Chapter 2
Machine Learning Control (MLC)

All generalizations are false, including this one.
Mark Twain

In this chapter we discuss the central topic of this book: the use of powerful techniques
from machine learning to discover effective control laws. Machine learning is used
to generate models of a system from data; these models should improve with more
data, and they ideally generalize to scenarios beyond those observed in the training
data. Here, we extend this paradigm and wrap machine learning algorithms around
a complex system to learn an effective control law b = K(s) that maps the system
output (sensors, s) to the system input (actuators, b). The resulting machine learning
control (MLC) is motivated by problems involving complex control tasks where it
may be difficult or impossible to model the system and develop a useful control law.
Instead, we leverage experience and data to learn effective controllers.

The machine learning control architecture is shown schematically in Fig. 2.1. This
procedure involves having a well-defined control task that is formulated in terms of
minimizing a cost function J that may be evaluated based on the measured outputs of
the system, z. Next, the controller must have a flexible and general representation so
that a search algorithm may be enacted on the space of possible controllers. Finally, a
machine learning algorithm will be chosen to discover the most suitable control law
through some training procedure involving data from experiments or simulations.

In this chapter, we review and highlight concepts from machine learning, with
an emphasis on evolutionary algorithms (Sect. 2.1). Next (Sect. 2.2), we explore the
use of genetic programming as an effective method to discover control laws in a
high-dimensional search space. In Sect. 2.3, we provide implementation details and
explore illustrative examples to reinforce these concepts. The chapter concludes with
exercises (Sect. 2.4), suggested reading (Sect. 2.5), and an interview with Professor
Marc Schoenauer (Sect. 2.6), one of the first pioneers in evolutionary algorithms.

© Springer International Publishing Switzerland 2017 11
T. Duriez et al., Machine Learning Control — Taming Nonlinear

Dynamics and Turbulence, Fluid Mechanics and Its Applications 116,

DOI 10.1007/978-3-319-40624-4_2

12 2 Machine Learning Control (MLC)

w
Z Cos.t
Physical function |
1
b system s :
1
:
1
Machine D '
learning '
control I,

learning loop (off-line)

Fig. 2.1 Schematic of machine learning control wrapped around a complex system using noisy
sensor-based feedback. The control objective is to minimize a well-defined cost function J within
the space of possible control laws. An off-line learning loop provides experiential data to train the
controller. Genetic programming provides a particularly flexible algorithm to search out effective
control laws. The vector z contains all of the information that may factor into the cost

2.1 Methods of Machine Learning

Machine learning [30, 92, 168, 194] is a rapidly developing field at the intersection of
statistics, computer science, and applied mathematics, and it is having transformative
impact across the engineering and natural sciences. Advances in machine learning are
largely being driven by commercial successes in technology and marketing as well
as the availability of vast quantities of data in nearly every field. These techniques
are now pervading other fields of academic and industrial research, and they have
already provided insights in astronomy, ecology, finance, and climate, to name a few.
The application of machine learning to design feedback control laws has tremendous
potential and is a relatively new frontier in data-driven engineering.

In this section, we begin by discussing similarities between machine learning and
classical methods from system identification. These techniques are already central
in control design and provide context for machine learning control. Next, we intro-
duce the evolutionary approaches of genetic algorithms and genetic programming.
Genetic programming is particularly promising for machine learning control because
of its generality in optimizing both the structure and parameters associated with a
controller. Finally, we provide a brief overview of other promising methods from
machine learning that may benefit future MLC efforts.

2.1 Methods of Machine Learning 13

2.1.1 System Identification as Machine Learning

Classical system identification may be considered an early form of machine learn-
ing, where a dynamical system is characterized through training data. The resulting
models approximate the input—output dynamics of the true system and may be used
to design controllers with the methods described in Chap. 3. The majority of meth-
ods in system identification are formulated for linear systems and provide models
of dubious quality for systems with strongly nonlinear dynamics. There are, how-
ever, extensions to linear parameter varying (LPV) systems, where the linear system
depends on a time-varying parameter [16, 247].

There is an expansive literature on system identification, with many techniques
having been developed to characterize aerospace systems during the 1960s to the
1980s [150, 174]. The eigensystem realization algorithm (ERA) [151, 181] and
observer Kalman filter identification (OKID) [152, 213] techniques build input—
output models using time-series data from a dynamical systems; they will be dis-
cussed more in Chap. 3. These methods are based on time-delay coordinates, which
are reminiscent of the Takens embedding [260]. The singular spectrum analysis
(SSA) from climate science [7, 36—38] provides a similar characterization of a time-
series but without generating input—output models. Recently SSA has been extended
in the nonlinear Laplacian spectral analysis (NLSA) [117], which includes kernel
methods from machine learning.

The dynamic mode decomposition (DMD) [229, 238, 270] is a promising new
technique for system identification that has strong connections to nonlinear dynami-
cal systems through Koopman spectral analysis [41,47, 162, 163, 170, 187, 188, 282].
DMD has recently been extended to include sparse measurements [45] and inputs
and control [217]. The DMD method has been applied to numerous problems beyond
fluid dynamics [229, 238], where it originated, including epidemiology [218], video
processing [99, 124], robotics [25], and neuroscience [40]. Other prominent methods
include the autoregressive moving average (ARMA) models and extensions.

Decreasing the amount of data required for the training and execution of a model is
often important when a fast prediction or decision is required, as in turbulence control.
Compressed sensing and machine learning have already been combined to achieve
sparse decision making [39, 46, 169, 216, 279], which may dramatically reduce the
latency in a control decision. Many of these methods combine system identification
with clustering techniques, which are a cornerstone of machine learning. Cluster-
based reduced-order models (CROMs) are especially promising and have recently
been developed in fluids [154], building on cluster analysis [49] and transition matrix
models [241].

In the traditional framework, machine learning has been employed to model the
input—output characteristics of a system. Controllers are then designed based on
these models using traditional techniques. Machine learning control circumvents
this process and instead directly learns effective control laws without the need for a
model of the system.

http://dx.doi.org/10.1007/978-3-319-40624-4_3
http://dx.doi.org/10.1007/978-3-319-40624-4_3

14 2 Machine Learning Control (MLC)

2.1.2 Genetic Algorithms

Evolutionary algorithms form an important category of machine learning techniques
that adapt and optimize through a process mimicking natural selection. A population
of individuals, called a generation, compete at a given task with a well-defined cost
function, and there are rules to propagate successful strategies to the next generation.
In many tasks, the search space is exceedingly large and there may be multiple
extrema so that gradient search algorithms yield sub-optimal results. Combining
gradient search with Monte Carlo may improve the quality of the solution, but this is
extremely expensive. Evolutionary algorithms provide an effective alternative search
strategy to find nearly optimal solutions in a high-dimensional search space.

Genetic algorithms (GA) are a type of evolutionary algorithm that are used to
identify and optimize parameters of an input—output map [76, 122, 137]. In contrast,
genetic programming (GP), which is discussed in the next section, is used to optimize
both the structure and parameters of the mapping [164, 166]. Genetic algorithms and
genetic programming are both based on the propagation of generations of individ-
uals by selection through fitness. The individuals that comprise a generation are
initially populated randomly and each individual is evaluated and their performance
assessed based on the evaluated cost function. An individual in a genetic algorithm
corresponds to a set of parameter values in a parameterized model to be optimized;
this parameterization is shown in Fig.2.2. In genetic programming, the individual
corresponds to both the structure of the control law and the specific parameters, as
discussed in the next section.

After the initial generation is populated with individuals, each is evaluated and
assigned a fitness based on their performance on the cost function metric. Individuals
with a lower cost solution have a higher fitness and are more likely to advance to the
next generation. There are a set of rules, or genetic operations, that determine how
successful individuals advance to the next generation:

OHOHO O
OO HAHO O
OO OO

parameter 1 parameter 2

[cleololol Nl S =
oorRProor
oOroORroror

Fig. 2.2 Representation of an individual (parameter) in genetic algorithms. This binary representa-
tion encodes two parameters that are each represented with a 3-bit binary expression. Each parameter
value has an associated cost (right), with red indicating the lowest cost solution. Modified from
Brunton and Noack, Applied Mechanics Reviews, 2015 [43]

2.1 Methods of Machine Learning 15

Elitism: a handful of the most fit individuals advance directly to the next gen-
eration. Elitism guarantees that the top individuals from each generation do not
degrade in the absence of noise.

