of vectors W; in those areas where probabilities distribution density p(X), is large,
and to shortage of vectors W; in areas where density of probabilities distribution
p(X) is small.

3.

The third approach which was offered by Duane Desieno, is to build-in “con-
sciousness” (or memory) in each element k to carry out monitoring (control) of
history of successful results (victories) of each neuron. If the processing
Kohonen element wins competition significantly more often than Ni times (time),
then his “consciousness” excludes this element from competition for some time,
thereby giving the chance to elements from the oversaturated area to move to the
next non-saturated areas. Such approach often works very well and is able to
generate good set of equiprobable weight vectors.

The main idea of the consciousness mechanism is a tracking of a share of time

during which the processing element j wins competition. This value can be cal-
culated locally by each processing element by formula:

Ht+1) =fi(0)+ B (z = £(1) (2.24)

When competition is finished and the current value z; (0 or 1) is defined, the

constant 3 takes a small positive value (typical value f = 10~* = 0,0001) and the
share f; is calculated. Right after it the current shifts value b; is defined
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b=~ 1) (225)

where y—positive constant (y ~ 10).

Further the correction of weights is carried out. However, unlike a usual situation
in which weight are adjusted only for one processing element-winner with z; = 1,
here separate competition is being held for finding of the processing element which
has the smallest value of

D(W;, X) — b, (2.26)

The winner element corrects further the of weight according to the usual law of
Kohonen’s learning.

The role of the shift b; is as follows. For often winning elements j the value
f; > % and b; <0 therefore for them value D(W;,X) — b; increases in comparison
with D(W;,X) for seldom winning elements f; < &, b; > 0 and D(W;,X) — b;
decreases that increases their chances to win competiton. Such algorithm realizes
the consciousness mechanism in work of self-organizing neuron networks and
therefore it is called as CWTA (Conscience Winner Takes All) [9].

2.3.5 Development of Kohonen Algorithm

In 1982 T. Kohonen suggested to introduce into the basic rule of competitive learning
information on an arrangement of neurons in an output layer [2, 8, 10]. For this purpose
neurons of an output layer are ordered, forming a one-dimensional or two-dimensional
lattice. The arrangement of neurons in such lattice is marked by a vector index
i = (i1, i2). Such ordering naturally enters distance between neurons |i — j|.

The modified rule of competitive of Kohonen’s learning considers distance of
neurons from winner neuron [2, 8, 9]:

Wi(t+1) = Wj(t) + o« (X = W) A(d(i,j")) (2.27)

where A—function of the neighborhood. A(d(i,j*)) is equal 1 for winner neuron
with an index j*, and gradually decreases in process of increase in distance d, for
example, by function

Ald) = e /7 (2.28)

Both rate of learning «, and radius of interaction R gradually decreases in the
course of learning so at a final stage of learning we come back to the basic law of
weights adaptation only of winner neurons «(f) = age ~.

As we can see in this algorithm the principle 2 is realized: winner takes away not
all but maximum (income) therefore in foreign literature it is called as WTM

(Winner Takes MOST).
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Learning by Kohonen modified algorithm WTM reminds a tension of an elastic
grid of prototypes on a data file from the learning sample. In process of learning the
elasticity of a network gradually decreases and weights changes also decrease
except winner neuron.

As a result we receive not only quantization of input’s, but also we order input
information in the form of a one-dimensional or two-dimensional topographic map
of Kohonen. On this grid each multidimensional vector has the coordinate, and the
closer are coordinates of two vectors on the grid, the closer they are in the initial
space.

