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Abstract The cube of opposition is a structure that extends the traditional square

of opposition originally introduced by Ancient Greek logicians in relation with

the study of syllogisms. This structure, which relates formal expressions, has been

recently generalized to non Boolean, graded statements. In this paper, it is shown

that the cube of opposition applies to well-known families of idempotent, monoton-

ically increasing aggregation operations, used in multiple criteria decision making,

which qualitatively or quantitatively provide evaluations between the minimum and

the maximum of the aggregated quantities. This covers weighted minimum and max-

imum, and more generally Sugeno integrals on the qualitative side, and Choquet

integrals, with the important particular case of Ordered Weighted Averages, on the

quantitative side. The main appeal of the cube of opposition is its capability to dis-

play the various possible aggregation attitudes in a given setting and to show their

complementarity.

1 Introduction

The application of fuzzy sets [1] to multiple criteria decision making [2] has led to the

continued blossoming of a vast amount of studies on different classes of aggregation

operators for combining membership grades. This includes in particular triangular

norms and co-norms [3] on the one hand, and Sugeno and Choquet integrals [4, 5]

on the other hand. Ronald Yager, in his vast amount of important contributions to

fuzzy set theory on many different topics, has been especially at the forefront of
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creativeness regarding aggregation operators, with in particular the introduction of

a noticeable family of triangular norms and co-norms [6], of uninorms [7], and of

Ordered Weighted Averages (OWA) [8–10].

Sugeno and Choquet integrals are well-known families of idempotent, monoton-

ically increasing aggregation operators, used in multiple criteria decision making,

with a qualitative and a quantitative flavor respectively. They include weighted min-

imum and maximum, and weighted average respectively, as particular cases, and

provide evaluations lying between the minimum and the maximum of the aggregated

quantities. In such a context, the gradual properties corresponding to the criteria to

fulfill are supposed to be positive, i.e., the global evaluation increases with the partial

ratings. But some decisions or alternatives can be found acceptable because they do

not satisfy some (undesirable) properties. So, we also need to consider negative prop-

erties, the global evaluation of which increases when the partial ratings decreases.

This reversed integral is a variant of Sugeno integrals, called desintegrals [11, 12].

Their definition is based on a decreasing set function called anti-capacity. Then, a

pair of evaluations made of a Sugeno integral and a reversed Sugeno integral is use-

ful to describe acceptable alternatives in terms of properties they must have and of

properties they must avoid.

Besides, we can distinguish the optimistic part and the pessimistic part of any

capacity [13]. It has been recently indicated that Sugeno integrals associated to these

capacities and their associated desintegrals form a cube of opposition [14], the inte-

grals being present on the front facet and the desintegrals on the back facet of the

cube (each of these two facets fit with the traditional views of squares of opposition

[15]). As this cube exhausts all the evaluation options, the different Sugeno inte-

grals and desintegrals present on the cube are instrumental in the selection process

of acceptable choices. We show in this paper that a similar cube of opposition exists

for Choquet integrals, which can then be particularized for OWA operators.

The paper is organized as follows. Section 2 provides a brief reminder on the

square of opposition, and introduces the cube of opposition and its graded extension

in a multiple criteria aggregation perspective. Section 3 restates the cube of opposi-

tion for Sugeno integrals and desintegrals. Section 4 presents the cube for Choquet

integrals and then for OWA operators, and discusses the different aggregation atti-

tudes and their relations.

2 Background and Notations

We first recall the traditional square of opposition originally introduced by Ancient

Greek logicians in relation with the study of syllogisms. This square relates uni-

versally and existentially quantified statements. Then its extension into a cube of

opposition is presented, together with its graded version, in a qualitative multiple

criteria aggregation perspective.
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Fig. 1 Square of opposition

2.1 The Square and Cube of Opposition

The traditional square of opposition [15] is built with universally and existentially

quantified statements in the following way. Consider a statement (𝐀) of the form

“all P’s are Q’s”, which is negated by the statement (𝐎) “at least one P is not a Q”,

together with the statement (𝐄) “no P is a Q”, which is clearly in even stronger oppo-

sition to the first statement (𝐀). These three statements, together with the negation

of the last statement, namely (𝐈) “at least one P is a Q” can be displayed on a square

whose vertices are traditionally denoted by the letters 𝐀, 𝐈 (affirmative half) and 𝐄,

𝐎 (negative half), as pictured in Fig. 1 (where Q stands for “not Q”).

As can be checked, noticeable relations hold in the square:

(i) A and O (resp. E and I) are the negation of each other;

(ii) A entails I, and E entails O (it is assumed that there is at least one P, to avoid

existential import problems);

(iii) together A and E cannot be true, but may be false;

(iv) together I and O cannot be false, but may be true.

Changing P into ¬P, and Q in ¬Q leads to another similar square of opposition

aeoi, where we also assume that the set of “not-P’s” is non-empty. Then the 8 state-

ments, A, I, E, O, a, i, e, o may be organized in what may be called a cube of oppo-
sition as in Fig. 2.

This cube first appeared in [16] in a renewed discussion of syllogisms, and was

reintroduced recently in an information theoretic perspective [17]. The structural

properties of the cube are:

Fig. 2 The cube of

opposition for quantified

statements
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∙ 𝐀𝐄𝐎𝐈 and 𝐚𝐞𝐨𝐢 are squares of opposition,

∙ 𝐀 and 𝐞; 𝐚 and 𝐄 cannot be true together,

∙ 𝐈 and 𝐨; 𝐢 and 𝐎 cannot be false together,

∙ 𝐀 entails 𝐢, 𝐄 entails 𝐨, 𝐚 entails 𝐈, 𝐞 entails 𝐎.

