
Chapter 2

Slender-Body Hydrodynamics

A most important topic beyond calm water hydrostatics is steady planing in calm

water. If the hull lines are typically boatlike and slender, any boat section can be

modeled approximately for hydrodynamic analysis as that of a two-dimensional

cylinder of the boat local cross-section shape impacting the water surface in time.

This is indeed a useful analogy, since cylinder impact theory is well developed and

usually quite applicable to planing boat geometry.

At this point a solution for planing is approximated in terms of the wedge-

cylinder impact solution of Figs. 1.2, 1.4, and 1.5. The basic relationship between

the cylinder impact versus planing is x¼Ut, so that the two can be referred to

interchangeably.

Planing Solution in Calm Water

Hydrostatic pressure persists in acting on the wetted hull surface, but, now, a

dynamic component is added in parallel, so that the two components, through

equilibrium, set the planing attitude as to trim and draft.

Consider first the wedge cylinder characterized by the deadrise angle β and trim

angle α, as depicted in Fig. 2.1. Extension will be available to non-similarity forms,

exploiting a “strip” approach via slender-body theory to allow calculation of the

general case. It is only necessary that the boat be characterized as slender in the

sense of the flow regularity (Vorus 1996).

As noted in the preceding, the wedge cylinder of Fig. 2.1, with deadrise angle β,
impacts the surface vertically downward with velocity V; V is the downward

component of the forward speed developed through the hull trim angle α, as
shown in Fig. 2.1. On impact, the free surface is turned back under the contour

forming an initially attached jet (Fig. 2.1). The jet velocity Vj, is not equal to V, but
much larger, the flatter the contour, the higher Vj. There are also the velocities zbt(t)
and zct(t), which are the velocities of the jet head and the initial point of zero
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pressure, respectively; both are higher than V, but lower than Vj. The jet head, or

“spray-root,” with offset zb(t) advances rapidly outward along the hull contour. It is
followed closely behind by the point of zero contour dynamic pressure, zc(t), until
the jet separates. Separation of the jet at offset zb must be accompanied by drop in

the dynamic pressure to zero at zc. In the initial CUW impact period, the contour

pressure distribution has a sharp spike and large negative gradient into zc(t), beyond
which the dynamic pressure is zero.

On reaching the chine, the point zc(t) comes to an abrupt halt at zc ¼ Zc � Zch,

but zb(t) continues advancing out from under the chine and across the free surface as

time progresses. The CUW flow phase, of major importance in the planing process,

stops at the time that zc(t)¼ Zc which may or may not have reached the chine. Zc is
inside the chine forward if the chine upset does not start at the base of the stem.

With zc stopped at Zc, a lower level of pressure then acts on the fully wetted contour
as the CW phase commences and continues to the transom. With Zc fixed at the

chine, the CW flow is just that of a vertically impacting flat plate. zb(t) beyond chine
wetting is determined by removal of the singularity at the plate edges. As stated in

the foregoing, the dynamic pressure developed in the CW flow phase is of small

order compared to the CUW hull pressure and is often simply assumed to be the

hydrostatic hull pressure.

The cusp lines that one observes extending aft of the boat when planing is

misunderstood by many. These are not the Kelvin cusp-lines associated with the

generation of gravity waves; the cusp lines in planing are the remnant of the jet head

zb(x) left behind the boat. The Kelvin cusp lines are at �19.5� off the x-axis; the
cusp lines of the jet heads are much narrower, in general.

   β

Zc

Vj
V = Usinα

zb(t)

Water Surface

y = Vt

zc(t)

z

Fig. 2.1 Impacting CUW wedge cylinder
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Analysis

If it is assumed that V, α, β, and Zch are known in advance, three unknowns remain

to completely define the two-dimensional hydrodynamics problem analogous to the

section of a planing boat (Fig. 2.1 ). These unknowns are values on the side hull of

jet velocity, Vj, and the velocities of the jet head and zero pressure point: zb(t) and
zc(t). The point of jet separation, Zc(x), may also be unknown if it is inboard of the

chine.

