Chapter 2

Diagnosis Using Support Vector Machines
(SVM)

Diagnosis of functional failures at the board level is critical for improving product
yield and reducing manufacturing cost. State-of-the-art board-level diagnostic soft-
ware is unable to cope with high complexity and ever-increasing clock frequencies,
and the identification of the root cause of failure on a board is a major problem today.
Ambiguous or incorrect repair suggestions lead to long debug times and even wrong
repair actions, which significantly increase the repair cost and adversely impacts
yield.

In this chapter, we introduce a machine learning-based intelligent diagnosis sys-
tem, which can automatically learn debug knowledge from empirical data and iden-
tify the most likely root cause of a new failed board. Using such a diagnosis system
eliminates the difficulties involved in traditional knowledge acquisition. Fine-grained
fault syndromes extracted from failure logs and the corresponding repair actions are
used to train the system. Support vector machines (SVMs) have been used in board-
level diagnosis to provide accurate root cause isolation. An SVM-based diagnosis
system can be rapidly trained and is scalable to large datasets. However, the SVM
method used in prior work [1] was simplistic, relying on an arbitrarily chosen kernel
function, and it was not adaptive to the availability of new data or test cases. We pro-
pose a diagnosis system based on multi-kernel support vector machines (MK-SVMs)
and incremental learning, which are used to tune the diagnosis system in an automatic
manner. The MK-SVM method leverages a linear combination of single kernels to
achieve accurate faulty component classification based on the errors observed. The
MK-SVMs thus generated can also be updated based on incremental learning, which
allows the diagnosis system to quickly adapt to new error observations and provide
even more accurate fault diagnosis.

The remainder of this chapter is organized as follows. Section2.1 reviews the
background and prior work. Section2.2 reviews basic concepts in support vector
machines. Section 2.3 introduces multi-kernel-based SVMs, and describes how MK-
SVMs can be extended for incremental learning, namely iMK-SVMs. Section2.4
presents experimental results on diagnosis accuracy and training time for two industry
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boards and for synthetic data. These results are compared to diagnosis using single-
kernel SVMs [1] and ANNs [2]. In addition, experimental results are presented
for the diagnosis accuracy achieved using incremental learning. The high diagnosis
accuracy, rapid training, and short diagnosis time highlight the benefits of the iMK-
SVM-based reasoning system. Section2.5 concludes the chapter.

2.1 Background and Chapter Highlights

Field data and experience reports from repair technicians highlight many problems
with diagnostic software currently in use, especially for functional tests that involve
actual data in a real application. The diagnostic resolution offered by today’s tools is
limited to ASICs on the board. No repair guidance is provided for memory devices
or passive components on the board. Diagnostic resolution is also poor in practice,
multiple repair candidates are often listed and these candidates are not prioritized.
Technicians are forced to run debug programs repeatedly and carry out physical prob-
ing in many places to identify the root cause of failures, a practice that significantly
increases the debug and repair time. Based on past repair records, we have found the
debug time for the functional test considered here to be as high as several weeks.
The correctness of diagnosis, i.e., the probability of the actual failing component
included in the list of suspects, is unacceptably low, and the root cause is seldom
exclusively pinpointed.

In order to overcome the difficulties described above and provide accurate diag-
nostic results, we investigate intelligent diagnosis based on machine-learning algo-
rithms. Machine learning, a branch of artificial intelligence, is focused on automatic
learning from empirical data and making intelligent decisions. The debug knowledge
can be automatically learned from history records (logs) using these techniques, e.g.,
artificial neural networks (ANNSs) [2]. In ANN learning, we are given a set of training
cases, which typically contain a set of error observations, referred to as syndromes.
An ANN aims to automatically generate both the edge weights in the network and
a transfer function that allow root-cause identification to be made on the basis of
the syndromes. Due to its wide acceptance in the machine learning community and
ease of interpretation, ANNs have been used for fault diagnosis [2, 3]. However,
ANN-based methods suffer from the inherent theoretical limitations of ANNs that
tend to limit their accuracy [2]. Moreover, ANNSs require large datasets for training,
and large volumes of relevant data are not always available.