In the cube, if we also assume that the sets of “Q’s” and “not-Q’s” are non-empty,

then the thick non-directed segments relate contraries, the double thin non-directed

segments sub-contraries, the diagonal dotted non-directed lines contradictories, and

the vertical uni-directed segments point to subalterns, and express entailments.

Stated in set-theoretic notation, A, I, E, O, a, i, e, o, respectively mean P ⊆ Q, P ∩
Q ≠ ∅, P ⊆ Q, P ∩ Q ≠ ∅, P ⊆ Q, P ∩ Q ≠ ∅, P ⊆ Q, P ∩ Q ≠ ∅. In order to satisfy

the four conditions of a square of opposition for the front and the back facets, we need

P ≠ ∅ and P ≠ ∅. In order to have the inclusions indicated by the diagonal arrows in

the side facets, we need Q ≠ ∅ and Q ≠ ∅, as further normalization conditions.

Suppose P denotes a set of important properties, Q a set of satisfied properties

(for a considered object). Vertices A, I, a, i correspond respectively to 4 different

cases:

(i) all important properties are satisfied,

(ii) at least one important property is satisfied,

(iii) all satisfied properties are important,

(iv) at least one non satisfied property is not important.

Note also the cube is compatible with a bipolar understanding [18]. Suppose

that among possible properties for the considered objects, some are desirable (or

requested) and form a subset R and some others should be excluded (forbidden or

undesirable) and form a subset E. Clearly, one should have E ⊆ R. The set of prop-

erties of a given object is partitioned into the subset of satisfied properties S and the

subset S of not satisfied properties. Then vertex A corresponds to R ⊆ S and a to

R ⊆ S. Then a also corresponds to E ⊆ S.

2.2 A Gradual Cube of Opposition

It has been recently shown that the structure of the cube of opposition underlies

many knowledge representation formalisms used in artificial intelligence, such as

first order logic, modal logic, but also formal concept analysis, rough set theory,

abstract argumentation, as well as quantitative uncertainty modeling frameworks

such as possibility theory, or belief function theory [14, 19]. In order to accom-

modate quantitative frameworks, a graded extension of the cube has been defined in

the following way.

Let 𝛼, 𝜄, 𝜀, o, and 𝛼′
, 𝜄′, 𝜀′, o′ be the grades in [0, 1] associated to vertices A, I,E,O

and a, i, e, o. Then we consider an involutive negation n, a symmetrical conjunction

∗ that respects the law of contradiction with respect to this negation, and we interpret

entailment in the many-valued case by the inequality ≤: the conclusion is at least as
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true as the premise. The constraints satisfied by the cube of Fig. 2 can be generalized

in the following way [14]:

(i) 𝛼 = n(o), 𝜀 = n(𝜄) and 𝛼′ = n(o′) and 𝜀′ = n(𝜄′);
(ii) 𝛼 ≤ 𝜄, 𝜀 ≤ o and 𝛼′ ≤ 𝜄′, 𝜀′ ≤ o′;

(iii) 𝛼 ∗ 𝜀 = 0 and 𝛼′ ∗ 𝜀′ = 0;

(iv) n(𝜄) ∗ n(o) = 0 and n(𝜄′) ∗ n(o′) = 0;

(v) 𝛼 ≤ 𝜄′, 𝛼′ ≤ 𝜄 and 𝜀′ ≤ o, 𝜀 ≤ o′;
(vi) 𝛼′ ∗ 𝜀 = 0, 𝛼 ∗ 𝜀′ = 0;

(vii) n(𝜄′) ∗ n(o) = 0, n(𝜄) ∗ n(o′) = 0.

In the paper, we restrict to the numerical setting and let n(a) = 1 − a. It leads to

define ∗= max(0, ⋅ + ⋅ − 1) (the Łukasiewicz conjunction). In the sequel, we show

that the (gradual) cube of opposition is relevant for describing different families of

multiple criteria aggregation functions. We first illustrate this fact by considering

weighted minimum and maximum, together with related aggregations.

3 A Cube of Simple Qualitative Aggregations

In multiple criteria aggregation objects are evaluated by means of criteria i where i ∈
C = {1,… , n}. The evaluation scale L is a totally ordered scale with top 1, bottom

0, and the order-reversing operation is denoted by 1 − (⋅). For simplicity, we take

L = [0, 1], or a subset thereof, closed under the negation and the conjunction.

An object x is represented by a vector x = (x1,… , xn) where xi is the evaluation

of x according to the criterion i. We assume that xi = 1 means that the object fully

satisfies criterion i and xi = 0 expresses a total absence of satisfaction. Let 𝜋i ∈ [0, 1]
represent the level of importance of criterion i. The larger 𝜋i the more important the

criterion. We note 𝜋 = (𝜋1,… , 𝜋n).
In such a context, simple qualitative aggregation operators are the weighted min

and the weighted max [20]:

∙ The weighted min measures the extent to which all important criteria are highly

satisfied; it corresponds to the expression minni=1 max(1 − 𝜋i, xi),
∙ the weighted max, maxni=1 min(𝜋i, xi), is optimistic and only requires that at least

one important criterion be highly satisfied.