The surface of the similarity wedge, at constant trim angle α and constant

DR angle β, as depicted in Figs. 1.2 through 1.6, is defined as z(x,y) or y(x,z): For
the later:

x ¼ x : 0 � x � ‘

y ¼ x tan αþ z tan β ð2:1Þ
z ¼ z; 0 � z � Zc

Treating first the similarity solution of the wedge cylinder with constant β, the
following formulas are extractable from “Shock Reduction of Planing Boats”

(Vorus and Royce, 2000). The wedge-cylinder impact solution is the same as

self-similar planing solution for x¼Ut. The relevant formulas are the following:

1. Jet-head offset velocity:

zbt ¼ π

2 tan β
ð2:2Þ

2. Jet velocity:

Vj ¼ zbt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2bt þ 1

q
ð2:3Þ

3. Ratio: jet-head velocity to zero pressure point velocity:

b � zbt
zct

¼ cos h
π

2Vj
ð2:4Þ

4. Zero pressure point velocity, from (2.4):

zct ¼ zbt
b

ð2:5Þ

5. Wetting factor (or wave rise) at the jet head:
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WF ¼ π

2
J λð Þ ð2:6Þ

Here the J-factor, J(λ) is

J λð Þ �
ffiffiffi
π

p

bΓ λð ÞΓ 3
2
� λ

� �
cos eβ , with λ � 1

2
�

eβ
π

and eβ � tan �1 sin βð Þ ð2:7Þ

Γ is the Gamma function, a readily evaluated special function.

The wetting factor was first proposed by (Wagner, 1932) with J λð Þ � 1:
(in (2.6)) independent of the deadrise angle β. Recent work Vorus (1996) has

shown J(λ), (2.7), decreases with increasing β over the usable range.

6. Side hull tangential velocity distribution:

w ζð Þ ¼ 2Vj

π
sin �1

ffiffiffiffiffiffiffiffiffi
κ ζð Þ

p
ð2:8Þ

where

κ ζð Þ ¼ ζ2
b2 � 1

b2 � ζ2
with 0 � ζ � 1 on the side hull ð2:9Þ

If the wedge is of similar section over its length, i.e., constant β in x as in Fig. 1.6,

then (2.1) through (2.9) apply identically at all cross-sections over the length. But

the usual case is that the hull is not self-similar and the formulas have to be applied

strip-wise over the length to achieve a solution. There, as follows, each strip is

treated as a narrow cross-segment of a cylinder to which the preceding formula

apply.

In this more general case, analyze with K strips, bounded by the xk, each strip

with nzet equal zk-elements and nz ¼ nzetþ1 equally spaced points bounding the

elements in the kth strip:

0 � zik � Zck; 0 � ζik � 1: , ζik �
zik
Zck

, i ¼ 1, nz, k ¼ 1, . . . ,K ð2:10Þ

The nzet element center points (k inferred) are ζi ¼ 1
2
ζi þ ζiþ1ð Þwith i ¼ 1, nzet and

with ζ1 ¼ 0, ζnzetþ1 ¼ 1 and znzetþ1 ¼ Zck. These subscripts, (2.10), are simply

attached to the formulas (2.1) through (2.9) for achieving the strip theory for

analysis of β-variable cases.
The side hull pressure distribution at the ith element center point of the kth strip

is by the Bernoulli equation:
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Cpi ¼ 2zct Vj b� 1ð Þ � φi þ wiζi
� �þ 1� wi

2 ð2:11Þ

with the potential in (2.11):

φnz�i ¼ φnz�iþ1 �
1

2

Xnz�i

j¼1

Δζj wnz�j þ wnz�jþ1

� � ð2:12Þ

for φnz ¼ 0 and Δζi ¼ ζ nz� iþ 1ð Þ � ζ nz� ið Þ.

Normal Force Coefficient (Per Unit Length)

Integrate the pressure element by element over the two sides of the hull to obtain the

normal force distribution:

Cf ¼ 2
Xnzet
i¼1

Cpi ζiþ1 � ζið Þ ¼ 2Ff

ρV2Zc

� Ff

1
2
ρU2Zc sin 2α

ð2:13Þ

Formula (2.13) calculates the normal force distribution acting on the slender hull,

running chine-unwetted with forward speed U, as defined in the preceding. To this

point, the hull is assumed to be in calm water equilibrium both hydrostatically and

hydrodynamically.