Recently, success in board-level functional fault diagnosis has also been reported
using SVMs, which constitute a more advanced class of machine-learning techniques
[1]. Even though SVMs were shown to be more effective than ANNs for a complex
board in high-volume production [1], the increase in success ratio (diagnosis accu-
racy) was marginal. Moreover, the SVM method used in [1] was simplistic, relying
on an arbitrarily chosen kernel function, and it was not adaptive to the availability of
new data or test cases.
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In this chapter, we propose an adaptive, accurate, and efficient diagnostic system
based on SVMs. An advantage of using machine learning is that it avoids the difficul-
ties associated with knowledge acquisition and rule-base development required for
expert systems [1, 2, 4]. Without the need to understand the complex functionality
of boards, diagnostic systems based on machine learning are able to automatically
derive and exploit knowledge from repair logs of previously documented cases. The
proposed approach overcomes the limitations of single-kernel SVMs used in [1]
by exploiting multi-kernel SVMs and incremental learning (iMK-SVM) to reduce
complexity, achieve significantly higher diagnosis accuracy, and perform reasoning
adaptively in realtime as new data becomes available. The kernel function in this
approach is defined as a linear combination of different kernels. The proposed iMK-
SVM-based diagnostic system is generic. Given a set of fault syndromes and the
corresponding faulty components, the system can be rapidly trained and then used
for fault diagnosis across different products. Results are presented for two industry
boards, which are currently in production, and for which fail data has been gathered
and used for training and evaluation.

2.2 Diagnosis Using Support Vector Machines

A SVM is a supervised machine learning algorithm proposed by Vapnik in 1995
[5]. It has a number of theoretical and computational merits, for example, the sim-
ple geometrical interpretation of the margin, uniqueness of the solution, statistical
robustness of the loss function, modularity of the kernel function, and overfitting
control through the choice of a single regularization parameter. A brief introduction
to SVMs is presented below.

2.2.1 Support Vector Machines

The goal of SVMs is to define an optimal separating hyperplane (OSH) to separate
two classes. The vectors from the same class fall on the same side of the optimal sepa-
rating hyperplane, and the distance from the closest vectors to the optimal separating
hyperplane is the maximum among all the separating hyperplanes. An important
and unique feature of this approach is that the solution is only based on those vec-
tors that are the closest to the OSH, calculated in the following way. Let (x;, y;),
i=1,2,...,nbeasetof training examples, and x; € RY, y; € {—1, +1}. Figure 2.1
illustrates a two-class SVM model. The vector x; is considered as input, and d is
the dimensionality of the input vectors. Each input vector belongs to one of the two
classes. One is labeled by y = +1; the other is labeled by y = —1. If the set can be
linearly separated, there must be a hyperplane satisfying Formula (2.1):

f(x) = sgn(@"x + b), 2.1)



26 2 Diagnosis Using Support Vector Machines (SVM)
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where sgn refers to the sign of (wTx+b), wis a d-dimensional vector, and b is a scalar.
Those vectors x; for which f(x;) is positive are placed in one class, while vectors
x; for which f(x;) is negative are placed in another class. Based on [5], we define
margin as twice the distance from the classifier to the closest data vector, namely the
support vector. The margin is a measure of the ability to generate a classifier. The
larger the margin is, the better is the generation of the classifier. SVMs maximize the
margin between two classes.

Since the margin width equals \/%, the maximum-margin solution is found by
solving the following minimization problem:

s
L 1
Minimize W = §||co||” + CZ& 2.2)
Subject to
lyi(@-x;+b)|| <1—§;, Vi (2.3)
& >0, Vi 2.4)

where slack variable &; is introduced to measure the degree of misclassification of
data x; and C is the error penalty. We can tune C to adjust the trained SVM model
to be either overfitting or underfitting. The parameter p is used for regularization of
the weights in the SVM model. Most SVM solvers use standard regularization, i.e.,
p = 2. Hence we assume p = 2 in our work.