Replication: individuals advance directly to the next generation with a probability
related to fitness; also called asexual reproduction in genetic programming.

Crossover: two individuals are selected based on their fitness and random sec-
tions of their parameters are exchanged. These two individuals advance with the
exchanged information.

Mutation: individuals advance with random portions of their parameter represen-
tation replaced with random new values.

Mutation serves to explore the search space, providing access to global minima,
while crossover serves to exploit successful structures and optimize locally. Success-
ful individuals from each generation advance to the next generation through these
four genetic operations. New individuals may be added in each generation for variety.
This is depicted schematically for the genetic algorithm in Fig.2.3. Generations are
evolved until the performance converges to a desired stopping criterion.

Evolutionary algorithms are not guaranteed to converge to global minima. How-
ever, they have been successful in many diverse applications. It is possible to improve
the performance of evolutionary algorithms by tuning the number of individuals in
a generation, the number of generations, and the relative probability of each genetic
operation. In the context of control, genetic algorithms are used to tune the parame-
ters of a control law with a predefined structure. For example, GA may be used to
tune the gains of a proportional-integral-derivative (PID) control law [271].

Cost, Selection Generation Generation

J rate J Elitism Jj+1
001,101 0,0,1,1,0 1|EM
010100_’-—“)10100 - - 010100 OlOlOOR(z)

i iRt Repllcatlon [t Bl
001,011 0,01,011|C23)
000,100 f 010,011|C23)
1.1.O|O.1.O lllIOIOIOIO M(5)
lnonolonlno ----- Ononollnonl C(1’4)

SSEOOO]

o=

101101 0,0,1,1,00{C(1,4)
110111 Mutation 0,0,0,010|C3,5)
110001 1,1,1,011|C(3,5
110011 0,1,0,1,00|M@)

Fig. 2.3 Genetic operations to advance one generation of parameters to the next in a genetic
algorithm. The probability of an individual from generation j being selected for generation j + 1
is related inversely to the cost function associated with that individual. The genetic operations are
elitism, replication, crossover, and mutation. Modified from Brunton and Noack, Applied Mechanics
Reviews, 2015 [43]

16 2 Machine Learning Control (MLC)

2.1.3 Genetic Programming

Genetic programming (GP) [164, 166] is an evolutionary algorithm that optimizes
both the structure and parameters of an input—output map. In the next section, GP
will be used to iteratively learn and refine control laws, which may be viewed as
nonlinear mappings from the outputs of a dynamical system (sensors) to the inputs
of the system (actuators) to minimize a given cost function associated with the control
task.

The mapping discovered by genetic programming is represented as a recursive
function tree, as shown in Fig.2.4 for the case of a control law b = K(s). In this
representation, the root of the tree is the output variable, each branching point is a
mathematical operation, such as +, —, X, /, and each branch may contain additional
functions. The leaves of the tree are the inputs and constants. In the case of MLC the
inputs are sensor measurements and the root is the actuation signal.

Genetic programming uses the same evolutionary operations to advance individ-
uals across generations that are used in genetic algorithms. The operations of repli-
cation, crossover, and mutation are depicted schematically in Fig.2.5 for genetic
programming. As in other evolutionary algorithms, the selection probability of each
genetic operation is chosen to optimize the balance between exploration of new
structures and exploitation of successful structures.

In the sections and chapters that follow, we will explore the use of genetic program-
ming for closed-loop feedback control. In particular, we will show that using genetic
programming for machine learning control results in robust turbulence control in
extremely nonlinear systems where traditional control methodologies typically fail.
We will also generalize the inputs to include time-delay coordinates on the sensor
measurements and generalize the function operations to include filter functions to
emulate dynamic state estimation.

Fig. 2.4 Individual function Control law
tree representation used in .

genetic programming. b= 62(82 + 83) + fZ(SI)
Modified from Brunton and Actuation n
Noack, Applied Mechanics
Reviews, 2015 [43]

Functions

GEORO®

Sensors and constants

2.1 Methods of Machine Learning 17

b=cifa(s1) + fi(s2) b= fa(ca+ fa(s2))

b= folfo(s)fi(cs) b= falfals1)ss) b= fa(fa(s2)) fi(s2) b= falfalsz))fu(sa)

Fig. 2.5 Genetic operations to advance one generation of function trees to the next generation
in a genetic program. The operations that advance individuals from one generation to the next are
crossover, mutation, and replication. In crossover, random branches from two individual expressions
are exchanged. In mutation, a branch is randomly selected and replaced with another randomly
generated branch. In replication, the individual is copied directly to the next generation. Modified
from Brunton and Noack, Applied Mechanics Reviews, 2015 [43]

18 2 Machine Learning Control (MLC)

2.1.4 Additional Machine Learning Methods

There is a vast and growing literature on machine learning. This section only provides
a brief overview of some of the most promising methods that may be used in machine
learning control efforts. More extensive treatments may be found in a number of
excellent texts [30, 92, 168, 194]. In addition, there is a good overview of the top ten
methods in data mining [280].

The presentation on genetic programming above provides a high-level overview
of the method, which may be directly implemented for machine learning control. In
reality, there is an entire field of research expanding and developing these methods.
Genetic programming has been used to discover governing equations and dynamical
systems directly from measurement data [32, 220, 240]. There are variants on genetic
programming using the elastic net [185], which result in fast function identification.
It is also possible to use sparse regression [146, 266] to identify nonlinear dynamical
systems from data [44]; this method is related to the recent use of compressed sensing
for dynamical system identification [275].

Another promising field of research involves artificial neural networks (ANNSs).
ANNSs are designed to mimic the abstraction capabilities and adaptability found in
animal brains. A number of individual computational units, or neurons, are connected
in a graph structure, which is then optimized to fit mappings from inputs to outputs.
It is possible to train the network with stimulus by modifying connections strengths
according to either supervised or unsupervised reinforcement learning. There are
many approaches to modify network weights, although gradient search algorithms are
quite common [61, 129]. Neural networks have been used in numerous applications,
including to model and control turbulent fluids [95, 171, 189, 193]. Network-theoretic
tools have been applied more generally in fluid modeling recently [154, 195]. ANNs
have also been trained to perform principal components analysis (PCA), also known
as proper orthogonal decomposition (POD) [203], as well as nonlinear extensions of
PCA [157, 204].

Neural networks have proven quite adaptable and may be trained to approx-
imate most input—output functions to arbitrary precision with enough layers and
enough training. However, these models are prone to overfitting and require signifi-
cant amounts of training data. Recently, neural networks have seen a resurgence in
research and development with the associated field of deep learning [69, 78, 132].
These algorithms have shown unparalleled performance on challenging tasks, such
as image classification, leveraging large data sets collected by corporations such as
Google, etc. This is a promising area of research for any data-rich field, such as
turbulence modeling and control, which generates tremendous amounts of data.

There are many other important machine learning algorithms. Support vector
machines (SVMs) [242, 253, 259] are widely used because of their accuracy, simple
geometric interpretation, and favorable scaling to systems with high-dimensional
input spaces. Decision trees [222] are also frequently used for classification in
machine learning; these classifications are based on a tree-like set of decisions,
providing simple and interpretable models. Multiple decision tree models may be

2.1 Methods of Machine Learning 19

combined, or bagged, resulting in a random forest model [33]. Ensemble methods in
machine learning, including bagging and boosting, have been shown to have signif-
icantly higher classification accuracy than that of an individual classifier [83, 105,
237].

Many of the foundational methods in big data analysis [131] have been applied
largely to static data problems in artificial intelligence and machine vision. There is
a significant opportunity to leverage these techniques for the modeling and control
of dynamical systems. These methods may be used for clustering and categorical
decisions, dimensionality reduction and feature extraction, nonlinear regression, and
occlusion inference and outlier rejection. Machine learning is having transformative
impact across the scientific and engineering disciplines. There is tremendous oppor-
tunity ahead to employ machine learning solutions to modern engineering control.