Lift and Drag

In the absence of flow-modifying appendages (bare hull, Fig. 1.4), the dynamic lift

and pressure drag of the subject hull follow from (2.13):

CLd ¼ Cf sin α ð2:14Þ
CDd ¼ Cf cos α ð2:15Þ

The hydrodynamic forces (2.14) and (2.15) are, as stated, supplemental to the

hydrostatic forces corresponding to the distribution of still-water static equilibrium

draft. The hydrostatic drag is zero, by definition, but the hydrostatic lift is the

buoyancy support. The changing total lift must remain zero with the hull attitude

(transom draft and trim) adjusting to accommodate the total force equilibrium

requirement.

The hydrodynamic drag by (2.15) is a pressure drag that exists in consort with

other drag forms, i.e., viscous drag, induced drag, wave drag, and spray drag, each

of which will be addressed independently in the following section.
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Numerical Example

Reconsider the simple wedge-shaped planing hull of Fig. 1.6 that has been evalu-

ated for hydrostatics (2.8) and (2.9). Let the β angle be 21�, like the 10MRB

(Fig. 1.4). Formulas (2.2) through (2.15) give

Jet-head velocity, dimensionless on the impact velocity V:

zbt ¼ π

2 tan 21ð Þ ¼ 4:09 ð2:16Þ

Jet velocity, Vj ¼ 4:09þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:092 þ 1

p
¼ 8:30 ft=s ð2:17Þ

The jet head, at the 21� β angle, has a tangential velocity of over four times the

impact velocity (2.16), and the jet velocity passing through the jet head is more than

twice the jet-head velocity and eight times the impact velocity. The ratio of jet head

to zero pressure point velocity is by (2.4):

b � zb
zc

¼ cosh
π

2 8:3ð Þ ¼ 1:0179 ð2:18Þ

These two points, zb and zc, stay close together as they travel toward the chine.

By (2.10):

zct ¼ zbt
1:0179

¼ 4:09

1:0179
¼ 4:018 ð2:19Þ

The wetting factor is the ratio of the jet-head ordinate above the wedge apex, zb, to
the height of the undisturbed free surface above the apex. By (2.6):

eβ ¼ 19:72�, λ ¼ 0:3094, and J ¼ 0:870, leaving WF

¼ 0:870
π

2
¼ 1:367 ð2:20Þ

All of these quantities in (2.20) depend on deadrise angle beginning with (2.1).

For the hull velocity distribution by (2.8) and (2.9):

κ ζð Þ ¼ ζ2
b2 � 1

b2 � ζ2
¼ ζ2

0:0361

1:0361� ζ2

w ζð Þ
V

¼ 2Vj

π
sin �1

ffiffiffiffiffiffiffiffiffi
κ ζð Þ

p
¼ 5:284 sin �1ζ

0:19ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0361� ζ2

p ð2:21Þ

By the following Table 2.1:

Note that at ζ¼ 1.0 in Table 2.1 the jet velocity is Vj/V¼ 8.30, calculated

independently as (2.8) and (2.21). The potential needed to calculate the time-
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dependent pressure on the hull is given by (2.11) and (2.12). Figure 2.2 plots the w
(ζ)/V and the CP(ζ) data from Table 2.1. The calculated normal force is by (2.13) as

Cf¼ 22.3 given both in Table 2.1 and in Fig. 2.2.

Note the extremely high gradient in the pressure and velocity curves on

approaching the end, at zc¼ 1, although the pressure curve is bounded there. The

spike reflects the much higher lift running CUW than CW, which has been stated. It

is the high acceleration on approaching the end of the surface velocity curve that

produces the high pressure in CUW loading. Once zc stops its advance and the flow
shifts abruptly to CW, and the dynamic pressure loading drops by an order of

magnitude. As previously stated, the dynamic pressure in the CW flow becomes of

secondary order, to even the hydrostatic pressure in some cases. The jet head, zb,
has left the surface and continues to move laterally away in cusp lines as the boat

progresses downstream. Demonstration of CUW and CW flow characteristics is

shown in Vorus (1996).

zc(t) stops advancing in any section at ζ¼ 1., z¼ Zc. For the self-similar case, the

boat wetted section is not necessarily cylindrical but has an unchanging shape

(Fig. 1.6) so the wetted geometry maintains similarity in x, and Table 2.1 is valid

for all the sections. The requirement here is similarity of sections, which can be

implemented without requiring identical cylindrical (prismatic) sections. The

requirement for similarity of the flow in x is that only a “master dimension” has
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Side-hull Velocity and Pressure Distribution