In order to solve the constrained optimization problem described in (2.2), a set of
Lagrange multipliers «;, where o; > 0, is used. Each multiplier ¢; corresponds to a
constraint in (2.3) on the support vectors. The optimization problem from (2.2) can
now be expressed in its dual form

S S S
L 1
Minimize W; = E Z a; Qo — ; o+ b ;yiai (2.5)

ij=1
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where Q;; = y;9;K (x;, x;), and K is the kernel function described in the next section.
Additional mathematical details are omitted here but they can be found in [5]. The
weights and offsets are as follows:

s
® = Zai)’ixi (2.6)
i=1
| S
b=— i—w~x,») (27)
Ny 20

Originally, SVMs were designed for linear binary classification problems. In prac-
tice, classification problems are not limited by two classes. In board-level fault diag-
nosis, the number of root cause candidates (classes) is typically in the range of a few
hundreds. In [5], a modified design of SVMs was proposed in order to incorporate
multiclass learning. Besides this, an alternative approach for handling a large number
of classes is to combine multiple binary SVMs. “One against one” provides pairwise
comparisons between classes. “One against all” compares a given class with all the
other classes. According to a comparison study in [5], the accuracies of these meth-
ods are almost the same. Therefore, we choose the “one against all” in our problem,
which has the lowest computation complexity.

2.2.1.1 Demonstration of SVM-Based Diagnosis System

To illustrate the SVM optimization procedure, consider the same hypothetical demon-
stration board with six cases in Sect.2.2. We build an SVM model to identify faults
for new cases. Let x1, x», and x3 be three syndromes. If the syndrome manifests itself,
we record it as 1, and O otherwise. The presentation of fault class is different from
that for ANNSs training in Sect.2.2. The board has two candidate root causes A and
B, and we encode them as y = —1 and y = 1, respectively. In a real scenario, fault
syndromes vary across products and tests. Here, we merge the syndromes and the
known root causes into one matrix &7’ = [%'|%¢”], where the left (A') side refers to
syndromes, while the right side (¢”) refers to the corresponding fault classes. This
matrix represents the training information for the SVM.

11 0 1
1111
11 0 1

=B =, | | (2.8)
0 0 1§-1
0 0 1i-1

We obtain the Lagrange multipliers oy = 2.00¢77, oy = 1.99, 5 = 1.99, and
a4 = 1.99¢77 by solving the optimization (cost) function from (2.5). We then get
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w = 199, 0w, = 0, w, = 0and b = —1.00 by solving Egs.(2.6) and (2.7).
Therefore, the classifier for determining the root cause for the given set is generated
as follows:

fx) =s5gn(1.99 - x; +0-x, + 0 - x3 — 1.00) (2.9)

Next, suppose a new failing board is received and it has the syndrome [1 1 0],
which corresponds to the first row (case) of &7’ in Eq. (2.8). The function y is evaluated
using Eq. (2.2), and since sgn(1.99-1+0-1+0-0—1.00) is positive, y = 1. Thus the
root cause for this failing board is determined to be A. Suppose a second new failing
board with syndrome [0 1 O] in received. In this case, the decision function evaluates
to y = —1, hence we determine B to be the root cause in this case. For boards with
the root cause of class A (B), we can replace the corresponding component A (B).

2.2.2 SVM Diagnosis Flow

The SVM-based diagnosis flow consists of four steps that are described in Fig.2.2.
Generally speaking, a set of training data (fault syndromes and corresponding repair
actions) is first prepared, which is derived from the repair history in the manufacturing
database. Then SVMs determine the OSH based on the training data. After the OSH
is determined, the SVMs-based diagnostic system is ready to diagnose new cases.

Step 1: The data preparation step also follows the description in Sect.2.1. The
extracted syndromes and replaced components are used as inputs and outputs for the
training of SVMs.

Step 2: Proper kernel function and penalty parameter are chosen to determine the
SVMs training. The choice of these two parameters affects the performance of SVMs.

Fig. 2.2 The diagnosis flow )
using SVMs [1] Training Data Preparation

Extract fault syndromes and repair actions from historical data J

2

Support-Vector Machine Design

Design kernel function, penalty parameter, etc.

A 4

Optimal Separating Hyper-plane (OSH) Determination

Maximize the margin and calculate the OSH |

U

Support-Vector Machine-based Diagnosis

Determine the root cause based on the outputs of SVM
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However, there are no generic rules to select the best kernel and other parameters of
SVMs for a specific problem. In this work, we determine the best design of SVMs in
a heuristic way. According to extensive experimental results, we find that the SVMs
with a linear kernel and a relatively large penalty parameter provide the highest
diagnostic accuracy in the board-level fault diagnosis.

