Chapter 2
Slender-Body Hydrodynamics

A most important topic beyond calm water hydrostatics is steady planing in calm
water. If the hull lines are typically boatlike and slender, any boat section can be
modeled approximately for hydrodynamic analysis as that of a two-dimensional
cylinder of the boat local cross-section shape impacting the water surface in time.
This is indeed a useful analogy, since cylinder impact theory is well developed and
usually quite applicable to planing boat geometry.

At this point a solution for planing is approximated in terms of the wedge-
cylinder impact solution of Figs. 1.2, 1.4, and 1.5. The basic relationship between
the cylinder impact versus planing is x =Ut, so that the two can be referred to
interchangeably.

Planing Solution in Calm Water

Hydrostatic pressure persists in acting on the wetted hull surface, but, now, a
dynamic component is added in parallel, so that the two components, through
equilibrium, set the planing attitude as to trim and draft.

Consider first the wedge cylinder characterized by the deadrise angle # and trim
angle a, as depicted in Fig. 2.1. Extension will be available to non-similarity forms,
exploiting a “strip” approach via slender-body theory to allow calculation of the
general case. It is only necessary that the boat be characterized as slender in the
sense of the flow regularity (Vorus 1996).

As noted in the preceding, the wedge cylinder of Fig. 2.1, with deadrise angle £,
impacts the surface vertically downward with velocity V; V is the downward
component of the forward speed developed through the hull trim angle a, as
shown in Fig. 2.1. On impact, the free surface is turned back under the contour
forming an initially attached jet (Fig. 2.1). The jet velocity V;, is not equal to V, but
much larger, the flatter the contour, the higher V;. There are also the velocities zy,(f)
and z.(f), which are the velocities of the jet head and the initial point of zero
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Fig. 2.1 Impacting CUW wedge cylinder

pressure, respectively; both are higher than V, but lower than V;. The jet head, or
“spray-root,” with offset z,(#) advances rapidly outward along the hull contour. It is
followed closely behind by the point of zero contour dynamic pressure, z.(¢), until
the jet separates. Separation of the jet at offset z, must be accompanied by drop in
the dynamic pressure to zero at z.. In the initial CUW impact period, the contour
pressure distribution has a sharp spike and large negative gradient into z.(¢), beyond
which the dynamic pressure is zero.

On reaching the chine, the point z.(f) comes to an abrupt haltat z. = Z, < Z,,
but z,(#) continues advancing out from under the chine and across the free surface as
time progresses. The CUW flow phase, of major importance in the planing process,
stops at the time that z.(f) = Z. which may or may not have reached the chine. Z,. is
inside the chine forward if the chine upset does not start at the base of the stem.
With z.. stopped at Z,., a lower level of pressure then acts on the fully wetted contour
as the CW phase commences and continues to the transom. With Z_ fixed at the
chine, the CW flow is just that of a vertically impacting flat plate. z,(#) beyond chine
wetting is determined by removal of the singularity at the plate edges. As stated in
the foregoing, the dynamic pressure developed in the CW flow phase is of small
order compared to the CUW hull pressure and is often simply assumed to be the
hydrostatic hull pressure.

The cusp lines that one observes extending aft of the boat when planing is
misunderstood by many. These are not the Kelvin cusp-lines associated with the
generation of gravity waves; the cusp lines in planing are the remnant of the jet head
z(x) left behind the boat. The Kelvin cusp lines are at £19.5° off the x-axis; the
cusp lines of the jet heads are much narrower, in general.
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Analysis

If it is assumed that V, a, 3, and Z, are known in advance, three unknowns remain
to completely define the two-dimensional hydrodynamics problem analogous to the
section of a planing boat (Fig. 2.1 ). These unknowns are values on the side hull of
jet velocity, V;, and the velocities of the jet head and zero pressure point: z,() and
z.(t). The point of jet separation, Z.(x), may also be unknown if it is inboard of the
chine.

