Chapter 2

Investigating Long-Term Subsidence
at Medicine Lake Volcano, CA,
Using Multi Temporal InSAR

Abstract Long-term volcanic subsidence provides insight into inter-eruptive
processes, which comprise the longest portion of the eruptive cycle. Ground based
geodetic surveys of Medicine Lake Volcano (MLV), northern CA, document subsi-
dence at rates of ~—10 mm/yr between 1954 and 2004. The long observation period
plus the duration and stable magnitude of this signal presents an ideal opportunity
to study long-term volcanic deformation, but this first requires accurate knowledge
of the geometry and magnitude of the source. Best-fitting analytical source models
to past leveling and GPS datasets show conflicting source parameters - primarily
the model depth. To overcome this, we combine multiple tracks of InSAR data,
each with a different look angle, to improve upon the spatial resolution of ground
based measurements. We compare the results from InSAR to those of past geodetic
studies, extending the geodetic record to 2011 and demonstrating that subsidence at
MLV continues at ~—10mm/yr. Using geophysical inversions, we obtain the best-
fitting analytical source model - a sill located at 9—10km depth beneath the caldera.
This model geometry is similar to those of past studies, providing a good fit to the
high spatial density of InNSAR measurements, whilst accounting for the high ratio
of vertical to horizontal deformation derived from InSAR and recorded by existing
leveling and GPS datasets. We discuss possible causes of subsidence and show that
this model supports the hypothesis that deformation at MLV is driven by tectonic
extension, gravitational loading, plus a component of volume loss at depth, most
likely due to cooling and crystallisation within the intrusive complex that underlies
the edifice. Past InSAR surveys at MLV, and throughout the Cascades, are of variable
success due to dense vegetation, snow cover and atmospheric artefacts. In this study,
we demonstrate how InSAR may be successfully used in this setting by applying a
suite of multi temporal analysis methods that account for atmospheric and orbital
noise sources. These methods include: a stacking strategy based upon the noise char-
acteristics of each dataset; pixel-wise rate-map formation (;7-RATE); and persistent
scatterer InNSAR (StaMPS).
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2.1 Introduction

Medicine Lake Volcano (MLV), northern California, is one of several Cascade volca-
noes known to have exhibited ground deformation in recent years. The first leveling
measurements at MLV were made in 1954 (Dzurisin et al. 1991, 2002) and, with the
addition of campaign GPS surveys (Poland et al. 2006), comprise a geodetic record
that spans 50years. Few volcanoes have such long geodetic histories, but what is
most unique about MLV is that deformation has been recorded at a constant rate of
~—10mm/yr since measurements began.

Past geodetic surveys provide an extensive history of ground deformation, with
leveling measurements providing good constraints upon the vertical component of
deformation, and GPS measurements best constraining horizontal displacements
(Poland et al. 2006). However, the temporal and spatial resolution of measurements is
limited (Fig.2.1) and there are discrepancies between the best fitting analytical mod-
els to these past datasets. In this study we use measurements from Interferometric
Synthetic Aperture Radar (InSAR), which are made at a much higher spatial den-
sity than ground based surveys. The side-looking nature of InSAR satellites means
that measurements contain a component of both horizontal and vertical motion in
the line of sight (LOS) of the satellite. By combining data acquired from multiple
viewing geometries, InSAR measurements have the potential to better constrain both
horizontal and vertical deformation fields at MLV (Wright et al. 2004b), in addition
to providing measurements at a higher temporal and spatial resolution than past
ground-based studies.

InSAR is a frequently used volcano monitoring tool, providing measurements of
ground deformation in regions both with and without other geodetic equipment (e.g.
Sparks et al. 2012; Pyle et al. 2013; Lu and Dzurisin 2014). For regions that contain
numerous volcanoes, such as the Andes or Central America, InNSAR may be used
to carry out large-scale deformation surveys without the expense or risks associated
with deploying equipment on the ground (Biggs et al. 2014). However, as is the
case in many volcanic settings, the application of InSAR at MLV and throughout the
Cascades has been limited by incoherence and noise.

In recent years, various multi temporal analysis methods have been developed to
improve the use of InSAR in challenging conditions, and are now becoming widely
used due to their accessibility online. This includes those that assume the signal
remains constant over time such as: stacking (e.g. de Zeeuz-van Dalfsen et al. 2012),
rate-map formation (e.g. Poly-Interferogram Rate and Time-series Estimator: -
RATE; Biggs et al. 2007; Elliott et al. 2008; Wang et al. 2009, 2012), and persistent
scatterer InSAR (Ferretti et al. 2001; Hooper et al. 2004, 2007); and those designed
to investigate the temporal evolution of deformation, such as the small baseline
subset algorithm (Berardino et al. 2002), and persistent scatterer InNSAR time-series
(Hooperetal. 2004, 2007). We test the application of multi temporal analysis methods
in the Cascades using multiple sets of InSAR data acquired at MLV, where the
apparent steady state of ground deformation and abundance of geodetic data presents
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Fig. 2.1 a Map of Medicine Lake Volcano including main structural features and direction of tec-
tonic extension after Donnelly-Nolan et al. (2008), plus U.S. Geological Survey geodetic networks.
The extent of MLV lavas and major Holocene lava flows are shown by dashed and solid black
lines respectively (Donnelly-Nolan 2010). The summit caldera is shown by the dotted red line. The
site of the last eruption, 1 ka at Glass Mountain, is labelled. These features are overlain on a 30 m
SRTM digital elevation model. Inset map shows the location of the main map in relation to the other
Cascade volcanoes. b Timeline showing the temporal resolution of geodetic datasets at MLV. Note
the discontinuous time axis. Leveling measurements are labelled with dates and are from Dzurisin
et al. (2002). GPS measurements are from Poland et al. (2006) (color figure online)
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an ideal opportunity to assess the application of techniques that assume a linear rate
of deformation.

The results of multi temporal InSAR analysis provide improved constraints upon
the deformation field at MLV. Comparing the results from InSAR to those of past
geodetic studies, we extend the geodetic record to 2011 and determine whether
subsidence at MLV continues at historical rates. The improved spatial resolution of
InSAR measurements is then used to constrain analytical models of the source of
deformation.

2.1.1 Tectonic and Geological Setting

Located east of the main Cascades axis on the Modoc Plateau, MLV is considered to
be a rear-arc volcano at the southern end of the Cascades Volcanic Arc (Donnelly-
Nolan et al. 2008) (Fig.2.1a). This region marks the interaction between subduction
along the Cascadia subduction zone and extension of the Basin and Range province
(e.g. Hildreth 2007), both of which control the structure and behaviour of MLV. The
edifice marks a kink in regional fault orientations (Blakely et al. 1997) and zones of
crustal weakness including a lineament of vents that extend SW to Mount Shasta;
the NW extension of the Walker Lane fault zone; and the southern extension of the
Klamath Graben (Donnelly-Nolan et al. 2008) (Fig.2.1a).

The total area covered by MLV lavas is >2000km? - about 10 times the area of
Mount St Helens (Donnelly-Nolan 1988) - and the total erupted volume is estimated
to be ~600km? (Heiken 1978) making MLV the largest volcano by volume in the
Cascades (e.g. Donnelly-Nolan 1988; Hildreth 2007). Despite its large volume, MLV
is a broad, inconspicuous, volcano with an E-W orientated, 7 x 12 km summit caldera
(Fig.2.1a).

