Structural Importance and Local
Importance in Network Reliability

P. Tittmann and S. Kischnick

Abstract Network reliability analysis has interesting applications in areas such as
computer and mobile networks. However, the computation of many important
reliability measures (all-terminal reliability, reachability) turns out to be NP-hard.
This statement applies to the computation of relevant reliability importance mea-
sures, too. In this paper we introduce local importance measures that describe the
importance of an edge or vertex of the network in its local network neighborhood.
Suitable scaling of the local neighborhood renders the computation of generally
intractable reliability measures possible.

1 Introduction

The importance of an element x (vertex or edge) of a network (graph) G is a
measure that describes the significance of the element for proper functionality. In
order to make this idea more precise we assume that a given functionf : G — R ™"
assigns a nonnegative real number f(G) to any given graph G. This function is
supposed to be monotone increasing with the performance (redundancy, reliability)
of the network. Examples for those functions are edge and vertex connectivity, the
number of vertex pairs that are reachable from each other, or the number of
spanning trees of the graph. Let G — x be the graph obtained from G by removal of
element x (edge or vertex). Then

f(6) —f(G—x)
f(G)

P. Tittmann (X)) - S. Kischnick

Faculty of Mathematics, Sciences, and Computer Science,

University of Applied Sciences Mittweida, Technikumplatz 17, 09648 Mittweida, Germany
e-mail: peter@hs-mittweida.de

S. Kischnick
e-mail: kischnic @hs-mittweida.de

© Springer International Publishing Switzerland 2017 25
S. Zawislak and J. Rysinski (eds.), Graph-Based Modelling in Engineering,
Mechanisms and Machine Science 42, DOI 10.1007/978-3-319-39020-8_2



26 P. Tittmann and S. Kischnick

is a measure for the loss of performance when x has failed and hence also a measure
for the importance of x. An importance measure is referred to as structural
importance if it is solely dependent on the graph but not on availabilities of edges or
vertices.

The concept of reliability importance was introduced by Birnbaum, [4].
Alternative structural reliability importance measures are presented in [12, 15, 16,
17]. Reliability importance measures have been applied for general binary and
multi-state systems, see [14]. A game theoretic approach to reliability importance is
presented in [8]. The interrelation of the importance of two different components
has been investigated in [2] and [6]. For a more detailed introduction to system
reliability and reliability importance, see [9, 19].

Unfortunately, it is shown that the computation of many reliability importance
measures that are essential to systems and network analysis is NP-hard. A classical
example is the Birnbaum importance given by

OR(G)

IB(G, e) = ap

=R(G/e) —R(G —e) (1)

where R(G) denotes the all-terminal reliability of a graph G = (V, E), whose edges
fail independently with given probability p.,e € E. As the computation of the
all-terminal reliability is NP-hard (in fact it belongs to the class #P-complete, [18])
the computation of the Birnbaum importance is NP-hard, too. Also many structural
importance measures that are based on counting all path sets or all cut sets of a
graph are computationally intractable.

2 Structural Importance Measures

Structural importance measures provide an essential tool to rank the importance of
components (edges or vertices) of a network in case that there are no reliability data
available for edges and vertices of the network.

2.1 The Structural Birnbaum Importance

The measure of structural importance considered here is very likely the first mea-
sure that appeared in the literature; it was introduced by Birnbaum in [4]. Let
G = (V,E) be an undirected graph with m edges. We define a function ¥(G) by
1 if G is connected,

?(6) = {0 if G is not connected. (2)
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If F CE then we write ¥(V, F) instead of ¥((V,F)). We consider a subgraph
(V,F) of G operating if and only if (V, F) is connected. Consequently, a path set is
in this context an edge subset F such that ¥(V,F) = 1. Now let ¢ € E be a fixed
edge of G. An edge set F C E is critical with respect to the edge e if

Y(V,F U{e})— P(V,F\{e}) = 1. (3)

Conversely, given a subset F C E of edges, an edge ¢ € E\F is essential with
respect to F if Eq. (3) is satisfied. The structural Birnbaum importance of an edge e
of G is defined by

1(G,) = 5 PV, F Ufe}) — #(V, F\{e})] )

FCE

Thus the structural Birnbaum importance 1,(G, ¢) counts critical sets of G with
respect to e. We define

(G, e) = > [PV, F) = ¥(V,F\{e})], (5)

F:ecFCE

I(G.e) = LZ\{ (P0F e = ¥} (6)

Then we obtain by splitting the sum in Eq. (4)
1
Ih(G,e) =5 (Li(G,e) +1o(G, e)). (7)
A closer look at the Egs. (5) and (6) shows that

(G, e) = I)(G,e) (8)

as both sums count the same critical sets. This also shows that we can define the
structural Birnbaum importance by Eq. (5).