The weighted min and weighted max correspond to vertices A and I of the cube

on Fig. 3. As it can be noticed, the cube of Fig. 3 is just a multiple-valued counterpart

of the initial cube of Fig. 2.

Under the hypothesis of the double normalization (∃i, 𝜋i = 1 and ∃j, 𝜋j = 0) and

the hypothesis ∃r, xr = 1 and ∃s, xs = 0, which correspond to the non-emptiness of

P, P, Q, and Q in cube of Fig. 2, it can be checked that all the constraints (i–vii)

of the gradual cube hold. For instance, the entailment from A to I translates into
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Fig. 3 The cube of

weighted qualitative

aggregations

minni=1 max(1 − 𝜋i, xi) ≤ maxni=1 min(𝜋i, xi), which holds as soon as ∃i, 𝜋i = 1. For-

mally speaking, in terms of possibility theory [21, 22], it is nothing but the expres-

sion that the necessity of a fuzzy event N
𝜋
(x) is less or equal to the possibility

𝛱
𝜋
(x) of this event, provided that the possibility distribution 𝜋 is normalized. While

A and I are associated with N
𝜋
(x) and 𝛱

𝜋
(x) respectively, a is associated with a

guaranteed possibility 𝛥
𝜋
(x) (which indeed reduces to 𝛥

𝜋
(x) = mini | xi=1 𝜋i in case

∀i, xi ∈ {0, 1}). Note also that 𝛥
𝜋
(x) = N

𝜋
(1 − x), where 𝜋 = 1 − 𝜋i; lastly i is asso-

ciated with ∇
𝜋
(x) = 1 − 𝛥

𝜋
(1 − x). Moreover there is a correspondence between the

aggregation functions on the right facet of the cube and those on the left facet, replac-

ing x with 1 − x.

Let us discuss the different aggregation attitudes displayed on the cube. Suppose

that a fully satisfactory object x is an object with a global rating equal to 1. Then,

vertices 𝐀, 𝐈, 𝐚 and 𝐢 correspond respectively to 4 different cases: x is such that

(i) 𝐀: all properties having some importance are fully satisfied (if 𝜋i > 0 then xi =
1 for all i),

(ii) 𝐈: there exists at least one important property i fully satisfied (𝜋i = 1 and xi = 1),

(iii) 𝐚: all somewhat satisfied properties are fully important (if xi > 0 then 𝜋i = 1
for all i),

(iv) 𝐢: there exists at least one unimportant property i that is not satisfied at all (𝜋i = 0
and xi = 0).

These cases are similar to those encountered in the cube of Fig. 2.

Example 1 We consider C = {1, 2, 3} and 𝜋1 = 0, 𝜋2 = 0.5 and 𝜋3 = 1; see Fig. 4.

∙ on vertex A (resp. I) a fully satisfied object is such that x2 = x3 = 1 (resp. x3 = 1),

∙ on vertex a (resp. i) a fully satisfied object is such that x1 = x2 = 0 (resp. x1 = 0).

The operations of the front facet of the cube of Fig. 3 merge positive evaluations

that focus on the high satisfaction of important criteria, while the local ratings xi on

the back could be interpreted as negative ones (measuring the intensity of faults).

Then, aggregations yield global ratings evaluating the lack of presence of important

faults. In this case, weights are tolerance levels forbidding a fault to be too strongly

present. Then, the vertices a and i in the back facet are interpreted differently:
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Fig. 4 Example of a cube of

weighted qualitative

aggregations

∙ the evaluation associated to a is equal to 1 if all somewhat intolerable faults are

fully absent;

∙ the evaluation associated to i is equal to 1 if there exists at least one intolerable

fault that is absent.

This framework thus involves two complementary points of view, recently discussed

in a multiple criteria aggregation perspective [11].

4 The Cube of Sugeno Integrals

Weighted minimum and maximum (as well as ordered weighted minimum and max-

imum [23]) are particular cases of Sugeno integrals. The cube on Fig. 3 can indeed

be extended to Sugeno integrals and its associated so-called desintegrals. Before

presenting the cube associated with Sugeno integrals, let us recall some definitions

used in the following, namely the notions of capacity, conjugate capacity, qualitative

Moebius transform, and focal sets.

In the definition of a Sugeno integral the relative weights of the set of criteria are

represented by a capacity (or fuzzy measure) which is a set function 𝜇 ∶ 2C → L that

satisfies 𝜇(∅) = 0, 𝜇(C ) = 1 andA ⊆ B implies 𝜇(A) ≤ 𝜇(B). The conjugate capacity

of 𝜇 is defined by 𝜇c(A) = 1 − 𝜇(A) where A is the complement of A.

The inner qualitative Moebius transform of a capacity 𝜇 is a mapping 𝜇# ∶ 2C →
L defined by

𝜇#(E) = 𝜇(E) if 𝜇(E) > max
B⊂E

𝜇(B) and 0 otherwise.

A set E such that 𝜇#(E) > 0 is called a focal set. The set of the focal sets of 𝜇 is

denoted by F (𝜇).
The Sugeno integral of an object xwith respect to a capacity𝜇 is originally defined

by [24, 25]:

S
𝜇
(x) = max

𝛼∈L
min(𝛼, 𝜇({i | xi ≥ 𝛼})). (1)
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When Sugeno integrals are used as aggregation functions to select acceptable

objects, the properties of which are assumed to have a positive flavor: namely, the

global evaluation increases with the partial ratings. But generally, we may also have

negative properties, as already described in the introduction. In such a context we

can use a desintegral [11, 12] associated to the Sugeno integral. We now present this

desintegral.