Volcanism at MLV began about half a million years ago (Donnelly-Nolan and
Lanphere 2005) and the volcano has one of the highest Holocene eruption rates in
the Cascades, with nine eruptions having occurred in the last 5.2 ka (Donnelly-Nolan
et al. 2008). Magmatic products show signatures of both subduction and extension,
with hydrous calcalkaline basalts and dry high-alumina olivine tholeiite erupted close
together in space and time (Donnelly-Nolan 1988). The most recent eruption at MLV
was ~1 ka at Glass Mountain on the eastern edge of the caldera (Fig.2.1a).

2.1.2 Previous Studies of Ground Deformation at Medicine
Lake Volcano

The U.S. Geological Survey has made repeated measurements of two geodetic net-
works covering MLV and nearby Mount Shasta: a leveling line and a campaign GPS
network (Fig.2.1b). The first leveling survey of the MLV/Mount Shasta region took



2.1 Introduction 29

place in 1954. Smaller scale surveys were carried out in 1988 in response to a small
earthquake swarm, and in 1989-1990, the U.S. Geological Survey Volcano Hazards
Program remeasured the MLV circuit (Dzurisin et al. 1991, 2002). These surveys
revealed volcano wide subsidence and an additional survey of the summit region in
1999 confirmed subsidence at a rate of —8.6 &= 0.9 mm/yr (Dzurisin et al. 2002).

Campaign GPS surveys of the volcano took place in 1996, 1999, 2003 and 2004
(Fig.2.1b). The horizontal measurements provided by these GPS campaigns have
been essential in discriminating between possible source geometries, as they reveal
that deformation at MLV is almost all vertical, with very small horizontal displace-
ments (Poland et al. 2006).

Poland et al. (2006) present InSAR results in conjunction with their GPS study,
summing three temporally consecutive ERS-1/2 interferograms to produce a stack
spanning 1993-2000. However, Poland et al. (2006) found that ERS-1/2 data exhibit
poor coherence in the caldera region, and offer limited additional information to GPS
measurements.

2.2 InSAR Data and Interferogram Formation

To address the application of InSAR at MLV, we use the significant archive of InNSAR
data covering the volcano acquired between 1993 and 2011 by the European Space
Agency C-band satellites ERS-1/2 and ENVISAT, plus L-band data from the JAXA
satellite ALOS. In total we use: 26 acquisitions from ERS-1/2 descending track
342; 32 acquisitions from ENVISAT ascending track 163; 32 acquisitions from
ENVISAT descending track 342; and 15 acquisitions from ALOS ascending track
220 (Fig.2.1b). Both C-band satellites have a repeat interval of 35days but offer
variable coverage throughout their operation time. ALOS data span 2007-2011 with
a repeat time of 46 days, providing useful constraint on deformation in more recent
years.

Interferograms were processed using the JPL/Caltech ROI_PAC software (Rosen
et al. 2004), filtered using a power spectrum filter (Goldstein and Werner 1998) and
unwrapped using a branch cut algorithm (Goldstein and Werner 1988). Topography
was removed using a 30 m SRTM DEM (Farr and Kobrick 2000). We guide inter-
ferogram formation using time versus perpendicular baseline plots to identify image
pairs with short temporal and/or spatial baselines (Fig.2.9 in the Appendix). To
improve the coherence of C-band interferograms we made alterations to the process-
ing sequence including additional filtering steps, unwrapping manually using bridges
to connect isolated coherent patches and increasing the number of looks (coarsening
resolution to approx. 300 m) (e.g. Goldstein and Werner 1988; Jénsson et al. 2002).
The final set of C-band interferograms is produced by unwrapping the phase at 16
looks, allowing us to maximise coherence without over smoothing the signal.
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2.2.1 Coherence

The use of InSAR across the Cascades has been limited by incoherence. Coherence
is quantified in terms of interferometric correlation, y, measured across a 3 x 3 pixel
window. For stable pixels, y = 1, and for pixels that have independent backscattering
phases, y = 0 (Seymour and Cumming 1994; Hanssen 2001). We use a threshold
of y = 0.1, as this produces a smooth phase field in unwrapping whilst maximising
the number of coherent pixels.

At MLV, incoherence is mostly caused by snow, and dense vegetation, which
cause the properties of scatterers to vary over time (temporal decorrelation). Geo-
metrical decorrelation may also result from steep topography, such as the caldera
walls. Throughout all datasets we observe good coherence in the arid region sur-
rounding MLV. Pine trees across the flanks and caldera of the volcano significantly
reduce the coherence of C-Band data (e.g. Fig.2.10 in the Appendix), but are less
detrimental to L-Band data, as the longer radar wavelength is better able to penetrate
vegetation (Rosen et al. 1996; Massonnet et al. 1996; Ebmeier et al. 2013b; Lu and
Dzurisin 2014). These regions of high elevations are also affected by snow cover
between November and May, which impacts all datasets.

We quantitatively assess the coherence of each dataset by calculating the per-
centage of coherent pixels in a 0.2° x 0.1° box surrounding the summit caldera.
We then rank the interferograms by coherence and plot a trade-off curve of interfer-
ogram number versus coherence (Fig.2.2b). L-Band ALOS data exhibits the most
complete coherence (more than 90 % interferograms are >30 % coherent at the sum-
mit), whereas ENVISAT data shows much poorer coherence, with fewer than 45 % of
ascending track interferograms and 35 % of descending track interferograms exceed-
ing 30 % coherence at the summit. As was the case for the study of Poland et al. (2006),
we find that the coherence of ERS-1/2 data at MLV is extremely poor, with fewer
than 30 % of interferograms exceeding 25 % coherence at the summit. In addition to
the causes of geometrical and temporal decorrelation highlighted above, such poor
coherence can also be attributed to instrument limitations (e.g. Zebker and Villasenor
1992; Hanssen 2001). As the operation time of ERS-1/2 is also covered by leveling
and GPS surveys we chose to discard this dataset.

2.2.2 Sources of Noise

Interferometric phase is not just a product of ground deformation but also contains
several noise terms that compromise accuracy. The LOS displacement (dy o 5) may
be split into (a) the phase contribution from the difference in ground deformation
between acquisitions #; and #, (A¢q.r), (b) the difference in the orbital contribution
between acquisitions #; and t, (A¢,r») (see Sect.2.2.2), (c) the difference in the
atmospheric delay between acquisitions #; and t, (A¢gum) (see Sect.2.2.2), and (d)
the phase contribution due to other noise (¢error):
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Fig.2.2 Summary of the coherence and noise of datasets used. a Histogram showing the distribution
of the orbital parameter a from Eq. 2.2 for each dataset. ALOS data has a wider distribution of orbital
parameters than ENVISAT as seen by the larger standard deviation. b—d show trade-off curves
summarising the coherence and atmospheric noise of each dataset. Marked thresholds are those
used in noise based stacking described in Sect.2.3.1. b Interferograms are ranked by the percentage
of coherent pixels in a 0.2° x 0.1° box surrounding the summit caldera. ¢ Interferograms are

ranked by the 2 value found by plotting elevation versus phase of each interferogram pixel. d

Interferograms are ranked by the value of standard deviation found using Eq.2.3
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4
dros = _T(A(bdef + Adory + Abarm + ¢error)~ (2.1)

In the following, we analyse the orbital and atmospheric contributions to each dataset,
with parameters summarised in Table 2.1.