2.1.1 Connected Spanning Subgraphs and the Tutte Polynomial

Let G = (V,E) be an undirected graph. The graphs obtained from G by removal
and contraction of an edge e are denoted by G — e and G/e, respectively. Let 7(G)
be a number of connected spanning subgraphs of G. Then we can easily conclude
from Eq. (4) that
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©(G/e) —1(G —e)
2m '

Ib (G7 6) = (9)

We call an edge of G that is neither a loop nor a bridge of G a link. The function
7(G) can be recursively computed by

0 if Gis disconnected,
1 if Gisatree,

7(G) =1 21(G—e) if eisaloop, (10)
(G/e) if eisabridge,

(G —e)+1(G/e) ifeis a link.

The last representation follows from the well-known fact that 7(G) equals the
evaluation T(G; 1,2) of the Tutte polynomial of G, see [5].

Theorem 1 The computation of the structural Birnbaum importance is #P-hard.

Proof Tt has been shown in [21] that the evaluation of T(G;1,2) belongs to the
class of #P-hard problems. Now let G = (V,E) be a given graph and v € V an
arbitrarily chosen vertex of G. We construct the new graph G' = (V' ,E) by
inserting a new vertex u and an edge ¢ = {u, v} in G. Then clearly a subset FCE' is
critical for e in G’ if and only if (V,F) is a spanning subgraph of G. Hence we
obtain 7(G) = 2/F11,(G, e).

Figure 1 shows an example graph with edges weighted by 100 times the
structural Birnbaum importance. We see, as expected, that the bridges in the graph
are the edges with maximum importance.

2.1.2 Modified Structural Birnbaum Importance

The normalizing factor, 27, in Eq. (4) accounts for the powerset of E, which
implies that in large sparse networks [,(G,e) < 1 for all edges. The modified
structural Birnbaum importance, defined by

7(G) —1(G — )

II,;(Gv e) = ‘L'(G) 5

(11)

provides a measure of structural importance with the property I, (G, e) = 1 for any
bridge e of G. As I} (G, -) is a constant multiple of 7,(G, -) the importance ranking of
edges is the same for both measures.

The reliability polynomial of a graph G = (V, E) can be represented by
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Fig. 1 Structural Birnbaum 2.05
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RG.p) = (1o v (1) (12)
FCE p

see, for instance, [3]. Consequently, 2"R(G, 1/2) gives the number of connected
spanning subgraphs of G, which implies

: (13)

p=%

1,(G,e) = R(G/e,;> _ R<G _ e;) _ 8Réi,p)

which is the evaluation of the Birnbaum importance, given in Eq. (1) at p = %

2.2 Spanning Trees and Electrical Resistance

The practical consequence of Theorem 1 is that the calculation of structural
importance in large networks is impossible within reasonable time. There are
several approaches to overcome this problem:

e The problem might be solvable in polynomial time when restricted to special
graph classes. In fact it can be shown, see [1], that I,(G, e) can be efficiently
calculated in graphs of bounded tree-width.

e Often polynomial-time algorithms can provide lower and upper bounds for the
structural importance.

e An estimation for the desired measure can be obtained by Monte-Carlo
simulation.

e In some cases another importance measure that is efficiently computable pro-
vides (almost) the same information.

e The desired importance measure can be locally calculated, i.e. with respect to a
part of the network that is close to the edge (or vertex) to be investigated.

We will focus in the following on the latter two methods.
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2.2.1 Spanning Trees

Let us consider a second importance measure in more detail. We choose the number
#(G) of spanning trees of a graph G as performance measure. A spanning tree is a
minimal spanning subgraph of a given graph that ensures connectedness. Hence we
may assume that a graph with many spanning trees is more reliable than a graph
with a fewer number of spanning trees. This argument might be questionable when
comparing completely different graphs. However, we can show that it is a suitable
measure to study the effect of edge removal. We define

tHG) —t(G—e) _ t(G/e)
t(G) tG) -

I,(G,e) = (14)

The second equality results from the well-known decomposition formula
t(G) = t(G — e) +t(G/e), which is valid for any edge e € E(G). If e is a bridge of
G then G — e does not have any spanning trees, (G — e) = 0, which implies
I.(G,e) = 1. Hence a bridge has maximum importance. Any edge of a series
system (a tree) has importance 1. If G is a graph with two vertices that are linked
with each other by m parallel edges then each edge has importance 1/m. However,
in both cases (series and parallel system), all edges have the same importance.