In the case of negative properties, fault-tolerance levels are assigned to sets of

properties by means of an anti-capacity (or anti-fuzzy measure), which is a set func-

tion 𝜈 ∶ 2C → L such that 𝜈(∅) = 1, 𝜈(C ) = 0, and if A ⊆ B then 𝜈(B) ≤ 𝜈(A). The

conjugate 𝜈c of an anti-capacity 𝜈 is an anti-capacity defined by 𝜈c(A) = 1 − 𝜈(A),
where A is the complementary of A. The desintegral S↓

𝜈
(x) is defined from the cor-

responding Sugeno integral, by reversing the direction of the local value scales (x
becomes 1 − x), and by considering a capacity induced by the anti-capacity 𝜈, as

follows:

S↓
𝜈
(x) = S1−𝜈c (1 − x). (2)

In order to present the square of Sugeno integrals, we need to define the pes-

simistic part and the optimistic part of a capacity. They are respectively called assur-

ance and opportunity functions by Yager [26]. This need should not come as a sur-

prise. Indeed the entailment from A to I requires that the expression in A have a

universal flavor, i.e. here, is minimum-like, while the expression in I have an exis-

tential flavor, i.e. here, is maximum-like, but the capacity 𝜇, on which the considered

Sugeno integral is based, may have neither.

When we consider a capacity 𝜇, its pessimistic part is 𝜇∗(A) = min(𝜇(A), 𝜇c(A))
and its optimistic part is 𝜇∗(A) = max(𝜇(A), 𝜇c(A)) [13]. Observe that 𝜇∗ ≤ 𝜇∗

,

𝜇∗
c = 𝜇∗

and 𝜇∗c = 𝜇∗. So a capacity 𝜇 induces the following square of opposition

(see [27] for more details).

Note that S
𝜇∗
(1 − x) = S↓1−𝜇∗ (x) and S

𝜇∗ (1 − x) = S↓1−𝜇∗
(x), where 1 − 𝜇∗

and

1 − 𝜇∗ are anti-capacities.

Lastly, in order to build the cube associated to Sugeno integrals, just as 𝜋 is at work

on the back facet of the cube associated with weighted min and max, we also need the

opposite capacity 𝜇, defined as follows: 𝜇#(E) = 𝜇#(E) and 𝜇(A) = maxE⊆A 𝜇#(E).
A square of opposition 𝐚𝐢𝐞𝐨 can be defined with the capacity 𝜇. Hence, supposing

∃i ∈ C such that xi = 0 and ∃j ∈ C such that xj = 1, we can construct a cube of

opposition 𝐀𝐈𝐄𝐎 and 𝐚𝐢𝐞𝐨 as presented in Fig. 5 [14].
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Fig. 5 Cube of opposition

of Sugeno integrals

associated to a capacity 𝜇

The fact that all the constraints of a gradual cube hold in this case has been only

established under a specific type of normalization for capacities [27], i.e., ∃A ≠ C
such that 𝜇(A) = 1 and ∃B ≠ C such that 𝜇c(B) = 1; note that in such a context there

exists a non empty set, B, such that 𝜇(B) = 0. However, this does not cover another

particular case where the constraints of the cube also hold, namely the one where 𝜇

is only non zero on singletons. Finding the most general condition on 𝜇 ensuring the

satisfaction of all constraints (i–vii) in the cube of Sugeno integrals is still an open

question.

Let us now present the aggregation attitudes expressed by the cube of Sugeno

integrals. We can characterize situations where objects get a global evaluation equal

to 1 using aggregations on the side facet.

The global evaluations at vertices 𝐀𝐈𝐚𝐢 of a cube associated to a capacity 𝜇 are

maximal respectively in the following situations pertaining to the focal sets of 𝜇:

𝐀 The set of totally satisfied properties contain a focal set with weight 1 and over-

laps all other focal sets.

𝐈 The set of satisfied properties contains a focal set with weight 1 or overlaps all

other focal sets.

𝐚 The set of totally violated properties contains no focal set and its complement is

contained in a focal set with weight 1.

𝐢 The set of totally violated properties contains no focal set or its complement is

contained in a focal set with weight 1.

Example 2 Assume C = {1, 2, 3} and the following capacities

Capacity {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
𝜇 0 0 0 1 1 0 1
𝜇c 1 0 0 1 1 1 1
𝜇 0 1 1 1 1 1 1
𝜇
c 0 0 0 0 0 1 1

𝜇c ≥ 𝜇 so 𝜇∗ = 𝜇 and 𝜇∗ = 𝜇c

𝜇 ≥ 𝜇
c

so 𝜇
∗ = 𝜇 and 𝜇∗ = 𝜇

c

Note that 𝜇 is a possibility

measure.

The aggregation functions on the vertices are:
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𝐀∶ S
𝜇
(x) = max(min(x1, x2),min(x1, x3)), 𝐈∶ S𝜇c (x) = max(x1,min(x2, x3))

𝐚∶ S
𝜇
c(1 − x) = min(1 − x2, 1 − x3), 𝐢∶ S𝜇(1 − x) = max(1 − x2, 1 − x3).

∙ For vertex 𝐀, the two focal sets overlap when S
𝜇
(x) = 1.

∙ For vertex 𝐈, one can see that S
𝜇c (x) = 1 when x1 = 1 and {1} does overlap all

focal sets of 𝜇; the same occurs when x2 = x3 = 1.