Orbital Errors

Each satellite acquisition is made from a different location above the ground due
to forces that act upon the satellite trajectory. Precise orbits are used to determine
the exact separation of the satellite orbits, but not all forces can be fully modelled.
Our knowledge of the orbital parameters is therefore imperfect, resulting in a long
wavelength orbital error that remains in the interferogram (Fig. 2.10 in the Appendix)
(Zebker et al. 1994). As the unmodeled accelerations are small, the error changes
slowly in the along track direction (Hanssen 2001) and most authors approximate the
orbital contribution using a first or second order 2-D polynomial (Biggs et al. 2007,
Gourmelen et al. 2010). Accordingly, we investigate the orbital phase contribution to
each dataset by finding the perturbation to the orbital parameters which best matches
the observed phase using a linear empirical approximation of the form:

z=ax +by+c, 2.2)

where [x, y] are the pixel coordinates, a and b are gradient parameters, and c is
the intercept. We mask the edifice and solve for a, b and ¢ for each interferogram
using a linear least squares inversion. For all datasets we find that both x- and y-
gradients have a roughly normal distribution centred on zero (Fig.2.2a). Using the
standard deviation of the orbital parameters we find that the orbital contributions are
greater for ALOS data than for ENVISAT data (Fig. 2.2a). This is in agreement with
the large perpendicular baselines observed between consecutive ALOS acquisitions
when constructing time versus baseline plots (see Fig.2.9 in the Appendix).

Atmospheric Errors

The atmospheric contribution to the phase results from changes in pressure, tem-
perature and water vapour between acquisitions, as each of these factors controls
the effective path length between the satellite and the ground. The most variable of
these factors is tropospheric water vapour - vertically stratified water vapour causes
a phase contribution that tends to correlate with topography, whereas turbulent water
vapour causes 3D heterogeneities in refractivity that manifest as spatially correlated
patterns in interferograms (Hanssen 2001). From visual inspection of interferograms
at MLV, we find that the main source of atmospheric noise in this setting is turbulent
water vapour across the Modoc Plateau, resulting in phase heterogeneities that do
not correlate with topography (Fig.2.10 in the Appendix).

We investigate the effects of water vapour stratification by looking at the relation
between elevation and phase in each dataset. We begin by removing an orbital phase
ramp (as described in Sect.2.2.2), masking the edifice and identifying pixels that
are coherent in all interferograms. We then use an SRTM 30 m DEM to plot the
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elevation versus phase of each pixel in the interferogram. We then perform a linear
regression to obtain the 2 value, using this as a measure of the correlation between
elevation and phase - interferograms with r> > 0.2 are deemed to be dominated by
non-turbulent atmospheric noise. Using the values of 72, we rank the interferograms
in each dataset and plot a trade-off curve of interferogram number versus 2. As MLV
is of relatively low relief compared to the surrounding basin (~1300 m), we find that
most interferograms do not show a strong relation between elevation and phase, and
have r2 < 0.2 (Fig.2.2c¢).

In reality, interferograms are highly spatially correlated (Hanssen 2001; Jénsson
et al. 2002; Lohman and Simons 2005), and to account for spatial correlation of the
signal, we use an exponentially-decaying form of covariance function to approximate
the overall atmospheric phase contribution to each interferogram (Hanssen 2001).
We assume that the statistical properties of the atmosphere are radially symmetric
(Hanssen 2001) and use a 1D covariance function of the form:

Cik = o2e i) (2.3)

where cj; is the covariance between pixels j and k, o? is the variance, d ik 1s the
distance between the pixels and « is the inverse of the e-folding wavelength - a
measure of the spatial correlation of the signal.

We observe median values of 0 = 7.3 mmand o = 16.0km for ENVISAT ascend-
ing data, 0 = 5.8 mm and o = 8.3 km for ENVISAT descending data (Fig.2.3), and
o = 10.8mm and o = 11.2km for ALOS ascending data, all of which are compa-
rable to the studies of Biggs et al. (2007) in Alaska (6 = 7.5mm and & = 12.3km)
and Lyons and Sandwell (2003) in California (¢ = 8.13 mm).

We use the values of o2 to rank the interferograms in each dataset by phase
standard deviation (o), plotting a trade-off curve of interferogram number versus
standard deviation. We find that all datasets have a similar distribution of standard
deviation: the majority of interferograms have values <10 mm, with standard devia-
tion increasing linearly until the kink in the trade-off curve, at which point we reach
interferograms with much higher levels of noise (Fig.2.2d).

Both water vapour stratification and turbulence are more significant in regions of
significant topography (e.g. Chaussard et al. 2013). This is shown by Ebmeier et al.
(2013b), who derive a relation between the relief of the edifice and RMS variation in
range change across the summit, using examples from volcanoes in Central America.
According to this relation, the relief of MLV compared to the surrounding plateau
(~1300 m) would result in ~35 mm RMS range change variation. This is ~3.5 times
larger than the amount of deformation we expect to observe each year at the rates
obtained from leveling and GPS, emphasising the importance of using multi temporal
methods in this setting.

Numerous studies have developed techniques for reducing the effects of
atmospheric noise including: calibration of the signal with an external data source
such as GPS (e.g. Li et al. 2006b); the use of weather models (e.g. Foster et al. 2006;
Doin et al. 2009; Wadge et al. 2010; Chap.3); and those based upon the statistical
information contained within the interferograms themselves, such as the correlation
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of phase with topography (e.g. Elliott et al. 2008). We take this statistical approach
and use three multi temporal techniques each of which employs statistical informa-
tion within the interferograms to reduce the effects of atmospheric noise.

2.3 InSAR Methods

Various analysis techniques have been developed to improve the coherence and
signal-to-noise ratio of InSAR data in problematic settings. Past geodetic studies
at MLV suggest that deformation is occurring at a constant rate (Dzurisin et al.
2002), and as such we test three techniques that each assume the deformation rate is
linear: stacking, rate-map formation (7-RATE-Poly-Interferogram Rate and Time-
Series Estimator: Biggs et al. 2007), and the Stanford Method for Persistent Scatterers
(StaMPS: Hooper et al. 2007). Our choice of these techniques is also motivated by the
accessibility of the software, as both 7-RATE and StaMPS are available online with
an element of user support. Each technique has a different approach to combining
interferograms and minimising the effects of noise; by identifying common features
between the results we are able to better determine the extent and magnitude of the
deformation field.

2.3.1 Stacking

A common approach to increasing the signal-to-noise ratio of an InSAR dataset
is combining multiple interferograms by stacking. This technique has been used
elsewhere in the Cascades at Mount St. Helens, WA (Poland and Lu 2008), Three
Sisters, OR (Riddick and Schmidt 2011) and previously at MLV (Poland et al. 2006).
This simple method assumes that the signal within the interferograms accumulates
at a constant rate whilst the noise is random. By adding together N interferograms of
equal duration, the signal has a magnitude N times bigger than that of an individual
interferogram, whereas the noise is only /N times larger (Biggs et al. 2007).