2.2 MLC with Genetic Programming

Now we use genetic programming (GP) as a search algorithm to find control laws in
MLC. This section provides details about GP in a context that is specific to control.

2.2.1 Control Problem

Before applying any machine learning, it is necessary to pose the control problem as
a well-defined cost minimization. In particular, the performance of a given control
law is judged based on the value of a cost function J, and the machine learning
algorithms will serve to minimize this cost.

There are many ways to formulate a cost function in order to promote different
control objectives. In fact, cost function optimization is the basis of most modern
control approaches [93, 252], which will be discussed more in Chap. 3. Consider a
simplified cost function that depends on the state a and the actuation b:

J(a,b). 2.1)
We often assume that the effects of the state and actuation on the cost are separable:
J@,b)=Jos+y Iy (2.2

where J, is a performance measure on the state of the system and Jj, is a value
associated with the cost of actuation. The penalization parameter y provides an
explicit tuning knob to give priority to either the actuation cost (y large) or the state
cost (y small). More objectives can be added to the cost function J by including
norms on the various transfer functions from inputs to outputs; these may promote
good reference tracking, disturbance rejection, noise attenuation, robustness, etc., and

http://dx.doi.org/10.1007/978-3-319-40624-4_3

20 2 Machine Learning Control (MLC)

a good treatment of these choices is provided in [252]. In addition, the complexity
of the controller K may be penalized to avoid overfitting.

2.2.2 Parameterization of the Control Law

When using genetic programming for MLC, the control laws are represented as
recursive expression trees (also known as function trees), as shown in Fig. 2.6. These
control laws are the individuals that will populate a generation in genetic program-
ming. Expression trees are usually built from a number of elementary functions
which can take any number of arguments but return a single value; example function
nodes are +, —, X, /, sin, tanh, ... The arguments of these functions may be leaves
or subtrees. In MLC, the root of the tree is the actuation signal b and the leaves are
components of the sensor vector s or constants.
The tree in Fig. 2.6 represents the function:

b(sy, 52) = cos(sy) + tanh((s; x 52)/0.21) — 2.32, 2.3)

where s; and s, are the time-varying sensor values. It is useful to represent the
function tree as a LISP (LISt Processor) expression.

Several representations can be used to manipulate functions inside the genetic
programming architecture (e.g. trees, linear programming). We choose to use a tree-
like representation. Two main advantages of this representation are that expression

Fig. 2.6 An expression tree
representing the controller
function given by:

b = K(s) = cos(sy)+
tanh((s; x $2)/0.21) — 2.32

P i I 24 Leaves

2.2 MLC with Genetic Programming 21

trees are readily interpretable, and they are easily synthesized and manipulated com-
putationally using a recursive language such as LISP or Scheme.
Equation (2.3) can be written as the LISP string in parenthesized Polish prefix
notation:
(= (4 (cos s1) (tanh (/ (x 81 s2) 0.21))) 2.32).

Though less readable than the expression tree, recursive algorithms can generate,
derive, manipulate, and evaluate these expressions. The generation process of any
individual control law starts at the root. Then a first element is chosen from the pool
of admissible basis functions and operators. If a basis function or operator is chosen,
new elements are added as arguments, and the process is iterated to include their
arguments until all branches have leaves.

This process of individual generation is subject to limitations. A given tree-depth
(the maximum distance between any leaf and the root) can be prescribed by pre-
venting the last branch from generating a leaf before the aforementioned tree-depth
is reached and by enforcing the termination of the branch in leaves when the tree-
depth is reached. Similarly it is possible to ensure that each branch reaches the same
given tree-depth which generates a full-density tree with the maximum number of
operations. MLC can implement any of these distributions, from fully random trees
to a given tree-depth distribution with a specified proportion of dense and less dense
individuals. The first generation starts with a distribution of rather low tree-depth (2
to 8) and an equal distribution (1:1) of dense and less dense individuals in the default
parameters of OpenMLC. This choice generally ensures enough diversity for the
creation of subsequent generations. The initially low tree-depth takes into account
that the genetic operations (see Sect. 2.2.7) have a tendency to make the trees grow.
This phenomenon is known as bloating of the trees. To enforce more diversity in the
population, any candidate individual is discarded if it already exists in the current
population.

2.2.3 Genetic Programming as a Search Algorithm

The flowchart for genetic programming is given in Fig. 2.7. An initial set (generation)
of N; control laws (individuals) is evaluated according to the cost function J. Next,
successful individuals are selected to advance to the next generation and are evolved
by genetic operations: elitism, replication, crossover and mutation. This procedure
is repeated until a convergence or stopping criterion is met.

The implementation of genetic programming as a search algorithm for MLC is
shown in Fig. 2.8. In this schematic, control laws are expression trees that take sensor
outputs s of a dynamical system and synthesize actuation inputs b. These controller
individuals are optimized through the genetic programming algorithm.

22

Fig. 2.7 Flowchart for the
genetic programming
algorithm

2 Machine Learning Control (MLC)

Population
creation

Population
evaluation

p
Stop criterion
reached 7

\

J

e

Selection
procedure

Population

evolution

Advanced material 2.1 Operation protection.

. argl
my_div(argl,arg2) = ——,
arg?
_arg2 argl
" Jarg2| 10737
_argl
1073
tion:
argl
my_log(argl) = log(largl)),
largl|
1
= Y8 10e(1073),
largl|
= O,

It is important to note that not all functions are defined for all real-valued arguments. For
instance, the second argument of the division operator must not be zero and the argu-
ment of the logarithmic functions must be strictly positive. Thus, such functions must
be protected. When the translation from LISP is achieved using the OpenMLC toolbox
through the readmylisp_to_formal_ MLC.m function, ‘(/ argl arg2)’ is interpreted as
‘my_div(argl,arg2)’, where my_div.m defines the function:

if |arg2| > 1073
if0 < |arg2| <1073
if larg2| = 0.

Similarly, ‘(log argl)’ is interpreted as ‘my_log(argl)’, where my_log.m defines the func-

if |argl| > 1073

if 0 < |argl| < 1073

if |arg2| = 0.

In case the interpretation of the LISP expression is carried out by another function, for example
on a real-time processing unit, these protections have to be implemented in order to avoid
unexpected behaviors. These protections can be easily changed by editing both surrogate
functions, or by defining another function to be called in the parameters . opset structure.

2.2 MLC with Genetic Programming 23

b Dynamical system J
n da _
_ + = F(a,b) S
g R s = G(a)) @)
= (" Control law, b = K(s)) 2 |=
S ME
i S
_ g 7 3
Y

(" Genetic Programmmg

B AT

J’ <J< ... < JI(,
b{ :K{(s) _}J{ Elitism & b{“ _ K{+l(s)
bé — Ké(s) — jg Tournament f~ Crossover bé“ — Ké“(s)
))) M Replication))
bl = Kl(9)] —— | [vk
Mutation
—e—
N i
+1 i+1

bl =K, s)

\ b4, =K, (s) = 7

Generation j Generation j+ 1

Fig. 2.8 Model-free control design using GP for MLC. During the learning phase, each control
law candidate is evaluated by the dynamical system or experimental plant. This process is iterated
over many generations of individuals. At convergence, the best individual with the smallest cost
function value (in grey in the GP box) is used for real-time control

2.2.4 Initializing a Generation

In genetic programming an entire population of individuals forms a generation, and
these individuals compete to advance to future generations. A population contains
N; individuals that must be initialized. To form an expression tree, the initialization
algorithm works from the root to the trees. The principle is to work from one seed
(a marker which indicates where the tree is supposed to grow) or N, seeds (if the
actuation input b has multiple components), decide on a node (function/operation,
or leaf), add as many new seeds as necessary (if this is an operation or function,
include as many seeds as arguments) and recursively call the function that grows
the tree until all new seeds have been generated. The process stops once all seeds

24 2 Machine Learning Control (MLC)

have been replaced by leaves. Those leaves are chosen between randomly generated
constants and one of the N; sensors in s. This algorithm can be configured so that
some statistical properties of the population can be specified:

Tree-depth: If an operation or a leaf is selected through a probabilistic process,
it is possible to prescribe the minimal and maximal tree-depth of the trees by
forcing or forbidding the creation of leaves according to the tree-depth and/or the
existence of other leaves at said depth.