The surface of the similarity wedge, at constant trim angle o and constant
DR angle f, as depicted in Figs. 1.2 through 1.6, is defined as z(x,y) or y(x,z): For
the later:

x=x:0<x</
y=xtana + ztanf§ (2.1)
z=z0<z<Z,

Treating first the similarity solution of the wedge cylinder with constant f, the
following formulas are extractable from “Shock Reduction of Planing Boats”
(Vorus and Royce, 2000). The wedge-cylinder impact solution is the same as
self-similar planing solution for x = Ut. The relevant formulas are the following:

1. Jet-head offset velocity:

T

Z = —
b 2tanf

2. Jet velocity:

Vi=zu+/z+1 (2.3)

3. Ratio: jet-head velocity to zero pressure point velocity:

Zpt T
b= = cos h 24
Oy, (24)

4. Zero pressure point velocity, from (2.4):

Z
T = % (2.5)

5. Wetting factor (or wave rise) at the jet head:
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WF:gﬂM (2.6)
Here the J-factor, J(4) is
J() = V7 ~, with Azé—é and = tan '(sinf) (2.7
T

b (A)I(3 — 1) cos B

I" is the Gamma function, a readily evaluated special function.
The wetting factor was first proposed by (Wagner, 1932) with J(1) = 1.
(in (2.6)) independent of the deadrise angle . Recent work Vorus (1996) has
shown J(4), (2.7), decreases with increasing f over the usable range.
6. Side hull tangential velocity distribution:

WV,
w(¢) = 2V sin ~!'\/k(¢) (2.8)
r
where
b -1 .
k() =¢ bz—(jz with 0 < ¢ <1 on the side hull (2.9)

If the wedge is of similar section over its length, i.e., constant f in x as in Fig. 1.6,
then (2.1) through (2.9) apply identically at all cross-sections over the length. But
the usual case is that the hull is not self-similar and the formulas have to be applied
strip-wise over the length to achieve a solution. There, as follows, each strip is
treated as a narrow cross-segment of a cylinder to which the preceding formula
apply.

In this more general case, analyze with K strips, bounded by the x;, each strip
with n,, equal z;-elements and n, = n,,..; equally spaced points bounding the
elements in the kth strip:

Zik
0<zyg <Zu; 0< <1, i =70

i=1ln, k=1,...K (2.10)

The 7., element center points (k inferred) are {; = % (¢ + &iqr) withi = 1, ng and
with §; =0, {,.0pp1 =1 and zpery1 = Zok. These subscripts, (2.10), are simply
attached to the formulas (2.1) through (2.9) for achieving the strip theory for
analysis of f-variable cases.

The side hull pressure distribution at the ith element center point of the kth strip
is by the Bernoulli equation:
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Cpi =22 [Vi(b— 1) — gy + wili] +1 —w/? (2.11)
with the potential in (2.11):

nz—i

Pnz—i = Pnz—it1 — EZACJ [W”Z_j + W’”_jJﬁl} (212)
=

for¢,, =0and Al; ={(nz — i+ 1) — {(nz —i).

Normal Force Coefficient (Per Unit Length)

Integrate the pressure element by element over the two sides of the hull to obtain the
normal force distribution:

Cr = 2% CpilCip1 — i) = 2 = by (2.13)
— pV?Z,  1pU*Z.:sin’a

Formula (2.13) calculates the normal force distribution acting on the slender hull,
running chine-unwetted with forward speed U, as defined in the preceding. To this
point, the hull is assumed to be in calm water equilibrium both hydrostatically and
hydrodynamically.

Lift and Drag

In the absence of flow-modifying appendages (bare hull, Fig. 1.4), the dynamic lift
and pressure drag of the subject hull follow from (2.13):

Cra = Cysina (2.14)
CDd = Cf cosa (215)

The hydrodynamic forces (2.14) and (2.15) are, as stated, supplemental to the
hydrostatic forces corresponding to the distribution of still-water static equilibrium
draft. The hydrostatic drag is zero, by definition, but the hydrostatic lift is the
buoyancy support. The changing total lift must remain zero with the hull attitude
(transom draft and trim) adjusting to accommodate the total force equilibrium
requirement.