Stacking methods can often be further improved by stacking chains of interfero-
grams (e.g. Johanson and Biirgmann 2005; Biggs et al. 2007), where the slave image
of one interferogram is the master image of the next. In this approach, the noise
contribution from the slave image of the first interferogram will be cancelled when
it is used as the master image of the second interferogram, until the remaining noise
contribution is due only to the first and last acquisitions within the chain. This is
beneficial in cases when short duration interferograms are significantly more coher-
ent than longer duration interferograms. This is not the case for the datasets used
here, and we find that chain stacking introduces many small unwrapping errors that
are of the same magnitude as the subsidence signal across the caldera or, in the case
of ALOS, errors due to large perpendicular baselines between consecutive satellite
acquisitions.
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Noise Based Data Selection for Stacking

Due to the extent of incoherence and phase heterogeneities caused by atmospheric
errors, we adopt a stacking strategy designed to optimise the trade-off between the
number of interferograms in each stack and the levels of atmospheric noise. This
approach is based upon the analysis of coherence and noise sources presented in
Sect.2.2.

The main limitation of stacking is that it is only applicable to pixels that are coher-
ent in all interferograms. To combat this we remove any interferograms with <80 %
coherent pixels in a 0.2° x 0.1° box surrounding the summit caldera. This coherence
threshold is selected through a process of trial and error. We begin with a lower
value, resulting in poorer coherence when we sum all remaining interferograms, and
increase this value until we achieve a minimum of ~30 % coherence when summing
together all remaining interferograms. The result of this step is a smaller but more
coherent dataset (Fig.2.2b).

As the primary cause of atmospheric errors at MLV is atmospheric turbulence,
the next step is to use phase variance analysis to remove interferograms that are
dominated by large magnitude phase heterogeneities. When ranking the interfero-
grams by phase standard deviation in Sect.2.2.2, we identified a trade-off between
the number of interferograms and the maximum standard deviation: including many
interferograms increases the maximum standard deviation, whereas including few
interferograms reduces the maximum standard deviation but also reduces the tem-
poral coverage of the stack (Fig.2.2d). We select a threshold standard deviation to
optimise the stack using linear regression to identify the kink in the trade-off curve
of each dataset. We perform separate linear regressions to the first and last 20 % of
data points in each dataset and use the intersection of these linear regressions to mark
a standard deviation threshold. Applying this method to each dataset we find that a
value of 10 mm provides a good fit to both ALOS and ENVISAT data (Fig.2.2d).

The final stage of data selection is designed to minimise the dependence of phase
upon topography caused by atmospheric stratification. As discussed previously, most
interferograms do not exhibit a strong correlation between elevation and phase (r? >
0.2) (Fig.2.2c). We therefore set a threshold of 7> = 0.2, only removing a small set
of interferograms with larger 2 values.

The final stack for each dataset is produced by referencing interferograms to a far
field region to account for different starting points used in phase unwrapping. We sum
the phase at each pixel, divide by the total duration to calculate the rate at each pixel,
and finally remove a linear phase ramp to account for the orbital phase contribution.
For robustness we use a bootstrap approach to ensure that no single interferogram
dominates the final stack. To do this we sequentially remove interferograms from the
stack, checking that the maximum LOS displacement remains within 1.50 of that
for the final stack.

In addition to stacking pixels that are coherent in all interferograms, we also
test stacks of pixels that are coherent in a certain percentage of interferograms.
However, testing different thresholds, we find that this approach is not robust and
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results in noisier pixel values that are sensitive to the inclusion or exclusion of single
interferograms.

2.3.2 Poly-Interferogram Rate and Time-Series Estimator
(t-RATE)

Whereas the stacking methods described above only retain information from pixels
that are coherent in all interferograms, Poly-Interferogram Rate And Time-series
Estimator (7-RATE) employs a pixel-wise approach to calculate deformation rates
at pixels that are coherent in different numbers of interferograms. This ensures that
useful information about the magnitude and spatial extent of the deformation field
is not lost. This advanced stacking approach originates from the multi interferogram
method proposed by Biggs et al. (2007), with further development by Elliott et al.
(2008) and Wang et al. (2009). The technique has been very successful in measuring
fault related processes in regions such as Tibet (e.g. Wang et al. 2009; Wang and
Wright 2012; Garthwaite et al. 2013), but has not previously been applied to volcanic
datasets.

Unlike the stacking strategy outlined above, w-RATE corrects for sources of
noise using networked corrections rather than removing noisy interferograms. In
this approach, constraints from many interferograms are used to calculate the noise
contribution at each acquisition rather than at each interferogram (Biggs et al. 2007;
Wang et al. 2009). Networked corrections are used to correct orbital errors and
topographically-correlated atmospheric errors, which are assumed to vary linearly
with height as a first-order approximation (Elliott et al. 2008).

7-RATE formally accounts for the error at each pixel using an appropriate
variance-covariance matrix, . This contains estimates of spatially correlated noise
from the covariance function described in Eq.2.3, whilst considering the temporal
covariance between interferograms arising from common master or slave dates. The
final stack is produced by solving for the best fitting LOS displacement rate at each
pixel, 1o using a pixel-wise linear least squares inversion of the form:

ST =32 05 P, 2.4

where T is the duration of each interferogram coherent at that pixel and P is the phase
of each interferogram. To improve computation time we downsample the interfero-
grams, testing downsampling factors between 1 and 10. We choose a downsampling
factor of 5, optimising the trade off between the spatial resolution and computation
time. We then solve for all pixels that are coherent in at least 2 interferograms to
maximise the coherence of the signal.
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2.3.3 Persistent Scatterer InSAR (PSInSAR)

The final technique we use is persistent scatterer INSAR (PSInSAR). PSInSAR meth-
ods overcome incoherence by identifying persistent scatterer pixels using amplitude
and phase stability characteristics (Ferretti et al. 2001). Within an interferogram, the
phase of each pixel is dependent upon the phase returns from all scatterers in the
corresponding element on the ground (Chap. 1). Some pixels contain stable scatter-
ers whose phase return remains constant over time despite changes in surrounding
scatterers. These persistent scatterers dominate the phase return of the pixel and act
to reduce the amplitude and phase variance (Hooper et al. 2007).

We use the Stanford Method for Persistent Scatterers (StaMPS) developed by
Hooper et al. (2007). This method has proven beneficial in other volcanic settings,
such as Three Sisters, OR (Riddick et al. 2012), plus several volcanoes in Iceland
(e.g. Hooper et al. 2009; Ofeigsson et al. 2011) and Mexico (Pinel et al. 2011), all of
which suffer incoherence due to steep topography, snow cover and vegetation. Like
7-RATE, this method includes a correction for atmospheric and orbital noise based
upon spatial correlation characteristics of the signal (see Hooper et al. (2007) for
details). We apply StaMPS to all available acquisitions from the ENVISAT ascending,
ENVISAT descending and ALOS datasets. Using information from the California
Department of Water Resources, we also investigate the effects of snow on PSInSAR
by applying StaMPS to a subset of SAR scenes that were acquired during snow-
free months. Although this greatly increases the number of PS pixels, the reduced
number of SAR scenes compromises estimations of noise terms and we do not take
this approach further.