Step 3: The determination of the OSH can be considered as the training of SVMs.
The OSH is determined by solving the quadratic optimization problem described in
Egs.(2.7) and (2.6). The values of w and b can be calculated using MATLAB. An
open-source SVM toolbox is provided in [6]. The w and b values are determined
after training.

Step 4: Given a new input vector, we can calculate the output of the SVM using
the decision function in Eq. (2.1). In the diagnosis step, we rank the output of all the
SVMs, and select the component represented by the SVM with the largest output as
the root cause.

2.3 Multi-kernel Support Vector Machines
and Incremental Learning

Classical SVMs are efficient for linear classification, as discussed in Sect.2.2. How-
ever, in many practical scenarios, including fault diagnosis, classical SVMs fail to
find an optimal linear classifier for separating classes. Therefore, in such scenarios,
SVMs must be extended to handle nonlinear classification problems. One solution is
to transform the problem to a higher dimensional feature space through a nonlinear
mapping, also known as kernel, and the classifier is constructed in the new feature
space. The advantage of this transformation is that it is not necessary to explicitly
implement the transformation and to determine the separating hyperplane in a higher
dimensional feature space.

2.3.1 Multi-kernel Support Vector Machines

2.3.1.1 Kernel

In kernel-based transformation methods, the data representation is implicitly cho-
sen through a kernel K(x;, x;), where x; and x; are both input vectors in the lower
dimensional feature space. Figure 2.3 illustrates the transformation from a lower di-
mension feature space to a high-dimension feature space. The optimization problem
from (2.5) can now be expressed as:

s s s
. 1
Minimize W, = 3 Z a0yyiK (xi, x;) — ;ai +5b ;yiai (2.10)

ij=1
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Fig. 2.3 Illustration of kernelized support vector machine model

with similar constraint functions as those for nonkernel SVMs.

N

S
1
b= 1732 yi—Zajyj-K(xi,xj) 2.11)

i=1 j=1

The decision function (2.1) is now expressed as

S
fx) = sgn (Z aiyiK (6, %) + b) (2.12)

i=1

The choice of kernel function is crucial for the success of an SVM-based model.
There are several widely used kernel functions [5]:

e Homogeneous Polynomial Kernel: K (x;, x;) = (x; -xj)d , where d > 1. The linear
kernel (d = 1) is regarded as a kernelized representation of linear SVMs.

o Polynomial kernel: K (x;, x;) = (x; - x; + 1)¢, where d > 1.

e Gaussian kernel: K (x;, x;) = e V%I’ where y = # and o can be interpreted
as the standard deviation of a Gaussian distribution.

e Exponential kernel: K (x;, x;) = e~ 7I%—%l,

As an illustration, we apply kernelization methods to the example described in
Sect. 2.2. Suppose that we choose a polynomial kernel with degree 2 and K (x;, x;) =
(xi-x;+ 1)%. Given anew failing board under test with syndrome [1 1 1], the kernelized
presentation of the syndrome is [0.91 0.64 0.64] and f (x) is positive. Therefore, we
can classify it as being in class A, i.e., the root cause is A. Suppose another new
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failing board is received with syndrome [0 1 0]; f(x) is now negative. Hence, this
board is classified as being in class B, i.e., the root cause of failure for this board is B.

2.3.1.2 Multi-kernel Support Vector Machines

Recent applications in bioinformatics have shown that using multiple kernels instead
of a single one can lead to better classification [7, 8]. The key idea here is to represent
the kernel K (x;, x;) as a linear combination of M basis kernels:

M

K(xi,x) = D mki(xi, x)), (2.13)
k=1

where p; > 0 and 224: | #x = 1. Each basis kernel K can be one of the kernel types
listed in Sect.2.3. Thus the optimization problem can now be stated as

S M

L 1

Minimize W3 = 3 Z:l a;o;yiyik kz; Wi K (x;, x;)
L,]j= =

(2.14)

s s
- 2011' +b Z)/iai,
i—1 i—1

The optimization problem of Eq. (2.14) is solved using a reduced gradient method,
the details of which are described in [9]. The training mechanism of a multi-kernel
SVM-based diagnosis system is illustrated in Fig.2.4.