Density: It is possible to prescribe a specific tree depth for all leaves. This is
achieved by forbidding any leaf before a given depth, and forcing leaf selection at
that depth. The resulting individuals possess the maximal number of operations
possible (modulo the number of arguments of the selected operations) for the
prescribed tree depth. Such an individual is referred to as a full (density) individual.

The initial population corresponds to the first exploration of the search space.
As such, this population has a crucial impact on the following steps of the search
process: future generations will converge around the local minima found in the initial
generation. Therefore, it is important that this population contains as much diversity
as possible. A first measure is to reject any duplicate individual in the population.
Diversity is also enforced using a Gaussian distribution of the tree-depth (between 2
and 8 by default in OpenMLC), with half the individuals having full density.

2.2.5 Evaluating a Generation

After every new generation is formed, each individual must be evaluated based on
their performance with respect to the regression problem. The value of the cost

Advanced material 2.2 Creation algorithm pseudo-code.
The function that generates expression trees as LISP expressions in OpenMLC is gen-
erate_indiv_regressive.m. As any expression tree manipulation function, the creation
algorithm is auto-recursive. The principle is to work from a seed, decide on a node
(function/operation, or leaf), add as many seeds as necessary (if this is an operation or
function) and call the function back as many time as new seeds have been generated:
1 : new_LISP=grow_tree(old_LISP,parameters) % declaration
2 : find first seed in old_LISP, so that old_LISP=‘part] seed part2’
3 : decide if the next node is an operation or a leaf
if it is a leaf: replace the seed with either a constant, either a sensor
and return new_LISP="partl leaf part2’
if it is an operation: choose one randomly (called ‘op’) and replace seed so that:
new_LISP="part] (op seed) part2’ if ‘op’ takes one argument
new_LISP="part] (op seed seed) part2’ if ‘op’ takes two arguments
4 : recursively call back new_LISP=grow_tree(new_LISP,parameters) as many times as
new seeds have been added
5 : return new_LISP
An expression tree with Nj, independent subtrees (corresponding to N, actuation inputs) can
be created using the tree growing function on ‘(root seed repeated N, times)’.

2.2 MLC with Genetic Programming

25

‘random_maxdepth’

Tree depth

Advanced material 2.3 Effect of generation parameters in the first population diversity.

The tree-depth distribution is shown for each initialization method for the first generation
(left). The histograms of the number of operations for each tree-depth is also shown (right).
The average is marked by a bullet. These graphs are obtained with one instance of a population
generation with default OpenMLC object properties except for the initialization method which
is indicated in each graph. One indicator of diversity is the distribution of operations in the
trees. If multiplying the different tree depth is a good factor to enforce diversity, the natural
growth of the average tree-depth as new generations are evolved (a phenomenon known as
bloat) indicates that it is better to keep low tree-depth in the first generation.

Number of operations

3
£ gk
£ £
o
IS IS -
0 b b ® o ® g 0 0
1 5 10 15 1 40 80 120 160 200
Tree depth Number of operations
‘fixed_maxdepthfirst’
100 L 10 R
d‘ D.q *e .
3 3 o
+ 50 g 51 -
IS IS "‘.‘.
0 5 10 15 o9 10 20 30 40
Tree depth Number of operations
‘random_maxdepthfirst’
[] 0
£ 50 2
S S 5 * ”0 .
o o o %
IS IS o ie
o 5 10 15 o4 10 20 30 40
Tree depth Number of operations
‘full_maxdepthfirst’
100 L)
g, s 5 e
8—4 8« o e Lare
< 50 = S,
§ § . oo .‘.". .
0 0—0—0—0—0—0—-0—0-=0 0 2 200l 00ce
5 10 15 1 10 20 30 40 50
Tree depth Number of operations
‘mixed_ramped_gauss’
® v
& 20 [] S, 5 'o"
8-1 o 8“ .0
s 10 ° R
& ® Town
0¢ 0—0—0—0—0—0 0¢ d
5 10 15 1 20 40 60 80 100 120

26 2 Machine Learning Control (MLC)

function J in Eq. (2.1) is computed for each individual. In MLC, this evaluation
corresponds to the individual being used as the control law for the dynamical system
under consideration. This evaluation results in a single value J, which is the result
of Eq. (2.1) for the specific individual being evaluated.

A major complication encountered with experiments (or even some noisy numer-
ical systems) is the fact that, contrary to deterministic systems, the re-evaluation of
one individual does not necessarily return the same cost function value as a previ-
ous evaluation. A large error on the value, either due to a measurement error or an
exceptional performance of a non-robust control law can lead to a non-representative
grading of the control law. As explained throughout the book, the search space is
primarily explored around the best-performing individuals. If an intrinsically low-
performing individual gets a mistakenly good evaluation, this may be a significant
setback. Thus, all individuals are evaluated even if they have already been evaluated
in a previous generation, and the best individuals undergo a re-evaluation. By default
in OpenMLC, the five best individuals are each re-evaluated five times, and their cost
function is averaged. This procedure ensures that the best performing individuals are
more carefully ranked so that the search process is not misdirected.

2.2.6 Selecting Individuals for Genetic Operations

After the evaluation of each individual, the population evolution starts. In order to fill
the next generation, genetic operations (see Sect. 2.2.7) are performed on selected
individuals. The selection procedure is at the heart of any evolutionary algorithm as
it determines the genetic content of the following generation. The selection process
employed by default is a tournament. Each time an individual needs to be selected for
a genetic operation, N, unique individuals are randomly chosen from the previous
generation to enter the one-round tournament. From this set of individuals, the one
with the smallest cost function value is selected. As the population size N; is fixed, N;
selection tournaments are run each time a new generation is created. The population is
ranked by decreasing cost function value. If we discard uniqueness of the individuals
and consider N; > N, > 1, the probability of individual i winning a tournament
is (N; — i)/ (N; — 1)N »=1. On average, each individual will enter N, tournaments.
Each individual is sorted by their ranking, so that individual i has the ith lowest cost
function value; we define x = i/N; for each individual so that x € [0, 1]), where
x = 0 is the best individual and x = 1 is the worst individual. If an individual is
ranked i = x X N;, then its genetic content will contribute on average roughly to
N, x (1 — x)Vr~! new individuals. A standard selection parameter sets N p =1
and ensures that only the first half of the ranked generation contributes consistently
to the next generation. Lower-performing individuals can still contribute, but these
are rare events. In this selection procedure, choosing N, sets the harshness of the
selection. On the other hand, this selection procedure does not take into account the
global distribution of the cost function values, as in other selection processes such as
a fitness proportional selection. If an individual performs much better than the rest

2.2 MLC with Genetic Programming 27

of the population it will not have a better selection chance than an individual that
barely performs better than the rest of the population. This choice ensures that the
diversity in the population does not disappear too fast with an associated trade-off in
convergence speed.

2.2.7 Selecting Genetic Operations

Four kinds of genetic operations are implemented: elitism, replication, mutation and
crossover.

Elitism: The N, best individuals of the evaluated population are copied directly
to the next generation. This operation does not go through a selection procedure
and ensures that the best control laws stay in the population. Once the elitism
process is finished, N; — N, individuals have to be generated through replication,
mutation and crossover. The probability of each of these operations are P,, P,
and P., respectively, with P, + P, + P. = 1.

Replication: The selected individual is copied to the next generation.

Mutation: There are four mutation operations: Cut and grow replaces an arbi-
trarily chosen subtree by a randomly generated new subtree. For that, the same
procedure is used as in the creation of the first generation. Shrink replaces an
entire randomly chosen subtree by a randomly chosen leaf (constant or sensor).
Hoist replaces the tree by a randomly chosen subtree. If this tree corresponds
to a MIMO control law with N, actuation inputs, each control law has a 1/N,,
chance to be mutated if the hoist mutation is chosen. Reparametrization sets a
50 % chance for each constant to be randomly replaced with a new value. All of
these mutations are displayed in Figs.2.9 and 2.10.

Advanced material 2.4 Fitness proportional selection.