2.3.6 Algorithm of Neural Gas

Acceleration of convergence of the modified Kohonen WTM’S algorithm and the
best self-organization of a network gas molecules motion can be received with
application of the method offered by M. Martinez, S. Berkovich and K. Shulten [9]
and called by authors “algorithm of neural gas” owing to similarity of its dynamics.
In this algorithm on each iteration all neurons are sorted depending on their distance
to a vector X. After sorting neurons are marked in the sequence corresponding to
increase in their remoteness:

dy<di<dp< -~ <dn_1, (229)

where d; = HX = Wai || designates remoteness from a vector X of the ith neuron
taking as a result of sorting position m in the sequence begun with neuron winner to
which remoteness d is put into compliance. Value of the neighborhood function for
ith neuron is determined by a formula [9]:

Ali,x) = exp{%}, (2.30)

where m(i) defines the sequence received as a result of sorting of
(m(i)=0,1,2,...,n—1), and o(¢) is the parameter similar to R neighbourhood
level in Kohonen WTM’s algorithm decreasing eventually with 7.

At o(f) = 0 adaptation only of the winner neuron occurs and the algorithm turns
into usual (basic) Kohonen’s algorithm, and at o(¢) # O of adaptation are subject
the weights of many neurons neighbors, and the level of change of scales depends
on size A(i, x).

For achievement of good results of self-organization, process of learning has to
begin with rather great value of g, but eventually its size decreases to zero. Change
of a(t) can be linear or exponential. In work [9] it was offered to change value
according to expression
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a(z):amax(a’“‘"> , (2.31)

max

where o(f)—value on iteration of t; oy and oma—the accepted minimum and
maximum values of ¢. Value Ty,,x defines the maximum number of iterations. The
learning coefficient of the ith neuron o;(¢) can also change both linearly, and
exponentially, and its exponential dependence is defined by expression

%(1) = (0) (;?0)>_ (2.32)

where o;(0) is an initial value o, and o, is a priori set minimum value corre-
sponding to t = Tp.x. In practice the best results of self-organization are reached at
linear change of «(f) [9]. For reduction of calculations volume at realization of
neural gas algorithm it is possible to use the simplification consisting that adapta-
tions of weights happen only for the first k of neurons neighbors in the ordered
sequence of dy <d) <dr <...<d.

Algorithm of neural gas together with Kohonen’s algorithm (CWTA) with
memory considering a share of victories of each neuron of f; are the most effective
tools of neurons self-organization in Kohonen’s network.

Comparative Analysis of Algorithms of Self-organization
Above considered algorithms were compared at the solution of a problem of
recovery of the two-dimensional learned data of difficult structure which are pre-
sented in Fig. 2.12 [9]. For recovery of data 2 sets of the neurons including 40 and
200 elements were used which after ordering positions of neurons will reflect data
distribution. They have to locate in areas of the maximum concentration of data.
Results of self-organization of 40 neurons when using three algorithms are
presented in Fig. 2.13 algorithm with memory (CWTA) (Fig. 2.13a), neural gas
(Fig. 2.13b) and basic algorithm of Kohonen (Fig. 2.13c). For comparison in
Fig. 2.15 similar pictures are obtained by Kohonen’s network consisting of 200
neurons (Fig. 2.14).
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Fig. 2.12 Data structures to be simulated
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Fig. 2.14 Results of self-organization for 200 neurons

As follows from the given results, irrespective of number of neurons the best
results of self-organization were received with use of algorithms of the
self-organization with memory and neural gas.

For quantitative comparison of results it is possible to use criterion “a quanti-
zation error’:

Eg=)_|xi—wi. (2.33)
i=1

where W} is winner neuron weight at presentation of a vector X;.

At 200 neurons the following criterion values were received [9]: E, = 0,007139
for CWTA; E;, = 0,007050 for algorithm of neural gas and E, = 0,02539 for basic
Kohonen’s algorithm.

2.4 Application of Kohonen Neural Networks

Neural networks with self-organization are used in two main directions.

1. For automatic classification of objects.
2. For visual display of properties of multidimensional space (representation of
multidimensional vectors of features).
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In the first case the problem of automatic splitting a set of the objects represented
by multidimensional vectors in some feature space on similarity—to difference of
feature values is solved. Such task sometimes is called as a task of the cluster
analysis and it is in detail considered in the 7th chapter.