In previous work [1], the SVM-based diagnosis system leverages single kernels in
a heuristic manner. However, due to the correlation between syndromes, we cannot
arbitrarily determine a single kernel for each diagnosis system. A diagnosis system
requires an adaptive kernel in order to achieve higher prediction accuracy. Such
adaptation can extend from a single kernel to multiple kernels. Without knowledge
of the exact kernel to be used, the weights of different kernels can be appropriately
configured to fit the training data and generate better prediction for the diagnosis
system.

2.3.2 Incremental Learning

Incremental learning can not only solve the SVM training problem for large-scale
data sets, but it can also facilitate online learning for SVMs as new data for failing
boards and the corresponding repair outcomes become available. The use of multi-
kernel SVMs increases computational complexity and diagnosis solutions take longer
to converge. This problem can be tackled using incremental learning. By distributing
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the computational workload among different epochs during training, computational
complexity can be reduced in terms of both computing time and memory allocation.
Since SVM models can be determined on the basis of support vectors only, and the
number of support vectors is typically very small compared to the number of training
examples, SVMs can benefit from incremental learning through the compression of
data from previous batches in the form of their support vectors. This approach to
incremental learning with SVMs has been investigated in [10], where it has been
shown that incrementally trained SVMs are as effective as their nonincrementally
trained equivalents. Incremental SVMs can be described as the following optimiza-
tion problem as an extension to (2.2):

1
Minimize W° = E||w||2 + C(LZ& + Zs{) (2.15)

ieS* ieS

with the same constraints (2.3) and (2.4). The parameter S* denotes the set of existing
support vectors extracted from the previous SVM models, and S is the new training
set. As an optimization knob, the use of existing support vectors can be penalized
by L to model the fact that an erroneous decision made on the basis of previous
support vectors is more costly than an error on a new example based on the current
data. Incremental learning can be made more effective by combining it with multiple
kernels, an approach that we refer to as iMLK-SVMs. A flowchart for this procedure
is shown in Fig.2.5.

As an illustration, consider an existing diagnosis system given by Eq.(2.1) and
based on the input cases (boards) represented by the matrix o/ in Eq.(2.8). The
support vectors in the existing diagnosis system can be extracted as shown in .<7’.
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Suppose that we are given four new training boards (cases) indicated by the matrix
A in Eq.(2.3.2) for incremental learning. The classifier (2.1) gives inconsistent
root-cause identification—root cause A with the existing data but B with the new
data. Therefore, we form a new data set ¥ = [«/’; /"] as shown in Eq.(2.3.2).
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We obtain a unique solution to the new optimization problem from (2.15). We
then get ; = 0, w; = 0, w; = —2.00 and b = 1.00. The classifier is now updated
from (2.1) to be:

fx) =sgn(0-x; +0-x—2.00-x3 4+ 1.00) (2.16)

Next, we suppose that a new failing board is received and has the syndrome [1 1 1],
which corresponds to the third row (case) of 4. The function f (x) is now evaluated
using Eq. (2.16) and its value is negative, rather than the positive prediction based on
the previous decision function of (2.1). Therefore, we can conclude that the failing
board is in Class B, i.e., the root cause is B. Suppose another failing board is received
with syndrome [1 1 0], which is the first test case from Sect. 2.2. In this case, the new
decision function still evaluates f (x) to be positive; hence, we determine A to be the
root cause for this board.

2.4 Results

Experiments were performed on two industrial boards that are currently in high-
volume production. Relevant information about the boards is provided in Table?2.1.
For training, a total of 1613 repaired boards are collected from the contract manu-
facturer’s database for Board 1. A total of 546 fault syndromes are extracted from
failure logs. The number of faulty components identified in the database for repair
action is 153. For Board 2, a total of 1351 repaired boards are analyzed as training
data. A total of 375 fault syndromes are extracted from failure logs. The number of
faulty components for repair action is 116.