Fitness proportional selection is another popular process for selecting individuals for genetic
operations. The inverse of an individual’s cost J; = J(K;) is a natural measure of its desir-
ability. It goes to infinity as the optimal value zero is reached. The probability of the section
of the ith individual is set proportional to this desirability

Jo!
P=—— (2.4)
2 ;

If one individual performs much better than the rest of the population, it will be selected
more often in the same proportion, thus encouraging optimization around the best performing
individuals while still allowing sub-optimal individuals to be selected. However, diversity can
disappear rapidly if an individual performs one or several orders of magnitude better than the
rest of the population. This is an undesirable feature which we avoid by a selection based on
the relative ordering.

28 2 Machine Learning Control (MLC)

Fig. 2.9 Two of the four types of mutations implemented in MLC: (a) cut and grow, (b) shrink

Crossover: uses two selected individuals and exchanges one randomly chosen
subtree between them (see Fig.2.11).

Replication ensures some stability of the convergence process: it guarantees that
a part of the population stays in the vicinity of explored local minima of the search
space, keeping potentially useful mechanisms in the population and further exploit-
ing them before they are discarded. Crossover and mutation are responsible for the
exploitation and exploration of the search space, respectively. As we progress among
the generations, the probability to cross similar individuals increases: the best indi-

2.2 MLC with Genetic Programming 29

Fig. 210 Two of the four types of mutations implemented in MLC: (¢) Hoist and
(d) re-parameterization

vidual will propagate its genetic content N, times on average. If this successful
genetic content allows the concerned individuals to stay in the first positions of the
ranking, it will be replicated about N ’lj x P, times after k generations. Then crossovers
of individuals selected in the top of the ranking will soon cross similar individuals
and explore the vicinity of the dominant genetic content. On the other hand, muta-
tions introduce new genetic content in the population, hence allowing large-scale
exploration of the search space. Figure2.12 illustrates how an evolutionary algo-
rithm explores the search space of a two-dimensional problem with local minima:

30 2 Machine Learning Control (MLC)

Fig. 2.11 Crossover
example. The selected
individuals of a considered
generation (/eft) exchange E
subtrees to form a new pair

in the next generation (right)

o

()
AS

) Bl

ey
o
S

the association of these operations enables exploitation around the local minima
while still exploring the search space for better solutions.

2.2.8 Advancing Generations and Stopping Criteria

There are no fool-proof general rules to choose optimal parameters for evolutionary
algorithms. A common practice is to check the optimality of the solution offered by
genetic programming by reproducing the process a number of times using different

2.2 MLC with Genetic Programming 31

= 2
=
1 — crossover
1 < — mutation
1.5
J
Fel
- -0.5
=0

Fig. 2.12 Conceptual 2-dimensional representation of the search process of evolutionary algo-
rithms. The level curves display the geometry of the cost function and its local minima and maxima.
The arrows follow one branch of the lineage of one individual (displayed by a black point) that
leads to the global minimum of the cost function. The exploitation of the local minima is achieved
by crossovers while the large-scale exploration of the search space is achieved by the mutations

sets of parameters. This way, guiding statistics can be obtained. In the case of exper-
imental turbulence control, one is more interested in finding an effective control law
than in determining an optimal search algorithm. The main impact of modifying
parameters is on the ratio between exploitation (i.e. convergence) and exploration of
the search space. Monitoring the evolution of the evaluated populations is the best
way to fine-tune the MLC process. Now, we discuss the role of the MLC parameters:

e Population size N;: more individuals in the first generation will result in more
exploration of the search space. On the other hand, a large initial population
requires more evaluation time without any evolutionary convergence. Let us con-
sider 1000 evaluations. If only the first generation is evaluated, then it is equivalent
to a Monte Carlo process. Alternatively, one could devote 1000 evaluations to 20
generations with 50 individuals in each generation. This implies 20 iterative refine-
ments of the best individuals through evolutionary operations.

e Genetic operation probabilities (N,./N;, P,, P,, P.): Elitism is encouraged as it
ensures that the N, best performing individuals will remain in the population.
Replication, mutation and crossover probabilities parametrize the relative impor-
tance between exploration and exploitation (Fig.2.13). A large mutation rate P,
implies large-scale exploration and thus population diversity. If all individuals in
the population share a similar expression and have similar costs then the muta-

32 2 Machine Learning Control (MLC)

P.=1

Memory

Chosen parameter range

Py=
Exploitation

Pm. =1
Exploration

. VAVAN /\A\A/\/\/\

Volatile population

Fig. 2.13 Probability selection for the genetic operations. There is no globally optimal parameter
selection. Depending on the problem, diversity or convergence needs to be modified. The range
of parameters used in the present study is represented by the black area. Hatched areas represent
the parametrical space where essential aspects of the evolutionary algorithm are endangered with
volatile population translating in previous winning options to be forgotten once a better solution is
found (not enough replications), low convergence (not enough crossovers) or low exploration (not
enough mutations)

tion rate should be increased. On the other hand, the crossover rate will impact
the convergence speed. If the individuals are different and the cost function value
histogram does not show a peak around the lowest value, then the convergence is
not sufficiently rapid and the crossover probability should be increased. Finally,
replication ensures that a given search space area will be explored during a certain
number of generations. This parameter will at the same time ensure diversity and
exploration of different areas.

e The harshness of the selection procedure also influences the diversity of the next
generation. The number of individuals N, that enter a tournament directly influ-
ences the number of individuals that will contribute to the next generation. Reduc-
ing N, increases the diversity while increasing it will accelerate the convergence.

e The choice of the elementary functions is intimately linked to the regression prob-
lem. This choice should be determined in concordance with the choice of the
sensors and actuators.

e The maximum number of generations is eventually determined by the available
testing time. A stopping criterion can end the iterations prematurely, for instance

2.2 MLC with Genetic Programming 33

if the optimal solution is reached (J = 0) or if the average and minimum of the
cost function distribution converge.

GP experts usually recommend a high rate of crossover and a low rate of mutation
with a large initial population, though specific values depend on the problem. These
choices, clearly aimed to obtain a fast convergence, are possible when the evaluations
can be parallelized. In experiments, however, the total time to evaluate a generation
of individuals is critical and one cannot afford a large population. The convergence
of the cost function evaluation is also affected by the measurement error. A good
compromise in experiments is to deal with reduced populations (on the order of
50-500 individuals) associated with a high mutation rate (from 25 to 50 %). It is
simpler to keep these values constant during the course of each experiment, but
further performance improvement can be achieved by adapting them with respect to
the phase (exploration or exploitation) of the learning process.

Throughout the book many examples of applications of MLC to different control
problems can be found, from numerical dynamical systems to experiments, and their
specific implementation using OpenMLC is discussed. Chapter 7 is dedicated to
providing the reader with best practices for the use of MLC.

2.3 Examples

As outlined above, Machine Learning Control (MLC) formulates control design as
a regression problem: Find a law which minimizes a given cost function. Genetic
Programming (GP) is a regression tool and key enabler of MLC. In the following,
we illustrate genetic programming for a simple two-dimensional data fit (Sect. 2.3.1)
and and a control problem (Sect. 2.3.2). We ease the replication of the results by
employing OpenMLC, a freely available Matlab® toolbox designed for MLC (see
the Appendix for instructions about how to download and install). OpenMLC has
been used for most numerical and experimental control problems of this book.

2.3.1 Fitting a Function Through Data Points

In the first example, we search for a one-dimensional function passing as close as
possible to given data points.

Problem Formulation
Let us consider the 201 points in the plane:

s; =i/10 (2.52)
b; = tanh(1.256 5;,) + 1.2, i = —100...100. (2.5b)

http://dx.doi.org/10.1007/978-3-319-40624-4_7

34 2 Machine Learning Control (MLC)

The goal is to find a function s — b = K (s) that goes through these points as close
as possible using GP. A canonical cost function reads

1 100
_— PR . 2
I =3 [?Zmo (bi — K(5:))*. (2.6)

We do not assume a particular structure of the function K, like an affine, constant-
linear-quadratic or polynomial structure. This excludes the least-mean-square
approach for parameter identification.