Equation (14) resembles the definition of structural Birnbaum importance by
Eq. (6), whereas now the number of spanning trees of G is used to normalize the
measure. The similarity of the two measures becomes even more obvious if we
compare the two definitions given in Eqs. (14) and (11). The only difference is that
we count in I,(G,e) only minimum connected spanning subgraphs. Hence we
expect the importance measure I, to provide a similar edge importance ranking than
the one defined by 1.

2.2.2 Electrical Resistance

There is a completely different interpretation of the fraction

1(G/e)
1(G) -

According to Kirchhoff laws, [11], this fraction is also the effective resistance
that we measure between the endpoints u and v of the edge e = {u,v} in the
network G = (V, E) where all the edges of E represent unit resistors, see also [5].
Hence we might call 1,(G, e) the resistance importance of e. Interestingly, this new
interpretation supports the understanding of 1,(G, ¢) as an importance measure. The
effective resistance between the end vertices u and v is 1 if and only if there is no
other path than the edge e in G that connects # with v. On the other hand, if the
resistance is small then there must be many other (short) paths that connect the end
vertices of e making e less important for the connectivity of G. Figure 2 shows a
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Fig. 2 A graph with edge
weights 1,.(G, e)

graph whose edges are weighted with 7,(G, e). The total number of spanning trees
of this graph is 198.

3 Flow and Distance Related Structural Importance
Measures

We consider now a measure of importance that appeared first time in the context of
social network analysis. The idea is that an edge is important if it is located on many
shortest paths between different vertex pairs. A corresponding centrality measure
has been introduced in [7] in order to determine the centrality of a vertex in a social
network. An analog centrality measure with respect to the edges of a graph was
employed in [10] in order to identify communities (dense subgraphs) in a graph.
A nice overview about different kinds of centrality measures in social network
analysis is given in [13].

3.1 Stress Centrality

Let G = (V,E) be a graph and s,7 € V. We denote by g(e) the number of shortest
paths between s and ¢ in G that contain the edge e and define

V@ = Hu,v}u,v € V}

as the set of all unordered pairs of vertices of V. The stress centrality, introduced in
[20], of an edge e is defined by

cs(e) = Z ayle). (15)
{s,1}eV®
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Fig. 3 Stress centrality as
importance measure

Assume that traffic in a communication network is routed along shortest paths
and the stress centrality ¢ (e) tries to evaluate the amount of flow that is routed
through e. Hence we can consider the stress centrality of an edge as a measure of
importance with respect to network reliability. Figure 3 shows the graph that has
been also used in the preceding examples now weighted with the stress centralities
of the edges. The stress centrality distinguishes the two bridges of the graph. Even
more interesting, two non-bridge edges have a higher importance than one of the
bridges.

3.2 Modified Stress Centrality

A slight modification of the stress centrality might yield a more appropriate
importance measure for some applications. We define

Sule) = 1 if e is in a shortest st-path,
ST 1 0 otherwise.

The sum

LG = 3 dale) (16)

{s,}eV®

gives the number of vertex pairs of G for which there exist a shortest path traversing
the edge e.
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3.3 Betweenness Centrality

We can refine the investigation of the importance of an edge by considering the
possibilities of rerouting the flow in the network in case the edge fails. Suppose the
flow between two vertices s and ¢ is routed along a shortest path that traverses a
given edge e. Then a failure of e is less important as long there are other paths of
same length connecting s and t. The betweenness centrality takes this effect into
account. It is defined by

oo = 3 9 (17)

o
{spyeve T8

where oy, denotes the number of shortest sz-paths in G.

3.4 An Importance Measure Based on Distances

Another way to measure the importance of an edge in a graph is obtained by
considering the effect of edge removal on distances between vertices in a graph. We
denote by d(u, v) the distance of two vertices u and v in a graph G = (V, E), that is
the length of shortest path between u and v in G. The distance d(u, v) is defined to
be infinite if there is no path between u and v. The total distance of a vertex v is

d(v) =Y d(v,w). (18)

wev

The Wiener index of G, defined by

W(G) =) )= Y duv) (19)

veV {uy}cv
increases when an edge of G is removed. By

W(G)

Id(G, 6) =1- m

(20)

we define the distance importance of the edge e in G. For communication networks,
short paths between many vertex pairs are desirable. Hence the reciprocal of the
Wiener index provides a suitable performance measure for networks, which
explains the difference in Eq. (20). Figure 4 shows our example network this time
with edges labeled according to Eq. (20), where I;(G, e) is multiplied with 100.
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Fig. 4 A distance importance
measure

4 Local Importance Measures

For large networks, the computation of structural importance measures might be
time-consuming or even impossible. In order to obtain in this case at least good
estimations of the importance of edges or vertices, we use the following approach.
If an edge has a high importance in the network then it can be assumed that this
edge also has a high importance in a certain network neighborhood of itself. Let
G = (V,E) be an undirected graph, k € N, and v € V. The k-neighborhood of v in
G is defined by

Ne(v) = {w € Vid(v,w) <k}.