Table 2.1 Information about the industrial boards used for classification and the log data available

Board 1 Board 2
Number of syndromes 546 375
Number of repair candidates 153 116

(components)
Number of boards 1613 1351
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The SVM algorithms are implemented using the MATLAB 2010b toolbox.
Multi-kernel SVMs are implemented using SimpleMKL [9]. Incremental learning is
implemented using McpIncSVMs [11] and the SVM-KM toolbox [6]. As a compar-
ison, the ANN method described in [2] has also been implemented using the Neural
Network toolbox in MATLAB 2010b [12]. Experiments were run on a 64-bit Win-
dows system with 12 GB of RAM and quadcore Intel i7 processors running at 2.67
GHz. Diagnosis results were obtained for different designs of the SVMs, e.g., for
various kernel functions. Moreover, diagnosis results were obtained to highlight the
comparison between traditional artificial neural networks and the proposed multi-
kernel SVMs. Incremental SVM-based diagnosis results were next compared with
nonincremental SVM-based methods. Diagnosis results show that the training time
is reduced significantly if we implement incremental learning in linear-kernel SVMs.
Furthermore, iMK-SVM-based diagnosis results show high classification rates but
low training time in each epoch, thereby providing a practical method for designing
an adaptive diagnostic system.

In order to assess the performance of the classifier and its ability to accurately
predict the root cause of a failure on a new board, we use a cross-validation method
to partition the training set into k groups, namely k-folder cross-validation [13]. Each
group is regarded as a test case while all of the other cases are fed for training. In
our work, we assess our model by using a special type of cross-validation method,
namely leave-one-out (LOO), where the number of partitions k is the same as the
total number of cases. For example, for Board 2, each board instance is iteratively
selected to be the test case. Classification models are based on the remaining 155
training cases. In LOO estimation, the total number of cases in the testing set is same
as the total number of available successfully repaired boards.

To ensure real-time diagnosis and repair, we assume that we are allowed at most
three attempts to replace the potential failing components. Success ratio (SR) is the
ratio of the number of correctly diagnosed cases to the total number of cases in
the testing set. We define SR, as the success ratio corresponding to the case that
the board is deemed to have been successfully repaired only when the actual faulty
component is identified and placed at the top of the list of candidates. We also define
SR, (SR3) as the success ratio corresponding to the case that a board is deemed to
have been successfully repaired if the actual faulty component is in the first two
(three) positions in the list of candidates. In the last column in Table2.2a, we can
see that SR is 80.2 %. If three attempts are allowed in the repair process, 91.9 % of
the boards can be successfully repaired. These results are a significant improvement
over other approaches reported recently in the literature [1, 2]. The SR values for
Board 2 are lower (Table 2.2b). Nevertheless, tangible improvement is obtained over
other methods, and the diagnosis accuracy is higher than that for methods currently
used in production. The training data and evaluation methods will also continue to
be used in the following chapters.
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Table 2.2 Diagnosis results using ANN, SVMs with different kernel functions, and multi-kernel

SVMs
ANN SVM methods
Linear | Polynomial kernel Gaussian kernel Multi-
kernel kernel
d=2 |d=3 |d=4 |[0=05[c=1 [o=5
(a) Board 1

SRy 679% |732% |744% |723% |749% |62.6% |651% |62.6% |80.2%
SR, 781% |80.4% [822% |812% |827% |740% |763% |745% |854%
SR3 84.4% |882% |919% |90.4% |919% |792% [82.5% |793% |91.9%

Training | 71.2 432 45.2 41.1 42.0 49.9 50.3 50.1 5963
time (s)

(b) Board 2
SR 579% |663% [63.2% |632% |663% |663% |603% |[554% |71.4%
SRp 703% |743% |70.1% |70.1% |755% |743% |678% |67.8% |77.8%
SR3 751% |84.1% |795% |785% |82.1% |835% |72.6% |70.2% |83.7%

Training | 60.2 23.6 25.9 21.6 22.5 29.1 354 36.3 3891
time (s)