The hydrodynamic drag by (2.15) is a pressure drag that exists in consort with
other drag forms, i.e., viscous drag, induced drag, wave drag, and spray drag, each
of which will be addressed independently in the following section.
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Numerical Example

Reconsider the simple wedge-shaped planing hull of Fig. 1.6 that has been evalu-
ated for hydrostatics (2.8) and (2.9). Let the § angle be 21°, like the 1I0MRB
(Fig. 1.4). Formulas (2.2) through (2.15) give

Jet-head velocity, dimensionless on the impact velocity V:

T

=——=4.0 2.16
= D tan (21) o (2.16)
Jet velocity, V; =4.09 4+ v/4.09% + 1 = 8.30 ft/s (2.17)

The jet head, at the 21° § angle, has a tangential velocity of over four times the
impact velocity (2.16), and the jet velocity passing through the jet head is more than
twice the jet-head velocity and eight times the impact velocity. The ratio of jet head
to zero pressure point velocity is by (2.4):

Zp T
b= = cosh—r— = 1.0179 2.18
e (83 (2.13)

These two points, z; and z., stay close together as they travel toward the chine.
By (2.10):

e 4.09
Zet = T———=< =
"7 1.0179 ~ 1.0179

= 4.018 (2.19)

The wetting factor is the ratio of the jet-head ordinate above the wedge apex, z,, to
the height of the undisturbed free surface above the apex. By (2.6):

p =19.72°, 1=0.3094, and J = 0.870, leaving WF
= 0.870 % = 1.367 (2.20)

All of these quantities in (2.20) depend on deadrise angle beginning with (2.1).
For the hull velocity distribution by (2.8) and (2.9):

pr—1 0.0361
_ 2 _
M= = e 2
w(e)  2V; 0.19

—22 =" gin '\/k(¢) = 5.284 sin N ———r—
14 m © V/1.0361 — &2

By the following Table 2.1:
Note that at {=1.0 in Table 2.1 the jet velocity is V;/V =8.30, calculated
independently as (2.8) and (2.21). The potential needed to calculate the time-

(2.21)
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Side-hull Velocity and Pressure Distribution

20 PB with Similar Triangular Sections (Figure 1.6)
Deadrise Angle = 21 degrees
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Fig. 2.2 Tangential velocity and normal pressure over the hull section contour

dependent pressure on the hull is given by (2.11) and (2.12). Figure 2.2 plots the w
(&)/V and the Cp({) data from Table 2.1. The calculated normal force is by (2.13) as
Cy=22.3 given both in Table 2.1 and in Fig. 2.2.

Note the extremely high gradient in the pressure and velocity curves on
approaching the end, at z. = 1, although the pressure curve is bounded there. The
spike reflects the much higher lift running CUW than CW, which has been stated. It
is the high acceleration on approaching the end of the surface velocity curve that
produces the high pressure in CUW loading. Once z.. stops its advance and the flow
shifts abruptly to CW, and the dynamic pressure loading drops by an order of
magnitude. As previously stated, the dynamic pressure in the CW flow becomes of
secondary order, to even the hydrostatic pressure in some cases. The jet head, z,,
has left the surface and continues to move laterally away in cusp lines as the boat
progresses downstream. Demonstration of CUW and CW flow characteristics is
shown in Vorus (1996).