By (23): Cf = 22.3

CP(zeta)

W(zeta)

PB with Similar Triangular Sections (Figure 1.6)
Deadrise Angle = 21 degrees

Fig. 2.2 Tangential velocity and normal pressure over the hull section contour
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absolute scale and that all others are proportional to the master. This maintains the

shape of the sections as identical and achieves the requirement of similarity that is

present inherently with (identical) cylindrical sections of any shape. A convenient

master dimension here is the chine offset Zc¼ Zc(x). The sections will be of

identical shape, and similar, with the x-variation being linear. For the triangular

water plane of Fig. 1.6, for example, assume

Zc xð Þ ¼ Zch

x

‘
where 0 � x � ‘ ð2:22Þ

and Zch is the chine offset at the transom, x ¼ ‘. The idea here is that the jet head, in
rising on the side hull above the keel, stays below the chine until it reaches the

transom. But the xc at which Zc reaches the chine is not necessarily the transom; it is

the chine-wetting point. Beyond chine wetting, the dynamic pressure can usually be

approximated as zero for engineering purposes, with the hydrostatic residual

increasing linearly from atmospheric pressure with hull surface depth.

The last element in Table 2.1 is the sectional normal force, by (2.13). If the

sections are identical, this force is constant in x. For the alternative similarity

requirement imposed by (2.22):

Ff

ρV2Zch

¼
Xnzet
i¼1

Cpi ζiþ1 � ζið Þx
‘
¼ Cf

x

‘

� �
¼ Cf ξ 0 � ζ � 1 ð2:23Þ

(2.23) is the self-similar section normal force per unit length in x. The total normal

force coefficient is the integral of (2.23) in ξ from 0 to 1. The total dynamic lift

force, for trim angle α, is then from (2.23):

Cf ¼ FLd

1
2
ρU2Zch‘ sin 3α

ð2:24Þ

The pressure drag is (2.15)

Cf ¼ FDp

1
2
ρU2Zch‘ sin 2α cos α

ð2:25Þ

The quotient of (224) to (225) gives the lift/drag ratio as:

FLd

FDp
¼ cot α ð2:26Þ

For this example, Zch¼ 3 ft, ‘ ¼ 15ft, and ρ¼ 1.94 lb-s2/ft4 and take α¼ 4� and

U¼ 30 knots¼ 50.67 fps. From (2.24), with Cf from Table 2.1 and Fig. 2.2:

FLd ¼ 22:29

2
1:94 50:67ð Þ2 3ð Þ 15ð Þ sin 3 4ð Þ

n o
¼ 848 lbs
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This would be the lift supplemental to buoyancy.

From (2.26):

FLd

FDp
¼ 14:3

FDp ¼ FLd

14:3
¼ 59:3 lbs of drag force! ð2:27Þ

P ffi FDpU

550
¼ 5:46HP!

This is a very low estimate of drag force and power, although the formulas (2.24) to

(2.26) are correct, but incomplete.

The reasons for the underestimate of drag and the overestimate of lift-drag ratio

are due to the neglect of important sources of drag. The most important is probably

viscous skin friction drag. The still most popular skin friction drag prediction

method is the semiempirical ITTC friction line, based on towed flat plates:

Cdv ¼ 0:075

log10 Reð Þ � 2½ �2 � 0:0022 ¼ FDv

1
2
ρU2 2ð ÞZch‘

ð2:28Þ

With the Reynolds number Re ¼ U‘
ν and with ν being the kinematic viscosity,

ν¼ 1.1	 10�5 ft2/s. The Reynolds number is calculated using the boat wetted

length ‘. The approximate wetted surface is the bottom triangle 2Zch‘:

Cdv � FDv

1
2
ρU2Zch‘

¼ 0:0044

5
¼ 0:00088

Again, for the data of the Fig. 1.6 case just below equation (2.26):