2.4.1 Evaluation of MK-SVM-Based Diagnosis System

We use a combination of seven kernels in the multi-kernel machine, including linear
kernel, Gaussian kernel (o values of 0.5, 1, and 5), and polynomial kernel (degree
d =2, 3, 4). Diagnosis results are shown in Table 2.2a for Board 1 and Table 2.2b for
Board 2. For Board 1, the SR for the multi-kernel SVM is 6—18 % higher than for the
single-kernel SVMs and the ANNs. When the SR3 is considered, the performance
of multi-kernel SVMs is similar to that for the single-kernel SVMs. For Board 2,
similar improvement of diagnosis accuracy by using multi-kernel SVM is obtained
in Table 2.2b. The use of multi-kernel SVM technology leads to a considerable im-
provement in diagnosis accuracy, but the training time of the multi-kernel SVMs is
higher compared to single-kernel SVMs and the ANN. For example, training MK-
SVM for Board 1 requires up to an hour as compared to only tens of seconds using
single-kernel SVMs and ANNSs. Since the training time depends on the number of
root causes, number of syndromes, number of cases, and number of iterations re-
quired for convergence as described in Sect.2.3, the training time of multi-kernel
SVMs increases quadratically with the board complexity and the number of failing
boards that are returned for repair.



2.4 Results 37

2.4.2 Evaluation of Incremental SVM-Based Diagnosis
System

We implemented linear SVM training on Board 1 and Board 2. The results of incre-
mental learning for linear-kernel SVMs are shown in Figs. 2.6 and 2.8 for Board 1,
and in Figs.2.7 and 2.9 for Board 2. For example, we have a total of 813 training
cases for Board 1 as described in Table 2.1. Initially, 800 training cases are randomly
selected to build a base SVM model. In the second epoch, 100 more new training
cases are randomly selected from the remaining pool. The existing SVM model is
updated by using incremental learning to append these new training cases. A total of
100 more new training cases are added into SVM models in the next epoch and so
forth. We also construct a nonincremental learning SVM from scratch in each epoch
with the same number of training cases as in the corresponding incremental learning
SVMs. Figure?2.6 shows that the training time for nonincremental learning SVMs
increases linearly with the number of training cases, but the training time for incre-
mental learning remains nearly constant in each epoch, even though the number of
training cases increases. In the last epoch when 100 more training cases are appended
to the existing SVM with 1500 training cases, the training time of SVMs using in-
cremental learning is 8.27 s compared to 43.2 s using nonincremental learning. This
quantifiable reduction in training time using incremental learning can be a significant
benefit if thousands of failing boards are returned for repair in high-volume manu-
facturing. Incremental learning also reduces computational complexity and memory
required for training, as described in Sect.2.3. The use of incremental learning can
help reduce the computational complexity of SVMs as described in Sect. 2.3.
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The comparisons of SR| between incremental learning and nonincremental learn-
ing are shown in Figs.2.8 and 2.9. We found that there is little difference in SR
between incremental learning and nonincremental learning, thus nonincremental
learning can be replaced by incremental learning with the similar success ratios,
but the training time is reduced using incremental learning. The observations on SR,
and SRj3 are the same as that on SR;. We also found that the SR, increases when
more failing boards are fed to the SVM for training. The diagnosis success ratio is
strongly correlated to the size of the training set [1]. The SR; of the linear-kernel
SVMs increases from 59.5 % with training cases of 800 to 73.2 % with training cases
of 1600 in Fig.2.8 for Board 1, and from 45.2 % in Table2.2b to 66.3 % in Fig.2.9
for Board 2. The increasing trends of success ratios can also be found in SR, and
SR3 for both Board 1 and Board 2.

In order to evaluate our results in a practical context, we consider what is typically
carried out in a board manufacturing line. Most diagnosis and repair actions still
rely on the technician’s experience and trial-and-error methods. Current diagnostic
software used in the production line from where we obtained the boards considers any
component that exhibits error as a fault candidate, and no suggestions are provided
regarding which component is more likely to be the root cause. Compared to the SR
of the current diagnostic method, the SR, for the proposed method is about two times
higher, and significantly higher than even the SRj3 of the currently used diagnostic
method.' Based on the repair suggestions provided by the currently deployed method,

TExact success ratio for the deployed system are not presented here in order to protect company
confidential data.
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the debug time for this particular functional test is as high as several weeks, which is
clearly not feasible in practice. Debug efficiency is therefore expected to be improved
considerably with the accurate repair suggestions provided by the proposed method.