In the following, we describe how GP solves the regression problem

K(s) = argmin J [K'(s)], (2.7)
K'(s)

i.e. finding a function b = K (s) which minimizes the cost function (2.6).
This example is implemented as the default toy problem for OpenMLC which will
be used throughout the section.

Code 2.1 Creation of the default regression problem

clear all
close all

mlc=MLC % Creates a MLC object with default values that
implements the simple regression problem.

o0

Problem Solution

We take typical parameters for GP. These are also the default parameters of OpenMLC
(Table2.1).

Table 2.1 Parameters for MLC with genetic programming for example of fitting a function through
data points

Parameter Value

N; 1000

P, 0.1

P 0.2

P, 0.7

N, 7

N, 10

Node functions +, —, %, /, exp, log, tanh

2.3 Examples 35

Our ‘plant’ is then written as follows:

Code 2.2 Evaluation function for the first regression problem (2.7)

function J=toy_problem (ind, parameters ,i, fig)
%% Creation of the points to fit.
s=-10:0.1:10;

b=tanh (1.256*s)+1.2;

%% Initialisation of b_hat as a vector.

b_hat=b*0;

$% Evaluation.

¢ Evaluation is always encapsulated 1in try/catch.
$ Structure to account for the unpredictible.

try

$ Translation from LISP.
idv_foraml=readmylisp_to_formal_MLC (ind, parameters) ;
idv_formal=strrep(m, "'S0’,’s’); % Replace S0 leaf with

variable s

$ Obtain the estimated s.
eval (['b_hat=' idv_formal ';’'1])

$ Obtain the cost function value.
J=sum ((b-b_hat) .”2)/1length (b) ;
catch err

¢ If something goes wrong, asign a bad value.
J=parameters.badvalue;
fprintf (err.message) ;

end

The code 2.2 comprises all the necessary steps needed in order to build the problem
with corresponding cost function in OpenMLC. The evaluation function takes an
individual

b= K(s) (2.8)

as argument and returns a cost function value J. In addition, GP parameters enter as
arguments.

One critical step is the translation of the individual from a LISP expression to
something Matlab® can use as a function. This is realized through the function
readmylisp_to_formal_ MLC which recursively interprets each element of
the tree. Generically all inputs are numbered SO, S1 to SN;. Here, only one input
is declared for the function that is to be learned. Thus only functions involving SO
are created. For the sake of readability, we replace SO by s, so that the strings
created are functions of s. Once the individual is interpreted, it can be used to
approximate the data with the mapping (2.8) and compute the corresponding cost
function.

36 2 Machine Learning Control (MLC)

MLC Run and Results

Here GP is launched for 50 generations using

’mlc.go(SO);

or

’mlc.go(SO,l);

to have graphical output. At the end of the 50th generation, typing

= |

returns the best individual, its cost function value and other statistics:

After generation 50:

Best individual:

(+ (sin (+ (sin (sin (tanh (/ (/ SO0 -2.511) (sin -8.741)))))

(sin (tanh (/ (/ S0 -2.629) (sin -8.741)))))) (log (log (+

(tanh (+ (sin (tanh (/ (sin (/ SO0 -2.511)) (* -3.802 7.167))))
(tanh (tanh (+ (sin (+ (sin -8.741) (sin -8.741))) (sin 6.774))))))
(* -3.802 7.167)))))

Best J (average over 3 occurrence(s)): 2.380030e-06

This implies that the returned function is much more complicated than the actual
function and produces an average error of 2.38 x 107°. Note that we did not penalize
complexity of the individuals.

Typing

mlc.show_best_indiv;

will additionally display the original and learned relationship between the dataset
used for regression (Fig.2.14).

2.3.2 MLC Applied to Control a Dynamical System

The second study exemplifies MLC for control design of a noise-free, linear, one-

dimensional ordinary differential equation, arguably the most simple example of
Eq. (1.1).

http://dx.doi.org/10.1007/978-3-319-40624-4_1

2.3 Examples

37

N

10

Fig. 2.14 Best individual of the regression problem (2.7) after 50 generations, obtained with

‘mlc.show_best_indiv’ onthe ‘toy_problem’ regression problem

Problem Formulation

We investigate the ordinary differential equation

da
= b,
' a—+
s=a,
b=K(),
with the initial condition
a(0) =1.

(2.9a)

(2.9b)
(2.9¢)

(2.10)

The cost function to be minimized penalizes a deviation from desired state ag = 0

and actuation,

1 T
J = —/ [a2 + ybz] dt.
T Jo

@.11)

Here, T is the evaluation time and y is a penalization coefficient for the cost of

actuation.

38 2 Machine Learning Control (MLC)

Table 2.2 Parameters for

" . Parameter Value

MLC with genetic

programing for simple control Ni 50

design example P, 0.1
P 0.4
P. 0.5
Np 7
Ne 1
Node functions +, —, X, tanh

This problem is set-up in the OpenMLC script unidim_DS_script .mand the
associated object can be instantiated by calling:

mlc=MLC (’unidim_DS_script ') ;

This command implements the new control regression problem

K(s) = argmin J [K'(s)], (2.12)
K'(s)

i.e. finding a control law which minimizes the cost function (2.11).

The search space for the control law contains compositions using operations taken
from (4, —, X, tanh). This includes arbitrary polynomials and sigmoidal functions.
A full list of GP parameters used (Table 2.2) can be obtained by typing:

mlc.paramters

The most important parameters are given in Table 2.2.

Problem Implementation
The evaluation function for this simple dynamical system control problem is provided
under the name unidim DS_evaluator.m.

Code 2.3 Evaluation function for control regression problem (2.12)

function J=unidim_DS_evaluator (ind, mlc_parameters ,h i, fig
)

%% Obtaining parameters from MLC object.

Tf=mlc_parameters.problem_variables.Tf;

objective=mlc_parameters.problem_variables.objective;

gamma=mlc_parameters.problem_variables.gamma;

Tevmax=mlc_parameters .problem_variables.Tevmax;

%% Interpret individual.
=readmylisp_to_formal_MLC (ind) ;
m=strrep (m, 'S0’ , " 'y’');
K=@ (v) (v);

eval (['K=@(y) (" m ");"1);

2.3 Examples 39

f=@(t,y) (y+K(y)+testt (toc, Tevmax)) ;
%% Evaluation
try % Encapsulation in try/catch.
tic
[T,Y]=oded45 (f, [0 TEf],1); ¢ Integration.
if T(end)==Tf % Check if Tf is reached.
b=Y*0+K(Y) ; % Computes b.
Jt=1/Tf*cumtrapz (T, (Y-objective) .”"2+gamma*b."2) ; %
Computes J.
J=Jt (end) ;
else
J=mlc_parameters.badvalue; % Return high value 1if
Tf is not reached.
end
catch err
J=mlc_parameters.badvalue % Return high value 1if
ode45 fails.
end
if nargin>3 % If a fourth argument 1is provided, plot
the result
subplot (3,1,1)
plot (T,Y,’'-k’,’linewidth’ ,1.2)
ylabel ('Sas$’, 'interpreter’, ' latex’, ' fontsize’ ,20)
subplot (3,1,2)
plot (T,b, '-k’, " "linewidth’ ,1.2)
ylabel ('SSb ', 'interpreter’, 'latex’, ' fontsize’ ,20)
subplot (3,1,3)
plot (T,Jt, '-k’, " "linewidth’ ,1.2)
ylabel ('S (a-a_0)"2+\gamma b"2$’, 'interpreter’, ' latex’
, " fontsize’ ,20)
xlabel ('Sts’, interpreter’, 'latex’, ' fontsize’,20)
end

First of all we retrieve the parameters which are stored in the structure
mlc.parameters.problem variables

This structure is empty by default and can be used to specify variables that are
specific to the problem. Here, the evaluation time T, the penalization coefficient y,
the desired state ap = 0 and the integration time 7,,,,, are available from the structure
problem_ variables and retrieved in the first lines of the evaluation function.
This allows one to parametrize the problem, so that running the same problem with
different values for the parameters can be implemented in a loop.