FDv ¼ 1

2
1:94ð Þ50:672 3ð Þ 15ð Þ 0:00088ð Þ ¼ 32:87

The viscous plus pressure drag is therefore

FD ¼ FDp þ FDv ¼ 59:3þ 32:9 ¼ 92:2 lbs

The lift-drag ratio is now FLd

FD
¼ 848

92:2 ¼ 9:20

And the power estimate

P ffi FDU

550
¼ 8:49HP ð2:29Þ

(2.29) could be considered a lower bound EHP, as there are a number of losses not

included in (2.29). One is the propulsive efficiency, which would be no higher than,

say, QPC¼ 0.7. This takes the delivered power up to 8.49/0.7¼ 12.1 HP and

reduces the lift-drag to 9.2(0.7)¼ 6.44. More is covered on the resistance and

propulsion topic in a later chapter, namely, Chap. 4: Calm Water Mechanics.
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More General Non-Similar Slender Planing Hulls

Figure 1.5 depicts the body plan schematic of the planing hull previously treated.

Figure 2.3 below is the generalization to the non-prismatic (non-similar) case.

The generalization is to x-varying geometry. Under the transformation to the

time domain, with x¼Ut, in passing through the vertical vision plane, the cylinder

geometry varies with time, i.e., the sections are changing shape as the pass, in

general, in height, breadth, deadrise angle, etc., as they advance.

The preceding similarity hydrodynamics can, in fact, be applied to the

non-similar slender hull with little if any more approximation than slenderness.

This is as follows: divide the hull into K strips perpendicular to the x-axis and let the
hull (and strips) move vertically with time varying, i.e., x-varying, shape, and the

axial velocity U as they pass through the plane. The downward velocity onto the

surface is

V xð Þ ¼ U sin α xð Þ ð2:30Þ

Here, α(x) represents the trim angle plus the keel camber angle of the hull design.

Figuratively, the local cylinder is flexing in time as it drops and advances. This

concept is readily extendable to an arbitrary slender hull shape passing through, in

x, the imaginary transverse plane fixed in position relative and to the hull. Changing

of the hull lines with passage in x through the plane implies impacting of a series of

cylinders with time varying geometry. Strip theory can be used to represent the

x-varying geometry provided the craft lines are slender to the degree that the

section, at any x, produces a flow which is approximately that of a cylinder of the

same section shape. This is the general basis of all two-dimensional strip theories.

Allow specifically in this case for x-varying deadrise angle, β(x), as well as

x-varying keel camber, α(x), and chine offset, Zc(x). These are common geometric

Deadrise Angle
β(x)

Chine, zc(x)

z

y

Fig. 2.3 Body plan schematic of typical non-similar hull form
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characteristics of modern planing craft. The analysis of (2.2) through (2.23) extends

to the general slender planing craft hull. Let the subscript k denote the value at the
kth element in x, k¼ 1,. . ., K. Restate the x-related surface formula:

On the surface:

x ¼ x : 0 � x � ‘

y xð Þ ¼ x tan α xð Þ þ z tan β xð Þ ð2:31Þ
z ¼ z : 0 � z � Zk

Treat each of the K strips as the previous similarity case, each at different

x progressively, and each, in general, of different specified shape. At the

x location of each strip, the hull should be slowly varying in x for the validity of

the slender body simplification:

Surface velocity (Fig. 2.5, just as for the preceding self-similar case):

1. Calculate jet-head offset velocity:

zbtk ¼
π

2 tan βk
ð2:32Þ

(The subscript k denotes the kth cross-section, k¼ 1,. . ., K).

2. Jet velocity:

Vjk ¼ zbtk þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2btk þ 1

q
� Vjk

U
ð2:33Þ

3. Ratio jet-head velocity to zero pressure point velocity:

bk � zbtk
zctk

¼ cosh
π

2Vjk
ð2:34Þ

4. Zero pressure point velocity, from (2.3):

zctk ¼ zbtk
bk

ð2:35Þ

5. Wetting factor (or wave rise) at jet head:

WFk ¼ π

2
J λkð Þ ð2:36Þ

with the J-factor:

J λkð Þ �
ffiffi
π

p
bkΓ λkð ÞΓ 3

2
�λkð Þ cos ~β k

with λk � 1
2
� ~β k

π and ~β k � tan �1 sin βkð Þ
6. Side hull tangential velocity distribution:

wk ζð Þ ¼ 2Vjk

π
sin �1

ffiffiffiffiffiffiffiffiffiffiffi
κk ζð Þ

p
ð2:37Þ
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where

κk ζð Þ ¼ ζ2
bk

2 � 1

bk
2 � ζ2

ð2:38Þ

and 0 � ζ � 1 on the side hull.