z.(t) stops advancing in any section at { = 1., z=Z,. For the self-similar case, the
boat wetted section is not necessarily cylindrical but has an unchanging shape
(Fig. 1.6) so the wetted geometry maintains similarity in x, and Table 2.1 is valid
for all the sections. The requirement here is similarity of sections, which can be
implemented without requiring identical cylindrical (prismatic) sections. The
requirement for similarity of the flow in x is that only a “master dimension” has


http://dx.doi.org/10.1007/978-3-319-39219-6_1

Analysis 19

absolute scale and that all others are proportional to the master. This maintains the
shape of the sections as identical and achieves the requirement of similarity that is
present inherently with (identical) cylindrical sections of any shape. A convenient
master dimension here is the chine offset Z.=Z.(x). The sections will be of
identical shape, and similar, with the x-variation being linear. For the triangular
water plane of Fig. 1.6, for example, assume

X
Z(‘ (.X) = ZChZ

where 0<x</ (2.22)
and Zj, is the chine offset at the transom, x = /. The idea here is that the jet head, in
rising on the side hull above the keel, stays below the chine until it reaches the
transom. But the x,. at which Z. reaches the chine is not necessarily the transom; it is
the chine-wetting point. Beyond chine wetting, the dynamic pressure can usually be
approximated as zero for engineering purposes, with the hydrostatic residual
increasing linearly from atmospheric pressure with hull surface depth.

The last element in Table 2.1 is the sectional normal force, by (2.13). If the
sections are identical, this force is constant in x. For the alternative similarity
requirement imposed by (2.22):

F' nzet X X
szjZ = Cpi(Civ1 — Cf)z =Gy (Z> =CG¢ 0=¢=<1 (2.23)
c T

=

(2.23) is the self-similar section normal force per unit length in x. The total normal
force coefficient is the integral of (2.23) in £ from O to 1. The total dynamic lift
force, for trim angle a, is then from (2.23):

Frq

Cr=—5—""—"— 2.24
! LpU*Zplsin3a (2.24)
The pressure drag is (2.15)
Fp,
Cr = - 2.25
g 1pU*Znlsin2acosa (2:25)
The quotient of (224) to (225) gives the lift/drag ratio as:
F
1 — cota (2.26)

Dp

For this example, Zg, =3 ft, £ = 15ft, and p = 1.94 Ib-s¥/ft* and take a=4° and
U =30 knots = 50.67 fps. From (2.24), with Crfrom Table 2.1 and Fig. 2.2:

222
Frq= 79{1.94(50.67)2(3)(15) sin3(4)} = 848 1Ibs
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This would be the lift supplemental to buoyancy.
From (2.26):

F
443

Dp

F
Fpp = % =59.31bs of drag force! (2.27)

Fp,U
P~-—T" —546HP!
550

This is a very low estimate of drag force and power, although the formulas (2.24) to
(2.26) are correct, but incomplete.

The reasons for the underestimate of drag and the overestimate of lift-drag ratio
are due to the neglect of important sources of drag. The most important is probably
viscous skin friction drag. The still most popular skin friction drag prediction
method is the semiempirical ITTC friction line, based on towed flat plates:

Cdv = 0.075 0.0022 = v

~ [logy(Re) —2J° LU (2)Zanl

(2.28)

With the Reynolds number Re = UTé and with v being the kinematic viscosity,
v=1.1 x10"° ft*s. The Reynolds number is calculated using the boat wetted
length ¢. The approximate wetted surface is the bottom triangle 2Z,¢:

Fp,  0.0044

= = 0.00088
1pUZenl 5

Again, for the data of the Fig. 1.6 case just below equation (2.26):
1
Fp, = 5 (1.94)50.67%(3)(15)(0.00088) = 32.87

The viscous plus pressure drag is therefore
Fp = Fp, +Fp, =59.3+32.9 =92.21bs

The lift-drag ratio is now %;l = % =9.20

And the power estimate

FpU
~ —— = §8.49HP 2.2
550 8.49 (2.29)

(2.29) could be considered a lower bound EHP, as there are a number of losses not
included in (2.29). One is the propulsive efficiency, which would be no higher than,
say, QPC=0.7. This takes the delivered power up to 8.49/0.7=12.1 HP and
reduces the lift-drag to 9.2(0.7) =6.44. More is covered on the resistance and
propulsion topic in a later chapter, namely, Chap. 4: Calm Water Mechanics.
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More General Non-Similar Slender Planing Hulls

Figure 1.5 depicts the body plan schematic of the planing hull previously treated.
Figure 2.3 below is the generalization to the non-prismatic (non-similar) case.