In the second case the problem of visualization of properties of multidimensional
feature vectors on the two-dimensional plane is solved.

So-called “Self-organizing Maps” (SOM) are used for this purpose [10].

For this in multidimensional space the spatial lattice is stretched in which nodes
are processing neurons (a layer of Kohonen’s neurons). Further the next points to
each of these neurons are defined. They define area of an attraction of this neuron.
Average value of each feature of neurons in the attraction area is defined —X; .,

Further nodes of a lattice are mapped on the plane in the form of squares or
hexagons, the corresponding value of a feature for this neuron is painted in the
certain color: from blue (the minimum value of a feature) to red (the maximum
value). As a result we receive the self-organizing feature map similar to a geo-
graphical map. Such maps are built on all features and we receive a certain atlas.

Self-organizing Maps (SOMs) represents a method of design of N-dimensional
input space in discrete output space which makes an effective compression of input
space in a set of the coded (weight) vectors. The output space usually represents
itself a two-dimensional lattice. SOM uses a lattice for approximation of probability
density function of an input space, thus keeping its structure i.e. if two vectors are
close to each other in the input space, they have to be close and on the map as well.
During self-organization process SOM carries out an effective clustering of input
vectors, keeping structure of initial space [10].

Stochastic Algorithm of Learning

Learning of SOM is based on strategy of competitive learning. We will consider
N-dimensional input vectors X, where the index p designates one learning pattern.
The first step of process of learning is definition of structure of the maps, usually
two-dimensional lattice. Map is usually square, but may be rectangular. The number
of elements (neurons of an output layer) on the map is less, than the number of the
learning patterns (samples). The number of neurons has to be equal in an ideal to
the number of the independent learning patterns. The structure of SOM is given in
Fig. 2.15. Each neuron on the Map is connected with a N-dimensional weight
vector which forms the center of one cluster. Big cluster groups are formed by
grouping together of “similar” next neurons.

Initialization of Weight Vectors Can Be Carried Out in Various Ways

1. To each weight Wy; = {ijl s Wi, ooy ijN}, where k is a number of rows and
J is a number of columns, random values are attributed. Initial values are
limited to the range of the corresponding input parameter (variable). Though it
is simple to realize random initialization of weight vectors, such way of ini-
tialization gives a big variation of components into SOM that increases learning
time.
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Fig. 2.15 Structure of SOM

2. To weight vectors randomly chosen input patterns are attributed, i.e. Wy, = X),,
where p is a pattern index. Such approach can result in premature convergence
until weight aren’t disturbed with small casual values.

3. To find the main components of vectors of input space and to initialize weight
vectors with these values.

4. Other technology of initialization of scales consists in definition of a hyper cube
of rather big size covering all learning patterns. The algorithm begins work with
finding of four extreme points by definition of four extreme learning patterns.
At first find two patterns with the greatest distance from each other in an
Euclidean metrics. The third pattern is placed in the most remote point from
these two patterns, and the fourth pattern—with the greatest distance from these
three patterns according to Euclid. These four patterns form lattice corners on
the Map (SOM: (1, 1); (1, J); (K, 1); (K, J). Weight vectors of other neurons are
defined by interpolation of four chosen patterns as follows. The weight of
boundary neurons are initialized so [10, 11]:

_ Wi —wn

5. le— T-1 (i—l)+Wll7
Wks — W
6. WK]':%(].—I)—FWKl,
7. Wk,:%(k—lnwn, (2.34)
8. WKJ:WIéi:Vlm(k—l)ﬂLWu,

9. Forallj=2,3,....,J —land k=2,3,...,K— 1.
10. other weight vectors are initialized so:
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WkJ — WK1
Wi ==

(G—1)+ Wk. (2.33)
The standard algorithm of learning for SOM is stochastic in which weight
vectors adapt after display of each pattern of a network. For each neuron the
related code vector (weight) adapts so:

ij(l+ 1) = ij(f) +hmn,kj(l) LXP — ij(l‘)J, (236)

where m, n—index of a line and column of winner neuron correspondingly.
The winner neuron is defined, as usual, by calculation of Euclidean distance
from each weight vector to an input vector and a choice of neuron, the closest to
an input vector, i.e.