The individual is interpreted as a control law using the OpenMLC toolbox function
readmylisp_to_formal_ MLC. This transforms the LISP string to a Matlab®
expression string if copied in the console. By default, sensors are named SO0, S1, .. .,
Sn,. As in the first example, we replace SO by the sensor symbol s, with a strrep
(string replacement) parsing. Finally, a symbolic function is created inside a call to

40 2 Machine Learning Control (MLC)

eval that allows one to use the formal expression in the individual string to define
the control function.

The dynamical system is then written as a actuated dynamics F defining the
derivative of the state a, including the control law, and a OpenMLC toolbox function
testt (toc, Tevmax) which returns an error when the time elapsed for this eval-
uation is higher than the time specified in Tevmax. This works with the placement
of the tic function at the beginning of the evaluation function.

The integration of the controlled dynamical system is realized in a try/catch struc-
ture which allows error management. As OpenMLC will allow any combination of
the elementary functions to be tested, it is likely that many systems will diverge or
cause integration errors. The integration of the controlled dynamics becomes expen-
sive with complex control laws. Here, a generation contains 1000 individuals to
test. Hence, a testt function is provided for numerical problems, so that an error
is automatically generated when Tevmax seconds have passed in the real world.
When an error is generated, the program continues in the catch section, where a high
value specified in parameters.badvalue is attributed to the individual and the
evaluation is stopped.

If no error is generated, the J value is computed according to Eq. (2.11) and is
stored in the variable J, which will be sent back to the OpenMLC object.

This could be the end of the evaluation function, but OpenMLC allows the use of
an optional fourth argument to force a graphic output. This can be used to observe
one specific individual. For instance,

unidim_DS_evaluator (mlc.population (4) .individuals {5},
mlc.parameters ,1,1)

will display the fourth individual of the fifth generation. If the problem is launched
using:

mlc.go (15,1)

A graphical output will be generated for the best individual of each generation. The
bestindividual is represented according to the sectionincludedinthe if nargin>4
structure (if the number of arguments inputed is strictly larger than 3). Here, the state,
the control and the cost function integration are plotted against time.

MLC Run and Results

We choose 15 generations to solve the control problem. MLC is launched using

’mlc.go(lS);

Typing:

= |

returns the best individual and statistics such as its cost function value:

2.3 Examples 41

(a) 1 T T T T
- Machine learning control
s 05 ¢ - Optimal control A
0 0 2 4 6 8 10
(b)
0
-1}]
b _o]
-3 L I " |
0 2 4 6 8 10
(© 04 : : x x
J 027]
O L L L L
0 2 4 6 8 10

t

Fig. 2.15 Best individual example after 15 generations, obtained with ‘mlc._show_best_indiv’ on
the ‘unidim_DS_evaluator’ control problem. The red continuous line shows the optimal control
(see Chap. 3) for this control problem

After generation 15:

Best individual:

(* (* 3.128 S0) (tanh (tanh -6.613)))

Best J (average over 7 occurrence(s)): 2.437028e-01

Once again, typing:

mlc.show_best_indiv

will provide the graphs specified in the evaluation function for the best individual
(Fig.2.15). The time-dependent cost function

J(t) = %/0 [a*(t) +y b* ()] dt (2.13)

quantifies the contribution of its integrand during time [0, ¢] to Eq. (2.11). Note that
J () must be monotonically increasing from 0 to J(T) = J, as the normalization
with 1/T is fixed and Eq. (2.13) does not define a sliding-window average.

OpenMLC also contains methods to analyze the whole evolution process. For
instance,

http://dx.doi.org/10.1007/978-3-319-40624-4_3

42 2 Machine Learning Control (MLC)

mlc.show_convergence

displays a succession of histograms of the cost function values for each generation
(see Fig.2.16). For the default values (Fig.2.16a, b), 1000 bins are created with
a logarithmic progression from the minimal to the maximal value of J within all
generations (excluding values equal or above mlc.parameters.badvalue).
Section7.4.1 provides a detailed description. The colormap reflects the ordering
of individuals by cost function, not by the quantitative values. Thus, the 2D-view
(Fig.2.16a, c) illustrates the J values of the individuals while a 3D-view (Fig.2.16b,
d) reveals also the population density associated with J-values. The detailed map is
obtained by the command:

(a) (b)
1020
J
10° —
1 5 10 15
J
(0 (d)

Fig. 2.16 Successive histograms of the population repartition in the cost-function value space.
(a, ¢) (detail): Top view. Well performing individuals were obtained in the first generation and no
significant progress has been achieved after the 4th generation. (b, d) (detail): 3D view. Progressively
the population sees a large proportion around the best individuals (d) while it can be observed that
some diversity is kept (b). Generated using m1c . show_convergence, parameters in text

http://dx.doi.org/10.1007/978-3-319-40624-4_7

2.3 Examples 43

mlc.show_convergence (50,0,1,1,3)

Most evolutive processes of dynamical systems will feature similar behaviors and
properties:

e The progression is achieved by successive jumps. Once a better individual is found,
it is used many times for the evolution and rapidly an island around its J-value
is formed. Then, a better individual is found and the population gradually shifts
toward the better one.

Some diversity is kept and some individuals and/or other islands are found in the
graph for every generation.

There is one streak which is present for all generations, though it is far from
optimal: these are the many incarnations of the zero-individual. The zero can be
created in many ways: subtraction of the same subtree, multiplication by zero, etc.
Each generation can be expected to create such zero-individuals.

Potentially other far-from-optimal islands will be present for other generations: it
can be saturated individuals if you impose, for instance, too narrow bounds on the
actuation command, or other problem specific phenomena.

50 1 0.6
45 0.56
40 | 0.52
3BT 0.48
30 | 0.44
i 25 | 0.4 4
20 | 1 0.36
15 1 - 1032
10 | 10.28
5T 1024
00 — 02

Fig. 2.17 Genealogy of the best individual. All individuals are ranked by performance. The best
individual is linked to its parent(s). Color indicates the process: yellow is elitism, red is mutation,
green is replication and blue is crossover. The background colormap indicates the J-values for the
individuals of index i in generation j. It appears that the best individual after 15 generations has
been found from the 10th generation, and that the global population is not evolving any more

44 2 Machine Learning Control (MLC)

Another way to check the convergence process is by typing:

’mlc.genealogy(15,1) ”

which shows the ancestors of the best individual of the 15th generation (Fig.2.17).
Individuals are linked by parenthood and colors show the genetic operation that
resulted in the next individual: yellow for elitism, red for mutation, blue for crossover
and green for replication. More importantly, the background shows which proportion
of the population is in a given order of magnitude of the cost function.

mlc.show_convergence and mlc.genealogy both are customizable.
Full options can be found by typing:

help MLC/show_convergence
help MLC/genealogy

2.4 Exercises

Exercise 2-1: Transform the example from Sect. 2.3.1 in order to achieve a surface
regression:
ri =1/10
Sj = j/lO
b; ; = tanh(1.256 r; s;) + 1.2sin(s;), i, j € {—100...100}.

Exercise 2-2: Transform the example from Sect. 2.3.2 in order to learn b = K (a)
so that the following dynamical system is stabilized to a fixed point:

da a a?
— =a|————1|+5b
dt 10 10000

b= K(a).

Exercise 2-3: Stabilize the following Lorenz system to each of its three fixed
points using MLC:

dll] ()

— =0 a —a

7) —ai

9) (o - a)
—=aq(p—a3) —a
7 1(p—a3 ’
d
£=alaz—ﬂas+b

b= K(ay, az, a3),

with o = 10, 8 = 8/3 and p = 28.

2.4 Exercises 45

(a) Determine the three fixedpoints.

(b) Write the three cost function associated to the stabilization of each of the fixed
points.

(¢) Run MLC for each of the cases.

2.5 Suggested Reading

Texts

(1) Learning from Data, by Y. S. Abu-Mostafa, M. Magndon-Ismail, H.-T. Lin,
2012 [2].

This book is an exquisite introduction into the principles of learning from data
and is highly recommended as a first reading.

(2) Pattern Classification, by R. O. Duda, P. E. Hart, and D. G. Stork, 2000 [92].
This classic text provides a serious introduction to machine learning and classi-
fication from the probabilistic perspective.

(3) Pattern Recognition and Machine Learning, by C. Bishop, 2006 [30].