∙ For vertex 𝐚, S
𝜇
c(1 − x) = 1 when x2 = x3 = 0, and note that the complement of

{2, 3} is contained in a focal set of 𝜇, while {2, 3} contains no focal set of 𝜇.

∙ For vertex 𝐢, S
𝜇
(1 − x) = 1 when, x2 = 0 or x3 = 0, and clearly, neither {2} not

{3} contain any focal set of 𝜇, but the complement of each of them is a focal set

of 𝜇.

5 The Cube of Choquet Integrals

When criteria evaluations are quantitative, Choquet integrals often constitute a suit-

able family of aggregation operators, which generalize weighted averages, and which

parallel, in different respects, the role of Sugeno integrals for the qualitative case.

Although the evaluation scale can be taken as the real line ℝ, we use the unit inter-

val [0, 1] in the following.

Belief and plausibility functions are particular cases of Choquet integrals, just as

necessity and possibility measures are particular cases of Sugeno integrals. This is

why we begin with the presentation of the cube of belief functions, before studying

the cube of Choquet integrals, of which another noticeable particular case is the

cube of ordered weighted averaging aggregation operators (OWA), which is then

discussed, before concluding.

5.1 The Cube of Belief Functions

In Shafer’s evidence theory [28], a belief function Belm is defined together with

a dual plausibility function Plm from a mass function m, i.e., a real set function

m ∶ 2C → [0, 1] such that m(∅) = 0,
∑

A⊆C m(A) = 1. Then for A ⊆ C , we have

Belm(A) =
∑

E⊆A m(E) and Plm(A) = 1 − Belm(A) =
∑

E∩A≠∅ m(E).
Viewing m as a random set, the complement m of the mass function m is defined

as m(E) = m(E) [29]. The commonality function Q and its dual

Q

are then defined

by Qm(A) =
∑

A⊆E m(E) and

Q

m(A) =
∑

E∩A≠∅ m(E) = 1 − Qm(A) respectively. The

normalization m(∅) = 0 forces m(C ) = 0. Then, Qm(A) = Belm(A) while

Q

m(A) =
Plm(A). It can be checked that the transformationm → m reduces to 𝜋 → 𝜋 = 1−𝜋 in

case of nested focal elements. All these set functions can be put on the following cube

of opposition [14]. See Fig. 6. Indeed, if m(∅) = 0, we have Belm(A) ≤ Plm(A) ⇔
Belm(A) + Belm(A) ≤ 1 ⇔ Plm(A) + Plm(A) ≥ 1, which gives birth to the square of
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Fig. 6 Cube of opposition

of evidence theory

opposition 𝐀𝐈𝐄𝐎. We can check as well that Belm(A) =
∑

E⊆A m(E) ≤

Q

m(A) =
1 −

∑
A⊆E m(E). Similar inequalities ensure that Qm(A) ≤ Plm(A) = 1 − Belm(A), or

Belm(A) + Qm(A) ≤ 1, for instance, which ensures that the constraints of the cube

hold.

Belief functions are a particular case of capacities. Note that the square can be

extended replacing Bel and Pl by a capacity 𝜇 and its conjugate 𝜇c(A) = 1 − 𝜇(A),
respectively. However, to build the cube, we also need inequalities such as Qm(A) ≤
Plm(A) to be generalized to capacities.

5.2 Extension to Choquet Integrals

Considering a capacity 𝜇 on C , the Moebius transform of 𝜇, denoted by m
𝜇
, is given

by m
𝜇
(T) =

∑
K⊆T (−1)|T∖K|𝜇(K). The Choquet integral with respect to 𝜇 is:

C
𝜇
(x) =

∑

T⊆C
m

𝜇
(T)min

i∈T
xi. (3)

Clearly, Belm(A) =
∑

E m(E) ⋅minu∈E 1A(u). We have the equality Belm𝜇
(A) =

C
𝜇
(1A) = 𝜇(A) if m

𝜇
represents the Moebius transform of a capacity 𝜇. This charac-

terisation is presented in [30]. More precisely, a real set function m is the Moebius

transform of a capacity 𝜇 if and only if m(∅) = 0,
∑

K⊆S m(i ∪ K) ≥ 0 for all i and

for all S ⊆ C ∖i and
∑

K⊆C m(K) = 1. And it is the Moebius transform of a belief

function if and only if it is non-negative. In general, m
𝜇
(E) can be negative for non-

singleton sets.

Under these conditions, Plm(A) = 1 − C
𝜇
(1A). But we have Qm(A) = Belm(A), so

Qm(A) = C
𝜇
(1A) if m satisfies the conditions to be a Moebius transform of a capacity

𝜇. In such a context,

Q

m(A) = Plm(A) = 1 − C
𝜇
(1A). It is worth noticing that there
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Fig. 7 Cube of opposition

of Choquet integral

exist Moebius transforms m such that m is not a Moebius transform since we need

to have the condition m(C ) = 0.

Hence one may consider the extension of the cube of Fig. 6 to general Choquet

integrals. In order to understand the proof of the following proposition we need the

other expression of the Choquet integral: C
𝜇
(x) =

∑n
i=1(xi − xi−1)𝜇(Ai) where we

suppose that x1 ≤ ⋯ ≤ xn, Ai = {i,… , n} and x0 = 0.

With this expression, it is easy to check that the Choquet integral is increasing

according to the capacity. Then the following holds (See Fig. 7).