[Wo = X, "= min{ || Wiy - x|} (2.37)
(k)

Function hm,ukj(t) in the Eq. (2.36) is considered as function of the neighbor-
hood. Thus, only those neurons which are in the vicinity (in the neighborhood)
of (m, n) winner neuron, change the weights. It is necessary for ensuring
convergence, that A, () — 0 at r — oco.

Function of the neighborhood usually is function of distance between coordi-
nates of the neurons presented on the map i.e.

Fom () = h(Hcmn — el ;), (2.38)

ol . 2
where ¢, ¢;j € R, and with increase in distance Hcmn — i | S i (2) — 0.
The neighbourhood can be determined by a square or a hexagon. However are
most often used a smooth Gaussian kernel:

T i (1) = o(2) exp (—%). (2.39)

Here «(7) is the learning speed, and o (¢)-kernel width. Both functions o(¢) and
() are monotonously decreasing functions with increase if€Creation of SOM in
Batch Mode

Stochastic learning algorithm of SOM is too slow owing to need of weights

adaptation of all neurons after each display of a pattern. The version of SOM
learning algorithm in batch mode was developed. The first package SOM
learning algorithm was developed by Kohonen and is described below [11].
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1. To initialize weight vectors by purpose of the first KJ of the learning pat-
terns where KJ—total number of patterns on the map.

Until stop condition won’t be satisfied,

for each neuron of kj do

make the list of all patterns of X, which are the closest to a weight vector of this
neuron;

end.

2. For each weight vector of wy; calculate new value of a weight vector as an
average of the corresponding list of patterns.

Also the accelerated version of package SOM learning algorithm was devel-
oped. One of the design problems arising at creation of SOM—determination of
the map sizes. Too many neurons can cause glut when each learning pattern is
attributed to various neurons. Or alternately, final SOM can successfully create
good clusters from similar patterns, but many neurons will be with zero or close
to the zero frequency of use where the frequency of neuron means number of
patterns for which the neuron became the winner. Too small number of neu-
rons, on the other hand, leads to clusters with big intra cluster dispersion.

The Accelerated Package Algorithm of Creation of SOM

1. To initialize weight vectors of wy;, using any way of initialization.
2. Yet until stop condition(s) won’t be satisfied

for each neuron k; do

calculate an average value for all patterns for which this neuron was the winner;
designate average as wy;

end.

3. To adapt weight value for each neuron, using expression

Zn Zm Nnmhnm,kj V_Vnm (2 40)
Zn Zm Nnmhnm,kj ’ '

where indexes m, n are summarized according to all numbers of rows and
columns; N, is the number of patterns for which the neuron appeared to be the
winner, and h,, y—function of the neighborhood which specifies, whether
neuron of (m, n) gets into area of the neighborhood of (%, j) neuron and in what
degree;

end.

The method of search close to optimum structure of SOM consists in beginning
with small structure and to increase the Maps sizes when the increase in number
of neurons is required. We will notice that development of the map takes place
along with learning process. Consider one of algorithms of SOM structure
development for the rectangular Map [11].

Wy =
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Algorithm of SOM Structure Development

To initialize weight vectors for small SOM,

yet until the stop condition(s) won’t be satisfied do;

until a condition of the Map growth won’t be true, do;

to learn SOM for t displays of patterns, using any method of SOM learning;
end.

If the condition of the Map growth is satisfied,

1.