The generalization is to x-varying geometry. Under the transformation to the
time domain, with x = Ut, in passing through the vertical vision plane, the cylinder
geometry varies with time, i.e., the sections are changing shape as the pass, in
general, in height, breadth, deadrise angle, etc., as they advance.

The preceding similarity hydrodynamics can, in fact, be applied to the
non-similar slender hull with little if any more approximation than slenderness.
This is as follows: divide the hull into K strips perpendicular to the x-axis and let the
hull (and strips) move vertically with time varying, i.e., x-varying, shape, and the
axial velocity U as they pass through the plane. The downward velocity onto the
surface is

V(x) = Usina(x) (2.30)

Here, a(x) represents the trim angle plus the keel camber angle of the hull design.
Figuratively, the local cylinder is flexing in time as it drops and advances. This
concept is readily extendable to an arbitrary slender hull shape passing through, in
X, the imaginary transverse plane fixed in position relative and to the hull. Changing
of the hull lines with passage in x through the plane implies impacting of a series of
cylinders with time varying geometry. Strip theory can be used to represent the
x-varying geometry provided the craft lines are slender to the degree that the
section, at any x, produces a flow which is approximately that of a cylinder of the
same section shape. This is the general basis of all two-dimensional strip theories.

Allow specifically in this case for x-varying deadrise angle, f(x), as well as
x-varying keel camber, a(x), and chine offset, Z.(x). These are common geometric

Chine, z(x)

Deadrise Angle
B(x)

—_—> 7

Fig. 2.3 Body plan schematic of typical non-similar hull form
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characteristics of modern planing craft. The analysis of (2.2) through (2.23) extends
to the general slender planing craft hull. Let the subscript k denote the value at the
kth element in x, k=1,. .., K. Restate the x-related surface formula:

On the surface:

x=x:0<x</
y(x) = xtan a(x) + ztan B(x) (2.31)
z=2z:0<z<7Z;

Treat each of the K strips as the previous similarity case, each at different
x progressively, and each, in general, of different specified shape. At the
x location of each strip, the hull should be slowly varying in x for the validity of
the slender body simplification:

Surface velocity (Fig. 2.5, just as for the preceding self-similar case):

1. Calculate jet-head offset velocity:

T

TN (2.32)

Zbtk =

(The subscript k denotes the kth cross-section, k=1,. .., K).

2. Jet velocity:
V.
Vik =zpn + /224 + 1 = # (2.33)

3. Ratio jet-head velocity to zero pressure point velocity:

be = 2% — cosh—r— (2.34)

4. Zero pressure point velocity, from (2.3):

Zeth = Z;;itkk (235)

5. Wetting factor (or wave rise) at jet head:
rr
WE;, = EJ(/I;() (2.36)

with the J-factor:

_ 7 . _ p 5 IR
J(A) :mwuhﬂ% =1-lrand f, = tan !(sinp,)

6. Side hull tangential velocity distribution:

Wiy

wi(§) in /K () (2.37)
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where

2
@) = =1

(2.38)

and 0 < ¢ < 1 on the side hull.