Proposition 1 The cube of Choquet integral is a cube of opposition if and only if
𝜇 ≤ 𝜇c, 𝜇 ≤ 𝜇

c and 𝜇 + 𝜇 ≤ 1.

Proof We consider the evaluation scale [0, 1]. Without loss generality we can sup-

pose that x1 ≤ ⋯ ≤ xn.

A entails I iff C
𝜇
(x) + C

𝜇
(1 − x) ≤ 1. Considering x = 1A the characteristic func-

tion ofAwe need 𝜇(A) ≤ 𝜇c(A). If 𝜇 ≤ 𝜇c
thenC

𝜇
(x) ≤ C

𝜇c(x). We haveC
𝜇
(1 − x) =

∑
T⊆C m

𝜇
(T)mini∈T (1 − xi) =

∑
T⊆C (m𝜇

(T) − m
𝜇
(T)maxi∈T xi) = 1 − C

𝜇c (x). So,

C
𝜇
(x) + C

𝜇
(1 − x) ≤ C

𝜇
(x) + C

𝜇c (1 − x) = 1.

By symmetry we have E entails O.

A and E cannot be equal to 1 together: C
𝜇
(x) = 1 entails C

𝜇c (x) = 1 since 𝜇 ≤ 𝜇c
,

i.e., C
𝜇
(1 − x) = 0. By duality I and O cannot be equal to 0 together.

So AEIO is a square of opposition.

Similarly 𝜇 ≤ 𝜇
c

is equivalent to making aeio a square of opposition.

If C
𝜇
(x) ≤ 1 − C

𝜇
(x) then considering x = 1A we have 𝜇(A) + 𝜇(A) ≤ 1. Con-

versely if we suppose that 𝜇 + 𝜇 ≤ 1 then C
𝜇
(x) + C

𝜇
(x) =

∑n
i=1(xi − xi−1)(𝜇(Ai) +

𝜇(Ai)) ≤
∑n

i=1(xi − xi−1) = xn ≤ 1. This last equivalence permits to conclude that the

considered cube is a cube of opposition.

The condition 𝜇 + 𝜇 ≤ 1 is valid for belief functions since Belm(A) = Belm(A) =
Qm(A), and Belm(A) + Qm(A) ≤ 1, but it needs to be investigated for more general

capacities since some masses may be negative. Note that, in its back facet, the cube

of Choquet integrals exhibits what maybe called desintegrals, associated to Choquet
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integrals. Namely, using C
𝜇
(1 − x), the global evaluation increases when partial rat-

ings decrease.

Let us discuss the aggregation attitudes when the evaluation scale is the real inter-

val [0, 1] and 𝜇 is a belief function. More precisely we are going to characterize the

situations where an object x gets a perfect global evaluation, i.e., a global evaluation

equal to 1, for the different vertices 𝐀𝐈𝐚𝐢. We denote F
𝜇

the family of the sets having

a Moebius transform not equal to 0.

∙ A:C
𝜇
(x) = 1 can be written

∑
F⊆C m

𝜇
(F) ⋅mini∈F xi = 1, which implies that ∀F ∈

F
𝜇
,∀i ∈ F, xi = 1. So the focal sets of 𝜇 are included in the set of totally satisfied

properties.

∙ I: 1 − C
𝜇
(1 − x) = 1 = C

𝜇c (x) is equivalent to
∑

F⊆C m
𝜇
(F) ⋅maxi∈F xi = 1. So in

this case ∀F ∈ F
𝜇
, ∃i ∈ F such that xi = 1. So each focal set of 𝜇 must intersect

the set of totally satisfied properties.

∙ a:C
𝜇
(1 − x)=

∑
F⊆C m

𝜇
(F) ⋅mini∈F(1 − xi)=

∑
F⊆C m

𝜇
(F) ⋅mini∈F(1 − xi). Then

C
𝜇
(1 − x) = 1 is equivalent to∀F ∈ F

𝜇
,mini∈F(1 − xi) = 1, or equivalently, ∀F ∈

F
𝜇
,maxi∈F xi = 0, which means ∀F ∈ F

𝜇
,∀i ∉ F, xi = 0.

So all properties outside each focal set of 𝜇 are violated. The only properties that

are satisfied are those in the intersection of the focal sets of 𝜇.

∙ i: we have 1 − C
𝜇
(x) =

∑
F⊆C m

𝜇
(F) ⋅maxi∈F(1 − xi). Then 1 − C

𝜇
(x) = 1 is

equivalent to ∀F ∈ F
𝜇
,maxi∈F(1 − xi) = 1, i.e., ∀F ∈ F

𝜇
,mini∈F xi = 0, which

means ∀F ∈ F
𝜇
, ∃i ∉ F such that xi = 0. So there must be at least one violated

property outside each focal set of 𝜇.