2.4 Results of Multi Temporal InSAR Analysis Techniques

The results from all datasets and analysis methods suggest that ground deformation
at MLV continues in the 21st century. All datasets show subsidence of a similar
region centred on the summit caldera (Fig.2.3), with maximum LOS displacements
of ~—13mm/yr for ascending datasets and ~—7 mm/yr for descending datasets.
The methods are of variable degrees of success, with 7-RATE offering significant
improvements to coherence compared to the InSAR results from Poland et al. (2006).
In this section we assess the results from each method in terms of the improvement in
coherence and the reduction of noise sources. To investigate the magnitude and spatial
extent of subsidence recorded by each dataset, we take displacement profiles that are
coincident with the short and long axes of the caldera (N-S and E-W respectively)
(Fig.2.4). As was the case for rate-maps, these profiles demonstrate broad agreement
in the spatial extent of subsidence. The profiles highlight some variability in the
magnitude of deformation when using different InSAR analysis techniques, which
we attribute to different interferograms being used by each method, but overall the
magnitude of deformation is consistent between the three datasets.
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2.4.1 Stacking

Within the stacking results for ENVISAT ascending data, the region SW of the vol-
cano is largely incoherent (Fig. 2.3). Where there is coherence, displacement profiles
show maximum LOS subsidence rates of ~—13 mm/yr. For ALOS ascending data,
which exhibit good coherence at MLV, stacking is more successful, and profiles
show maximum deformation rates of ~—9 mm/yr (Fig.2.4). However, subsidence of
~—5mm/yr is also observed across the highland between MLV and Mount Shasta
(Fig.2.3), suggesting that there is a remaining contribution from atmospheric strat-
ification. For profiles of both ENVISAT and ALOS data, we observe other phase
signals outside of the caldera, but these are not consistent between datasets and are
considered to be due to noise.

Stacks of ENVISAT descending data show significant variability. Using the boot-
strap test described in Sect.2.3.1, we find that individual interferograms change
the LOS deformation rate by >20, as many interferograms exhibit extensive phase
heterogeneities, although the overall variance of the dataset is similar to that for
ascending data (Fig.2.2d). The edifice is also surrounded by larger regions of inco-
herence, causing many unwrapping errors in almost all scenes. We therefore find that
stacking is not a robust method for dealing with this dataset.

2.4.2 m-RATE

The results of 7-RATE for ENVISAT ascending data show almost continuous
coherence about the caldera, a significant improvement upon the results of stacking.
The magnitude of the deformation signal is reduced by a factor of ~1.5 compared to
stacking, which we attribute to a reduction in the effects of atmospheric stratification.
However, we do observe anomalous phase signals to the NW of the caldera which do
not correlate with the results of other datasets (Fig.2.3). For ALOS ascending data,
displacement profiles taken across the results of w-RATE are of comparable magni-
tude to those for stacking and show similar distributions of displacements (Fig.2.4).
7-RATE is a much more successful method for ENVISAT descending data than
stacking, reducing the effects of atmospheric turbulence and removing unwrapping
errors by summing round loops of interferograms and masking any residuals (Biggs
et al. 2007). Although the results for ENVISAT descending data remain more inco-
herent and noisy than those for both ascending datasets, displacement profiles show
a clear subsidence signal with maximum LOS displacements of ~—7 mm/yr, which
is in agreement with the results of ascending data (Fig.2.4).
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Fig.2.3 Results of multi temporal InSAR analysis using ENVISAT ascending, ENVISAT descend-
ing and ALOS ascending datasets and three methods (noise-based stacking, 7-RATE and StaMPS).
Each result is labelled with number of interferograms used and dates spanned. Outlined in black
are MLV lava flows (solid lines) and caldera (dashed line) as in Fig.2.1. Squares and triangles
indicate the colour scale used. Dashed lines on the results of ENVISAT ascending stacking shows
the location of the profiles drawn in Fig.2.4

2.4.3 PSInSAR

Applying StaMPS to ENVISAT data significantly improves coherence compared to
the raw interferograms, although coherence is not as continuous as for the results
of m-RATE. Most PS pixels in the vicinity of the caldera are coincident with large
surficial lava flows (Fig.2.3), which helps to constrain the extent of the deformation
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Fig. 2.4 Displacement profiles for multi temporal InSAR analysis taken across the long and short
axes of the caldera (EW and NS directions respectively - see Fig.2.3). The extent of the caldera is
marked on all profiles with dashed grey lines. Error bounds on the results of 7-RATE are calculated
using the variance-covariance matrix in Eq.2.4. There is good agreement in the spatial extent of
the signal between different InSAR analysis techniques but for ENVISAT data we observe some
variation in the magnitude of the signal due to different interferograms being used for each method

field. Lava flows with fewer PS pixels are sparsely vegetated. From reconnaissance
field analysis we find that another possible control upon PS density at lava flows
is modal block size - at Burnt Lava Flow directly south of the caldera we found
that regions with fewer PS corresponded to a smaller modal block size (20-50 cm)
compared to the average block size of the flow (50-100cm). Other PS pixels are
coincident with road intersections, smaller outcrops and clearings within the forest.
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These findings are similar to those of Riddick et al. (2012) in their study of PS in
central Oregon, although a possible relation between PS density and block size has
not previously been noted.

The deformation field obtained with StaMPS for ENVISAT ascending data has a
similar extent to that observed with stacking and 7-RATE: deformation is focussed
on the caldera between lava flows to the north, east, south and west, with maximum
displacements of ~—8 mm/yr at Medicine Lake Glass Flow in the NW of the caldera
(Fig.2.3). However, the anomalous phase signals observed NW of the caldera in the
results of 7-RATE have been reduced. Similar results are observed for ENVISAT
descending data. Deformation is again constrained within a region bound by lava
flows to the north, east, south and west of the caldera, however displacements are of
smaller magnitude (up to ~—5 mm/yr) and there is still some evidence of atmospheric
turbulence north of the volcano (Fig.2.3). Unlike ENVISAT data, ALOS ascending
data is highly coherent at MLV and, due to the success of both stacking and 7 -RATE,
we do not include the results of StaMPS analysis for this dataset.

2.4.4 Comparison to Past Geodetic Studies

Past geodetic studies at MLV show that the rate of subsidence remained constant (to
within detection limits) between 1954 and 2004 (Dzurisin et al. 2002; Poland et al.
20006). To assess whether this observation can be extended to 2011, we compare the
most coherent set of InSAR results (those produced using 7-RATE) to the results of
leveling from Dzurisin et al. (2002).

The section of the leveling line that covers MLV caldera extends northwards from
Burnt Lava Flow south of the caldera, to the centre of the caldera, before continuing
west across the long-axis of the caldera (see map in Fig. 2.5). We select pixels within
1500 m of each leveling station (ensuring that we use the values from >10 pixels) and
calculate the average deformation rate before referencing to pixels coincident with
the reference leveling station. We assume the deformation is vertical and, as InSAR
measurements are made oblique to vertical, project the leveling measurements into
the LOS using the satellite look vector as defined in Wright et al. (2004b). Error bars
on InSAR measurements are then 1 o calculated by propagating the error values at
each pixel, which are obtained using the formal error estimation of 7-RATE (Eq.2.4).