Numerical Analysis

Model sectionally with 7.,, equal elements and n, = n,.. equally spaced points in

the side hull 0 <z < Z¢;; 0<¢ < 1. {; =7 The n., element center points are

Zi = %(Z:I + §i+1) with i = 1, Nyet and with Cl = 0, C}’LZeIJrl =1and Znzet+1 — ZCI('
Side hull pressure distribution at the ith element center point is then

Cpik = 2ze [Vir(bx — 1) — i + wili] + 1 — wii (2.39)

with the potential in (2.39)

1 nz—i

qo(nzfi)k = go(nzfiJrl)k - 5 ZACJ [W(nzfj)k + W(nzfj+1)k:| (240)
=1

fori=1,nz—1with ¢, =0and A{; =¢(nz —i+ 1) — {(nz — i)

Normal Force Coefficient (Per Unit Length)

nzet ka

Cr = 22 Coix(Civ1 — &) (2.41)
p

%p(]2 sin 2akZ[¢k

Note the similarity to (2.23) for the self-similar case. The pressure drag requires a
last sum on k:

K
Cop = Y _ CpdX; (2.42)
k=1

where AX; is the width of the kth strip in x.

An example calculation demonstrating the non-similar theory would again be
appropriate at this point. However, with the sections of the boat addressed in the
preceding example exhibiting similarity, it should be clear that each of the
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k sections, being of similar geometry, will have the same solution by the general-
ized strip theory. The strip solutions will sum, as in (2.41) and (2.42), to produce the
identical outcome as the previous similarity analysis.

Shallow Water Planing

While on the subject of craft resistance, it is appropriate to address the hydrody-
namics of planing boats in shallow water. Ships traversing shallow water experi-
ence sinkage and gain resistance. This is due to the source-like squeeze flow
amplifying tangential velocity and reducing pressure between the ship keel and
the sea bottom.

With planing craft the physics is fundamentally different. The flow between the
keel and boat bottom is vortex-like, amplifying normal velocity rather than tangen-
tial. Nullifying the normal velocity on the boat bottom results in an increase in
pressure and a rise of the boat. This is opposite to the displacement ship in shallow
water, as mentioned above, which experiences a sinkage which produces more
wetted surface and increase in resistance. The rise of the planing boat in shallow
water reduces draft and wetted surface, resulting in a reduction in resistance. This
physics is demonstrated in Figs. 2.4 and 2.5.

The boat bottom and its image across the bottom, Fig. 2.4, are represented by
distributions of two-dimensional vortices. The image vortices are negative of the
distribution determined for the boat bottom in order to satisfy the sea-bottom
boundary condition of zero normal velocity.

—
t Y Zch v(©) vortex dist
Boat bottom B
D
D bottom
Image boat bottom B

el y(8) image vortex dist

Fig. 2.4 Sectional view of bottom and image for shallow water analysis
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Wedge Hull Section Planing in Variable Depth Water;
26 Dynamic Pressure Coefficient for V = Usin(alfa)
Deadrise Angle = 20 deg

24 ;_ Cp = p/1/2 rho V**2
22 ;_ Color Depth / Zch Cf = 1/1/2 rho V**2Zch
o0 Blue infinite 17.88
E Green 4 21.42
18F  Red 2 26.40
16 ;—
o 14 E_
Ok
10F
8F
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4F
2
0 E 1 1 I
0 0.25 0.5 0.75 1
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Fig. 2.5 Dynamic pressure on  =20° boat bottom planing in variable depth water

Figure 2.4 is the hydrodynamic model which shows the boat bottom and the sea
bottom in terms of negative image vortices as needed to satisfy the sea-bottom
boundary condition of zero normal velocity and the boat bottom nonhomogeneous
boundary condition in planing.

As shown in Fig. 2.5, the presence of the bottom plane amplifies the vertical
force on the hull, the shallower the water, the greater the amplification due to depth.
The shallow water effect is well known qualitatively, but not its degree. The degree
of the shallow water effect is quantified by Fig. 2.5.

The red curve corresponds to the shallowest water of D/Z, =2 with a ratio of
maximum dynamic pressure of 2:1. With Z, being the half-beam at the transom,
this maximum pressure is at approximately a beam/depth ratio of unity, which
might be considered a minimum operational depth. Note from Fig. 2.5 that the
effect of the bottom should become negligible at around three or more beams of
depth.
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