5.3 Example for the Cube of Choquet Integral

Let us consider the menu of a traditional restaurant in Lyon.
1

We leave it in French

(due to the lack of precise equivalent terms in English for most dishes):

Starter
Saladier lyonnais: museau, pieds de veau, cervelas, lentilles, pommes de terre,
saucisson pistaché, frisée, oreilles de cochon

1
This example is specially dedicated to Ron Yager in remembrance of a dinner in Lyon in a tradi-

tional restaurant, which took place at the occasion of the CNRS Round Table on Fuzzy Sets orga-

nized by Robert Féron [31] in Lyon on June 23–25, 1980 [32]. This Round Table was an important

meeting for the development of fuzzy set research, because most of the active researchers of the

field were there. Interestingly enough, Robert Féron had the remarkable intuition to invite Gustave

Choquet in the steering committee, at a time where no fuzzy set researcher was mentioning Cho-

quet integrals! This meeting also included, as usual, some nice moments of relaxation and good

humor. In particular, at the above-mentioned dinner, to which quite a number of people took part

(including two of the authors of this paper), Ron enjoyed very much a pigs feet dish. He was visibly

very happy with his choice, so Lotfi Zadeh told him, “Ron, you should have been a pig in another

life”, to which Ron replied “no, Lotfi, it is in this life”, while continuing to suck pigs’ bones with

the greatest pleasure.
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Oeuf meurette: oeuf poché, crotons, champignons, sauce vin rouge et lardons
Harengs pommes de terre à l’huile

Main course

Gratin d’andouillettes, sauce moutarde
Rognons de veau au Porto et moutarde
Quenelles de brochet, sauce Nantua et riz pilaf

Dessert

Gnafron: sorbet cassis et marc de Bourgogne
Baba au rhum et chantilly
Crème caramel

A tourist wants to eat some typical dishes of Lyon. His preferred dishes are “sal-

adier lyonnais” (which offers a great sampling of meats from the Lyon region) and

“gratin d’andouillettes” since he wants to eat some gourmet delicatessen products.

The evaluation scale is the real interval [0, 1], so the “saladier lyonnais” and “gratin

d’andouillettes” get the maximal rating 1. The other dishes receive a smaller rating.

The set of criteria is C = {s, c, d}, where s, c, d refer to starter, main course, and

dessert respectively. We consider the Möbius transform: m ∶ 2C → [0, 1] defined by

m(s) = m(s, c) = 0.5 and 0 otherwise. Such a weighting clearly stresses the impor-

tance of the starter, and acknowledges the fact that the main course is only of interest

with a starter, while dessert is not an issue for this tourist. A chosen menu is repre-

sented by a vector (xs, xc, xd) where xi is the rating corresponding to the chosen dish

for the criterion i. The Choquet integral of x with respect to the capacity 𝜇 associated

to m is:

C
𝜇
(x) = 0.5xs + 0.5 ⋅min(xs, xc).

m is the set function defined by m(d) = m(c, d) = 0.5 and 0 otherwise. It is easy to

check that m is a Möbius transform. The Choquet integral of x with respect to 𝜇, the

capacity defined with m is:

C
𝜇
(x) = 0.5xd + 0.5 ⋅min(xc, xd).

Let us look at the choices that get a perfect global evaluation on the cube of Choquet

integrals:

∙ A: C
𝜇
(x) = 1 iff xs = xc = 1: a menu with a maximal evaluation contains the

“saladier lyonnais” and the “gratin d’andouillette.”

∙ I: C
𝜇
(1 − x) = 0 iff xs = 1 or xs = xc = 1: a menu with a maximal evaluation con-

tains the “saladier lyonnais” and may contain the “gratin d’andouillette.”

∙ a: C
𝜇
(1 − x) = 1 iff xc = xd = 0: a menu with a maximal evaluation contains nei-

ther the “gratin d’andouillette”, nor the best dessert.

∙ i: C
𝜇
(x) = 0 iff xd = 0 ou xc = xd = 0: a menu with a maximal evaluation does not

contain the best dessert, but may contain the “gratin d’andouillette”.
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Without surprise, the Choquet integral in A is maximal if the menu includes both

the “saladier lyonnais” and the “gratin d’andouillette,” while I is maximal as soon

as the menu includes at least the “saladier lyonnais”. The maximality conditions

in a (and in i) are less straightforward to understand. Here we should remember

that already in cube of Fig. 2, a entails I provided that x is normalized (i.e., ∃i, xi =
1), which ensures that the expression attached to a is smaller or equal to the one

associated with I. The same condition is enough for having

C
𝜇
(1 − x) =

∑
F⊆C m

𝜇
(F) ⋅mini∈F 1 − xi ≤ 1- C

𝜇
(1 − x) =

∑
F⊆C m

𝜇
(F) ⋅

maxi∈F xi provided that
∑

F⊆C m
𝜇
(F) = 1. Indeed, let xi∗ = 1, then for all F ⊆ C ,

either xi∗ ∈ F or xi∗ ∈ F. Thus, either mini∈F 1 − xi = 0, or maxi∈F xi = 1, which

ensures the inequality.

Thus going back to the example, since the evaluation in a is maximal for xc = xd =
0, the normalization forces xs = 1, which means that the menu includes the “saladier

lyonnais”. Note also that xs = 1, xc = 0, xd = 0 is a minimal normalized evaluation

vector x, for which the desintegral associated with a is maximal. Considering the

evaluation in i the normalization entails that xs = 1 or xc = 1 so the menu includes

the “saladier lyonnais” or the “gratin d’andouillette”.

5.4 The Cube of OWA Operators

Ordered Weighted Averages (OWA) [8–10] and their weighted extension [33] have

been found useful in many applications. Since OWAs are a particular case of Cho-

quet integrals [34], one may wonder about a square, and then a cube of opposition

associated to OWAs as a particular case of the cube of Fig. 7. Let us first recall what

is an OWA.