Both ENVISAT datasets are in agreement with the results of past leveling surveys,
with maximum displacements coincident with the caldera (Fig.2.5). ALOS ascend-
ing data are also in close agreement with ENVISAT on the S-N portion of the line.
On the E-W portion of the line there is an increase in the magnitude of the signal
recorded by ALOS, which we attribute to under correction of residual atmospheric
artefacts across the highland between MLV and Mount Shasta (Fig.2.5). Overall, we
find no evidence of a decrease in the rate of subsidence since 1954, as the results
of InSAR analysis fall within error of leveling measurements. This suggests that the
constant rate of subsidence detected by Dzurisin et al. (2002) continued until at least
the last ALOS acquisition in 2011. Deformation at MLV has therefore been sustained
at a steady rate for over 60 years.
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Fig. 2.5 Comparison between the results of leveling from Dzurisin et al. (2002) and InSAR. Profiles
are offset to aid viewing. The section of the leveling line used is shown by the red line in the small
map, where black lines show MLV caldera and lavas as in Fig.2.1. The shaded grey region of the
profiles corresponds to the extent of the caldera. We average pixels within 1500m of each leveling
station and reference to pixels at the reference leveling station. Errorbars on InSAR measurement
are 1 o and are calculated by propagating the error on individual pixels from the variance-covariance
matrix in Eq. 2.4 (color figure online)

2.4.5 Horizontal and Vertical Displacements

The side-looking nature of InSAR satellites means that measurements contain a
component of both horizontal and vertical motion in the LOS of the satellite (for
details see e.g. Rosen et al. 2000). We can therefore use multiple tracks of data, each
of which has a different satellite look direction, to decompose the LOS motion into
horizontal and vertical components (e.g. Wright et al. 2004b; Biggs et al. 2009b).
This allows us to better constrain the 3D deformation field at MLV, in addition to
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providing measurements at a higher temporal and spatial resolution than past geodetic
campaigns.

Using the results for ENVISAT ascending and ENVISAT descending data, we
solve for the EW and vertical components of motion only, u= (ug, u 2)T, as InSAR
measurements are less sensitive to NS motion. We use the equation R =Su, where
R is a vector of the LOS displacements for each dataset and S is a 2 x 2 matrix
containing the unit satellite look vectors for each dataset (Wright et al. 2004b). We
solve for u at each pixel, weighting the inversion using a covariance matrix for errors
in the observed range change Xy (Wright et al. 2004b). X contains values based
upon covariance analysis from Eq. 2.3, and is used to find the covariance matrix for
the estimated vector components, %,,.

The relative magnitudes of the resulting horizontal and vertical displacement
fields are in agreement with measurements from leveling and GPS (Fig.2.6). GPS
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Fig. 2.6 Left comparison between vertical and horizontal components of motion derived from
InSAR and from past geodetic studies. Leveling measurements are from Dzurisin et al. (2002) and
GPS measurements are from Poland et al. (2006). Errorbars on InSAR data are found using the
covariance matrix ¥, described in Sect.2.4.5. The solid black line shows model displacements for
the best fitting analytical model to InNSAR data described in Sect.2.5.3 and Table2.2. Right vertical
and horizontal displacements found by inverting multiple tracks of InSAR data as described in
Sect.2.4.5. The caldera is marked by a dashed black line
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surveys of MLV revealed the high ratio of vertical to horizontal displacements (Poland
et al. 2006) and we find that this is confirmed by InSAR data, with InSAR derived
horizontal displacements of ~3 mm/yr, compared to vertical displacements of up to
~—8mm/yr (Fig.2.6). Both horizontal and vertical deformation fields are broadly
symmetrical and centered on the caldera centre, with vertical deformation extending
for ~20km (Fig.2.6).

2.5 Modelling: Estimates of Source Geometry and Volume
Change

The past studies of Dzurisin et al. (2002) and Poland et al. (2006) consider possible
sources of subsidence at MLV. Both authors acknowledge the tectonic contribution
due to extension of the Basin and Range province, plus a component of surface
loading due to the large volume of emplaced material. However, they also recognise
that, to fully explain the deformation field, a component of volume loss at depth
is required. The authors model this by first using idealised, elastic models - a well
established and widely used approach to obtain information about source geometries
from geodetic data (e.g. Dzurisin 2007; Segall 2010). As mentioned previously, there
are discrepancies between the best fitting source models to each dataset, as leveling
and GPS measurements are sensitive to different components of the deformation field.
Both datasets favour a sill rather than a point source, but leveling data prefer a smaller
(10.3km x 4.4km), deeper (11 km) source that strikes NE-SW (221°) (Dzurisin et al.
2002), whereas GPS data prefer a larger (18.2km x 9.2km), shallower (5 km) source
that strikes E-W (267°) (Poland et al. 2006) (Table 2.2).

We address analytical models of the deformation source using the improved spatial
resolution of all available InNSAR measurements. As the problem is highly non-linear,
we use a Monte Carlo type simulated annealing algorithm as an optimisation tool to
minimise the misfit function (Amelung and Bell 2003). This combines the efficiency
of aderivative based search algorithm whilst testing a wide range of source parameters
to avoid local minima. We simultaneously solve for all datasets, reducing the number
of data points by downsampling (e.g. Biggs et al. 2010; Hamling et al. 2014, and
others). We downsample to a regular grid rather than by quadtree partitioning, as
regions of high phase gradients are associated with atmospheric noise in addition
to ground deformation. As source models of this nature are inherently non-unique,
we investigate the trade-offs between model parameters and the bounds upon each
model parameter using a Monte Carlo algorithm (e.g. Wright et al. 2004a; Biggs
et al. 2009a). This is done by using the parameterised values of the covariance
function (Eq.2.3) to create 100 sets of synthetic atmospheric noise for each dataset,
which are then added to the results selected in Sect.2.5.1 before rerunning the same
inversion procedure. The best fitting parameters and lo error bounds from Monte
Carlo analysis are summarised in Table 2.2, and histograms showing the distribution
of the model parameters are shown in Fig.2.11 in the Appendix. Cayol and Cornet



(9007) "¢ 30 PUBOd, “(TO0T) ¥ 32 UISLNZ( | :S0UIINJI SUIMO[[0F ) WO} SIE SPUNOQ PUE SISJOUIEIR]
©1Ep YV SUJ JO UOISIOAUL dY) UL PIXY SI dN[BA IJOUWEIR]

JoseIep YOora PUB [9POUI Y} U3M)q JOIId SIARY €101 oY) ST ApM3s SIY3 IO JYSIA

JIJ [OPOW 19)J9q B SIJBIIPUT SAN[BA JOMO[ INQ SAIPN)S Uoam)aq d[qereduwiod Jou aIe Ssan[eA JYSIAL,

2 Investigating Long-Term Subsidence at Medicine Lake Volcano, CA ...

€100°0— €C1— ST 8'6 08S"1¥ TLSITI

wureg 11000~ ori— (874 J0'T O1 I'6 9LS'TH 996°1Z1 AV Sul
919'TH 8IL'1CI

96°0 $T00°0— 1S10°0— L9T T6 T8l S €79'1v 66¥° 1C1 2SdD
LEY'TH 65S°TTI

€e'8l 0200°0— 00— 12C vy €01 I 99S'TH 01’121 [SurfeA |
€100°0— - - - - 9 9LS' ¥ 69S'1C1

wuee'g $6000°0— - - - - 8'G €LS T 798°1T1 AV Sul

vl 0100°0— - - - - 9 08S'TH 065121 ¢SdD

€81 1€00°0— - - - - 01 065t 08S'1CI [SUIoAY]

[14/ cuy] [14/w]
SUSTA uInoA v SuruedQ [Joms | [wy] wpiy | [uny] ppSueg |  [uy] pdeg [No] 78T| [Mo] Suog eleq

46

G'Z 199§ UI PaqLIOSIP SISA[euy JOLI O[Ie)) JUOJA WOIJ O] Ik ejep Yy SU] 03 siojowered 901n0s uo spunoq Jomof pue soddn [opout [[1s
Ie[n3ue)odr Sumy iseg :wonog ‘[opow 201nos jutod umy isag :dog, ‘sarpms onopoas ised pue Apnjs SIY) WOIJ S[OPOW 201n0S [edNA[eue Jo Arewwing  7'Z d[qeL



2.5 Modelling: Estimates of Source Geometry and Volume Change 47

(1998) discuss the bias introduced in analytical modelling by steep topography, but we
choose not to account for the effects of topography as MLV has low relief compared
to the surrounding plateau and topographic slopes do not exceed 2—3°.