This text provides a complete overview of machine learning with a self-contained
prior on probability theory. Bayes’ theory is highlighted in this text.

(4) Machine Learning: a Probabilistic Perspective, by K. P. Murphy, 2012 [194].
This comprehensive text describes automated methods in machine learning that
may be applied to increasingly big data. There are numerous examples using
methods that are computationally available.

(5) Genetic Programming: On the Programming of Computers by Means of
Natural Selection, by J. R. Koza, 1992 [164].

This seminal text provides a complete overview of the theory of genetic program-
ming. This material has since become the gold standard evolutionary algorithm.

(6) Genetic Programming: An Introduction, by W. Banzhaf, P. Nordin, R. E.
Keller, and R. D. Francone, 1998 [17].

This text provides an excellent introduction to genetic programming and its
applications.

Seminal Papers

(1) Top 10 algorithms in data mining, by X. Wu et al., Knowledge and Information
Systems, 2008 [280].
This paper provides an excellent description of ten of the most ubiquitous and
powerful techniques in machine learning and data mining that are in use today.
(2) A tutorial on support vector regression, by A. J. Smola and B. Scholkopf,
Statistics and Computing, 2004 [253].
This paper describes the support vector regression, which has become one of the
highest performing classifiers in machine learning.

46 2 Machine Learning Control (MLC)

(3) Random forests, by L. Breiman, Machine learning, 2001 [33].
This paper describes the natural generalization of decision trees: random forests.
In this framework, an ensemble of decision trees is used to improve classification
performance.

2.6 Interview with Professor Marc Schoenauer

Professor Marc Schoenauer is Principal Senior Researcher (Directeur de Recherche
lére classe) at INRIA, the French National Institute for Research in Computer Science
and Control. He graduated at Ecole Normale Supérieure in Paris, and obtained a
PhD in Numerical Analysis at Université Paris 6 in 1980. From 1980 until Aug.
2001 he has been a full time researcher with CNRS (the French National Research
Center), working at CMAP (the Applied Maths Laboratory) at Ecole Polytechnique.
He then joined INRIA, and later founded the TAO team at INRIA Saclay in September
2003 together with Michele Sebag. Marc Schoenauer has been working in the field of
Evolutionary Computation (EC) since the early 90s, more particularly at the interface
between EC and Machine Learning (ML). He is author of more than 130 papers in
Jjournals and major conferences of these fields. He is or has been advisor to 30 PhD
students. He has also been part-time Associate Professor at Ecole Polytechnique in
the Applied Maths Department from 1990 to 2004.

Marc Schoenauer is chair of the Executive Board of SIGEVO, the ACM Special
Interest Group for Evolutionary Computation. He was Senior Fellow and member
of the Board of the late ISGEC (International Society of Genetic and Evolutionary
Computation), that has become ACM-SIGEVO in 2005. He has served in the IEEE
Technical Committee on Evolutionary Computation from 1995 to 1999, and is a
member of the PPSN Steering Committee. He was the founding president (1995—
2002) of Evolution Artificielle, the French Society for Evolutionary Computation,
and has been president of the French Association for Artificial Intelligence (2002—
2004). Marc Schoenauer has been Editor in Chief of Evolutionary Computation
Journal (2002-2009), is or has been Associate Editor of IEEE Transactions on
Evolutionary Computation (1996-2004), Theoretical Computer Science—Theory of

2.6 Interview with Professor Marc Schoenauer 47

Natural Computing (TCS-C) (2001-2006), Genetic Programming and Evolvable
Machines Journal (1999—now), and the Journal of Applied Soft Computing (2000-
now), and is Acting Editor of Journal of Machine Learning Research (JMLR) since
2013. He serves or has served on the Program Committees of many major conferences
in the fields of Evolutionary Computation and Machine Learning.

Authors: Dear Marc, you have pushed the frontiers of evolutionary algorithms by
numerous enablers. You proposed one of the first mechanical engineering applica-
tions of genetic programming, namely identifying the behavioral law of materials.
Many readers of our book are from fluid mechanics with little background in evo-
lutionary algorithms. Could you describe the need for evolutionary algorithms
and the particular role of genetic programming? How did you get attracted to
genetic programming shortly after Koza’s discovery in 19927

Prof. Schoenauer: First of all, let me state that the work you refer to dates back
20 years now. Furthermore, it was a team work, in collaboration with Michele
Sebag on the algorithmic side, Frangois Jouve on the numerical side, and Habibou
Maitournam on the mechanical side.

To come back to your question, the Genetic Programming motto—write the
program that writes the program—would be appealing to any programmer who
wouldn’t call it crazy. I got interested in Evolutionary Computation after hearing a
talk by Hugo de Garis in 1992 [77], who evolved a controller for walking humanoid
stick-legs. I realized the potentialities of evolution as a model for optimization for
problems which more classical methods could not address. Remember that I was
trained as an applied mathematician.

The identification of behavioral laws, like many inverse problems, was one such
problem. However, it should be made clear that applied mathematicians also make
continuous progresses, solving more and more problems of that kind—though also
unveiling new applications domains for evolutionary methods.

Authors: How would you compare genetic programming with other regression
techniques for estimation, prediction and control, e.g. linear or linear-quadratic
regression, neural networks, genetic algorithms, Monte-Carlo methods and the
like.

Prof. Schoenauer: This is a tricky question, especially in these days of Deep

Neural Networks triumphs in image and video processing, in games, etc.
One usual argument for genetic programming compared to other regression tech-
niques is the understandability of the results. It is true that there are several exam-
ples of such understandable results, starting with Koza’s work on digital circuit
design [165] (and including our findings in behavioral laws). However, many
other applications in genetic programming result in rather large trees, and their
interpretation is more problematic. Some interesting work by Hod Lipson [180]
and Tonda et al. [110] demonstrate that it should be possible to preserve this
advantage. Nevertheless, in most cases, the user has to choose how to handle the
trade-off between precision and concision—and if precision is preferred, then
genetic programming might not be the best choice (keeping in mind that as of
today, all such claims are problem-dependent).

48 2 Machine Learning Control (MLC)

Authors: Which advice would you give a fluid dynamicist for shortening the learn-
ing time with machine learning control? Which enablers and show-stoppers do
you see?

Prof. Schoenauer: My first advice would be to start with what they know (from
fluid mechanics and applied maths), and clearly state the limits of the stan-
dard methods. From there on, Machine Learning or Evolutionary Computation
might be the solution they are looking for. Then they should consider different
approaches, at least genetic programming and neural network-based approaches
(note that there are very nice results too that hybridize both, as mentioned). And
overall, if choosing such non-traditional approach, they should consider all sim-
plifying hypotheses that they have made when trying to solve the problem using
standard methods, as these hypotheses might not be necessary any more when
using ML/EC methods, opening wide news areas of alternative solutions. In any
case, they should not look for a nail for their genetic programming hammer.

Authors: We thank you for this interview!

2 Springer
http://www.springer.com/978-3-319-40623-7

Machine Learning Control - Taming Monlinear Dynamics
and Turbulence

Duriez, Th.; Brunton, S.; Noack, B.R.

2017, X 211 p. 73 illus., 58 illus. in color., Hardcover
ISBN: 978-3-319-40623-7

	2 Machine Learning Control (MLC)
	2.1 Methods of Machine Learning
	2.1.1 System Identification as Machine Learning
	2.1.2 Genetic Algorithms
	2.1.3 Genetic Programming
	2.1.4 Additional Machine Learning Methods

	2.2 MLC with Genetic Programming
	2.2.1 Control Problem
	2.2.2 Parameterization of the Control Law
	2.2.3 Genetic Programming as a Search Algorithm
	2.2.4 Initializing a Generation
	2.2.5 Evaluating a Generation
	2.2.6 Selecting Individuals for Genetic Operations
	2.2.7 Selecting Genetic Operations
	2.2.8 Advancing Generations and Stopping Criteria

	2.3 Examples
	2.3.1 Fitting a Function Through Data Points
	2.3.2 MLC Applied to Control a Dynamical System

	2.4 Exercises
	2.5 Suggested Reading
	2.6 Interview with Professor Marc Schoenauer