An OWAw is a real mapping on C associated to a collection of weights w =
(w1,… ,wn) such that wi ∈ [0, 1] for all i ∈ {1,… , n},

∑n
i=1 wi = 1, and defined by:

OWAw(x) =
n∑

i=1
wi ⋅ x(i)

where x(1) ≤ ⋯ ≤ x(n).
This includes noticeable particular cases:

∙ w = (1, 0,… , 0) ⇒ OWAw(x) = minni=1 xi,
∙ w = (0,… , 0, 1) ⇒ OWAw(x) = maxni=1 xi,
∙ w = (1

n
,… ,

1
n
) ⇒ OWAw(x) =

∑n
i=1 xi
n

.

In [8], Yager also defines measures of orness and andness:

orness(OWAw) =
1

n − 1

n∑

i=1
(n − i) ⋅ wi; andness(OWAw) = 1 − orness(OWAw).
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Fig. 8 Square of opposition

of OWA

Note that orness(OWAw), andness(OWAw) ∈ [0, 1]. The closer the OWAw is to an

or (resp. and), the closer orness(OWAw) is to 1 (resp. 0).

In the same article, Yager also defines the measure of dispersion (or entropy) of

an OWA associated to w by

disp(OWAw) = −
n∑

i=1
wi lnwi.

The measure of dispersion estimates the degree to which we use all the aggregates

equally.

The dual of OWAw (see, e.g., [35]) is OWAŵ with the weight ŵ = (wn,… ,w1).
More precisely we have ŵi = wn−i+1. It is easy check that disp(OWAŵ) = disp(OWAw)
and orness(OWAŵ) = 1 − orness(OWAw) = andness(OWAw).

The following duality relation holds

OWAw(1 − x) =
∑n

i=1 wi(1 − x(n−i+1)) = 1 −
∑n

i=1 wn−i+1x(i)
= 1 − OWAŵ(x)

In particular, it changes min into max and conversely.

This corresponds to the expected relation for the diagonals of the square of oppo-

sition of Fig. 8 for OWAs. Then the entailment relations of the vertical sides require

to have
n∑

i=1
wi ⋅ x(i) ≤

n∑

i=1
wi ⋅ x(n−i+1)

This can be rewritten as

0 ≤ w1 ⋅ (x(n) − x(1)) + w2 ⋅ (x(n−1) − x(2)) +⋯ + wn ⋅ (x(1) − x(n))
= (w1 − wn) ⋅ (x(n) − x(1)) + (w2 − wn−1) ⋅ (x(n−1) − x(2)) +⋯

In order to guarantee that the above sum adds positive terms only, it is enough to

enforce the following condition for the weights:

w1 ≥ w2 ≥ ⋯ ≥ wn,
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which expresses a demanding aggregation. We are not surprised to observe that the

w associated to max violates the above condition. The situation is similar to the one

already encountered with Sugeno integrals where we had to display integrals based

on pessimistic or optimistic fuzzy measures depending on the vertices of the square

and similar to the situation of belief functions, which are pessimistic, which ensures

a regular square of opposition without any further condition.

Besides, in [34, 36–38] it is proved that a capacity 𝜇 depends only on the cardi-

nality of subsets if and only if there exists w ∈ [0, 1]n such that C
𝜇
(x) = OWAw(x).

Moreover we have the following relations. The fuzzy measure 𝜇 associated to OWAw
is given by: 𝜇(T) =

∑n
i=n−t+1 wi where t denotes the cardinality of T . It is worth

noticing that the Moebius transform is m(T) =
∑t−1

j=0

(
t − 1
j

)

(−1)t−1−jwn−j, so m

depends only on the cardinality of the subsets. It is worth noticing that while the

particular cases min and average are associated with simple positive mass functions

(m(C ) = 1, and m({i}) = 1∕n respectively), max is associated with a mass function

that has negative weights (remember that plausibility measures do not have a positive

Moebius transform).

Conversely we have wn−t = 𝜇(T ∪ i) − 𝜇(T) =
∑

K⊆T m(K ∪ i) i ∈ C T ⊆ C ∖i.
So if 𝜇 depends only on the cardinality of the subsets, 𝜇, the capacity associ-

ated to m, depends only on the cardinality of subsets (since the Moebius transform

depends only on the cardinality of subsets). The weight of the OWA associated to 𝜇:

wn−t = 𝜇(T ∪ i) − 𝜇(T). Moreover, note that m(T) involves weights from wn−t+1 to

wn, while m(T) =
∑n−t−1

j=0

(
n − t − 1
j

)

(−1)n−t−1−jwn−j involves weights from wt+1

town, and m̂(T) =
∑t−1

j=0

(
t − 1
j

)

(−1)t−1−jŵn−j involves weights fromw0 towt, since

ŵn−j = wj+1. This indicates that these mass functions are different.

Hence we obtain the cube associated to the OWA’s presented on Fig. 9.

A deeper investigation of this cube in relation with conditions ensuring entail-

ments from top facet to bottom facet, and the positivity of associated mass functions

is left for further research.

Fig. 9 The cube of

opposition for OWA

operators
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6 Concluding Remarks

This paper has first shown how the structure of the cube of opposition extends from

ordinary sets to weighted min- and max-based aggregations and more generally to

Sugeno integrals, which constitute a very important family of qualitative aggrega-

tion operators. Then, a similar construct has been exhibited for Choquet integrals and

OWA operators. The cube exhausts all the possible aggregation attitudes. Moreover,

as mentioned in Sect. 2, it is compatible with a bipolar view where we distinguish

between desirable properties and rejected properties. It thus provides a rich theoreti-

cal basis for multiple criteria aggregation. Still further research is needed for a better

understanding of the interplay of the vertices in the different cubes.
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