2.5.1 Selection of InSAR Data for Use in Modelling

We use all datasets to model the deformation at MLV, selecting the most successful
multi temporal InSAR approach in each case. For ENVISAT ascending data we use
the results of StaMPS, as this offers the best deformation signal, avoiding anom-
alous phase signals to the NW of the volcano that are not observed in other datasets
(Fig.2.3). For ENVISAT data, we select the results of w-RATE, as the improvement
to coherence is greater than that with StaMPS, as is the reduction of atmospheric
turbulence (Fig. 2.3). Both stacking and 7 -RATE offer comparable results for ALOS
data, but the application of 7-RATE has reduced the magnitude of topographically
correlated atmospheric delays observed near Mount Shasta (Fig.2.3), and we use
this as the final input for modelling.

2.5.2 Point Source

We begin by solving for the simplest point source geometry parameterised in terms
of: [x, y] location, depth and volume change (Mogi 1958; Dzurisin et al. 2002;
Poland et al. 2006). We allow the location to vary over the extent of the caldera and
depth to vary between 2 and 20km. The best fitting source parameters are similar
to those found by Dzurisin et al. (2002) for leveling data and Poland et al. (2006)
for GPS data (Table2.2), with a source depth of 6 Km and rate of volume change
of —0.0012km?3/yr. Using Monte Carlo error analysis we find that the location of
the source is well constrained SE of the caldera centre (Fig.2.7a). We also identify
a strong trade-off between depth and source strength as smaller volume changes at
shallow depths produce a similar magnitude of deformation as larger volume changes
at greater depths (Fig.2.7b). Although we do not expect a point source to be the most
representative source geometry (Dzurisin et al. 2002; Poland et al. 2006), the results
of this modelling provide good constraints upon the location of the deformation
source at MLV.

2.5.3 Sills

We test more complicated source geometries that are representative of sill-like intru-
sions, using an approximation of a horizontal, rectangular dislocation (Okada 1985)
(the preferred model for both leveling (Dzurisin et al. 2002) and GPS data (Poland
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Fig. 2.7 a results of Monte Carlo error analysis for inversions of a point source to constrain the
source location. Coloured circles represent inversions of individual datasets and black circles are
for joint inversions of all INSAR data. Black line shows the extent of the summit caldera. b trade-off
curves obtained from Monte Carlo analysis showing the trade-off between source strength and depth
for different source geometries. ¢ summary of the RMS misfit for different model geometries found
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et al. 2006)). The source is parameterised in terms of: [X, y] location, depth, length,
width, strike, dip and opening. We assume a dip of 0° given the apparent symmetry
of the deformation signal and the similarity between ascending and descending inter-
ferograms. The remaining model parameters are constrained between a set of bounds
to reduce the size of the parameter space. We set bounds upon the location using the
results of point source modelling described above. For the remaining free parameters
(length, width and strike) we run a selected range of forward models, varying a single
parameter in each case. We then calculate the RMS and plot a curve of RMS versus
model parameter. Bounds are then set based upon regions of low RMS. In addition
to geometrical parameters, we specify a Poisson’s Ratio of 0.25. As was observed
for a point source, solutions are non unique, and we identify a trade-off between the
magnitude of the source and the depth (Fig.2.7b).

From Monte Carlo analysis we find that rectangular sills tend towards lengths in
excess of 20km due to residual atmospheric stratification across the highland to the
south west of the volcano, which elongates the subsidence signal (Figs.2.1a and 2.4).
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These lengths are unrealistic: a sill of this size does not fit with models of leveling or
GPS data. To overcome this, we rerun the inversion procedure solving for a square
sill (length-to-width ratio = 1). We find that square sills with length and width <4 km
fit the data to within 1 % of the RMS for the best fitting rectangular sill (Fig.2.7c).

The best fitting source geometry found by inverting all datasets is a square sill
with length and width 1km, located at 9.5Km depth with maximum opening of
—1.2 m/yr (Table2.2 and Fig.2.8). This model gives RMS values of 1.67, 1.16
and 2.48 mm for ENVISAT ascending, ENVISAT descending and ALOS datasets
respectively. (Figure2.8) We estimate the expected error (o) of each InSAR result
using covariance analysis (Eq. 2.3). As each InSAR result is produced using multiple
interferograms, the expected error is reduced to o/N , where N is the number of
observations and o is assumed to be uncorrelated between observations (e.g. Parks
et al. 2011). We obtain expected error values of 1.4, 1.1 and 2.5 mm for ENVISAT
ascending, ENVISAT descending and ALOS datasets, which are of the same order
as the RMS between the best fitting model and each dataset.

Data Model Residual
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Fig. 2.8 Results of inverse modelling. Data are the InSAR analysis results defined in Sect.2.5.1
and the best fitting model is a square sill with parameters specified in Table 2.2. Plots of residual
are labelled with RMS values
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The final step of the modelling procedure is to ensure that the model accounts
for the high ratio of vertical to horizontal displacements recorded by InSAR. We
compare profiles of horizontal and vertical model displacements to the components
of motion derived from InSAR data, and also consider the magnitude of horizontal
and vertical measurements from GPS and leveling (Fig.2.6). The vertical displace-
ments predicted by the model provide a good fit to the vertical measurements from
InSAR (RMS 1.88 mm), with maximum displacements of ~—7 mm/yr, and subsi-
dence extending for ~20km. Model displacements are also mostly within error of
the vertical measurements from leveling, although maximum displacements are 1-2
mm/yr smaller than those recorded by leveling. The horizontal displacements from
InSAR are more variable than the vertical measurements, and are of the same mag-
nitude as the errors (Fig.2.6). However, profiles do show that the horizontal model
displacements are within the error bounds of the InNSAR measurements. In accordance
with GPS observations, the horizontal displacements predicted by the model are a
factor of ~3 smaller than vertical displacements, and at radial distances <20km, the
model displacements are within error of the GPS measurements.

Through modelling all available InSAR data, we confirm that the best fitting
source geometry at MLV is sill-like. However, uniform opening of a rectangle is
not a physically realistic model, and we test this solution against a uniform pressure
solution - an axi-symmetric, horizontal, penny shaped crack parameterised in terms
of: [x, y] location, depth, radius and pressure change (Fialko et al. 2001a; Biggs et al.
2009a). This model has been used in other settings where large ratios of vertical to
horizontal displacements have been observed (e.g. Campi Flegrei, Italy; Battaglia
et al. 2006). We follow the same procedure described above to solve for the best
fitting circular sill and investigate the bounds upon the source parameters. As for the
rectangular sill, we find from Monte Carlo error analysis that the sill radius tends
towards unrealistically large values, and we therefore opt to constrain the radius of
the sill to 1 km, emulating the geometry of the best-fitting square sill. The best fitting
circular sill is located within 1km of the best fitting square sill, has the same source
depth of 9.5 km and predicts displacements that vary by only up to 1 mm from those
predicted by the square shaped sill. This suggests that the depth, location and overall
nature of the source are well constrained, but we are unable to distinguish the exact
shape of the source.