Consequently, the k-neighborhood of v consists of all vertices of G that have
distance at most k from v. We define the k-neighborhood of an edge e = {u, v} of G
by

Nk(v) = Nk(u) UNk(V).

Assume that 1(G, e) is any importance measure for the edge e of G. Then we
define for any non-negative integer k the local importance 1(G, e, k) as

1(G, e, k) = I(G|Ni(e)], e).

Depending on the definition of the importance measure, 1(G, ¢, k) might be an
approximation; it can also provide an upper or a lower bound for I(G, ¢). Consider,
as an example, the importance measure I,(G,e) defined in Eq. (14), which is the
effective electrical resistance between the end vertices of e assuming all edges
represent unit resistors. Building the neighborhood network G[N;(e)] means that we
cut out a part of the network. This operation causes an increase of the resistance
such that 1,(G, e, k) is an upper bound for (G, e).

Table 1 shows the values of local importance measures for a grid graph of
dimension 41 x 41 with respect to a central edge in the middle of the 21st column
of the grid. Figure 5 shows the graph G[N3(e)], where G is a grid graph. The first
column gives the parameter k that defines the local neighborhood of the edge. The
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Table 1 Local importance measures

35

k n 1.(Gy, e,k +1) 1,(G, e, k) 1(G,ek) 1,(G, e, k)
1 8 0.4597701 0.6000000 0.5000000 8.66667
2 18 0.4786778 0.5402299 0.4117647 28.3555
3 32 0.4868770 0.5213222 0.3709677 65.8332
4 50 0.4911341 0.5131230 0.3469388 127.106
5 72 0.4936175 0.5088659 0.3309859 218.235
6 98 0.4951893 0.5063825 0.3195876 345.278
7 128 0.4962458 0.5048107 0.3110236 514.274
8 162 0.4969896 0.5037542 0.3043478 731.248
9 200 0.4975327 0.5030104 0.2989950 1002.21
10 242 0.4979412 0.5024673 0.2946058 1333.18
11 288 0.4982561 0.5020588 0.2909408 1730.15
12 338 0.4985041 0.5017438 0.2878338 2199.12
13 392 0.4987027 0.5014959 0.2851662 2746.10
14 450 0.4988643 0.5012972 0.2828508 3377.08
15 512 0.4989975 0.5011357 0.2808219 4098.06
O
&, O O

O O O O O

Ty F g Y £ £y

p— o p— \— p—

[

) £ ) ) Yy
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Fig. 5 The neighborhood graph of an edge in the grid for k =3
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second column shows the order of the neighborhood graph. The third column
shows the resistance importance of G[Nj ()], which is the graph obtained from
the edge neighborhood graph G[Ny 1 (e)] by merging all vertices that have distance
k+ 1 from the edge e. This means that we shortcut all vertices of the “outer shell”
of the neighborhood graph. The resulting value I,(Gs, e,k + 1) is a lower bound for
I,(G,e). The corresponding upper bound is given in the next column of Table 1.
The values shown in column 5 of Table 1 present an importance measure obtained
from 1,, see Eq. (16), by multiplication with -2, where n is the order of the
neighborhood graph. This modification produces a normalized importance measure.
The last column gives the betweenness centrality of the edge e in the respective
neighborhood graph.

S Summary and Conclusions

The structural importance of edges in graphs with respect to network reliability can
be evaluated by a variety of local importance measures. Some of them, for instance
the structural Birnbaum importance, are computationally intractable, whereas oth-
ers, like the resistance importance, are computable in polynomially bounded time.
An approach to overcome the computational hardness of the computation of
importance measures is the introduction of local importance measures.

There remain, however, some interesting open questions:

e The importance ranking of edges depends on the selected structural importance
measure. Which structural importance measures are closest to each other with
respect to the ranking? Can we find bounds for the importance difference of
edges?

e Numerical experiments suggests that the local importance quickly converges to
the global structural importance when the neighborhood radius k grows. Is there
a way to describe the quality of approximation in dependence on k?

All structural importance measures considered here are defined with respect to
edges of a graph. The given importance measures can be easily generalized for
vertices of a graph or even for components of monotone binary systems.
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