(O]

find (k, j) neuron with the greatest error of quantization (intercluster
dispersion);

find the most distant direct neighbor of (m, n) in rows of the Map;

find the most remote neuron in Map columns;

insert a column between neurons of (%, j) and (7, s), and a line between
neurons of (k, j) and (m, n) (this step keeps rectangular structure of the
Map);

. for each neuron (a, b) in a new column initialize the corresponding vector of

W,p, using expression

Wap = V(Wa,b—l + Wa,b+l>u (2.41)
and for each neuron in a new row calculate

Wap =9y (Waerip + War 1) (2.42)
where y € (0, 1);
end.

To adjust the weights of the final structure of SOM, using additional
learning iterations, until convergence will be reached.

The increase in the sizes of the map needs to be stopped when one of the
following criteria is satisfied:

the maximum size of the Map is reached;

the greatest error of quantization for neuron will become less than threshold
¢ determined by the user;

the error of the map quantization converged to a preset value.

Some aspects of this algorithm demand the explanation.

There are constants ¢, y and the maximum SOM size, and also various stop
conditions. For parameter y a good choice is y = 0.5. The idea of an interpo-
lation step consists in assigning a weight vector to new neuron so that it will
take patterns from (%, j) neuron with the greatest error of quantization to reduce
an error of this neuron. Value y < 0.5 will locate neuron (a, b) closer to (k, j)
that, perhaps, will lead to that more patterns will be taken by it at kj neuron,
value y > 0.5 will cause a boomerang effect.
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The threshold of an quantization error & is important to provide the sufficient
size of the SOM Map. Small value € leads to too big SOM size whereas too
great value of € can lead to increase in learning time to reach rather big size of
structure.

It is easy to define the upper bound of the Map size, it is equal simply to the
number of learning patterns pr. However it, naturally, is undesirable. The
maximum size of the Map can be presented as fpr, where f € (0, 1).
Optimum value f§ depends on the solved task, and it is necessary to take
measures to provide not too small value f§ if the increase in the SOM sizes isn’t
provided.

Process of learning of SOM is too slow owing to a large number of iterations of
scales correction. For reduction of computing complexity and acceleration of
convergence of learning some mechanisms are offered. One of them is batch
mode of designing of SOM. Two other mechanisms include control of func-
tions of the neighborhood and learning speed.

If Gaussian neighborhood function is used, all neurons drop to the winner
neuron neighborhood area, but with different degree. Therefore introducing a
certain threshold 6, it is possible to limit number of neurons which will get to
this area and by that to reduce computational costs of correction of their
weights. Besides, the width of the neighborhood function ¢ can be changed
dynamically during learning process. For example, it is possible to choose this
function so:

a(t) = a(0)e ™, (2.43)

where 7; > 0, is some constant; ¢(0) is the initial rather big variation.
Similarly it is possible to use the learning speed o(#) decreasing with increase in
time:

t

a(r) = a(0)e =, (2.44)

where 1, > 0, is some constant; «(0) is initial, rather big variation.

Clustering and Visualization. Application of SOM

Implementation of SOM learning process consists in a clustering (grouping) of
similar patterns, keeping thus topology of input space. After learning the set of
the learned weights is obtained without obvious borders between clusters.
The additional step for finding of borders between clusters is required.
One of the ways to define and visualize these borders between clusters is to
calculate the unified matrix of distances (U-matrix [11]) which includes geo-
metrical approximation of distribution of weight vectors on the Map. The
U-matrix expresses for each neuron distance to weight vectors of the next
neurons. Great values in a matrix of distances of U indicate location of borders
between clusters.
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Fig. 2.16 Example of SOM for irises clustering problem

As an example consider a problem of a clustering of irises. Its statement and the
description are given in Chap. 4. For example, in Fig. 2.16, the U-matrix for a
problem of irises clustering with use of scaling of the SOM Map in shades of
the grey is presented. Thus borders between clusters are marked in more dark
color.