2.6 Discussion

Subsidence of MLV is unique in both duration and stable magnitude, with surveys of
U.S. Geological Survey geodetic networks since 1954 providing a long and detailed
geodetic history of the volcano. The focus of this work has been to use the signif-
icant archive of InSAR data acquired at MLV to build upon the long-term record
of subsidence, extending the geodetic history to 2011 and investigating the spatial
and temporal pattern of deformation at higher resolution. Although the application
of these data in this region is problematic, by using a range of datasets from differ-
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ent satellites and a suite of new analysis methods, we have been able to use InSAR
data to demonstrate that deformation remains at historical rates of ~—10mm/yr.
Of the methods used, we find that 7-RATE provides the greatest improvement to
coherence, with the coverage of ENVISAT datasets increased by 30 % compared to
the raw interferograms (Table2.1). Comparing the mean values of the orbital and
covariance parameters (Eqgs.2.2 and 2.3) before and after application of 7-RATE,
we also find that this technique reduces the level of noise of each dataset (Table?2.1).

2.6.1 Causes of Subsidence

Past studies attribute subsidence at MLV to a combination of factors including tec-
tonic extension and surface loading, due to the volume of the edifice and its location
at the western edge of the Basin and Range extensional province (Dzurisin et al.
2002; Poland et al. 2006). However, GPS measurements show that there is no resolv-
able extensional strain across the region (Poland et al. 2006), and surface loading is
at odds with drill hole data, which suggests that subsidence rates are anomalously
high in the present day, as downwarping of the crust beneath the edifice would have
occurred within only ~10% of the lifespan of the volcano (Dzurisin et al. 2002).
Poland et al. (2006) suggest that these larger scale processes would enhance subsi-
dence, rather than be the primary cause, and infer an additional component to account
for volume loss at depth. Poland et al. (2006) and Dzurisin et al. (2002) discuss the
likelihood of various possible mechanisms: volume loss due to eruption; drainage to
a deeper reservoir; hydrothermal fluid withdrawal; and cooling and crystallisation
at depth. Of these possibilities, Poland et al. (2006) deem drainage or cooling and
crystallisation to be most likely: the last eruption at MLV occurred 1 ka, and the
steady nature of the deformation since the 1950 s does not agree with a hydrothermal
source, as hydrothermal systems generally exhibit cycles of deformation that occur
over shorter timescales (e.g. Dzurisin etal. 1999). The hypothesis of cooling and crys-
tallising magmatic material is also supported by elevated temperatures discovered by
geothermal drilling, thought to be due to either the reservoir beneath Glass Mountain
or basalt intruded at depth in late Holocene times (Donnelly-Nolan et al. 1990).

The depth of the modelled source is significant when considering cooling and
crystallisation as a deformation mechanism at MLV. Rather than the presence of a
central magma chamber, the results of geophysical and geological surveys suggest
that MLV is underlain by an extensive intrusive complex of sills and dikes with
varying compositions (e.g. Finn and Williams 1982; Zucca et al. 1986; Fuis et al.
1987; Evans and Zucca 1998; Lowenstern et al. 2003). Seismic tomography studies
of the volcano reveal a small magma body located beneath Glass Mountain (the site
of most recent eruption ~1 ka) at 3—7km depth (Evans and Zucca 1998), but they
also indicate that a subsolidus pluton could be present within the larger intrusive
complex (Ritter and Evans 1997). A shallower source depth may therefore suggest
deformation related to material imaged at Glass Mountain, whereas a greater source
depth may be indicative of cooling within the underlying intrusive complex.
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The best fitting analytical source model identified in this study fits with the source
mechanisms presented by previous authors and accounts for the high ratio of verti-
cal to horizontal displacements derived from InSAR data. The depth of the model
(9.5km) suggests that, if cooling and crystallisation is the cause of volume loss, the
source is likely to be located within the intrusive complex beneath the volcano, rather
than the body of melt imaged at 3—7km depth. In their study, Dzurisin et al. (2002)
state that an unrealistically large volume would be required to result in 50 years of
subsidence due to cooling and crystallisation. However, simple thermoelastic calcula-
tions (e.g. Turcotte and Schubert 1982) do not account for the geotherm, which in this
region is thought to be relatively high, or the underlying intrusive complex, which
geodetic models suggest is the location of the deformation source. This intrusive
complex is described by Poland et al. (2006) as a “relatively hot, roughly cylindrical
volume”, and is likely to play a role in driving the active geothermal system. Elevated
temperatures surrounding an intrusion would decrease the rate of cooling, as would
the production of latent heat during the transition from a liquid to a solid phase.
Thus, it is important not to disregard cooling and crystallisation as a possible cause
of deformation.

2.7 Conclusions

This study demonstrates how InSAR data may be successfully applied in mountain-
ous, vegetated regions by using multiple datasets, careful data selection and a suite
of multi temporal analysis methods that account for atmospheric and orbital noise
sources. Both StaMPS and -RATE are freely accessible online and offer user sup-
port, which plays a fundamental role in helping the community use these methods to
better apply InSAR data in challenging regions. The application of these advanced
InSAR techniques will be key to the success of data analysis from the new gener-
ation of SAR satellites, with the limiting factor likely to be the acquisition rate of
the satellite.

Using the results of multi temporal analysis at MLV, we show that the rate of
subsidence constrained by InSAR data is comparable to that obtained from leveling
studies throughout the 20th century, suggesting that current rates of deformation
at the volcano have been continuous for over 60years. We confirm that, as was
observed with GPS measurements, the deformation field is characterised by high
ratios of vertical to horizontal displacements, which is a key constraint upon source
models of deformation. We use geophysical inversion methods and Monte Carlo error
analysis to obtain the best fitting source geometry to InNSAR data, which we find to be
a horizontal sill located at 9.5 km depth beneath the caldera. This geometry accounts
for the relative magnitudes of horizontal and vertical components of deformation
as recorded by both InSAR and past ground based surveys. The model is similar to
those constrained by past datasets, and fits the hypothesis that deformation at MLV
is caused by a combination of tectonic mechanisms, plus a component of volume
loss at depth. The most likely cause of volume loss is either drainage or cooling and
crystallisation of magmatic material. If cooling and crystallisation is the cause of
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present day deformation, the depth of the model suggests that it is related to material
within the intrusive complex imaged beneath the volcano.

The next step of studies at MLV will be to use the high resolution of InSAR data
and these first order estimates of source geometry to constrain models of magmatic
and tectonic causes of deformation. This will provide further insight into magmatic
conditions in northern California, but it is also an opportunity to test hypotheses
related to long-term intrusive processes that occur during inter-eruptive periods (e.g.
Caricchi et al. 2014).

Appendix

See Figs.2.9,2.10 and 2.11.
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Fig. 2.9 Time versus perpendicular baseline plots for INSAR datasets at Medicine Lake Volcano.
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Fig. 2.10 Example of incoherence, orbital phase ramp and turbulent atmospheric noise commonly
observed at Medicine Lake Volcano in ENVISAT descending data. The outline of the extent of
Medicine Lake Volcano lavas is shown by long-dashed line. The caldera is shown by the short-
dashed line and major surgical lava flows are shown by solid black lines
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