2.4.3 Evaluation of Incremental MK-SVM-Based Diagnosis
System

Incremental learning can also be applied to MK-SVM training. The success ratio
results are shown in Fig.2.10 for Board 1 and in Fig.2.11 for Board 2. When we
increase the size of the training set, the success ratios of up to three attempts for both
Board 1 and Board 2 increase. This observation supports the positive correlation
found in [1] between the number of failing boards available for training and the
diagnosis accuracy on new boards. The SR, SR;, and SR3 are 80.2, 85.4, and 91.9 %,
respectively, when 1600 training cases are used in the iMK-SVM model for Board 1,
and 71.4, 77.8, and 83.7 %, respectively, when 1300 training cases are used in the
iMK-SVM model for Board 2.

The training time results are shown in Fig.2.12 for Board 1 and in Fig.2.13 for
Board 2. The training time of incremental learning MK-SVMs in each epoch is much
smaller than that for nonincremental learning MK-SVMs. The training time varies
in each epoch for Board 1 due to the size of the training data and iterations needed
for convergence, as described in Sect. 2.3. Due to the reduction of support vectors by
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using incremental learning techniques, the effect of iterations on the total training
time can also be reduced in iMK-SVMs, as shown in Fig.2.12.

The weights in iMK-SVMs training change in each epoch. For example, in
Fig.2.14, we use a combination of 13 kernels in a multi-kernel machine, includ-
ing the linear kernel, Gaussian kernel (o values of 0.5, 1, 2, 5, 10, 15, 20, and 50),
polynomial kernel (degree d = 2, 3, and 4), and homogenous polynomial kernel
(degree d = 2). Only four kernels out of the total set of 14 kernels contribute to
the multi-kernel machine; these are the linear kernel, Gaussian kernel with o =
2, homogenous polynomial kernel (degree d = 2), and polynomial kernel (degree
d = 2). The weights of the remaining ten kernels are reduced to Oin the optimized
solution. In Fig.2.14, the weight of the Gaussian kernel with ¢ = 2 is 12% and
the weight of homogeneous polynomial kernel with degree =2 is 22 % in the first
epoch. When more cases are fed for training, the weights of these two kernels are
gradually reduced to 0. In the last epoch, only two kernels are left in the multi-kernel
machine. And the dominating kernel is the polynomial kernel with degree =2 (61 %).
Furthermore, kernel distribution is different for different board types. For Board 2,
the linear kernel, the Gaussian kernel with o = 5, polynomial kernel with degree
=3, and homogeneous polynomial kernel with degree =2 equally contribute to the
multi-kernel in the first epoch. After three epochs, the weight of the homogeneous
polynomial kernel is reduced to 0. In the final epoch, when 1300 cases are used
for training, the weight of linear kernel is 65 % and dominates the diagnosis system
(Fig.2.15).

Since the optimal classifier solutions for different boards lead to different com-
binations of kernels, we cannot arbitrarily determine a best single kernel for all
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Fig.2.14 Illustration of the change in kernel weights in incremental multi-kernel SVMs for Board 1
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Fig. 2.15 Illustration of the change in kernel weights in incremental multi-kernel SVMs for Board 2

the boards. The use of iIMK-SVMs can adaptively choose the most suitable kernel
portfolio for different boards.

2.5 Chapter Summary

This chapter has presented a smart diagnosis system based on multi-kernel support
vector machines and incremental learning to locate the root cause of functional fail-
ures on modern circuit boards. The proposed multi-kernel SVMs method can generate
an optimal kernel portfolio to achieve high diagnosis accuracy for board-level func-
tional tests. The use of incremental learning allows the system to adaptively tune the
kernel portfolio to achieve high diagnosis accuracy. System training time can also be
reduced significantly using incremental learning. Two industrial boards, which are
currently in high-volume production, and additional synthetic boards have been used
to validate the effectiveness of the diagnosis method. Compared to baseline ANN and
several single-kernel SVMs, multi-kernel SVMs show a considerable improvement
in diagnostic accuracy based on functional patterns for a real application.
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