For the same problem in Fig. 2.16b clusters on a full map are visualized.
Borders between them can usually be found by one of clustering methods, for
example, Ward’s method (see Chap. 7). The clustering by Ward’s method uses
approach “from down-up” in which each neuron originally forms an own
cluster. On the subsequent iterations two next clusters merge in one until the
optimum or certain number of clusters is designed. The end result of a clus-
tering is the set of clusters with the minimum intra cluster dispersion and big
inter-cluster dispersion.

For definition, what clusters need to be united, the metrics (distances) according
to Ward is used (see Chap. 7). The metrics of distance is defined so:


http://dx.doi.org/10.1007/978-3-319-35162-9_4
http://dx.doi.org/10.1007/978-3-319-35162-9_7
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n,ng 2
dys = W, — W%, 2.45
e LA (245)

where r and s are indexes of clusters; n, and n, are number of patterns in the
corresponding clusters; W, and W, are vectors of the gravity centers of these
clusters. Two clusters s and r unite (merge) if their metrics of d,y is the smallest.
For the new created cluster q its weight is defined thus:

1
Wq = n, +ns (anr +I’l5W¢), (245)

and n; = n, +n,.

It’s worth to note that for preservation of topological structure two clusters can
be integrated only if they are adjacent (neighbors).

The main advantage of SOM consists in easy visualization and interpretation of
the clusters created on the Map. In addition to visualization of the full map
presented in Fig. 2.17b, separate components of vectors can be visualized, i.e.
for each input feature the separate Map for visualization (display) of values
distribution of this feature in space can be constructed, using the corresponding
color gamut. Such Map and the planes of features can be used for research and
the analysis of data. For example, the marked region on the visualized map can
be designed on the feature plane to find distribution of values of the corre-
sponding input parameters (features) for this region. In Fig. 2.16¢, d SOM’s for
the third and fourth features for a problem of the irises clustering are presented.
The learned SOM can be also used as the classifier [11] as information on
clusters is inaccessible during learning process, (SOM) it is necessary to
investigate the clusters created on the Map manually and to assign appropriate
tags of classes. Further the vector of input data is entered into the map and the
winner neuron is defined. The corresponding tag of a cluster to which the
entered input vector belongs, is used as a name (a number) of a class.

In the mode of a recall SOM can be used for interpolation of the missed values
in a pattern. When entering the input of such pattern, ignoring inputs with the

Fig. 2.17 Area of violation
of a continuity of mapping
using SOMs
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missed values the winner neuron is defined. Further the missed value is
determined by the corresponding feature value of a winner neuron, or by
interpolation of values of the neighbor neurons.

The described topographic maps give an evident presentation of structure of
data in multidimensional input space, which geometry we aren’t able to
imagine otherwise [10]. Visualization of multidimensional information is the
main use of Kohonen’s maps.

Note that in consent with the general everyday principle “free Iunches don’t
happen” topographic maps keep the proximity relation only locally, i.e.
neighbors on the map of area are close and in the initial space, but not on the
contrary (Fig. 2.17). Generally there is no mapping cutting the dimension and
keeping the relation of proximity globally.

In Fig. 2.17 the arrow shows the area of violation of a continuity of mapping,
neighbors points on the plane are displayed on the opposite ends of the map.
The convenient instrument of visualization is the coloring of topographic maps
how it used on usual maps. Each feature generates the corresponding coloring
of the map by average value of this feature at the data which got to this cell
[10].

Having collected maps of all of the interesting features, we‘ll receive the
topographical atlas giving an integrated presentation of the structure of multi-
dimensional data. Self-learning Kohonen’s networks are widely used for data
preprocessing at pattern recognition in space of very big dimension. In this
case, that procedure to be effective, it is required to compress at first input
information by one or another way:

1. or to lower dimension, having defined significant features;
2. or to make quantization of data.

SOM are applied to the solution of a wide range of real problems, including the
analysis of images, recognition of the speech, the analysis of musical patterns,
processing of signals, robotics, telecommunications, data mining of the hidden
knowledge and the analysis of time series [9].
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