Numerical Analysis

Model sectionally with nzet equal elements and nz � nzetþ1 equally spaced points in

the side hull 0 � z � Zck; 0 � ζ � 1: ζi � zi
Zc
. The nzet element center points are

ζi ¼ 1
2
ζi þ ζiþ1ð Þ with i ¼ 1, nzet and with ζ1 ¼ 0, ζnzetþ1 ¼ 1 and znzetþ1 ¼ Zck:

Side hull pressure distribution at the ith element center point is then

Cpik ¼ 2zctk Vjk bk � 1ð Þ � φik þ wikζi
� �þ 1� wik

2 ð2:39Þ

with the potential in (2.39)

φ nz�ið Þk ¼ φ nz�iþ1ð Þk �
1

2

Xnz�i

j¼1

Δζj w nz�jð Þk þ w nz�jþ1ð Þk
� � ð2:40Þ

for i ¼ 1, nz� 1 with φnzk ¼ 0 and Δζi ¼ ζ nz� iþ 1ð Þ � ζ nz� ið Þ

Normal Force Coefficient (Per Unit Length)

Cfk ¼ 2
Xnzet
i¼1

Cpik ζiþ1 � ζið Þ ¼ Ffk

1
2
ρU2 sin 2αkZck

ð2:41Þ

Note the similarity to (2.23) for the self-similar case. The pressure drag requires a

last sum on k:

CDp ¼
XK
k¼1

CfkΔxk ð2:42Þ

where Δxk is the width of the kth strip in x.
An example calculation demonstrating the non-similar theory would again be

appropriate at this point. However, with the sections of the boat addressed in the

preceding example exhibiting similarity, it should be clear that each of the
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k sections, being of similar geometry, will have the same solution by the general-

ized strip theory. The strip solutions will sum, as in (2.41) and (2.42), to produce the

identical outcome as the previous similarity analysis.

Shallow Water Planing

While on the subject of craft resistance, it is appropriate to address the hydrody-

namics of planing boats in shallow water. Ships traversing shallow water experi-

ence sinkage and gain resistance. This is due to the source-like squeeze flow

amplifying tangential velocity and reducing pressure between the ship keel and

the sea bottom.

With planing craft the physics is fundamentally different. The flow between the

keel and boat bottom is vortex-like, amplifying normal velocity rather than tangen-

tial. Nullifying the normal velocity on the boat bottom results in an increase in

pressure and a rise of the boat. This is opposite to the displacement ship in shallow

water, as mentioned above, which experiences a sinkage which produces more

wetted surface and increase in resistance. The rise of the planing boat in shallow

water reduces draft and wetted surface, resulting in a reduction in resistance. This

physics is demonstrated in Figs. 2.4 and 2.5.

The boat bottom and its image across the bottom, Fig. 2.4, are represented by

distributions of two-dimensional vortices. The image vortices are negative of the

distribution determined for the boat bottom in order to satisfy the sea-bottom

boundary condition of zero normal velocity.

D

D

y

β

-β

Zch γ(ζ) vortex dist

-γ(ζ) image vortex dist

bottom

Boat bottom

Image boat bottom

Fig. 2.4 Sectional view of bottom and image for shallow water analysis
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Figure 2.4 is the hydrodynamic model which shows the boat bottom and the sea

bottom in terms of negative image vortices as needed to satisfy the sea-bottom

boundary condition of zero normal velocity and the boat bottom nonhomogeneous

boundary condition in planing.

As shown in Fig. 2.5, the presence of the bottom plane amplifies the vertical

force on the hull, the shallower the water, the greater the amplification due to depth.

The shallow water effect is well known qualitatively, but not its degree. The degree

of the shallow water effect is quantified by Fig. 2.5.

The red curve corresponds to the shallowest water of D/Zch¼ 2 with a ratio of

maximum dynamic pressure of 2:1. With Zch being the half-beam at the transom,

this maximum pressure is at approximately a beam/depth ratio of unity, which

might be considered a minimum operational depth. Note from Fig. 2.5 that the

effect of the bottom should become negligible at around three or more beams of

depth.
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Fig. 2.5 Dynamic pressure on β¼ 20� boat bottom planing in variable depth water
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